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Abstract

This thesis investigates the multi-user security of three cryptographic schemes
with a focus on key-recovery attacks. The cryptographic schemes are some of
the permutation-based finalists of the lightweight cryptography competition
organized by the National Institute of Standards and Technology. The at-
tacks are multi-user attacks and allow assessment of the multi-user security
of the three cryptographic schemes. The security model used for the attacks
comprises of a key-recovery adversary with the ability to choose the nonce
and plaintext. No surprising security bound was found nor expected. The
multi-user security of the three cryptographic schemes depend on their block
length or rate, and on the number of attacked devices and offline generated
ciphertexts.
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Chapter 1

Introduction

Internet-of-Things (IoT) devices are being rapidly adopted by the public.
They come in many forms; household applications, wearables, and promise
to improve our everyday lives. As the name suggests, IoT devices are char-
acterised by communicating, often wirelessly, via internet. However, while
they can provide benefits, they also introduce new challenges [4]. IoT de-
vices provide a new attack vector for cyber criminals, due to their connection
to the internet and generally poor security. This has lead to an increase in
frequency and severity of cyber-attacks. Their security can be broken, allow-
ing an attacker to control the device, or use it to amplify other cyber attacks.

One of the security issues concerns cryptography. A cryptographic scheme
describes the order of operations in which a cryptographic functionality is
carried out. Possible cryptographic functionalities are encryption, decryp-
tion and authentication, often using a private key which is kept secret. Most
IoT applications run on resource-constraint devices. Hence, conventional
cryptographic schemes can be too computationally heavy to be feasible.
This has lead to a demand for alternative schemes which are less compu-
tationally expensive, but still provide sufficient security. Luckily there are
plenty of such lightweight schemes, but their security is not always clear.

Historically, the U.S. National Institute of Standards and Technology (NIST)
has issued standardization processes in which cryptographic schemes are
standardized based on their functionality. Previous standardization pro-
cesses concerned for example block ciphers [6], hash functions [7], and key es-
tablishment schemes [8], and more recently NIST has announced a lightweight
cryptography standardization process [5]. These processes aim to find a
cryptographic scheme which offers the best security and satisfies certain cri-
teria related to the type of scheme. The winner of the standardization pro-
cess then becomes the “standard”; the recommended cryptographic scheme
to implement. With regards to lightweight cryptography and IoT, develop-
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ers will have a clear recommendation and a set of guarantees to work with,
enabling them to combat possible security issues.

The standardization process works in multiple rounds. Each round the
submissions to the NIST standardization process are heavily scrutinized in
terms of security and performance. Subsequently each round multiple sub-
missions will be rejected based on findings by the cryptography community.
As of right now, the process is in its final round: on March 29, 2021, the ten
finalists have been announced. Since the amount of submissions have been
reduced significantly, more attention can be put at identifying vulnerabilities
in the ten finalists. One area that deserves more attention is vulnerability
to multi-user attacks. A cryptographic scheme is vulnerable to multi-user
attacks if an attacker has a greater chance of recovering the key by attacking
multiple devices, rather than attacking a single device multiple times.

In this thesis, I review three of the ten finalists of the NIST lightweight
cryptography standardization process. The aim of these reviews is to in-
vestigate their multi-user security by describing a multi-user key-recovery
attack for each finalist, enabling further insight into their security. The
three finalists are Elephant [1], ASCON [3] and ISAP [2].

Chapter 2, preliminaries, contains the necessary information to be able to
comprehend the contents of this thesis. It will allow anyone to grasp the im-
portance and considerations regarding multi-user security of cryptographic
schemes. Chapter 3 explores the three finalists. It contains a specification
and a multi-user attack for each scheme. The thesis is concluded in Chapter
4.
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Chapter 2

Preliminaries

This chapter provides information about the notation (Section 2.1), prim-
itive (Section 2.2), cryptographic functionality (Section 2.3), and security
model (Section 2.4) that will be used in the research chapter.

2.1 Notation

Symbols

⊥ Error symbol, indicating a failed authentication.

N Set of all natural numbers.

Z Set of all integers.

Z+ Set of all positive integers.

{0, 1}x Bitstring of length x.

Pr(X) Probability of event X.

Operations

|x| Length of bitstring x in bits.

x || y Concatenation of bitstrings x and y.

x⊕ y Xor of bitstrings x and y.

X ◦ Y Function composition of X and Y .

A : x → y Definition of function A, where x is input and y is output.

2.2 Permutation

Cryptographic schemes often consist of building blocks to create larger
schemes. One such building block is a cryptographic primitive, a low-level
function. The finalists of the NIST competition that are researched in the
next chapter use the same primitive: a permutation. A permutation is a
bijection of bits, and since it is a bijective function it is invertible. Let p be
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a permutation and b ∈ Z+, then:

p : {0, 1}b → {0, 1}b.

The permutation takes as input a bit string of length b, and outputs a bit
string of length b.

Permutation

p
Input
bit

string

Output
bit

string

Figure 2.1: High-level overview of a permutation

2.3 Authenticated Encryption with Associated Data

The NIST Lightweight Cryptography competition aims to set a standard for
authenticated encryption (AE) [9]. AE is a functionality that offers confi-
dentiality and authenticity. Encryption ensures that no third party can see
the contents of the data, ensuring confidentiality, while the tag provides au-
thentication; if the tag is valid, the data is the exact data sent by the author.

AE consists of two algorithms: encryption and decryption, depicted in Fig-
ure 2.2. The encryption algorithm takes a key, a nonce, the associated data
and the plaintext as input, and outputs a ciphertext and a tag. The decryp-
tion algorithm also takes a key, a nonce and the associated data, as well as
a ciphertext and corresponding tag. If the tag proves to be a valid tag it
will output the decrypted ciphertext: the plaintext. If the tag proves to be
invalid it will output an error instead.
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Authenticated Encryption

Authenticated Decryption

Figure 2.2: High-level overview of AE

2.4 Security model

Key-recovery adversary

The adversary A engages in a key-recovery game. A set of µ keys K =
{K1, . . . ,Kµ} is randomly generated and A wins the game if it correctly
recovers one of these keys. The adversary has access to online oracles EK1 ,
. . . , EKµ and offline oracles p, p−1, and can query q construction queries to
the online oracles and p primitive queries to the offline oracles. Construction
queries return a ciphertext C, whereas primitive queries return the result of
a permutation. A will use these queries to recover a key and submit (K, i).
If Ki = K holds, A has found a key and wins the game:

Advkeyrec(A) = Pr(A{EK1
,...,EKµ ,p,p

−1} = (K, i) : Ki = K)
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Chapter 3

Research

This chapter deals with the attacks on three of the NIST finalists. It is split
into three sections, one for each of the finalists. Each section contains a
specification where the relevant parts of the cryptographic scheme are spec-
ified. Following the specification is a brief explanation of the security model
used when creating the attack. The attack itself concludes each section.

3.1 Elephant

3.1.1 Specification

A full specification of Elephant v2 is available at [1]. A part of the specifi-
cation, as presented in [1], is shown here.

Let k,m, n, t ∈ N with k,m, t ≤ n. k,m, t, and n are the lengths of
the key, nonce, tag, and block, respectively. Let p : {0, 1}n → {0, 1}n
be an n-bit permutation, and φ1 : {0, 1}n → {0, 1}n be an LSFR. De-
fine φ2 = φ1 ⊕ id, where id is the identity function. Define the function
mask : {0, 1}k × N2 → {0, 1}n as follows:

mask
a,b
K = mask(K, a, b) = φb

2 ◦ φa
1 ◦ p(K || 0n−k).

The encryption algorithm gets as input a key K ∈ {0, 1}k, nonce N ∈
{0, 1}m, associated data A ∈ {0, 1}∗, and a plaintext P ∈ {0, 1}∗, and it
outputs ciphertext C ∈ {0, 1}|P |, and a tag T ∈ {0, 1}t. Encryption is illus-
trated in Figure 3.1, for the specific case where |P | = n.

The decryption algorithm gets as input a key K ∈ {0, 1}k, and a nonce
N ∈ {0, 1}m, associated data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and a
tag T ∈ {0, 1}t, and it outputs a plaintext P ∈ {0, 1}|C| if the tag is correct,
or a dedicated ⊥-sign otherwise.
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N || 0n−m

pmask0,1K

P

C

Figure 3.1: Encryption in Elephant v2 where |P | = n.

3.1.2 Attack

Using the nonce N = 0n and plaintext P = 0n, the adversary queries cipher-
texts C1, C2, . . . , Cµ, which takes µ construction queries. Each C is queried
by the online oracles EK1 , . . . , EKµ and generated as:

Ci = mask
0,1
Ki

+ p(mask0,1Ki
+ 0n)

for i ∈ {1, . . . , µ}, where

mask
0,1
Ki

= φ1
2 ◦ φ0

1 ◦ p(Ki || 0n−k).

The adversary generates ciphertexts C ′
1, C

′
2, . . . , C

′
q offline, using a different

key guess Lj ∈ {0, 1}k for j ∈ {1, . . . , q} for each ciphertext, but the same
N = P = 0n as the online queries. Generating the ciphertexts takes 2q
primitive queries, since the permutation p is used twice for each ciphertext.
Each C ′ is generated as:

C ′
j = mask

0,1
Lj

+ p(mask0,1Lj
+ 0n)

for j ∈ {1, . . . , q}, where

mask
0,1
Lj

= φ1
2 ◦ φ0

1 ◦ p(Lj || 0n−k).

The adversary looks for two ciphertexts, Ci and C ′
j , for which Ci = C ′

j holds,
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for some i, j ∈ N with i ≤ µ and j ≤ q. This means both ciphertexts are
likely to be generated using the same key. The probability of this event
occurring is µ·q

2k
. The adversary outputs (Lj , i), and wins if Ki = Lj . If

no collision is found the adversary loses. However, there is a possibility
of having a false positive, where Ci = C ′

j even though Ki ̸= Lj , with a

probability of 1
2n−1 . Thus, there exists an adversary for q = 2k

µ such that

Advkeyrec ≥ 1− 1
2n :

Advkeyrec(A) = Pr(A{EK1
,...,EKµ ,p,p

−1} = (Lj , i) : Ki = Lj)

= Pr((Ki = Lj) ∧ (∃s, t : Cs = C ′
t)) +Pr((Ki = Lj) ∧ (∀s, t : Cs ̸= C ′

t))

≥ Pr((Ki = Lj) ∧ (∃s, t : Cs = C ′
t))

= Pr(Ki = Lj | ∃s, t : Cs = C ′
t)) ·Pr(∃s, t : Cs = C ′

t)

≥ (1−Pr(Ki ̸= Lj | ∃s, t : Cs = C ′
t)) ·

µ · q
2n

≥
(
1− 1

2n

)
· µ · q

2n
.

3.2 ASCON

3.2.1 Specification

A full specification of ASCON v1.2 is available at [3]. A part of the specifi-
cation, as presented in [3], is shown here.

Let k, r, c, a, b ∈ N. k is the length of the key, r the rate, c the ca-
pacity, a and b the number of rounds for permutations pa and pb, where
pa : {0, 1}320 → {0, 1}320 and pb : {0, 1}320 → {0, 1}320 are 320-bit permuta-
tions, and c = 320− r. Define the initial value as:

IVk,r,a,b = k || r || a || b || 0160−k.

The encryption algorithm gets as input keyK ∈ {0, 1}k, nonceN ∈ {0, 1}128,
associated data A ∈ {0, 1}∗, and plaintext P ∈ {0, 1}∗. It outputs ciphertext
C ∈ {0, 1}|P |, and a tag T ∈ {0, 1}128, as illustrated in Figure 3.2.

The decryption algorithm gets as input key K, nonce N , associated data A,
ciphertext C and tag T . It outputs either plaintext P if the tag is correct,
or a ⊥-sign otherwise.
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IV || K || N

pa

P

C

r

Figure 3.2: Encryption in ASCON v1.2, where |P | = r and A = ∅.

3.2.2 Attack

Using the nonce N = 0128 and plaintext P = 0r, the adversary queries
ciphertexts C1, C2, . . . , Cµ, which takes µ construction queries. Each C is
queried by the online oracles EK1 , . . . , EKµ and generated as:

Ci = pa(IV ||Ki || 0128)

for i ∈ {1, . . . , µ}.

The adversary generates ciphertexts C ′
1, C

′
2, . . . , C

′
q offline, using a differ-

ent key guess Lj ∈ {0, 1}k for j ∈ {1, . . . , q} for each ciphertext, but the
same N = 0128 and P = 0r as the online queries. Generating the ciphertexts
takes q primitive queries. Each C ′ is generated as:

Cj = pa(IV ||Kj || 0128)

for j ∈ {1, . . . , q}.

The adversary looks for two ciphertexts, Ci and C ′
j , for which Ci = C ′

j

holds, for some i, j ∈ N with i ≤ µ and j ≤ q. The probability of these
ciphertexts being created by the same key is µ·q

2k
. The adversary outputs

(Lj , i) and wins if Ki = Lj . If no collision is found the adversary loses.
However, there is a possibility of having a false positive, where Ci = C ′

j , but

Ki ̸= Lj , with a probability of 1
2r−1 . Thus, there exists an adversary for
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q = 2k

µ such that Advkeyrec ≥ 1− 1
2r :

Advkeyrec(A) = Pr(A{EK1
,...,EKµ ,p,p

−1} = (Lj , i) : Ki = Lj)

= Pr((Ki = Lj) ∧ (∃s, t : Cs = C ′
t)) +Pr((Ki = Lj) ∧ (∀s, t : Cs ̸= C ′

t))

≥ Pr((Ki = Lj) ∧ (∃s, t : Cs = C ′
t))

= Pr(Ki = Lj | ∃s, t : Cs = C ′
t)) ·Pr(∃s, t : Cs = C ′

t)

≥ (1−Pr(Ki ̸= Lj | ∃s, t : Cs = C ′
t)) ·

µ · q
2r

≥
(
1− 1

2r

)
· µ · q

2r
.

3.3 ISAP

3.3.1 Specification

A full specification of ISAP is available at [2]. A part of the specification,
as presented in [2], is shown here.

Let k, n, r, rB, sH , sB, sE , sK ∈ N. k is the length of the key and nonce,
n the length of the permutation, r and rB the rate in encryption and re-
keying, respectively, where r = n − 2k and rB = 1. sH , sB, sE and sK
specify the number of rounds the permutation is evaluated. Let pE , pK ,
pB : {0, 1}n → {0, 1}n be n-bit permutations. ISAP makes use of a re-
keying function IsapRk. It takes as input a flag f ∈ {enc, mac}, a key K
and nonce N , both of length k bits, and outputs subkey K∗ of n − k bits,
as illustrated in Figure 3.4 for the specific case where N = 0k and f = enc.
Define the initial value of IsapRk as:

IVKE = 3 || k || r || rB || sH || sB || sE || sK || 0∗

The encryption algorithm gets as input k-bit key K and nonce N , and
plaintext P ∈ {0, 1}∗. It outputs ciphertext C ∈ {0, 1}|P |, as illustrated in
Figure 3.3. The decryption algorithm is identical to encryption with the
plaintext P and ciphertext C swapped. Authentication is done separately
by the IsapMac function.
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IsapRk

KN

•

∥

pE

P

C

k k

K∗
n−k

r

Figure 3.3: Encryption in ISAP

v2.0, where |P | = r

K || IVKE

pK

pB

pK

K∗

n− k

Figure 3.4: Re-Keying with
IsapRk, where N = Y = 0k and

f = enc

3.3.2 Attack

Using the nonce N = 0k and plaintext P = 0r, the adversary queries cipher-
texts C1, C2, . . . , Cµ, which takes µ construction queries. Each C is queried
by the online oracles EK1 , . . . , EKµ and generated as:

Ci = pE(0
k || IsapRk(0k || K∗

i ))

for i ∈ {1, . . . , µ}, where

K∗
i = IsapRk(0k || Ki).

The adversary generates ciphertexts C ′
1, C

′
2, . . . , C

′
q offline, using a different

key guess Lj ∈ {0, 1}k for j ∈ {1, . . . , q} for each ciphertext, but the same
N = 0k and P = 0r as the online queries. Generating the ciphertexts takes
q primitives queries. Each C ′ is generated as:

C ′
j = pE(0

k || IsapRk(0k || Lj))

for j ∈ {1, . . . , q}.
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The adversary looks for two ciphertexts, Ci and C ′
j , for which Ci = C ′

j

holds, for some i, j ∈ N with i ≤ µ and j ≤ q. The probability of these ci-
phertexts being created by the same key is µ·q

2k
. The adversary outputs (Lj , i)

and wins if Ki = Lj . If no collision is found the adversary loses. However,
there is a possibility of a false positive, where Ci = C ′

j , but Ki ̸= Lj , with

a probability of 1
2r−1 . Thus, there exists an adversary for q = 2k

µ such that

Advkeyrec ≥ 1− 1
2r :

Advkeyrec(A) = Pr(A{EK1
,...,EKµ ,p,p

−1} = (Lj , i) : Ki = Lj)

= Pr((Ki = Lj) ∧ (∃s, t : Cs = C ′
t)) +Pr((Ki = Lj) ∧ (∀s, t : Cs ̸= C ′

t))

≥ Pr((Ki = Lj) ∧ (∃s, t : Cs = C ′
t))

= Pr(Ki = Lj | ∃s, t : Cs = C ′
t)) ·Pr(∃s, t : Cs = C ′

t)

≥ (1−Pr(Ki ̸= Lj | ∃s, t : Cs = C ′
t)) ·

µ · q
2r

≥
(
1− 1

2r

)
· µ · q

2r
.
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Chapter 4

Conclusions

In the previous chapter an attack was created for three finalists, resulting
in three security bounds. The security bounds allow an assessment of the
cryptographic schemes concerning their multi-user security. The security
bounds show similarities, since they largely depend on the same variables.
For Elephant the following attack success probability was found:(

1− 1

2n

)
· µ · q

2n

For both ASCON and ISAP the following attack success probability was found:(
1− 1

2r

)
· µ · q

2r

All three probabilities are dependent on the values of µ and q. Translated
to a real-life scenario this means the security of the cryptographic schemes,
in terms of a multi-user attack, depend on the amount of devices being at-
tacked and the amount of ciphertexts the attacker creates locally. A higher
amount of devices and ciphertexts results in a larger chance of a key recovery.

The probability of Elephant also depends on the value of n, the block
length. A higher block length means the ciphertext will be longer and it
becomes harder to find collisions. Since a collision is necessary for a key
recovery, a higher block length results in a more difficult attack. This in-
crease is offset by a lower chance of finding a false positive, though this is
insignificant.

The probabilities of ASCON and ISAP depend on the value of r, the rate.
The effects are similar to the value of n for Elephant since r determines the
length of the ciphertext. Finding a collision becomes harder resulting in a
more difficult attack, regardless of the lower chance of encountering a false
positive.
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