
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

3D Fishualizer

Continuing a VR model of the brain recordings of zebrafish

Author:
Boudewijn van Gils
s1045276

First supervisor/assessor:
Dr. Bernhard Englitz

Second assessor:
Dr. Pieter Koopman

June 9, 2023

Abstract

The 3D Fishualizer is a project designed to visualise the brain of a zebrafish
in Virtual Reality (VR). With the VR application, researchers can get in-
creased insight in the brain data, which opens the way for exploratory and
non hypothesis-driven research. The position, activity and corresponding
regions of the roughly 80 000 neurons of the zebrafish are loaded from an
hdf5 file and then shown as particles in the program Unity. From September
to January 2023, the 3D Fishualizer has been extended with several features.
The main changes are being able to select one of 294 regions, to show the
activity of a neuron in a graph and to see if that activity is strongly related
to the activity of other neurons by using correlation coefficients.

Contents

1 Introduction 3
1.1 What is the 3D Fishualizer? 3
1.2 The data . 3
1.3 The model . 4
1.4 The new features of the 3D Fishualizer 4
1.5 Overview of sections . 6

2 Preliminaries 7
2.1 Small introduction to Unity 7

3 Related Work 8
3.1 Brain visualization . 8
3.2 The original Fishualizer . 9

4 Research 10
4.1 The 3D Fishualizer by Jannika Koschnitzke [VisualiseNeu-

rons.cs & RescaleByHand.cs] 10
4.1.1 Region mode code . 11

4.2 Controls of the new 3D Fishualizer 11
4.3 Hands and brain rotation [RescaleByHand.cs & PointerFol-

lowsHand.cs] . 12
4.3.1 Implementing the object hands 13
4.3.2 Implementing rotation 13
4.3.3 No centre point . 13

4.4 Showing brain regions [RegionMode.cs] 15
4.4.1 How the basic region mode works 15
4.4.2 Updating the neuron positions 15
4.4.3 Controls: SwitchOnButton 16
4.4.4 Color changes and locking 16

4.5 Showing neuron activity in a graph [ActivityGraph.cs] 16
4.5.1 Creating a graph . 16
4.5.2 Visualising the activity of a neuron 17

4.6 Loading the data . 17

1

4.6.1 Removing dependency on the two extra datasets . . . 18
4.6.2 Loading the label data 19
4.6.3 Why use the sparse matrices? 20

4.7 Showing Correlation Coefficients between neurons [Neuron-
Connections.cs] . 20
4.7.1 Calculating/reading Correlation coefficients 21
4.7.2 Selecting a neuron [RightHandActions.cs] 21

4.8 Changes in Unity, non-script related 22

5 Conclusions 23
5.1 Conclusion . 23
5.2 Discussion . 23

A Appendix 27
A.1 biology background knowledge 27

A.1.1 Studying zebrafish . 27
A.1.2 Obtaining brain data from zebrafish 27

A.2 Making the Oculus Rift show the brain again 28
A.2.1 Nothing shows up on the Oculus Rift 28
A.2.2 Help and Solution . 29
A.2.3 Workaround . 29

A.3 Green sphere solution for rotating/scaling 30
A.4 Moving the neurons solution [VisualiseNeurons.cs] 32

2

Chapter 1

Introduction

1.1 What is the 3D Fishualizer?

Let us start by untangling the name. It is called ’Fishualizer’ because it
’visualizes’ the brain activity of zebra’fish’. And ’3D’, because it is an ap-
plication made for Virtual Reality. The 3D Fishualizer is made using the
program Unity, which uses c# scripts. The goal of the application is to
give researchers an immersive, insightful and engaging way to interact with
zebrafish brain recordings. It should be easy and fun to use the model, and
hopefully, doing so could lead to new hypotheses or improved understanding.

1.2 The data

If you are unfamiliar with zebrafish brain research and would like to know
how the data is obtained, I would highly recommend reading ”biology back-
ground knowledge” in the appendix (A.1).

The brain data for the 3D Fishualizer is stored in an hdf5 file. This
is a commonly used format to store large amounts of scientific data. The
hdf5 file includes the activity and positions of the neurons, as well as labels
that indicate to which brain region a neuron belongs. The zebrafish larvae
have roughly 80 000 till 100 000 neurons. The activity of these neurons is
recorded over 3520 timesteps (at least for subject 02, which is the default
file used in this project). The neurons can be grouped into one of 6 main
regions, which can be further subdivided into 294 subregions.

This is a lot of data to work with in a simulation. Especially calculations
with regards to ≈80 000 neurons can be quite computationally heavy and
cause lag, which is unpleasant for the user. Therefore, it is important to limit
the workload for the CPU/GPU of the computer on which the simulation
runs, to make it run smoothly.

3

Figure 1.1: The 3D Fishualizer in Unity

1.3 The model

The work in this paper is a continuation of the work that Jannika Koschnitzke
has already done in 2021-2022. As a master student of psychology, she de-
veloped the core of the 3D Fishualizer. In figure 1, you see that the activity
of the brain is shown clearly and quite beautifully in Unity. The basic model
of showing the brain activity is excellent and has therefore been left mostly
untouched in the new implementation.

This paper covers the changes to the 3D Fishualizer from September to
January 2022-2023. The first goal is to make the 3D Fishualizer run on
the headset. After that, virtual hands should be added. Next, by using
these new hands, the user should be able to select a region of the brain
which is made clearly visible, whereas the rest of the brain becomes more
transparent. After that, we will look into other functionalities and ways to
interact with the brain. The functionalities do not need to be completely
finished, as the 3D Fishualizer is still a work in progress. A fellow student,
Utku, will help in continuing the project in the spring semester.

1.4 The new features of the 3D Fishualizer

These are the changes that I have made to the 3D Fishualizer in the autumn
semester of 2022, described briefly (and shown in figure 1.2)

1. The ”region mode”. Let’s say the user is interested in taking a close
look at a part of the brain and nothing else. This is where they can
activate the region mode. With virtual hands, the user can select a
region of the brain. That selected region becomes very clear, whereas
the rest of the brain turns nearly invisible.

In the normal region mode the user can select from 6 large brain
regions. In the ’subregion mode’ the user can be even more specific,
and select from 294 small regions.

2. A graph with neuron activity. If the user is interested in seeing the ac-
tivity of a neuron over time, he or she can select an individual neuron.

4

Figure 1.2: The four main changes covered in this paper

The complete activity of that neuron will then show up in a graph
next to the brain.

3. Additionally, if the user is interested in how the activity of that neuron
is related to the activity of other neurons, they can enter the ’neuron
connections’ mode. Other neurons that have a similar activity are col-
ored red. Neurons that have a somewhat opposite activity are colored
blue. With this function, the user can recognize clusters of neurons
that are related to each other.

4. We would like the 3D Fishualizer to work on any zebrafish recording.
That allows the user to pick a recording in which they are interested.
A recording contains data for the position of the neurons, the activity
of the neurons, and the ’region labels’ of the neurons. Before, the
3D Fishualizer only worked on a single recording, which had altered
datasets. The altered datasets did not exist for any other recordings,
so the 3D Fishualizer could not work on them. Besides that, there
was no way to load the ’region labels’ yet. Both of these limitations
have been overcome. The 3D Fishualizer can now load data from any
recording, including the ’region labels’.

5

5. Besides those big functionalities, quite a few optimizations have been
made to improve the 3D Fishualizer. The texture of the neurons has
been improved, to make them appear less blurry. The brain can be
rotated, such that you can view it from all angles. Finally, scaling the
brain to a different size no longer moves the brain, which was a bit of
a nuisance.

1.5 Overview of sections

If c# scripts are related to a part of this paper, they are placed in brackets
behind the name of the section.

Chapter 2 gives a tiny introduction to Unity.
Chapter 3 looks into research about VR brain models, as well as the

predecessor to the 3D Fishualizer.
Chapter 4 goes in depth on how the model works, what changes have been

made and the process behind making those changes. In this chapter: Section
4.1 describes the model before any changes. This is the 3D Fishualizer as
implemented by Jannika Koschnitze. Section 4.2 gives a preview to the
controls of the new Fishualizer. Sections 4.3-4.8 describe how the model has
been improved and extended in several ways:

3. Rotation and improved scaling of the brain are added. [RescaleBy-
Hand.cs]

4. Virtual hands have been implemented[PointerFollowsHand.cs]. Those
are used to fully implement the Region Mode, in which brain regions
are highlighted. [RegionMode.cs]

5. The activity of a single neuron can be shown in a graph. [Activity-
Graph.cs]

6. The data is loaded in a more general way. [VisualiseNeurons.cs &
RegionMode.cs]

7. Correlation coefficients between neurons can be shown in a basic way.
[NeuronConnections.cs]

8. Unity uses a different version and the particles have a new texture.

Chapter 5 concludes all the changes made and discusses what can be im-
proved in future versions of the 3D Fishualizer.

The Appendix provides extra information about certain topics.

6

Chapter 2

Preliminaries

2.1 Small introduction to Unity

The 3D Fishualizer is made in Unity. Unity is a developer tool, which is
mainly used for creating video games but can also be used for an interactive
Virtual Reality (VR) simulation. The main screen for developing an app in
Unity is the Unity Editor. Here you can make GameObjects, which form
the foundation of what is visible in the simulation. e.g. The brain of the
zebrafish is a single GameObject in Unity called ”WholeBrain”. By using
c# scripts these GameObjects can be given instructions such that they
change on certain conditions, or when the user interacts with them. The
c# scripts normally use a start() function and an update() function. The
start() functions runs when you first load the scene. The update() function
runs every frame.

7

Chapter 3

Related Work

3.1 Brain visualization

Presumably, the 3D Fishualizer is the first attempt to create a Virtual Re-
ality (VR) application to show the Zebrafish brain. But the human brain
has been modeled in VR before. A prominent example of such a VR model
for the human brain is described by Pester in a recent paper[6]. This paper
covers a VR application that aims to provide a better insight into the con-
nectivity in the human brain. The 3D Fishualizer has the exact same goal,
but for the zebrafish brain. The paper is very positive about being able to
achieve this goal. To quote:

“For our user study, we included experts from the field of EEG data
analysis as well as computer scientists. The results yield positive feedback
for exploratory data analysis especially in the use case of non hypothesis-
driven research. Participants liked the overall experience and experts with
background in brain activity analysis think it would be helpful using this ap-
plication in a professional context. This indicates that an immersive 3D view
of anatomically arranged brain offers a support for a data-driven,intuitive
exploration of temporally varying, multi-dimensional brain networks.”[6]

Other studies also point out the challenges of designing VR brain in-
teraction [5]. It is not always clear which features are useful and effective
and which are not. This makes the design difficult and requires the use of
trial and error, to see whether the design works in practice. Furthermore,
there needs to be a consideration whether specific data sets are computed
before running the simulation, or during the simulation. This is especially
challenging when using Unity, as it is not optimized for performing large
computations.

The zebrafish brain itself has also been mapped out several times. One
of these maps called mapZebrain can be found online[10]. This map gives
outlines of the regions and subregions of the zebrafish brain, which light up
when selected. This clear visualization is a good example of what a region

8

https://mapzebrain.org/atlas/3d

mode could look like for the 3D Fishualizer.
However, the most important precursor to the 3D Fishualizer is the

original Fishualizer which was developed for desktop use.

3.2 The original Fishualizer

Figure 3.1: The original Fishualizer for desktop

This Fishualizer was made in Python by Thijs van der Plas, Rémi
Proville and Bernhard Englitz. The model also takes an hdf5 file as an
input and shows the neuron activity using colours (see figure 3.1). There
are several ways to analyze the data, like showing the regions and deconvo-
luting spikes in the activity. Because it uses the same recordings as input,
this original Fishualizer can be used as a benchmark to check whether new
features in the 3D Fishualizer are working correctly. For now, we will focus
on the 3D Fishualizer.

9

https://bitbucket.org/benglitz/fishualizer_public/src/master/

Chapter 4

Research

4.1 The 3D Fishualizer by Jannika Koschnitzke
[VisualiseNeurons.cs & RescaleByHand.cs]

Neurons as Particles in Unity

The most important part of the project is the GameObject ”wholebrain”.
This GameObject is a particle system. Choosing a particle system was
an excellent choice for representing the brain, because it allows you to show
≈80 000 neurons, without having to create individual GameObjects for every
neuron. Unity is not optimized for creating scenes with such large numbers of
GameObjects, so creating and running a project with ≈80 000 GameObjects
causes severe lag. The downside of using particles instead of GameObjects
is that the resolution of the individual particles is not very high. This makes
them unpleasant to look at from up close. Unity renders the particles using
a billboard. A billboard makes a 2D sprite – in this case a circle – appear in
3D. Because of the low resolution of the sprites, billboards allow for a good
performance at the cost of resolution. As far as we know, this is the best
way to represent the brain in Unity.

Showing the activity

There is no clear hierarchy in the scripts. Everything could be written in a
single script, but for clarity and accessibility of the code, separate files are
used.

Jannika’s project had two important c# scripts:’VisualiseNeurons.cs’
and ’RescaleByHand.cs’. Those scripts still exist and contain most of the
old code albeit now integrated into a larger whole. 1

1There were a few other scripts (luminosity.cs, shader.cs) as well as a flashlight object
in the Unity environment. I spoke to Dr. Englitz and Jannika and we concluded that those
are not necessary and were related to some other ideas which we will not use anymore.

10

The script ’VisualiseNeurons.cs’ performs the most essential tasks of the
project. First it loads the coordinates and activity of the neurons from the
hdf5 file. Then:

1. The coordinates are used to place the particles/neurons at the right
positions to form the brain.

2. The activity is used to change the color of those particles, such that
a bright and white color corresponds to a highly active neuron, and a
dim and lavender particle corresponds to a lowly active neuron. This
is implemented by using a colormap and a clever function that makes
the color change smoothly.

In ’RescaleByHand.cs’, the brain GameObject is transformed by controller
inputs. There are two transformations possible, if the right buttons are
pressed:

1. Moving: Changing the location of the brain by moving the right con-
troller in the direction you want the brain to go. This transformation
feels quite natural to perform.

2. Scaling: Increasing/decreasing the size of the brain, by moving the
controllers outwards or inwards.

Because all the neurons are part of the brain GameObject, they will move/s-
cale when the GameObject is moved/scaled.

4.1.1 Region mode code

Jannika also made the code for highlighting certain neurons in the brain by
making all the other neurons a lot more transparent. However, because she
had not found a way to create virtual hands, with which to select a region
of the brain, this part of the code was never used. But the code was later
revised into ’Regionmode.cs”.

A major issue at the start of working on the project was that nothing
showed up on the Oculus Rift. The application ran perfectly fine on the
computer, but when putting on the headset, nothing showed up. Resolving
this issue took a lot of time and effort, as well as some help from outside.

This is detailed in the appendix under ”Making the Oculus Rift show
the brain again” (A.2).

4.2 Controls of the new 3D Fishualizer

The controls for all functionalities of the 3D Fishualizer are shown in figure
4.1. The boxes show which scripts direct which actions. This image is meant
to give an early overview to be used for reference. We will now take a closer
look at the features.

11

Figure 4.1: The controls for the 3D Fishualizer at the end of January [8]

4.3 Hands and brain rotation [RescaleByHand.cs
& PointerFollowsHand.cs]

Adding virtual hands is a good starting point for extending the 3D Fishual-
izer because they enable the user to select regions or neurons of the brain.
This is useful for implementing other functionalities. There are several op-
tions when making hands in Unity:

1. Humanlike hands: As an advantage, these look natural for the user.
You can also use these hands for animations like grabbing or pointing
with the index finger. But hand gestures are not very important for
the 3D Fishualizer. Because the virtual brain is quite large, something
longer than a humanlike hand is desirable.

2. Raycast hands: These are similar to a laser pointer. They are useful for
grabbing from far away or pointing at objects. Pointing is important
in the 3D Fishualizer. However, objects need to be solid for the raycast
laser to interact with them. Therefore, you can’t use the raycast hands
to point to the middle of the brain.

3. Object hands: These hands are made from Unity GameObjects, like a
cylinder, for example. With such basic shapes you can create a pointer
with which the user can easily point to the brain, including right in
the middle of it. At the end of the pointer is a little sphere. The
position of this sphere can be used to find the position of the nearest
neuron/region. The disadvantage of using the object hands is that
they don’t look very appealing. Perhaps, in a later stage the basic
shapes which make up the hands can be changed for a more complex
and beautiful pointer. For now the basic shapes will do.

12

4.3.1 Implementing the object hands

To create the object hands, you can start by implementing basic raycast
hands by following this Youtube tutorial [12]. When you finish the tutorial,
you will have two raycast hands. To turn them into object hands, you create
an object in Unity from basic shapes (2 spheres and a cylinder). Then by
applying the script PointerFollowingHands.cs on these hands, they start
following the VR controllers. In the script, the hands are set at a 90 degrees
rotation on the x axis, such that they naturally extend from the user’s arm
instead of going upward.

4.3.2 Implementing rotation

The left trigger button is used for rotating the brain. This is implemented
such that if you rotate the left controller, the brain rotates in the same way
as the left controller. Candidly, this is not the most intuitive way of doing a
rotation. There are two ways of rotation which are probably more intuitive:

1. A rotation in which you use both hands to rotate the brain, using a
motion much like how you would rotate a plate of food in real life.

2. A rotation in which you spin the brain with one hand. This is similar
to how you can spin the earth in Google Earth.

However, because rotating is not nearly as important as moving and scaling,
I haven’t taken the time to implement one of the better rotations. The simple
rotation is sufficient for now.

4.3.3 No centre point

At this point, the rotating and scaling worked, but they both had a defect.
The defect is most easily shown in a picture (see figure 4.2).

Because the neurons of the activated brain did not appear at the centre of
the brain GameObject, the brain would move a lot when scaling or rotating.
In short, the neurons need a centre point around which they rotate or scale.
At first I solved this issue by creating an artificial centre for the brain. The
artificial centre, for which I used a green sphere was the parent object of
the brain object. Therefore, when the green sphere moves/rotates/scales,
the brain does exactly the same. This solution is illustrated in the appendix
under ”Green sphere solution for rotating/scaling” (A.3).

Eventually, this solution became obsolete because of a better solution:
moving the active neurons such that the center of them is the exact center
of the brain object. The details for this solution are also in the appendix
under ”Moving the neurons solution [VisualiseNeurons.cs]” (A.4).

13

Figure 4.2: Issue with rotating/scaling the activated brain

14

4.4 Showing brain regions [RegionMode.cs]

4.4.1 How the basic region mode works

The basic idea of the region mode was already worked out by Jannika. Using
the controller to aim, the user points somewhere in the brain with the virtual
pointer. Then, the neuron whose position is closest to the end of the pointer
is selected. The selected neuron is passed into a dictionary as the key. This
dictionary links the neuron to the region to which it belongs. Once we have
the selected region, the next step is quite simple: All neurons that are not
part of the region are made more transparent. This is done by using the
same neuron-to-region dictionary, but in the other way around (i.e. loop
through all neurons and select those which are not part of the region). In
figure 4.3 you can see an example of what the region mode looks like.

Figure 4.3: The left pointer is red while in region mode. The neuron closest
to the end of the pointer is indicated with a blue sphere. The region of that
neuron lights up.

4.4.2 Updating the neuron positions

To select a region, we need the position of the closest neuron to the pointer.
This means we need to store the positions of all ≈80 000 neurons. The
position of the neurons needs to be up to date for the region mode to work.
Otherwise, the region mode will still use the old positions, from before the
brain was moved/rotated/scaled.

If you wish to keep these positions up to date by calculating them in the
update function – which is called every frame – it causes heavy lag. There-
fore, RegionMode makes use of a boolean ’brainChanged’. ’brainChanged’
is set to true after the brain object has been moved/rotated/scaled. If the
boolean is true, the positions of the neurons are recalculated. Otherwise,
using the old positions is fine.

Getting the updated positions is done by taking the original position of

15

the neuron, and then adjusting it for the new position, rotation and scale of
the brain object 2. If the calculation is only done once, the lag it causes is
insignificant such that you do not notice it.

4.4.3 Controls: SwitchOnButton

The SwitchOnButton() function is difficult to understand, despite its small
size, which is why I will explain it here: We want to turn the region mode
on and off by pressing a single button. Implementing this in Unity is not
very straightforward. By default, Unity can only detect whether a button
is pressed or not. Therefore, if you use a simple implementation, holding
the button causes the region mode to be turned on/off every frame, which
is very inconvenient. In our implementation we would like to change the
region mode only once when the button is pressed continuously. To do this,
we use a boolean ’timeToChange’. After the first frame a button is pressed,
’timeToChange’ is set to false. This prevents the region mode from changing
again when the button is continously pressed. Only after the button has
been released, ’timeToChange’ becomes true again.

4.4.4 Color changes and locking

Once the region mode is activated, the left pointer becomes red, to give a
clear visual indication that it is turned on. The region which is currently
selected shows up as text in Unity. The text is displayed on the activity
graph, which we will cover later.

Locking regions or subregions is a functionality which is semi-implemented.
It is possible to lock one region or subregion, such that it remains visible
when you stop hovering it with the left pointer. This is convenient when
you want to observe a region without putting in the effort of hovering over
it with the pointer. In the future, it might be desirable to extend this such
that you can do this for multiple regions/subregions.

4.5 Showing neuron activity in a graph [Activity-
Graph.cs]

4.5.1 Creating a graph

Next, we wanted to create a graph which shows the activity of a neuron over
time. You can select a neuron with your right hand, and then see in the

2A pitfall, which both me and Jannika fell into is thinking that the ”world position”
of the neurons would refer to their absolute position. In Unity, ”world position” stands in
contrast to the ”local position” which is the position of something in regards to their parent
object. However, the world position of the neurons does not give you the correct position
where they are, as you still need to (manually) adjust for the position/rotation/scale of
the brain object to which they belong.

16

graph how active it is over all (in this case 3520) timesteps. The creation of
a graph was done mainly by following a Youtube tutorial [11]. The graph is
made in a basic and low level way: by creating circle- and rectangle objects
at the right positions on a canvas. The positions are calculated from the
neurons activity. Figure 4.4 shows an example of what the activity graph
looks like.

Figure 4.4: The activity of neuron 55622 is shown over 3520 timesteps in
the graph.

4.5.2 Visualising the activity of a neuron

The other scripts only need to know a single function from the Activity-
Graph.cs script, which is ShowGraph(int selected neuron).

If this function is called, the rectangles and circles which made up the old
graph are deleted. Then the new positions are calculated. Finally, new rect-
angles and circles are placed at those positions. Creating a large amount
of objects causes some lag. This is reduced by the function ChangeChil-
drenOrder(), which groups the rectangles and circles in the Unity hierarchy.
When similar unity objects are next to each other in the hierarchy, they can
be rendered in batches. This reduces the lag of loading them all at once.

This process seems to take about half a second of computing in Unity,
such that the simulation pauses for a short time. Possibly, the rectangle-
and circle objects can be reused when selecting a new neuron, such that less
objects need to be created and destroyed. For now, this implementation of
the activity graph is simple and quite functional.

4.6 Loading the data

In the project, we use a large database that contains the position, activity
and region labels of the zebrafish neurons. This data is stored in an hdf5
file. This filetype is often used for storing large amounts of scientific data.
Unity is not build for loading large amounts of data, so it is difficult to
do so in c#. This was done in the original implementation by using the
library SharpData. This is a custom made library made by Teun van Gils,

17

who works in Nijmegen in a related field. From the SharpData library, two
custom made functions were used to load the positions and activity of the
neurons from the hdf5 file. These worked very well, such that the loading the
was done in a few miliseconds. However, there were two issues remaining:

1. subject 2 df.h5 –The file which we used for testing the 3D Fishualizer –
contains two extra datasets: ’coords T’ and ’df doub’. These datasets
do not occur in any of the other hdf5 files, which only contain the
unaltered versions of those datasets: ’coords’ and ’df’. (You can see
the datasets listed in the white part in figure 4.5). The activity and
positions of the neurons are loaded by using the special datasets which
only one file had. Therefore the 3D Fishualizer will not work on any
of the other files.

2. The region label data is not loaded in. The activity and positions are
loaded with custom made functions (as shown in the black parts of
figure 4.5), but no such function exists for the region labels.

Figure 4.5: Top left and right: The get functions from the Sharpdata library
for the positions and activity, respectively. Bottom middle in white: The
datasets of subject 2 df.h5.

4.6.1 Removing dependency on the two extra datasets

We want to load the activity and positions of the neurons from the data sets
that are in every hdf5 file. Specifically, the activity has to be loaded from
df instead of df doub. df and df doub are very similar. The only difference
between them is that df doub stores the activity as doubles, whereas df stores
it as floats. So to get the data from df, we use the custom made function that

18

loads df doub and change Slice<double> to Slice<float>. This causes some
minor changes in the rest of the code. Previously, we used a normalizing
function from the SharpData library. This function does not work anymore
with floats. Therefore, we write our own normalizing function for floats and
then everything works as before.

Now for the neuron positions, we want to rewrite the function that gets
coords T such that it works for getting coords instead. coords T is the same
dataset as coords, but transposed. The rewriting is not so easy, mainly be-
cause we do not have direct access to the SharpData library. The only access
we have is by using DotPeek, which decompiles the library into readable c#
code (see figure 4.6). This decompiled code has no comments and many
variables have unusual types, which makes them difficult to work with.

Luckily, Teun van Gils dropped by and helped out. With his help, the
function is now rewritten to work for coords. Now both the positions and
the activity could be loaded from any hdf5 file.

Figure 4.6: The decompiled SharpData library in DotPeek. This is the
function for acquiring the data from coords T

4.6.2 Loading the label data

Teun also helped in loading the region label data.
First let us cover how the label data is stored. Most of the data is

stored in the hdf5, with exception of the text file RegionLabels.txt. This
textfile stores the names of the 294 subregions, all separated by new lines.
This makes it such that we can simply refer to the regions using an index
number, and then use this text file to get the right name for it.

The neuron-to-region data is stored in a ≈80 000 by 294 sized matrix
in the hdf5 file. The 294 columns correspond to the 294 subregions in the
zebrafish brain and the ≈80 000 rows correspond to the neurons. Every
neuron is assigned exactly one of these regions, which means that column
will contain a 1, and all the other columns are 0. (As an exception: There
are a few neurons that are assigned no region at all.) With the help of
Teun, we created a function to assign each neuron their respective region.
The function navigates this matrix in a very efficient way . The basic idea is:
For every row, find the first index which is 1 and return that as the region
to which the neuron belongs. Nevertheless, even with using this efficient
algorithm, loading the labels still takes about 30 seconds. In all likelihood,
there is no way to load the data from such a huge matrix into c# in a fast

19

way. To circumvent this issue, we only load the data from the hdf5 file the
first time that the 3D Fishualizer runs. In that first run, we write the regions
of the ≈80 000 neurons to a text file. The text file has ≈80 000 lines and
each line contains a number which corresponds to the region of the respective
neuron. On subsequent runs of the 3D Fishualizer, the data is loaded from
this text file, instead of the huge matrix from the hdf5 file. Reading from
the text file only takes 0.016 seconds, which is negligible compared to 30
seconds of loading from the hdf5 file. Accepting this small circumvention,
that means all loading issues are solved.

4.6.3 Why use the sparse matrices?

The previous issue was caused by two factors. One, c# is not optimized
for handling large amounts of data. Two, the label data is stored in an
enormous matrix. It would only make sense to use such a matrix if some
neurons were assigned to multiple regions. But if you analyze the label data
for the file which we used – subject 2 df.h5 – you will find that the neurons
are never assigned to more than one region. That means having the sparse
matrix has no added value and just makes the loading more difficult. If this
is the same for the other hdf5 files, a systematic change in storing the label
data is desirable.

4.7 Showing Correlation Coefficients between neu-
rons [NeuronConnections.cs]

For the last added functionality of the 3D Fishualizer, we want to user to
be able to select a neuron and see which other neurons it is closely related
to. To do that, we compare the activity of the neurons. Concretely, the
correlation coefficients between the activity of the selected neuron and the
activities of the other neurons are calculated. This is then shown by coloring
the other neurons such that:

1. Green neurons show no significant correlation with the selected neuron.

2. Red neurons show a strong positive correlation with the selected neu-
ron.

3. Blue neurons show a strong negative correlation with the selected neu-
ron.

To color a neuron, a sphere GameObject with the appropiate color is created
on top of the neuron. An example of such a correlation coefficient is shown
in figure 4.7. The spheres have the brain GameObject as their parent, such
that they move along with it.

20

Figure 4.7: Visualization of correlation coefficients of neuron 55622

4.7.1 Calculating/reading Correlation coefficients

If we want to have this functionality for all ≈80 000 neurons that would
mean that ≈80 000 correlation coefficients need to be computed every time
a new neuron is selected. Alternatively, you could calculate all possible cor-
relation coefficients beforehand, resulting in an ≈80 000 by ≈80 000 matrix
but no more calculations during runtime. Unfortunately, calculating cor-
relation coefficents in c# takes a very long time. Even after some small
optimizations, calculating correlation coefficients for for only 1000 neurons
still takes 56 seconds. This puts some heavy restraints on the possibilities
of showing the neuron connectivity using c#. For now, we choose to make
this functionality only for the 1000 most active neurons. To reduce loading
times, we apply a very similar circumvention as we did for loading the region
data. By storing the correlation coefficients in a text file after calculating,
subsequents runs don’t need to do the computations. This reduces the time
to acquire the correlation coefficents from 56 seconds to 0.52 seconds.

4.7.2 Selecting a neuron [RightHandActions.cs]

Similar to ActivityGraph.cs, other scripts only interact with NeuronCon-
nections.cs by calling the function ShowCorCoefs(int selected neuron). This
function calculates the colors for the newly selected neurons, and then re-
places the spheres such that they have the right colors. Both showing the
activity graph as well as showing the correlation coefficients is controlled in
the script RightHandActions.cs. It enables the user to press certain buttons
on the right controller with which they can:

• Select a neuron.

• Show the activity for the selected neuron in the graph.

• Show the neuron correlations for the selected neuron.

The controls for doing this work fine, but are not very user friendly. They
are now set up more from a developer perspective: To test all functionalities

21

separately. This helps the developer, for example, to see what features cause
lag. But in a future version the controls should be simplified for normal
users, which should not take too much effort.

4.8 Changes in Unity, non-script related

That covers all the major changes to the 3D Fishualizer. I would like to
point out some other minor changes:

1. The Unity version is changed from Unity 2021.2.8f1 to Unity 2021.3.11f1.
The latter one is a last Long Term Support (LTS) version of Unity.
Hopefully, using an LTS version will provide a stable environment for
developing the 3D Fishualizer.

2. The brain particles have a more detailed texture. By default the brain
particles use the ”Default-Particle” texture (figure 4.8a). This material
uses a 64 by 64 image of a circle. When looked on from up close, this
is quite unpleasant to look at because of the low resolution. Therefore,
I made a similar image using Photopea, but with 264 by 264 pixels
(see figure 4.8b). This new texture has a higher resolution and a more
steep gradient which makes it less blurry. This makes the particles a
bit more pleasant to look at from up close, in my opinion. The change
did not seem to affect the performance.

(a) Default 64x64
particle texture

(b) New 264x264
particle texture

Figure 4.8

22

Chapter 5

Conclusions

5.1 Conclusion

Overall, good progress has been made on the 3D Fishualizer. First, The
project shows up on the headset again. Second, A diverse range of func-
tionalities have been added: Scaling the brain no longer causes the brain to
move and it can also be rotated.

Virtual hands are added which can be used to point to regions and
subregions of the brain.

The right pointer can be used to select a single neuron. The activity
of that neuron can be shown on a graph. If the selected neuron is one of
the 1000 most active neurons, it’s relation with the other 1000 most active
neuron can be shown by calculating the correlation coefficients between their
activities.

5.2 Discussion

The added functionalities provide users with diverse ways to interact with
the zebrafish brain. However, the project can still be improved in many
ways:

• The rotation of the brain GameObject can be made more intuitive.

• Improving the movement of the brain while in region mode. Right now,
when you move the brain in region mode, the region mode is paused.
Because of this pausing, the whole brain is visible while moving. This
is not very intuitive, as the user probably wants to see only the selected
region when moving the brain.

• The inactive neurons can be made more transparent. This would allow
the user to see through the brain more easily.

23

• The controls can be made simpler. Perhaps creating an intuitive ar-
rangement of controls is best done once it is decided which function-
alities are going to be in the 3D Fishualizer and which are not. In any
case, a framework for the controls can be made, such that it is easy to
change them later.

• Showing the neuron connections can be made far more clear and beau-
tiful. A first improvement would be to remove the green spheres, such
that only the significant correlations are visible. This would declutter
the view a lot. Other improvements, like including more than 1000
neurons, as well as connecting lines between the selected neuron and
the other neurons can also be made.

There are many more possible improvements which are not in this list. There
is also room for new functionalities. Through improvements and additions,
we will hopefully get ever closer to an ideal 3D Fishualizer.

24

Bibliography

[1] Misha B. Ahrens et al. “Whole-brain functional imaging at cellular res-
olution using light-sheet microscopy”. In: Nature Methods 10.5 (May
2013), pp. 413–420. issn: 1548-7105. doi: 10.1038/nmeth.2434. url:
https://doi.org/10.1038/nmeth.2434.

[2] Jillian M Doyle and Roger P Croll. “A Critical Review of Zebrafish
Models of Parkinson’s Disease”. In: Frontiers in Pharmacology 13
(2022). doi: 10.3389/fphar.2022.835827.

[3] Jing Ying Hoo et al. “Zebrafish: a versatile animal model for fertility
research”. In: BioMed research international 2016 (2016). doi: 10.
1155/2016/9732780.

[4] Kerstin Howe, Matthew D Clark, et al. “The zebrafish reference genome
sequence and its relationship to the human genome”. In: Nature 496.7446
(2013), pp. 498–503. doi: 10.1038/nature12111.

[5] Sabrina Jaeger, Karsten Klein, et al. “Challenges for brain data anal-
ysis in VR environments”. In: IEEE Pacific Visualization Symposium
2019-April (Apr. 2019), pp. 42–46. issn: 21658773. doi: 10.1109/
PACIFICVIS.2019.00013.

[6] Britta Pester et al. “Understanding multi-modal brain network data:
An immersive 3D visualization approach”. In: Computers & Graphics
106 (Aug. 2022), pp. 88–97. issn: 0097-8493. doi: 10.1016/J.CAG.
2022.05.024.

[7] Tsegay Teame, Zhen Zhang, et al. “The use of zebrafish (Danio rerio)
as biomedical models”. In: Animal Frontiers 9 (3 June 2019), pp. 68–
77. issn: 21606064. doi: 10.1093/af/vfz020.

25

https://doi.org/10.1038/nmeth.2434
https://doi.org/10.1038/nmeth.2434
https://doi.org/10.3389/fphar.2022.835827
https://doi.org/10.1155/2016/9732780
https://doi.org/10.1155/2016/9732780
https://doi.org/10.1038/nature12111
https://doi.org/10.1109/PACIFICVIS.2019.00013
https://doi.org/10.1109/PACIFICVIS.2019.00013
https://doi.org/10.1016/J.CAG.2022.05.024
https://doi.org/10.1016/J.CAG.2022.05.024
https://doi.org/10.1093/af/vfz020

Image/tutorial sources

[8] Controller image source. Last accessed 30 March 2023. url: https://
uxdesign.cc/ux-navigation-patterns-in-vr-jumping-between-

scenes-3a1fd8df0151.

[9] Light Sheet Fluorescence Microscopy. Last accessed 30 March 2023.
url: https://www.youtube.com/watch?v=afIkWHx3duc.

[10] Max Plank zebrafish brain atlas. Last accessed 30 March 2023. url:
https://mapzebrain.org/atlas/3d.

[11] Unity tutorial - create a graph. Last accessed 30 March 2023. June
2018. url: https://www.youtube.com/watch?v=CmU5-v-v1Qo.

[12] Unity VR Game Basics - PART 5 - XR Ray Interactor in 10 Minutes.
Last accessed 30 March 2023. Mar. 2022. url: https://www.youtube.
com/watch?v=iVfa_azjnNI.

[13] Zebrafish. Last accessed 30 March 2023. url: https://en.wikipedia.
org/wiki/Zebrafish#/media/File:Zebrafish_Developmental_

Stages.tiff.

26

https://uxdesign.cc/ux-navigation-patterns-in-vr-jumping-between-scenes-3a1fd8df0151
https://uxdesign.cc/ux-navigation-patterns-in-vr-jumping-between-scenes-3a1fd8df0151
https://uxdesign.cc/ux-navigation-patterns-in-vr-jumping-between-scenes-3a1fd8df0151
https://www.youtube.com/watch?v=afIkWHx3duc
https://mapzebrain.org/atlas/3d
https://www.youtube.com/watch?v=CmU5-v-v1Qo
https://www.youtube.com/watch?v=iVfa_azjnNI
https://www.youtube.com/watch?v=iVfa_azjnNI
https://en.wikipedia.org/wiki/Zebrafish#/media/File:Zebrafish_Developmental_Stages.tiff
https://en.wikipedia.org/wiki/Zebrafish#/media/File:Zebrafish_Developmental_Stages.tiff
https://en.wikipedia.org/wiki/Zebrafish#/media/File:Zebrafish_Developmental_Stages.tiff

Appendix A

Appendix

A.1 biology background knowledge

A.1.1 Studying zebrafish

Zebrafish (Danio rerio) have become increasingly popular as a model animal
for scientists in recent years[7]. They grow up to 4 centimetres, and have
a similar body to humans, as they are both vertebrates. About 70% of the
genes of a zebrafish have a human equivalent [4]. Zebrafish can also suffer
from the same illnesses, including Parkinson’s, Alzheimer’s and cancer. [2].
When compared to rats or mice, zebrafish are cheap, easy to maintain and
reproduce very quickly. Furthermore, they are oviparous, so the fertilized
eggs develop outside of their mothers body, which makes them accessible for
experiments from birth [3]. The main aim of most studies is: If the simple
zebrafish can be understood better, then so can the more complex human.

A.1.2 Obtaining brain data from zebrafish

The brain experiments are performed on the zebrafish larvae (see the 72h
fish in figure A.1a). The brain of a larva contains 80 000 till 100 000 neurons
and is smaller than a cubic millimeter [1]. The larva’s tiny body is mostly
transparent, which allows for a special brain scanning technique to be used:
Light-sheet fluorescence microscopy. This is a hefty term, but thankfully, it
can be divided into three pieces:

1. Microscopy: Looking at something which cannot be seen with the
naked eye.

2. Light-sheet: To see the neurons of the zebrafish, a laser sheet is shone
horizontally through the brain (see figure A.1b). This sheet is very
thin, which makes it precise enough to capture all neurons. By com-
bining many 2D images, a 3D model of the brain can be made. The
complete scan of the zebrafish brain takes about 1.3 seconds [1].

27

(a) Developmental stages
of the zebrafish [13]

(b) Overview Light-Sheet microscopy [9]

Figure A.1

3. Fluorescence: The studied zebrafish is genetically modified. The mod-
ification makes it produce calcium-indicators in its neurons. These in-
dicators become fluorescent when they bind with calcium ions. When
a neuron is activated, calcium ions pour into the cell. These ions then
bind with the indicators and increase the fluorescence of the cell. The
fluorescence of the neuron can then be measured, which shows how
active the neuron is.

Using light-sheet microscopy, it is possible to capture more than 80% of the
neurons at single-cell resolution [1]. This is a very high resolution when
compared to alternative methods such as fMRI, which can only detect clus-
ters of neurons[1]. The data which we use for the 3D Fishualizer is collected
in such a way.

A.2 Making the Oculus Rift show the brain again

A.2.1 Nothing shows up on the Oculus Rift

The issue was as follows: When running the Fishualizer 3D in the Unity
editor, nothing showed up on the Oculus Rift. At first, we thought this
was an issue with the Fishualizer. But the same issue occurred when trying
to run a new empty Unity project. There was no error popup or loading
screen on the headset. Pressing run didn’t affect the headset in any way,
even though it should. The headset seemed to be well connected, according
to the Oculus app. The headset also seemed to be functioning properly
when testing a tutorial on it (unrelated to the PC). Changing the Unity
version and changing the packages also didn’t resolve the issue. There was

28

no solution online which helped, so eventually we made a blog post to ask
for help. But nobody helped resolving that blog post.

Then we figured it might work on a different computer. Unfortunately,
the headset needs to be connected to a GPU with a DisplayPort cable. The
other computers in the Computational Neuroscience Lab did not have a
GPU with a DisplayPort input.

Then we tried uninstalling everything related to Unity and Oculus, in-
cluding the Appdata files. After reinstalling the same error still occurred.

A.2.2 Help and Solution

At this point, no solution seemed in sight. I went to seek help at the Max
Planck Institute nearby, as I knew they worked with VR there. There I got
help from Paul van der Laan, who very generously took the time to help me
out (Thank you Paul!). I brought the Oculus Rift, which worked fine on his
computer. Therefore, the issue was not with the headset, but with the PC.

Also, I saw him build the program into an executable and then run it. I
had tried this before on the ’malfunctioning’ PC, but that still did not run on
the headset. However, it turns out that if you install the module ’Windows
Build Support (IL2CPP)’ in Unity hub and then build an executable, it does
run on the headset! This breakthrough allowed me to test the implemented
hands.

A.2.3 Workaround

This workaround was still not ideal. Every time you wanted to test a change
on the headset you had to build an executable and run it from there (which
takes about half a minute). Also, running the executable does not give you
any debugging information which you might have put in the code. This
slowed down working on the project significantly. Furthermore, sometimes
even the executable would not work and the headset would show a red light.
Unplugging and replugging the headset seemed to resolve this red-light issue
most of the time, but not always.

But on the positive side, eventually the program would sometimes run
on the headset, even without making an executable. This was very useful
for getting debug information and for testing quicker.

All in all, it is probably better to develop the 3D Fishualizer on a different
computer, as developing it on this PC has been a headache sometimes.

29

https://communityforums.atmeta.com/t5/Unity-VR-Development/Unity-project-not-showing-up-on-Oculus-Rift/td-p/991207

A.3 Green sphere solution for rotating/scaling

30

31

A.4 Moving the neurons solution [VisualiseNeu-
rons.cs]

32

	Introduction
	What is the 3D Fishualizer?
	The data
	The model
	The new features of the 3D Fishualizer
	Overview of sections

	Preliminaries
	Small introduction to Unity

	Related Work
	Brain visualization
	The original Fishualizer

	Research
	The 3D Fishualizer by Jannika Koschnitzke [VisualiseNeurons.cs & RescaleByHand.cs]
	Region mode code

	Controls of the new 3D Fishualizer
	Hands and brain rotation [RescaleByHand.cs & PointerFollowsHand.cs]
	Implementing the object hands
	Implementing rotation
	No centre point

	Showing brain regions [RegionMode.cs]
	How the basic region mode works
	Updating the neuron positions
	Controls: SwitchOnButton
	Color changes and locking

	Showing neuron activity in a graph [ActivityGraph.cs]
	Creating a graph
	Visualising the activity of a neuron

	Loading the data
	Removing dependency on the two extra datasets
	Loading the label data
	Why use the sparse matrices?

	Showing Correlation Coefficients between neurons [NeuronConnections.cs]
	Calculating/reading Correlation coefficients
	Selecting a neuron [RightHandActions.cs]

	Changes in Unity, non-script related

	Conclusions
	Conclusion
	Discussion

	Appendix
	biology background knowledge
	Studying zebrafish
	Obtaining brain data from zebrafish

	Making the Oculus Rift show the brain again
	Nothing shows up on the Oculus Rift
	Help and Solution
	Workaround

	Green sphere solution for rotating/scaling
	Moving the neurons solution [VisualiseNeurons.cs]

