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Abstract

Machine learning models that are too complex to interpret can be made more
interpretable by creating explanations for them. The type of explanation
that this thesis focuses on is one where all input features get a relevance
value. These values represent the magnitude of their contributions to getting
the output of the model.

Explanations of machine learning models can be evaluated by two types
of methods: functionally grounded (automatic, not involving humans) and
human-grounded (involving humans) evaluation methods. There is, how-
ever, a discrepancy between those methods. Functionally-grounded evalua-
tion methods are biased toward the accuracy of explanations, which is how
well the explanation matches the actual reasons for the model’s predictions.
Human-grounded evaluation methods, on the other hand, are biased toward
understandability. Besides, human-grounded evaluations are costly as they
involve people.

This thesis tries to strike a balance between these two different methods.
This was achieved by investigating the way people understand explanations
and by developing a new evaluation method that minimizes human involve-
ment but is still optimized for human understanding. The evaluation method
is applicable to post-hoc feature relevance explanations of natural language
classifications.

This new evaluation method was developed in three steps. First, the
existing literature on evaluation methods and on the social science of human
understanding was investigated to obtain an initial evaluation method. Then
structured interviews were held to improve the method. Last, the evaluation
method was tested using questionnaires.
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Chapter 1

Introduction

Machine learning algorithms are more accurate than humans in some in-
stances, such as shown in a paper by Tschandl et al., (2019). Consequently,
it makes sense to implement machine learning in practice. In situations
where there is little risk or the problem is sufficiently well-defined and stud-
ied, machine learning models can already be used to make predictions and
decisions. However, in critical situations that are not completely formalized
(such as in health care or finance), these models cannot always be used yet
(Doshi-Velez & Kim, 2017).

Machine learning models cannot be trusted in those situations and hu-
mans must make the final decisions. Using a model’s decisions requires
people to trust the decisions. Understanding why a decision was made con-
tributes to trusting this decision (Schmidt & Biessmann, 2019), for example
in news recommendation (Shin, 2021). However, the nature of many ma-
chine learning models is that they are very hard to understand. This is
where interpretability comes in.

Interpretability is the ability to explain to a human in understandable
terms. Interpretability has more benefits than just giving trust. Adadi et
al. distinguish four goals of explaining: to justify, to control, to improve,
and to discover (Adadi & Berrada, 2018). Explanations to justify the model
give us more trust in the model. Because of that, we focus on explaining
to justify in this thesis. Explanations to control and improve can help us
identify biases or mistakes in those predictions. These biases and mistakes
can then be fixed to improve the machine learning implementation (and get
more trust in its predictions). Explanations to discover allow us to learn
from machine learning. Unidentified correlations may be hidden in the data
that the machine learning implementation has detected (Doshi-Velez & Kim,
2017).

Some machine learning models do not require a separate explanation
to be interpretable, such as decision trees. These models are called inher-
ently interpretable machine learning models. Using inherently interpretable
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machine learning models is the easiest way to achieve interpretability, but
using those models has drawbacks. Most notably, the complexity of the
data patterns that these models can describe is usually limited (Carvalho
et al., 2019). To increase predictive power, more complex models need to
be used. In that case, we can resort to explaining the model using an expla-
nation method. An explanation method creates an explanation of the more
complex model.

We can look at their three goals to judge explanation methods: accu-
racy, understandability, and efficiency (Rüping, 2006). Accuracy is about
how much the explanation corresponds to the reasons for the predictions
of the model; understandability is about how well humans can understand
the explanation; efficiency is about how fast humans can understand the
explanation. In this thesis, the term understandability is used to refer to
both understandability and efficiency for humans in general.

Whether an explanation method meets those goals can be determined
by an evaluation method. Some evaluation methods involve humans: the
application- or human-grounded evaluation methods (which we will sum-
marize as human-grounded evaluation methods). Others do not involve hu-
mans: the functionally grounded evaluation methods (Doshi-Velez & Kim,
2017). Because humans prefer simpler and more understandable explana-
tions (Gilpin et al., 2018), human-grounded evaluation methods are gener-
ally biased towards understandability. Besides, human-grounded evaluation
methods require humans, which makes them expensive. On the other hand,
functionally grounded evaluation methods are generally biased towards ac-
curacy and insufficiently measure understandability. To the best of our
knowledge, current functionally grounded evaluation methods do not use
any human judgments.

This thesis aims to make a compromise between these two types of eval-
uation methods. Its contribution is twofold. First, it describes how humans
evaluate explanations in general. And second, it develops an evaluation
method for explanations of natural language classification for its relevance
in areas such as disaster risk management and sentiment analysis (Behl et
al., 2021). The evaluation method evaluates the result of the explanation
method (the explanation itself), not the explanation method. The explana-
tions that are evaluated were created using SHAP (Lundberg & Lee, 2017)
because SHAP is a popular explanation method that is applicable to natural
language classification. It is an explanation method that generates feature
relevance explanations.

As said in the third paragraph of this introduction, we focus on explain-
ing with the goal to justify. So for feature relevance explanations with the
goal of justification, this thesis develops an evaluation method. The created
method reduces the human’s task in evaluating explanations to identifying
keywords.

In natural language classification, we define keywords as words that are
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highly correlated with one of the classes. For example, if we want to classify
whether a text is about a flood, the word ‘flood’ itself would be a keyword.
These keywords can be identified without seeing the predictions or the ex-
planations and can be used across multiple explanations, which minimizes
human involvement in the evaluation process, while still measuring human
understandability.

The results are based on existing functionally grounded evaluation meth-
ods, knowledge of human understanding from the social science domain, and
interviews. To describe how humans evaluate explanations and to develop
the evaluation method, the following questions are answered:

1. What is an explanation from a social scientific perspective?

2. How do humans understand explanations?

3. What are current functionally grounded evaluation methods?

4. What functionally grounded evaluation axioms can be adopted from
the social sciences?

5. How can the functionally grounded evaluation methods be improved,
according to people?

6. How does the new functionally grounded evaluation method perform
compared to other functionally grounded evaluation methods?

The first two questions describe how humans evaluate explanations in gen-
eral. Combined with the third question, they form the basis for the bottom
three and they are answered in the literature review (chapter 2). The litera-
ture review is then used as a basis to answer the fourth research question to
create a draft of the evaluation method (chapter 3). After, the fifth question
is answered to improve the evaluation method using an interview (chapter
4). In addition, the interview answers the second question again as a com-
plement to the literature review. The following chapter proposes the new
evaluation method and validates it using a questionnaire (chapter 5). And
finally, we will conclude and discuss the results (chapter 6).
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Chapter 2

Literature review

In this chapter, the first three research questions from the introduction are
answered. These are: “What is an explanation from a social scientific per-
spective?” (section 2.1), “How do humans understand explanations?” (sec-
tion 2.2), and “What are current functionally grounded evaluation meth-
ods?” (section 2.4). To answer the third question effectively, section 2.3
gives a topology of explanations of machine learning.

2.1 What is an explanation (from a social-scientific
perspective)?

Before we look at the way explanation methods explain machine learning
models, we first look at how humans explain. When we, humans, want
to explain, we first identify the causes of this event (the cognitive process).
This cognitive process results in an explanation (the product). This product
then needs to be transferred from one person to the next: from the explainer
to the explainee (the social process) (Miller, 2019). Let us now discuss these
two processes and the product (the explanation).

2.1.1 Cognitive process

Identifying the causes of an event consists of two steps in humans (Miller,
2019):

• Causal connection: identifying the causes of an event using past knowl-
edge;

• Explanation selection: selecting a subset of all causes as the explana-
tion of the event based on the pragmatic goals of the explanation.
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Causal connection

There are two (partly overlapping) processes of attributing causes to an
event: abductive reasoning and simulation. Abductive reasoning works as
follows. The explainer thinks of multiple hypothetical causes for the event.
These hypotheses are then tested using past evidence. It is analogous to
the scientific method in the sense that you observe a phenomenon, create
hypotheses for that phenomenon and get more confidence in that hypothesis
as you observe more phenomena that confirm the hypothesis (Miller, 2019).

Simulation is considering different counterfactuals to get a good expla-
nation. Counterfactuals are situations that would have resulted from events
that did not happen. For example, imagine you were late to work because
your car did not start. In this case, you got to the explanation (because your
car did not start) by simulating a world in which your car did start and you
were on time. Because there are too many counterfactual cases to simulate
all of them, we use heuristics to mutate some events. These mutated events
are the counterfactuals that are considered in the (mental) simulation. The
heuristics include (Miller, 2019):

• Abnormality: when something is different from usual, it is often con-
sidered more mutable;

• Temporality: people undo or change more recent than distant events;

• Controllability and intent: actions that are more controllable by de-
liberate actors are considered more mutable;

• Social norms: socially inappropriate actions are considered more mu-
table.

When the causes are clear to the explainer, the most important causes
are selected to be used in the explanation.

Explanation selection

When people ask for an explanation, they generally ask the question “Why
does P hold?”. However, what they mean by this question is “Why does P
hold, instead of Q?”. Miller, (2019) calls P the fact and Q the foil. Besides
expecting an explanation for why the fact holds, the explainee implicitly
expects an explanation for why the foil does not hold as well. An explanation
that considers both the fact and the foil is a contrastive explanation. It is
important that we make a correct assumption about what the foil is. Giving
a complete explanation, where all possible foils are explained, will be too
overwhelming for a human. So, we need to infer the foil(s) from the context,
from human intuition, and from the tone of the explainee’s question. People
are very good at assuming what the foil is, but it can be hard for computers.
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When we know the foils, the best explanation highlights the highest number
of differences between the fact and the foil (Miller, 2019).

Besides differentiating between the fact and the foil there are several
other (soft) criteria the explainer has for selecting causes for their explana-
tion (Miller, 2019):

• Abnormality: a common fact is hardly an explanation, but an abnor-
mal situation is;

• Intentionality and functionality: intentional actions are better than
unintentional actions, but unintentional actions are better than natu-
ral causes when it comes to explanation quality;

• Necessity, sufficiency, and robustness: necessary causes are preferred
over sufficient causes. If a necessary cause was not the case, the event
that is being explained cannot have happened, but if a sufficient case
was not the case, the event that is being explained still could have
happened. Robust causes, causes that explain multiple events, are
desired;

• Responsibility: a cause is more responsible when it has a higher effect
on the event. Responsible causes are desired;

• Preconditions, failure, and intentions: an action fails when its precon-
ditions are not met. In this case, mechanistic explanations (explana-
tions that explain the direct mechanism by which something happens)
are better than intentional explanations, because failing is generally
not intentional.

The selected causes are then used in the product (the explanation).

2.1.2 Product

Now that we understand the process of how an explainer makes an expla-
nation, we get to the next question: what is this explanation that they
make? Generally speaking, an explanation is defined as an answer to a
‘why’-question that has an implicit inner ‘whether’-question. For example,
consider the question “Why does P hold?”. This question has an implicit
inter ‘whether’-question “Does P hold?” and the answer to this question is
assumed to be “yes”. As said in the end of the last question, the answer
to that question (which is the explanation) is assumed to be contrastive:
the explainee expects the explainer to explain why P holds, rather than
something else (Miller, 2019).
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Typologies of explanations

Different typologies of explanations exist. The typology of Aristotle consid-
ers four modes of explanation (Miller, 2019). Which type of explanation is
best depends on what is explained.

• Material: an explanation considering the material of an object;

• Formal: an explanation considering the form or shape of an object;

• Efficient: an explanation considering who or what caused a change to
the object;

• Final: an explanation considering the end goal of an object.

Miller, (2019) mentions that other topologies have been proposed, for in-
stance: Dennett separated physical, design, and intention explanations;
Marr (building on Poggio) separated computational, representational, and
hardware explanations for explaining computational problems; and Kass and
Leake proposed a classification of intentional, material, and social explana-
tions. It is important to identify the type of question a human asks to give
the right type of answer (Miller, 2019). This means that an explanation can
have different types.

2.1.3 Social process

Explanations are different from mere causal attributions in the sense that
explanations are a social process. This means it involves a (potentially one-
sided) conversation between an explainer and an explainee. This explanation
should convey the causes for an event, so a causal attribution is part of an
explanation. The explanation should also be relevant to the question and
be according to the rules of cooperative conversation (Miller, 2019).

Grice has developed a model that describes how people engage in coop-
erative conversation. His model consists of four maxims (Miller, 2019):

• Quality: a contribution to the conversation should be of high quality:
it should be true. So do not say things that are false or have too little
evidence;

• Quantity: a contribution should be as informative as required, but not
more informative than required;

• Relation: a contribution should be relevant to the conversation. This
is also related to quantity;

• Manner: a contribution should not be obscure or ambiguous, but brief
and orderly.

These are not hard criteria in the sense that a conversation cannot be co-
operative if some of the principles are violated.
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2.2 How do humans understand explanations?

In an explanation, causes are more effective than statistical relationships
(Miller, 2019). When it comes to selecting these causes, the most likely
cause is not always the best explanation. For example, when we want to
explain why a house burned down, the most likely cause is that there was
oxygen in the air. However, this is not a satisfactory explanation. A better
explanation is that there was a gas leak. The probability that there was a
gas leak is lower than the probability that there was oxygen in the air, but
the practical implications of a gas leak are a lot greater. So, people evaluate
explanations based on practical implications, rather than probability that
explanations are correct (Miller, 2019).

The rest of this subsection contains sets of social scientific principles for
understanding explanations.

2.2.1 Coherence, simplicity, and generality

In general, explanations are evaluated based on coherence, simplicity, and
generality (Miller, 2019). Regarding coherence, Thagard says explanatory
coherence is the ‘holding together’ of an explanation because of explanatory
relations. Thagard distinguished four possibilities for coherence. Proposi-
tions P and Q cohere if there is an explanatory relation (Thagard, 1989):

• P is part of the explanation of Q; or

• Q is part of the explanation of P; or

• P and Q are both part of the explanation of proposition R; or

• P and Q are analogous in the explanations they give of propositions
R and S, respectively.

Two propositions incohere if they contradict each other or are incompatible
according to background knowledge. Thagard explains that if an expla-
nation is coherent with someone’s personal beliefs, that person confidently
believes in the explanation. If an explanation is incoherent with someone’s
personal beliefs, that person does not believe the explanation (Thagard,
1989).

Explanatory coherence can be seen as a relation between two proposi-
tions, as the property of several related propositions, or as a property of
one proposition. But in the last case, we do not speak of coherence, but
rather of acceptability. Acceptability is the degree to which a proposition is
coherent with other propositions.

Simplicity and generality (or breadth, as they call it) are discussed in
the paper of Read and Marcus-Newhall. Generality states that (all things
being equal) an explanation that explains more facts is more coherent and
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thus better than an explanation that explains fewer facts. An explanation
that explains many facts is called broad and an explanation that few facts is
called narrow. Simplicity is about the number of assumptions an explana-
tion requires. The explanation that requires the fewest assumptions is the
simplest (Read & Marcus-Newhall, 1993).

These principles will be used to create the initial version of the evaluation
method in chapter 3.

2.2.2 Leake’s principles

Besides coherence, simplicity, and generality, Leake proposed nine metrics
in four categories for evaluating explanations (Leake, 1991):

• Evaluating for predictions

– Predictive power: a cause does not always have to imply the
event. If we take the burning house again, having oxygen in the
air does not always imply that houses burn down. “If all the rules
connecting the causes to the outcome are predictive, the causes
are considered predictive” (Leake, 1991, p. 22);

– Timeliness: when a cause is an early warning, rather than an
indication that something is happening, it is timely. This is much
more useful because then we can recognize and influence the event
before it happens the next time;

– Distinctiveness: indicates whether a surprising event had a sur-
prising cause (which can then be used as a prediction for that
event);

– Knowability: indicates how easy it is to know when the event
occurred. There are three levels: observable, testable, and unde-
tectable.

• Evaluating for repair

– Independence: indicates whether a cause is dependent on other
causes;

– Causal force: indicates whether a reason is a cause or just pre-
dictive of the event. For example, when explaining why a ball is
red, saying all balls are red is not a cause, but it is still predictive
of the color of the ball;

– Repairability: do we know how to fix the cause of a problem?

• Evaluation for control

– Blockability: do we know how to avoid the cause of a problem?
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• Evaluation of actor’s contributions

– Desirability: did the actor want the outcome? Praise or blame
can also be ascribed.

As mentioned in the introduction, we focus on explaining to justify.
Evaluating for predictions is assumed to align the best with this goal of
explaining, so we focus on predictive power, timeliness, and distinctiveness.
We do not focus on knowability, because machine learning predictions are
always observable (the predictions are always shown). These principles will
be used in chapter 3 to create the initial version of the evaluation method.

2.2.3 Miller’s principles

In the paper of Carvalho et al., Miller’s criteria for an understandable ex-
planation are summarized as follows (Carvalho et al., 2019):

• Contrastive: why doesn’t the model predict something else;

• Selective: select only the main causes;

• Social: take the target audience into account;

• Focus on abnormal: mention rare reasons (when there are low odds
for some input, it is abnormal);

• Truthful: the explanation makes sense in the real world;

• Consistent: it is in conformation with prior beliefs;

• General and probable: it explains many cases.

All of these principles are relevant to machine learning explanations.
They will be used in chapter 3 to create the initial version of the evaluation
method.

2.2.4 Honegger’s principles

According to Honegger, there are three conditions that the evaluation meth-
ods need to meet to be appropriate: they need to be findable, applicable,
and common practice (Honegger, 2018). These are not social-scientific prin-
ciples but are still principles that the ideal evaluation method should adhere
to, so they have been included here.

• Axioms are findable when we can find the axioms to compare different
explanations. In this thesis, axioms are considered findable when they
have a basis in existing research;

• Axioms are applicable when they are feasible to be used in practice;
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• And axioms are common practice when “it is non-extraordinary to
use axioms in the field of interpretable machine learning” (Honegger,
2018, p. 15).

These conditions will also be used to judge the new evaluation method.

2.3 What is an explanation as the result of an ex-
planation method?

Before we discuss existing functionally grounded evaluation metrics of ex-
planations, it makes sense to first understand what types of explanations
are generated by explanation methods. The goal of an explanation method
is to explain a machine-learning model or a prediction of that model. Expla-
nation methods do this in a variety of ways. In this section, we will discuss
a few taxonomies of explanation methods. We give multiple taxonomies, of
which the taxonomy by Vollert et al., (2021) will be used in the rest of this
paper because it focuses on the result of the explanation method more than
other taxonomies.

2.3.1 Carvalho et al.

The first taxonomy is by Carvalho et al. The authors define 4 different
dimensions along which to classify interpretability. Rather than just classi-
fying explanation methods, they take the broader scope of interpretability
in general (Carvalho et al., 2019).

First, they separate pre-model, in-model, and post-model interpretabil-
ity. Pre-model interpretability is achieved by interpreting the data before
making the model (for example using visualization); in-model interpretabil-
ity is achieved by using an inherently interpretable machine learning model,
such that the explanation of the model is the model itself (for example deci-
sion trees are inherently interpretable: you can understand a decision tree’s
prediction by looking at it); post-model interpretability is achieved by using
an explanation method to explain the model.

Second, they separate intrinsic vs post-hoc interpretability. Intrinsic
interpretability is baked into the machine learning model; post-hoc inter-
pretablity is achieved by applying explanation methods to the model. Intrin-
sic interpretability is associated with in-model interpretability and post-hoc
interpretability is associated with post-model interpretability.

Third, model-specific vs model-agnostic interpretability. Model-specific
interpretability is specific to one machine learning method; model-agnostic
interpretability is not limited to one model but can explain any model. In-
model interpretability is always model-specific; post-model interpretability
can be both model-specific and model-agnostic, depending on the explana-
tion method that is used.
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And last they differentiate between the different results an explanation
can have. There are more results than only the four options given, but the
four options cover most explanation methods. The four different types of
results are:

• Feature summary: a statistical fact about each feature of the input.
This can be a single number for every feature, explaining that feature’s
importance, but it can also be a visualization of dependencies between
features.

• Model internals: the output for intrinsically interpretable machine
learning models.

• Data point: example-based explanation methods explain predictions
by showing other (potentially already existing) data points.

• Surrogate intrinsically interpretable model: an inherently interpretable
(local or global) model is trained to approximate the model to be ex-
plained.

SHAP is an explanation method that returns feature relevances from a
prediction of an existing model. It is thus a post-model, post-hoc expla-
nation method that generates feature summaries. In addition, SHAP does
not look at the internals of the model, so it is a model-agnostic explanation
method.

2.3.2 Gilpin et al.

Another taxonomy is given by Gilpin et al. The authors distinguish three
types of models: processing models, representation models, and explanation-
producing models. Processing models answer the question “Why does this
particular input lead to that particular output?”; representation models an-
swer the question “What information does the network contain?”; explanation-
producing models aim to simplify some aspect of their behavior (this can
be processing, representation, or another aspect). Gilpin et al. give several
options for processing, representation, and explanation-producing models
(Gilpin et al., 2018):

• Processing models:

– Linear proxy methods: a linear (potentially local) model is trained
such that it approximates the model to be explained. This model
is then used as an explanation;

– Decision trees: a decision tree is used as a proxy model and used
as an explanation;

– Automatic-rule extraction: a list of rules that explain the model;
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– Salience mapping: show which parts of the input have an effect
on the output.

• Representation models:

– Role of layers: all information going through a layer is considered
together;

– Role of neurons: single neurons are considered individually;

– Role of representation vectors: groups of single neurons are con-
sidered.

• Explanation-producing models:

– Attention networks: functions that provide a weighting over the
inputs or internals of a model;

– Disentangled representations: describe independent meaningful
factors of variation;

– Generated explanations: the model learns to make “because”-
sentences to explain predictions.

SHAP creates a salience mapping to get to its explanation because it
looks at the direct correlation between input and output. It represents the
model as one big representation vector because it does not take the model
internals into account. The explanation is presented as an attention network.

2.3.3 Vollert et al.

The last taxonomy that is discussed is made by Vollert et al. and is the
taxonomy that will be used in this thesis, because it fits this thesis the
best: the typology focuses on the result of the explanation method, rather
than the method itself. Different post-hoc explanation types are described
(Vollert et al., 2021):

• Visual explanations: use graphical plots to explain the model, for
example, decision boundary plots;

• Example-based explanations: use another data point to explain a pre-
diction. This other data point can be of the same or of a different
class, depending on the explanation method. It can also be a data
point that did not exist in data yet;

• Feature-relevance explanations: quantify the contribution of features.
This can be combined with a visual representation;

• Knowledge-extraction explanations: use an inherently interpretable
model to approximate the black-box model.
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Special cases

Because not all explanation methods fit directly in one of the types, in this
section some edge cases are described.

Combinations of different types can occur. In those cases, we look at the
intention of the explanation. For example:

• Imagine a graph of the feature relevances. The graph’s function is
likely just to show the feature relevances, so we classify the graph of
feature relevances as a feature-relevance explanation.

• Now imagine a list of examples, based on feature relevances. In this
case, we used the feature relevances to find relevant data points. So
we classify it as an example-based explanation.

• If we have a simple linear model that assumes feature independence,
we can view this as both a knowledge-extraction explanation and a
feature-relevance explanation (the weights of the features in the linear
model can be seen as relevances). If the linear model is used to show
which features have a big impact on the outcome of the black-box
model, we count it as a feature-relevance explanation. If it is intended
as a simplification of the black-box model, it is seen as a knowledge-
extraction explanation.

• Using a plot to show a knowledge-extraction explanation (for example
plotting a decision tree or linear model) does not make it a visual
explanation, because it is just a way of clearly giving a knowledge-
extraction explanation.

The explanations generated by SHAP that were used in this thesis are a
visual representation of feature-relevance explanations. Because the expla-
nations intend to bring forward the feature relevances, we classify them as
feature relevance explanations.

2.3.4 SHAP

As mentioned in the introduction, the explanation method that this thesis
focuses on is SHAP. SHAP is a popular post-hoc, model-agnostic, feature-
relevance explanation method. This means it assigns importance scores to
features, based on how much they affect the output of the model. It does
this by approaching so-called ‘Shapley values’ (Lundberg & Lee, 2017).

Shapley values come from game theory. Given a set of input values that
produces an output value, Shapley values can tell us how much each input
value influenced the output value. To compute the Shapley value for input
value x, we need to know the output values of all possible combinations of
input values without input value x and compare them to the output values
of all possible combinations of input features with input value x.
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Applied to natural language classification, the input value x would be a
feature (for example a word) of the input text and the output would be the
class that the model predicted for that input text. In practice, background
data is used for x, because most models do not allow removing features.
The mean of the difference between the output of all combinations with and
without x is the Shapley value of x (Lundberg & Lee, 2017).

The difficulty in this is interactions between different input values. The
number of possibilities grows exponentially over the number of input fea-
tures. Consequently, there are different ways of approaching these Shapley
values. Three approximations are described here (Lundberg, 2018):

• Permutation explainer: “approximates the Shapley values by iterating
through permutations of the inputs” (Lundberg, 2018). It guaran-
tees local accuracy by iterating through permutations of features. It
guarantees exact SHAP values for higher-order interactions between
features (depending on the number of iterations).

• Partition explainer: “computes Shapley values recursively through a
hierarchy of features” (Lundberg, 2018). Rather than the Shapley
values, this method results in the Owen values. Owen values are similar
to Shapley values, except computing feature relevance of groups of
features, rather than for each feature separately (López & Saboya,
2009).

• Sampling explainer: “computes Shapley values under the assumption
of feature independence” (Lundberg, 2018).

These approximations have been used in this thesis.

2.3.5 Other explanation methods

To provide more context into the different explanation methods, this section
introduces some of them. Besides SHAP, LIME is also a popular feature
relevance explanation method. It works by creating local linear models
around a prediction. These local linear models are trained using randomly
generated data and the predictions of the models, given that data. The
gradients of these linear models can be used to estimate the relevances of
the input features (Ribeiro et al., 2016).

Partial dependence plots (Friedman, 2001) aim to give the user insight
into the prediction of the machine learning model. They show the depen-
dence between variables, for example by showing their feature relevances.
Depending on the type of plot, it can be discussed whether it should be
classified as a feature relevance explanation or a visual explanation.

Example-based explanations include counterfactual explanations (Wachter
et al., 2017). Counterfactual explanations consist of example data points
that are close to the data point to be explained but that have a different
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prediction. This can show the explainee by example how different inputs
create different outputs.

And finally, an example of a knowledge-based explanation would be a
decision tree (Guidotti et al., 2018). Decision trees are interpretable models
that are used in machine learning. Because of their inherent white-box
nature, they can also be used as surrogate models for more complex black-
box models, such as (deep) neural networks).

2.4 What are current evaluation methods?

Functionally grounded metrics are generally sets of axioms along which ex-
planations are evaluated. These axioms are formulas that measure some
value that should be indicative of the quality of the explanation. In this sec-
tion, we will explain a few existing functionally grounded evaluation meth-
ods.

2.4.1 Stability and fidelity

Two commonly used axioms that measure the quality of an explanation are
stability and fidelity (Velmurugan et al., 2020).

• Stability is the degree to which similar data and predictions generate
similar explanations. For feature relevance explanations, stability can
be measured in three ways, depending on the result of the form of the
explanation (Kalousis et al., 2007):

– Stability by weight: when the explanations are weightings of the
features (each feature is associated with a weight or attribution
to the prediction), the stability between two data points can be
computed using Pearson’s correlation coefficient between those
two points (see equation 2.1);

SW (w,w′) =

∑
i(wi − µw)(w

′
i − µw′)√∑

i(wi − µw)2
∑

i(w
′
i − µw′)2

(2.1)

– Stability by rank: when the explanations are rankings of the
importance of the features, the stability is Spearman’s correlation
coefficient between two vectors r and r′, where ri is the rank of
feature i in one data point and r′i is the rank of feature i in the
other data point (see equation 2.2);

SR(r, r
′) = 1− 6

∑
i

(ri − r′i)
2

m(m2 − 1)
(2.2)
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– Stability by subset: when the explanations are subsets of the im-
portant features, the stability can be calculated using an adap-
tation of the Tanimoto distance between the two sets. The Tani-
moto distance depends is a combination of the cardinalities of the
two sets and the intersection between the two sets (see equation
2.3).

SS(s, s
′) = 1− ∥s∥+ ∥s′∥ − 2∥s ∩ s′∥

∥s∥+ ∥s′∥ − ∥s ∩ s′∥
(2.3)

• Fidelity measures how ‘faithful’ an explanation is to the model, which
is how well an explanation approximates the model. Two ways of
measuring fidelity are defined, for some types of explanations:

– External fidelity: measures the similarity of the decisions of the
black-box model and the surrogate model;

– Internal fidelity: measures whether the decision-making process
is the same for the black box and surrogate model. This can be
done by removing features and investigating what happens; by
investigating the decision-making process of the surrogate (white
box) model; or by using another explanation method on both the
black box and surrogate model.

In the case of SHAP, stability by weight and internal fidelity would be
appropriate implementations of these axioms. External fidelity cannot be
used because not every sentence consists of the same features.

2.4.2 Identity, separability, and stability

Another set of functionally grounded metrics includes identity, separability,
and stability. The axioms work for all feature relevance explanations and
are grounded on human intuition according to the author (Honegger, 2018):

• Identity states that identical objects should have identical explana-
tions (so there should not be a random component in the explanation
method);

• Separabilitymeans that non-identical objects should have non-identical
explanations;

• Stability states that similar objects should have similar explanations.
It can be computed in the same way as in the other set of principles.

The author claims that these measures are “necessary but not sufficient to
achieve interpretability,” although they should be used as soft criteria. The
metrics have all been formalized in the paper of Honegger, (2018). However,
studies such as the one by Lertvittayakumjorn et al., (2019) show that LIME
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still produces the best explanations in some tasks, even though the method
does not satisfy identity because of the inherent randomness (Honegger,
2018).

2.4.3 Senstivity and implementation invariance

Other functionally grounded metrics include sensitivity and implementation
invariance (Sundararajan et al., 2017):

• Sensitivity has two types.

– When two samples differ in only one feature but have differing
predictions, the relevance of that feature should not be zero.

– If a feature is not important for the prediction, its attribution
should be zero.

• Implementation invariance means if two models are trained on the
same data and have the same predictions, the attributions should be
the same for both models.

The authors have developed an explanation method that satisfies the ax-
ioms of sensitivity and implementation invariance: integral gradients. But
Abeyagunasekera et al., (2022) found that in some cases “[integral gradients]
aren’t intuitive as LIME.” Efficiency (how fast humans can understand an
explanation) is not considered by these metrics according to Carvalho et al.,
(2019).

2.4.4 Completeness, correctness, and compactness

That last set of functionally grounded metrics that are discussed in this
thesis contains completeness, correctness, and compactness, which Silva et
al., (2018) summarize as the three Cs of interpretability:

• Completeness indicates the degree to which the explanation can be
used for other cases (so how much of the training set is covered by the
explanation);

• Correctness is about trust. It measures how many instances cov-
ered by the same explanation have the same label/prediction. This is
analogous to the simple accuracy metric when evaluating a machine
learning model ( correcttotal );

• Compactness states that the explanation should be succinct. This
can be the compressed size of an explanation.

These three axioms are not directly applicable to feature relevance ex-
planations, because (Silva et al., 2018) assumed the explanation to be a
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simple model (knowledge-based explanation). However, similar metrics can
be defined for feature-relevance explanations, as will be shown in section
3.2.

In chapter 3, the functionally grounded metrics that have been presented
in this section (2.4), will be measured against the social-scientific principles
for human understanding of explanations that have been presented in section
2.2. This comparison will be used as inspiration for the hypothesis for the
functionally grounded evaluation method that is presented in section 3.2.
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Chapter 3

Axioms from the literature

This chapter answers the fourth question from the introduction: “What
functionally grounded evaluation axioms can be obtained from social sci-
ences?” To answer this question, we look at the social-scientific principles
given in section 2.2 and the existing evaluation methods given in section 2.4.

3.1 Existing functionally grounded axioms

In table 3.1, on the next page, we can see which of the different principles
from the social sciences are used in existing functionally grounded axioms.
While functionally grounded explanation methods generally do not directly
measure understandability, the accuracy of the explanation also impacts
its understandability. For example, this is shown by Leake’s principle of
truthfulness (if the model makes sense in the real world).

The table works as follows. Let us take the table’s top-left (non-bold)
cell that says “Coherence”. In this case, it means that the axioms of stability
and fidelity can be used as a measure of coherence (but not for simplicity
and generality). The results of the table are mainly based on chapter 2
(especially sections 2.2 and 2.4), combined with the author’s intuition. An
explanation of the table is given in the following subsections (3.1.1 to 3.1.4).

3.1.1 Stability and fidelity

The axioms of stability and fidelity have been explained in section 2.4.1.

Coherence, simplicity, and generality

The social-scientific principles of coherence, simplicity, and generality have
been explained in section 2.2.1. The axioms of stability and fidelity make
sure that the explanations of predictions of the model are as close as pos-
sible to what seems to be happening inside the model. This means that
the different explanations of predictions of the model are all close to the
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Axioms Coherence, sim-
plicity, and gener-
ality (2.2.1)

Leake’s principles
(2.2.2)

Miller’s principles
(2.2.3)

Honegger’s princi-
ples (2.2.4)

Stability and fi-
delity (2.4.1)

Coherence Timeliness, predic-
tive power

Consistent Findable, applicable,
common practice

Identity, separa-
bility, and stabil-
ity (2.4.2)

Coherence Timeliness, predic-
tive power

Consistent Findable, applicable,
common practice

Sensitivity and
implementation
invariance (2.4.3)

Coherence Consistent Applicable, common
practice

Completeness,
correctness, and
compactness
(2.4.4)

Coherence, simplic-
ity, generality

Timeliness, predic-
tive power

Consistent, selective,
general and probable

Applicable

Unused principles Distinctiveness Contrastive, social,
focus on abnormal,
truthful

Table 3.1: What principles from the social sciences are captured in the
axioms of current functionally grounded evaluation methods?

model itself, which means that those explanations are coherent (Thagard,
1989). The axioms of stability and fidelity have no measure of the num-
ber of assumptions of explanations. Stability could be seen as a measure of
generality, in the sense that similar explanations are used for similar data.
However, because the definition from Read et al., (1993) says that gener-
ality is about one explanation explaining multiple scenarios, these axioms
do not fit generality. So coherence is measured by stability and fidelity, but
simplicity and generality are not.

Leake’s principles

Leake’s social-scientific principles have been explained in section 2.2.2. The
principles from Leake that are captured in the axioms of stability and fidelity
are timeliness and predictive power. When the explanations are faithful to
the model (fidelity), we can use the explanation to predict future predictions.
For example, when a faithful explanation indicates that a high feature A in-
dicates prediction X, we have reason to think a new prediction is X as well
when we see a high A. So, that explanation is indicative of the prediction of
the model (which implies predictive power). Distinctiveness is not measured,
because there are no measurements for normality or abnormality. The sta-
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bility metric is not needed to satisfy Leake’s principles, but it can be argued
that it measures predictive power because when we see an explanation that
is similar to one we have seen before, we can predict a similar outcome of
the model. So timeliness and predictive power are measured by stability
and fidelity, but distinctiveness is not.

Miller’s principles

Miller’s social-scientific principles have been explained in section 2.2.3. Sta-
bility and fidelity are a proxy for consistency in the sense that explanations
for similar instances need to be similar as well. The explanations then also
fit with our ‘prior belief’ of a previous similar instance. Stability and fidelity
cannot confirm whether the explanations are contrastive, because neither of
the axioms considers the foil. Selectivity is also not measured because the
size of the explanation does not impact the measure of fidelity or stability.
The axioms are the same for all audiences, so they are not social. There is
no knowledge of normality or abnormality encoded in the axioms, so a focus
on abnormality cannot be measured. The axioms do not consider common
knowledge, so truthfulness cannot be measured. We could argue that if the
model is in accordance with the real world, fidelity would measure truthful-
ness because it measures the fidelity of the explanation to the model (and by
extension to the real world). However, because of the assumption that the
model is in accordance with the real world, it is not satisfactory. They are
also not general and probable, with similar reasoning of generality. In con-
clusion, only consistency from Miller’s principles is measured to a sufficient
degree by stability and fidelity.

Honegger’s principles

Honegger’s principles for evaluation methods have been explained in section
2.2.4. Stability and fidelity are commonly used metrics as Velmurugan et
al., (2020) say. This means they are applicable (because they can be used)
and common practice (because they are used commonly). Because they are
used in papers before (Velmurugan et al., 2020), they are also findable. So
the axioms of stability and fidelity are findable, applicable, and common
practice.

3.1.2 Identity, separability, and stability

The axioms of identity, separability, and stability have been explained in
section 2.4.2.
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Coherence, simplicity, and generality

The social-scientific principles of coherence, simplicity, and generality have
been explained in section 2.2.1. Identity, separability, and stability are a
proxy for coherence, because of the stability and identity axioms. When
similar predictions are given similar explanations, the explanations will play
an analogous role in explaining those predictions. This is a form of coher-
ence, according to (Thagard, 1989). Using the same reasoning as for stability
and fidelity, we can conclude that identity, separability, and stability also do
not measure simplicity and generality. So coherence is measured by identity,
separability, and stability, but simplicity and generality are not.

Leake’s principles

Leake’s social-scientific principles have been explained in section 2.2.2. If
we have new data that is similar to existing data, explanations for existing
data could be good explanations for the new data because of stability. This
means the axioms are proxies for both timeliness (because we can guess the
prediction before we know it) and predictive power. The same reasoning
from stability and fidelity, explaining why distinctiveness is not captured
by the axioms, holds for identity, separability, and stability as well. So
timeliness and predictive power are measured by identity, separability, and
stability, but distinctiveness is not.

Miller’s principles

Miller’s social-scientific principles have been explained in section 2.2.3. For
the same reasons that stability and fidelity measure consistency, identity,
separability, and fidelity do as well. And similarly, the other principles also
do not hold. So only consistency from Miller’s principles is measured by the
axioms.

Honegger’s principles

Honegger’s principles for evaluation methods have been explained in section
2.2.4. Honegger, (2018) himself claims that the axioms are findable, ap-
plicable, and common practice. So all of Honegger’s principles are met by
identity, separability, and stability.

3.1.3 Sensitivity and implementation invariance

The axioms of sensitivity and implementation invariance have been de-
scribed in section 2.4.3.
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Coherence, simplicity, and generality

The social-scientific principles of coherence, simplicity, and generality have
been explained in section 2.2.1. The sensitivity metric makes sure that dif-
ferent predictions do not get the same explanation. If the explanations were
the same, they would have been incoherent. In that sense sensitivity is a
proxy for coherence. There is no measure of simplicity. It could be ar-
gued that implementation invariance is a measure of generality: the same
explanation can be used across different models, so it explains different pre-
dictions. However, in this thesis, we see generality as explaining different
predictions of one model so the axioms are not general.

Leake’s principles

Leake’s social-scientific principles have been explained in section 2.2.2. Be-
cause sensitivity and implementation invariance do not measure how accu-
rate an explanation is to the model or previous explanations, the axioms are
no proxies for timeliness and predictive power. Distinctiveness is not mea-
sured, for the same reasons as for the previous axioms. So none of Leake’s
principles are captured in the axioms of sensitivity and implementation in-
variance.

Miller’s principles

Miller’s social-scientific principles have been explained in section 2.2.3. Be-
cause neither of the axioms measures anything related to the user’s prior
beliefs, they cannot measure consistency. The rest of Miller’s principles do
not hold for the same reasons as for the previous axioms. So none of Miller’s
principles are measured by sensitivity and implementation invariance.

Honegger’s principles

Honegger’s principles for evaluation methods have been explained in section
2.2.4. Although the principles do make sense, the authors have not directly
provided scientific research validating the sensitivity and implementation
invariance axioms. This means they are not findable. Sensitivity and im-
plementation invariance can be tested by checking all predictions, so the
axioms are applicable. The paper presenting the axioms by (Sundararajan
et al., 2017) has over 3300 citations. This could be a good indication that
the axioms are common practice. This means the axioms are applicable and
common practice.

3.1.4 Completeness, correctness, and compactness

The axioms of completeness, correctness, and compactness have been de-
scribed in section 2.4.4.
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Coherence, simplicity, and generality

The social-scientific principles of coherence, simplicity, and generality have
been explained in section 2.2.1. The combination of completeness and cor-
rectness measures coherence. If the explanation for one prediction explains
more predictions and these explanations are correct, the explanation bet-
ter explains the model. If all explanations are as complete and correct as
possible, then they all explain a part of the model correctly and they are
coherent. Compactness measures simplicity, because the more compact an
explanation is, the fewer reasons it can use. The combination of complete-
ness and correctness also explains generality, because if an explanation is
complete and correct, then it can be used for many predictions. This means
it is general. So coherence, simplicity, and generality are all measured by
the axioms completeness, correctness, and compactness.

Leake’s principles

Leake’s social-scientific principles have been explained in section 2.2.2. Com-
pleteness and correctness show how close an explanation is to the other pre-
dictions. This increases the accuracy of that explanation and shows it is
closer to the model. If an explanation is correct, we can predict the pre-
dictions of the model for data points it has not seen yet, so the axioms
measure timeliness and predictive power. There is no measure for distinc-
tiveness in completeness, correctness, or compactness. We could even argue
that completeness hinders the measurement of distinctiveness because dis-
tinctive explanations (that explain only a few cases, but accurately) are
considered worse than general explanations. So timeliness and predictive
power are measured by completeness, correctness, and compactness, but
distinctiveness is not.

Miller’s principles

Miller’s social-scientific principles have been explained in section 2.2.3. Ex-
planations are selective because of the combination of compactness and cor-
rectness. The more compact and explanation (the fewer reasons/simpler),
the better. But to ensure we pick only the most accurate reasons, we have
correctness. Explanations are also general and probable, using the same
reasoning as for the generality principle. Because completeness and correct-
ness measure how many predictions are in accordance with an explanation,
consistency is also measured: it is consistent with prior predictions/beliefs.
For the same reasons as the other axioms, explanations are not measured
to be contrastive, social, focusing on abnormalities, or truthful. So using
completeness, correctness, and compactness, we can measure whether expla-
nations are consistent, selective, and general and probable, but we cannot
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measure whether they are contrastive, social, truthful, or focus on the ab-
normal.

Honegger’s principles

Honegger’s principles for evaluation methods have been explained in section
2.2.4. The authors have not directly provided scientific research backing the
axioms, so they are not findable. The axioms are applicable, as the authors
have shown, although they are not very useful for all explanations. Some ex-
planations are given in the form of feature attributions, but they are specific
for each case (so completeness and correctness cannot be measured). The
axioms are not common practice, because the paper only has 13 citations
and the axioms are quite unique compared to the other measures presented.

3.2 The new axioms

This section will present a hypothesis for the new evaluation method, based
on section 3.1 (which was in turn based on 2.2 and 2.4). It consists of six
general axioms that measure the explanation’s quality. In the next section,
an implementation of the axioms will be given that can be used for feature
relevance explanations.

A few of the axioms can be copied from the table and its explanation
presented in section 3.1. They can already be used as proxies for the social-
scientific principles for a good explanation. For the principles that were not
used in existing functionally grounded methods, new axioms were created.
The following list is a hypothesis of the relevant axioms, according to the
literature, answering the fourth question from the introduction “What func-
tionally grounded evaluation axioms can be obtained from social sciences?”

• Fidelity: how faithful is an explanation to the model? How well does
the explanation approximate actual ‘reasons’ for the prediction of the
model? This axiom has been taken from existing functionally grounded
evaluation methods and measures the principles of coherence, timeli-
ness, predictive power;

• Completeness: how many cases/data points are explained by the ex-
planation? This axiom has been taken from existing functionally
grounded evaluation methods and measures the principles of gener-
ality, and generality and probability;

• Compactness: how large is the explanation? This axiom has been
taken from existing functionally grounded evaluation methods and
measures the principles of simplicity, and selectivity;

• Distinctiveness: how unique are the causes? This axiom is new and
measures the principles of distinctiveness, and focus on abnormality;
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Figure 3.1: Example of a feature-relevance explanation generated by SHAP.

• Contrast: how contrastive is the explanation? Does the explanation
mention why the model did not predict something else? This axiom is
new and measures the principle of contrastivity;

• Realism: does the explanation make sense in the real world? Is the
explanation plausible? A (reusable) human judgment is necessary in
order to measure this axiom. What this human judgment looks like
depends on the explanation and model. In section 3.3.3, an example
implementation of this axiom can be found. This axiom is new and
measures the principles of coherence, truthfulness, and consistency.

The evaluation method is then the combination of these axioms.

3.3 Scope

The implementations of the new axioms depend on the explanation method
used. In this section, we detail the data, model, and explanation and how
the axioms are measured.

3.3.1 Input data

In this thesis, we focus on text classification. More specifically, we focus on
explanations for the predictions of neural networks that take in small pieces
of text (64 words or fewer) and make a binary classification.

3.3.2 Explanation method

Ideally, we would create and test our axioms for evaluation using all expla-
nation methods. The introduction and literature research describe explana-
tions in general. However, due to time constraints, we need to focus on only
one explanation method. As said in the introduction, the thesis focuses on
one explanation method: SHAP, a feature-relevance explanation method.
We made this decision because of SHAP’s popularity, existing implementa-
tions, and applicability to natural language classification. Figure 3.1 is an
example of an explanation that has been generated using SHAP.

The goal of the explanations was to justify the underlying machine learn-
ing model, as mentioned in the introduction.
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3.3.3 Measuring the axioms

For feature-relevance explanations that are generated using SHAP (like the
one in figure 3.1), an implementation of the axioms was made. This im-
plementation is largely based on the author’s understanding of the different
axioms. The exact algorithms that were used for measuring the axioms can
be found in the appendix. Here is a general description of them.

Fidelity Velmurugan et al. describe multiple ways of measuring fidelity
(Velmurugan et al., 2020). Because in this case, we do not have a surrogate
model as an explanation, the only suitable measurement is the following:
change features in the explanation one at a time and for each change run
the model again to see how it impacts the prediction. The more a predic-
tion changes with changing features, the higher the feature relevance should
be. The drawback of this method is that it assumes feature independence.
However, because testing all feature combinations is computationally too
expensive, this is still the best option.

Completeness Feature-relevance explanations are only applicable to one
single prediction in natural language processing. This means the complete-
ness axiom is not applicable in this case.

Compactness For feature-relevance explanations, compactness is defined
as the inverse of the number of outliers in the explanation. The number
of words used cannot be used as a measure, because the number of words
used depends on the length of the sentence. Using this method means that
if we have few outliers, the explanation is more compact. This makes sense
because the explainee’s attention is directed to the outliers and having fewer
outliers means having fewer things to pay attention to.

Distinctiveness Explanations are distinctive if they use unique features.
A feature is unique if it has a value it has in only a few cases. In the
case of natural language classification, a unique feature would be a word
that is not used often. According to the distinctiveness axiom, a more
unique feature should have a higher attribution. The way this is measured
is: the words in the sentence are ranked on uniqueness. The distinctiveness
of the explanation can then be measured by multiplying the relevance of
each feature by the inverse of the rank. So a word that comes early in the
ranking (for example 1st place) should have a higher relevance than a word
that comes late in the ranking to maximize distinctiveness.

Contrast A feature-relevance explanation is contrastive if the features
(words in the case of natural language classification) with high relevance

31



make a difference to the prediction. In this thesis, it is measured by remov-
ing the word and running the model again. If the prediction has changed,
the feature should have high relevance. This way of computing contrast
assumes feature independence and might not work well if the prediction of
the model depends on multiple words. However, for simplicity as well as for
computational efficiency, combinations of features are not considered.

Realism For all classes of a prediction, a set of keywords related to that
class is selected. For example, when one of the classes is electronic products,
keywords would include names of electronic brands or specifications specific
to electronic products (e.g. 4G, Wi-Fi, etc.). Identification of keywords
is done by a domain expert, potentially with the help of texts that are
related to each of the classes of the prediction. For all words used in the
explanation, the similarity between that word and the prediction class’s
words is computed using WordNet. WordNet is a large database of English
words. We can use WordNet to compute similarities between words. For
words that are not in WordNet, we can test whether they are exactly equal
to one of the keywords. The more similar a word is to one of the keywords,
the higher the relevance should be for a realistic explanation.
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Chapter 4

Axioms from Human Surveys

The next step is answering the question “How can the functionally grounded
evaluation methods be improved, according to people?”

4.1 Designing the interview

4.1.1 Why interviews

In this thesis, the aim is to create a functionally grounded evaluation method
that sufficiently measures understandability. Because human-grounded eval-
uation is biased towards understandability, interviews will help us achieve
this goal because they allow us to learn how people evaluate these expla-
nations. Interviews allow us to go into detail on the thought processes of
the participants, while they are evaluating the explanations. This allows
us to mimic (part of) their evaluation process in the functionally grounded
evaluation method. A benefit of questionnaires would be that they can test
a bigger number of subjects. However, the reasoning behind an evaluation is
important in order to create an evaluation method, so interviews are better
suited for this purpose.

4.1.2 The interview

The interview consists of two parts. The first part contains general ques-
tions about the quality of explanations. The second part contains specific
questions about explanations of machine learning models from varying do-
mains. The second part includes asking the participant to select the best
explanation and asking the participant to create explanations. The inter-
view lasts around 45 minutes like in (Felt et al., 2012) to accommodate for
the participant’s attention span.

Before the first part, an introduction describes XAI and its purpose.
Then two questions are asked. The first question asks the participant what
the characteristics of explanations should be, given the purpose of XAI. The
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second question asks the participant to evaluate the characteristics from
section 3.2. This first section was intended to roughly indicate what the
evaluation method should look like in general. Besides, it functioned as an
independent opinion on the validity of the literature review.

Next, the participants were given an explanation of four different do-
mains in which AI models and explanations were created. These were dis-
aster risk management, product classification, sentiment analysis, and spam
filtering. These domains were selected based on their applicability to nat-
ural language classification and the quality of existing datasets. Then the
second part started and two questions were asked. The first question asked
the participant to take the role of the AI models and make classifications
and explanations. The purpose of this question was to learn how humans
make explanations (which were assumed to be understandable). The second
question asked the participants to evaluate the explanations from the AI
models by ranking them. For the same sentence and classification, multiple
explanations were made. The participants were asked to explain why some
explanations were preferred over others. This part gave us insight into the
participants’ thinking process in evaluating and creating explanations. This
helped us create the evaluation method.

Last, the participants were asked whether their answers in the first part
were also true for the feature relevance explanations that were shown to
them. Also, they were asked whether there are characteristics specific to
feature relevance explanations.

To reiterate, we asked the participants:

• To think about the characteristics of a good explanation; (Part 1)

• To rank the axioms mentioned in section 3.2 (fidelity, completeness,
compactness, distinctiveness, contrast, and realism); (Part 1)

• To take the role of the machine learning model and create classifica-
tions and explanations for sentences; (Part 2)

• To rank the sets of explanations and explain their ranking; (Part 2)

• Whether their answers in part 1 also apply to the explanation type in
part 2 (feature relevance explanations).

The full interview can be found in the appendix, sections A.1 and A.2.
An analysis of the results can be found in section 4.2.

4.1.3 Process of designing

In the beginning stages of designing the interview, a few questions were
created based on intuition and the literature section, with the goal of un-
derstanding how people evaluate explanations in mind. Here follows a pri-
oritized list of the questions, from most to least valuable question:
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1. Which explanation is better? - The participant will get a sentence
with its classification combined with some explanations for that same
sentence that fit different axioms. The way these explanations are
made is explained in section 4.1.5. The participant then is asked to
rank these explanations. We specifically asked for a ranking, rather
than a rating of each explanation separately because a ranking will
give more consistent results between users and over time (Freund et
al., 2003).

2. Replicate this explanation - An explanation is shown to the par-
ticipant that they can study. They are then given a different task as
a distraction. After that task, they are asked to replicate the expla-
nation. When an explanation is more understandable, it is expected
to be easier to remember. Craik and Lockhart(Craik & Lockhart,
1972) state that “later stages [of perception] are concerned with pat-
tern recognition and the extraction of meaning” (page 675). The depth
of processing is defined to be the number of layers of perception that
are involved. They state that a greater depth of processing “implies
a greater degree of semantic or cognitive analysis” (page 675) and a
greater depth of processing implies a stronger memory trace (Craik &
Lockhart, 1972). This question/task is preferred because it has the
participant’s memory as a proxy of understanding, rather than their
interpretation of their own understanding. This is expected to be a
more reliable measure.

3. How would you describe a good explanation? - The partici-
pant is asked to come up with axioms. When the axioms proposed in
this thesis are mentioned often by the participants, the axioms gain
credibility. This question can be answered quickly.

4. Would you say axiom X helps you understand explanations?
- The participant is directly asked whether they think an axiom is
good. The importance of axioms from both existing as well as new
evaluation methods can be asked. There will be a lot of subjectivity
and differences between participants because the term ‘important’ is
open to interpretation. But because the question can be answered in
very little time, the limited benefit is worth the cost.

5. Create an explanation - The participant is asked to create an expla-
nation to see what axioms fit their explanation. Humans are expected
to give understandable explanations. If the axioms are correct, the
explanations from participants should also fit them.

6. How would you improve this explanation? - The participant is
given one explanation (fitting some of the axioms) and the question of
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how to improve this explanation. If they (indirectly) mention one of
the axioms in their improvements, the axiom gets credibility.

7. What process did you use to understand the explanation? -
The participant is given an explanation with an associated task and
is asked to explain their thinking process. The participant is expected
to show which parts of the explanation are important and how they
use them in order to reason. This may give us indirect information on
what axioms are important for their thinking process.

8. What do you like about the explanation? - The participant is
given an explanation and asked what they like about it. They can
mention the axioms in their judgment.

After having made the questions, the first pilots were done with a conve-
nience sample of three people. We concluded that participants needed more
context in order to answer the questions properly. So an introduction was
added.

Then the interview was improved over a number of iterations. By dis-
cussing with the team, it first became clear that the questions in the in-
terview should be applied to a domain. This would make the results more
consistent and more valid because it helps the participants understand the
purpose of the explanation. We initially chose to base the interview on the
domain of disaster risk management because of the supervisors’ experience
in the domain. After a few iterations of improving the background story and
questions, we came to the conclusion that the results would be too biased
because of the domain. Consequently, we decided to include more domains
in the interview, besides disaster risk management: these were e-commerce,
sentiment analysis, and spam classification. The natural language used did
not require the participants to be domain experts.

With the new domains added, the questions were divided into two parts.
The first part contains general questions. These questions are about all
types of explanations. The second part contains questions that are spe-
cific to explanations generated using SHAP. This means that the questions
involve a participant evaluating an explanation. We decided to remove ques-
tion 2 (“Replicate this explanation”), as it will take too much time to fit
within an interview of 45 minutes. Asking only a few questions of this
type could be a solution. However, this increases bias to the particular ex-
planations presented in the question, so we decided to skip the question.
Questions 6 (“How would you improve this explanation?”) and 7 (“What
process did you use to understand the explanation?”) were also removed be-
cause they provide too little value compared to the time required. Question
8 (“What do you like about the explanation?”) was adapted to fit within
question 1 (“Which explanation is better?”), asking the participant to justify
their prioritizing of the questions. The final interview contained question 3

36



(“How would you describe a good explanation?”), question 4 (“Would you
say axiom X helps you understand explanations?”), question 5 (“Create an
explanation”), and question 1 (“Which explanation is better?”).

Further improvements were made in providing the participants with con-
text over the course of meetings with the team. Also, an informed consent
form was written.

4.1.4 Sampling method

We interviewed 12 people in total (Guest et al., 2006) (Moitra et al., 2022).
Half of them had experience in machine learning. The other half did not.
Experience with machine learning was expected to affect the results because
it gives the participant an expectation of how machine learning explanations
work or should work. We used a combination of convenience sampling and
purposive sampling (Oates, 2006).

4.1.5 Explanations used in the interview

One of the questions in the interview (“Which explanation is better?”),
requires the use of explanations. In this paragraph, we will explain how
these explanations were picked. First, for every sentence 5 explanations were
generated for 50 sentences for each domain. Three of those explanations were
made by the permutation explainer (because of its ability to explain higher-
order interactions), one was made by the partition explainer, and one was
made by the sampling explainer. These explainers are all approximations
of SHAP, as described in section 2.3.4. The axioms that were developed in
chapter 3 result in a number, as explained in sections 3.2, 3.3.3, and A.5
(from least to most specific). When the axiom for one explanation exceeded
the 3rd quartile of that axiom for all explanations, that one explanation
is considered to fit the axiom. For example, if we have eight explanations
with fidelities of 0, 0.3, 0.3, 0.5, 0.5, 0.7, 0.8, and 0.8, then the last two
explanations would fit the axiom fidelity because they exceed the 3rd quartile
(which is 0.7). Similarly, when the axiom associated with an explanation is
lower than the 1st quartile of that axiom for all explanations, it is considered
not to fit that axiom.

In the case of realism and compactness, there are clear distinctions be-
tween explanations that do not adhere and explanations that do adhere. For
realism, the thresholds are 0.4 or lower to not adhere to the axiom and 0.6
or higher to adhere to the axiom. If an explanation has 4 or more ‘outliers’
(words with a relatively high relevance), the explanation is not compact. If
it has 2 or fewer ‘outliers’, it is compact. In this case, an outlier was defined
as being higher than 60 percent from the lowest to the highest value. For
example: if you have values spanning from 0 to 1, an outlier is defined as
any value above 0.6. With this value, about half of the explanations were
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compact and the other half were not.

4.2 Findings

In this section, the findings from the interviews will be described. Analogous
to the two parts of the interview - the general and specific part -, this section
will discuss people’s general opinions on the axioms of good explanations
and then discuss the qualities of specific explanations. First a list of the
participants. The ‘e’ in the label of the participant indicates experience
with machine learning.

4.2.1 Participants

P1e Has a Ph.D. based on machine learning.

P2e Has a master’s and Ph.D. in explainability and transparency of ma-
chine learning systems.

P3e Has 10 years of experience in working with machine learning.

P4e Master’s student in the machine learning domain, including explain-
ability.

P5e Master’s student in the machine learning domain.

P6e Has 4 years of experience in working with machine learning, including
explainability research.

P7 Knows about machine learning from the media.

P8 Knows about machine learning from social media.

P9 Has some conceptual knowledge of machine learning, but never used
it in practice.

P10 Has taken a course on the ethics of machine learning and uses AI
chatbots.

P11 Uses AI chatbots.

P12 Knows nothing about AI.

4.2.2 Evaluating axioms from the literature

First, let us describe the participants’ opinions on the axioms for explanation
quality that were found in the literature, answering the question “Would you
say axiom X helps you understand explanations?” Everyone strongly agreed
with the axiom of ‘fidelity’. Many put it as a first priority when evaluating
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explanations. All people agreed with the axiom ‘contrast’. P6e refined the
axiom ‘contrast’ by saying that an explanation should “show what distin-
guished this case [...] from a group [of cases, but] not from individuals.”
4 of the people with experience, and all people without experience in ma-
chine learning agreed strongly with ‘realism’, P2e even claimed that “ex-
planations need to make sense in the real world [because] otherwise they’re
useless”. All people with experience in machine learning agreed with ‘dis-
tinctiveness,’ however only one of the people without experience in machine
learning agreed with it. Only 5 of the 12 people deemed ‘compactness’ im-
portant, and ‘completeness’ was considered important by only 4 of the 12
people. P9 argued that the ranking of these axioms depends on the goal of
the explanation: “the order is dependent on what kind of explanation you
want. So, sometimes you need compactness, for example, but if you want to
have a thorough understanding of something, then completeness might be
more important.” After showing the types of explanations in part 2 of the
interview, one participant removed the axiom completeness, while another
participant added it. This could be due to a difference in interpretation of
the axiom. In aggregate, the participant’s opinions on the axioms stayed
the same.

4.2.3 Axioms from participants

Participants’ responses to the question “How would you describe a good
explanation?” could be categorized into three main themes: factual, user
dependent, and contextual.

Factual

The first category was that the explanation should be based on true facts.
People without experience in machine learning defined facts as true when
they hold in the real world. People with experience in machine learning
defined facts as true when they hold according to the model. These two
definitions of truth are analogous to the axioms realism and fidelity, respec-
tively.

P7, P8, P9, and P10 said that an explanation needs to be based on
the truth. P7 and P9 even claimed that the definition of an explanation
is a set of true facts that are used as proof of the classification. P11 and
P12 explained this differently. They said that explanations should be based
on scientific facts or theory. In addition, P11 said that the explanation
should use a lot of statistics. P11 said about statistics that “you can see
exactly what [the model] values more and I would [also] say that is part of
transparency.”

P6e defined an explanation as being ‘true’ as follows: an explanation
“needs to identify what was actually the basis of the decision.” Or as phrased
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more informally by P2e: it should “actually explain what it’s trying to
explain.” P4e even indicated that accuracy trumps understandability: “It
should explain the actual decisions the model does, even if that means giving
an explanation that the human doesn’t find intuitive”.

User dependent

The second category is that explanations should be user dependent: the
quality of an explanation depends on the user. As explained in sections
2.1.3 and 2.2.3, the social-scientific literature also states that explanations
should take the target audience in mind.

P2e said: “if the explanations don’t match what [users] think, they will
call it a bad explanation.” This means that understandability and people’s
expectations of explanations are also important. People’s backgrounds have
an effect on their expectations: P1e said that different people have different
expectations of explanations. For example, “as a computer scientist [...] we
expect some numerical values when we explain something [...] but when we
go to doctors, they expect some kind of natural way of explaining decisions.”
P4e summarized this by saying: “A good human explanation is an explana-
tion that harmonizes with the human you’re talking to. Then you can see
the feedback [...] and you know the background [...] and you’re trying to
adapt your message to the person you’re talking to.”

Contextual

The last category of axioms was that it should take into account the context
or human expectations of the context. For example, P1e indicated that in
the natural language domain, the “context of this whole text is more impor-
tant than individual words.” P5e said something similar when he said that
“it’s really important that the model not only considers the words, but it
should also figure out the meaning.” So that explanations should go beyond
just the words, and also explain their meaning and context. P7 and P9 sug-
gested solving this by having the explanation give a certain context in which
to understand the classifications, saying “first you need an introduction” and
“it would set the scene”, respectively.

When it comes to the context of the use case, P3e said that “in critical
use cases [...] you really need to understand why the model came to this
decision”, but that “for other things, it might be enough to show shallow ex-
planations like heatmaps”. Three of the participants related the dependence
on the use case to the axioms of completeness and compactness. A more
complex use case would then require completeness, while a more simple use
case would then require compactness.
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4.2.4 Analysis of human explanations

In this part of the interview, participants made classifications and explana-
tions for sentences in the given domains (disaster risk management, product
classification, sentiment analysis, and spam filtering). It answers the ques-
tion called “Create an explanation.” Explanations made by the participants
could be distinguished into three categories. The explanations consisted of
either a set of keywords that were the reason for the classification; a descrip-
tion of the context or meaning of a sentence that related to the classification;
or an absence of keywords or context.

In the disaster risk management, e-commerce, and sentiment analysis
domain, the explanations consisted largely of sets of keywords. These were
assumed to be the correct keywords because people have an understanding
of natural language. When an explanation consists of the right set of key-
words, it can be considered factual. The explanations in the spam domain
mainly involved the context of the text, which makes the explanations con-
textual. We hypothesized that the difference in explanation type was mainly
due to the fact that our examples in the spam domain did not have clear
keywords. For example: in the sentiment analysis domain, the word ‘awe-
some’ clearly indicates a positive sentiment and the word ‘uncomfortable’
clearly indicates a negative sentiment. The words in our examples in the
spam domain were not as clear. For example, the word ‘cheap’ in and of
itself does not necessarily make a text spam text: it depends on the context.

Besides the difference between spam and the other domains, there also
appear to be individual differences in proclivity to use keywords or context.
This could be due to explanations being user dependent. There could be a
difference in familiarity with the domain or show that different people prefer
different explanations. However, more research is needed in order to draw
reliable conclusions about why people use different ways of explaining.

4.2.5 Analysis of machine explanations evaluations

In this section, participants’ opinions on the quality of machine learning
explanations are analyzed. It answers the question “Which explanation is
better?” Section 3.2 hypothesized that explanations could be judged along
six axioms: fidelity, completeness, compactness, distinctiveness, contrast,
and realism. According to most of the interview participants, of those six
axioms, fidelity, contrast, distinctiveness and realism were expected to be
able to measure the quality of explanations, as described in section 4.2.2.

However, from the evaluations of machine explanations it became clear
that none of these axioms were good predictors of the quality of the explana-
tion in practice: at least using the measurements described in section 3.3.3
and in the appendix, section A.5. There could be other ways of measuring
the same axioms where they would have been able to predict the quality
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Contrast Compactness Fidelity Realism Distinctiveness

- - -

+ + -

× ×
× ×

- - - ×
×

-

-

+

× ×
+ - -

- × ×

Table 4.1: Accuracy of the prediction for each of the axioms. Every row
represents one of the classifications. ‘+’ means there is a positive correlation
between axiom and explanation quality; ‘-’ means a negative correlation; ‘×’
means no correlation; blank means not measured.

of an explanation more accurately, however, this needs more investigation.
For compactness and distinctiveness, the inverse of the metric even seemed
to be a better predictor. This is shown in table 4.1. The method explained
in section 4.1.5 determines whether an explanation satisfies an axiom or
not: an explanation adheres to an axiom when its metric is above the third
quartile, it does not adhere when its metric is below the first quartile. For
example, when an explanation is preferred and it does not fit an axiom, but
another explanation of the same classification does fit one, then there is a
negative correlation.

In this section, we will describe the reasons why participants liked or
disliked an explanation. In section 5.1 a new evaluation method will be pro-
posed for feature relevance explanations in the natural language processing
domain that is based on these reasons.

The three categories have been described for liking or disliking an expla-
nation in general (as in section 4.2.3). This section discusses four common
reasons for liking or disliking a feature-relevance explanation of the type
shown in figure 4.1. These four categories are the high relevance of key-
words, high relevance in punctuation or incorrect words, specificity, and
nuance. Having a high relevance of keywords is assumed to be an obvious
reason for liking an explanation because keywords give a strong indication
of a certain prediction. When punctuation marks had a high feature rel-
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Figure 4.1: Example of a feature-relevance explanation generated by SHAP.

evance, the participants found the explanation of lower quality. They did
not consider punctuation crucial to the meaning of a text, so they found
it should not have had a high relevance. When a high feature relevance
was attributed to incorrect words (these are words that the participants did
not associate with the given prediction), the explanations were also consid-
ered to be of lower quality. The last two categories, specificity and nuance,
seemed to be related to the first category, the high relevance of keywords.
When a sentence has keywords, explanations that gave a high feature rele-
vance to the keywords were praised for their specificity (while explanations,
where all words had similar feature relevances, were called unclear). How-
ever, when there were no keywords, explanations that attributed similar
feature relevances to all words were considered better and more nuanced
(while explanations with greater variety in feature relevances were called
wrong).

In addition, some people did not like explanations where all words had
exactly the same relevance. However, for some other people, this did not
seem to be a problem.

Participants also mentioned that explanations they deemed to be of low
quality gave them less trust in the underlying machine learning model. As
mentioned in the introduction and section 3.3.2, the goal of the explanation
was the justify the machine learning model. Explanations that are intended
to justify the model are intended to increase trust in the model, not decrease
it. This again shows that it is important that we have explanations that are
of high quality.

4.2.6 Effect of experience

The main difference between people with experience in machine learning
compared to people without experience was in answering the question “How
would you describe a good explanation?” (section 4.2.3). While the un-
derlying categories were similar (factual, user-dependent, and containing
context), the ways in which the two groups presented the categories were
different. People without machine learning experience all said that a good
explanation should have the following format: first, a context should be
given to set the scene and help the user understand what is going to be
explained, or what question is going to be answered; then should follow a
set of true facts that help the user understand what is going to be explained
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or answer that question. People with machine learning experience had a
much more specific idea of what an explanation was, so their axioms were
more tailored to machine learning explanations (not necessarily to feature
relevance explanations), rather than explanations in general.

The way explanations were made and evaluated seemed similar for both
groups.
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Chapter 5

Validating the evaluation
method

5.1 The new evaluation method

From section 4.2, and especially 4.2.5, it became clear that the quality of the
type of explanations used in the interview (feature relevance explanations
of small texts) could be evaluated along the following simple formula. This
formula uses the concept of keywords. These are words that are highly
associated with a particular class in the classification model. The formula
works as follows: if there are keywords in the text, these keywords should
have significantly higher relevance than the other words in the sentence (see
equation 5.1); and if there are no such keywords in the text, then there
should not be words with significantly higher relevance than the rest.

quality =
#keywords selected2

#keywords in input×#words selected
(5.1)

In case there are keywords in the text, as many of them as possible
should be selected, without having other words selected. We define a word
to be selected when its relevance is more than 60 percent of the range of
word relevance values higher than the lowest relevance. For example, if we
have a sentence for which the word relevance values range from 0 to 1, then
a word is called ‘selected’ when its relevance is higher than 0.6. The way
the formula ensures that as many keywords as possible should be selected
can be compared to the recall measure. The number of keywords selected
can be compared to the true positive rate, which is then divided by the total
number of keywords in the input that can be compared to the true positive
rate plus the false negative rate. The way that the formula ensures that as
few other words as possible are selected can be compared to the precision
measure. Again the number of keywords selected can be compared to the
true positive rate and the number of words selected can be compared to the
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true positive rate plus the false positive rate.
As learned in section 4.2.5, people prefer explanations without a focus on

any particular word at all when there are no keywords in the sentence. We
need to measure how uniformly the feature relevance values are distributed.
One way of measuring this is using the standard deviation. The implementa-
tion of the complete evaluation metric can be found in the appendix, section
A.6.

The evaluation method reduces the problem of evaluating these expla-
nations to identifying keywords. These keywords can be identified once
per domain by a domain expert. The benefit of this approach is that one
human judgment can be reused for multiple explanations. Depending on
the domain, different types of keywords exist. For example, if we take the
‘electronic product’ class from product classification, the list of keywords
can include brand names, types of electronic products (such as ‘keyboard’,
‘phone’, or ‘dishwasher’) or specifications inherent to electronic products
(such as ‘kWh’, ‘Wi-Fi’, or ‘4G’). Eventually, every class has a list of key-
words.

Words in the text that are equal to one of the keywords in the list
should then have high relevance for the explanation to be good. Besides
being equal to a word in the list, keywords can also be recognized by using
WordNet, which has been introduced in section 3.3.3, under the realism
paragraph. WordNet can then be used to calculate the similarity of a word
to the keywords in the list. When the similarity exceeds a threshold (set to
0.75 in our implementation), it is also classified as a keyword. The approach
we take of having a predefined list of keywords to identify them would be
similar to the suggestion of P8, who suggested measuring keywords by having
people list them.

There are other ways of computing the quality of an explanation, besides
using formula 5.1 and the standard deviation to compute uniformity. We
used formula 5.1 and standard deviation because we found them the most
intuitive. The implementation of the evaluation method can be found in the
appendix, section A.6.

5.1.1 Compared to people’s axioms

This simple formula fits three of the four common reasons for liking or
disliking an explanation from section 4.2.5: high relevance of keywords,
specificity, and nuance. This gives people the best understanding and most
trust in the decision of the model, according to their own judgment. The
last reason, avoiding high relevance in punctuation, has not been included
in the evaluation method to keep it simple. Looking at section 4.2.3, we
can recognize one of the three categories for explanation quality: factual.
The method judges whether an explanation is factual because it looks for
the high relevance of keywords. By definition, keywords are words that are
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highly associated with the predicted class so the formula measures whether
the explanation is factual in the real world. The formula is not considered
to measure whether an explanation is contextual because it only looks at
certain words in the sentence and not at the definition of the entire sentence.
It is also not user dependent, because the formula is the same for every user.

5.1.2 Compared to the literature principles

This section discusses which of the literature principles are measured by the
evaluation method. Similar to section 3.1, it is largely based on the author’s
intuition, but explanations for the intuition are given as well.

Going back to the social-scientific principles from the literature (section
2.2), we can see that the new method covers the following principles from
the literature:

• Coherence: people that use the method are assumed to have an under-
standing of the domain and the English language. This would mean
that they agree with the keywords, so because the evaluation method
focuses on what the keywords are, it measures whether it is coherent
with the user’s prior beliefs.

• Simplicity: only keywords should have high relevance, according to
the method. The other words should not. So this validates whether
the explanations fit the simplicity principle.

• Consistency: users of the evaluation method are assumed to believe
that a class’s keywords are associated with that class. Because the
evaluation method depends on keywords, it measures whether an ex-
planation is consistent with the user’s prior beliefs.

• Selectivity: only keywords should have high relevance, according to the
method. The other words should not. This means that the evaluation
method tests whether the explanation fits selectivity.

• Truthful: keywords are assumed to be associated with the predicted
class in the real world. Because the evaluation method judges the
quality of an explanation based on keywords, it measures whether the
explanation is truthful.

• Applicable: the method has been applied, so it is applicable.

• Common practice: we do not consider the method to be extraordinary,
so it fits the common practice principle.

However, it does not cover these principles:
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• Generality: the method looks at one explanation for one classification.
It does not use other explanations, so the generality of an explanation
is not measured.

• Predictive power: the evaluation method does not consider the model
itself. This means we will not know whether the explanation is useful
in predicting other texts. The evaluation method does not measure
predictive power.

• Timeliness: the evaluation method does not consider the model itself.
This means we will not know whether the explanation is useful in
giving indicators for the same classification. The evaluation method
does not measure timeliness.

• Distinctiveness: according to the method, the focus should be on key-
words. Keywords are not necessarily abnormal, so distinctiveness is
not measured.

• General and probable: the method looks at one explanation for one
classification. It does not use other explanations, so it does not mea-
sure whether an explanation is general and probable.

• Contrastive: we do not look at alternative predictions of the model.
This means we cannot know which words would change the prediction,
so the evaluation method does not measure whether the explanation
is contrastive.

• Social: the method is the same for every user and does not take the
target audience in mind. It does not measure whether an explanation
is social.

• Focus on abnormal: according to the method, the focus should be
on keywords. Keywords are not necessarily abnormal, so focus on
abnormality is not measured.

• Findable: this is, to the best of our knowledge, the first evaluation
method that combines the benefits of human-grounded and function-
ally grounded evaluation methods. This means there is no existing
basis for it in the literature, so it is not findable.

More research is required to incorporate the other principles into the
evaluation method.

5.2 Validating the new evaluation method

The newly created evaluation method was tested using a small questionnaire.
Before the questionnaire started, participants got an introduction to the
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topic and the purpose of the thesis. The questionnaire was similar to the
question that was analyzed in section 4.2.5, “Which explanation is better?”.
Generated explanations were shown and participants could vote on which
explanation they found the best (again defined as most understandable and
useful). The full questionnaire can be found in the appendix, sections A.3
and A.4.

5.2.1 Selection of explanations

The same domains were used in the questionnaire as in the interview. For
every domain, explanations of four sentences were picked. Two of those
sentences had keywords, the other two did not (as the presence of key-
words changes the evaluation method). We picked sentences whose explana-
tions had the biggest difference in quality, according to the new evaluation
method. None of the explanations were used in the interview.

5.2.2 Selection of participants

Participants were selected using convenience sampling. None of the partic-
ipants participated in the interview. In total, eleven people participated in
the questionnaire who all answered 16 questions.

5.2.3 Results

Results of the questionnaire are in table 5.1. The left side of the table con-
tains the qualities of the explanations according to the evaluation method.
The right side of the table contains the number of votes each explanation
got. According to the code used in the appendix, section A.7, the evalua-
tion method performed better than random at picking the best explanation
(sample size: 11 votes for every one of 16 classifications, p-value: 0.009).
The way this code works is as follows. For every classification, two, three,
or four explanations were made. One of those explanations is the best ac-
cording to the evaluation method. The total number of votes for the best
explanation is summed and divided by the total number of votes. This is
the evaluation method’s accuracy. Then the random accuracy needs to be
computed, which is the summation for each classification of the number of
votes divided by the number of explanations for that classification. The
code then uses a binomial test, where the sample size is the total number of
votes (11 · 16 = 176 in this case).

When using the same code to compare the evaluation method to ran-
dom choice per domain, the method worked better than random choice with
p-values of 0.01, 0.27, 0.36, and 0.54 for disaster risk management, product
classification, sentiment analysis, and spam filtering, respectively (sample
size: 11 votes for every one of 4 classifications). So the method works best
for the disaster risk management domain. When comparing the evaluation
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method to random choice for sentences with keywords and sentences with-
out keywords, the method worked better than random choice with p-values
of 0.20 and 0.01, respectively (sample size: 11 votes for every one of 8 clas-
sifications). So especially for sentences without keywords, the evaluation
method works better than random choice.

The new evaluation method is compared to one other evaluation method.
The other evaluation method is a combination of fidelity and stability, from
section 2.4.1. The other evaluation methods presented in section 2.4 do
not focus on particular explanations (but on the explanation method). The
quality of the other evaluation method is assessed in table 5.2. The values
in the table were based on the metrics for fidelity and stability, defined in
section 2.4.1. The algorithms that were used have been defined in the ap-
pendix, section A.7.2. For each question, the table contains either a ‘-’, a
‘+’, a ‘×’, or a blank cell. For each question, we determined the explana-
tion with the most votes in the questionnaire. If the difference between the
explanation with the second most votes was 1 or less and one of them con-
tained the highest or lowest value for fidelity or stability, a ‘times’ was put
in the table. If the explanation with the most votes got the highest value
for fidelity or stability, a ‘+’ was put in the table, unless there was another
explanation with a value of at most 0.1 less. Similarly, if that explanation
got a lower value for fidelity or stability, a ‘-’ was put in the table, unless
there was another explanation with a value of at most 0.1 more.

Compared to the functionally grounded evaluation method involving the
axioms of stability and fidelity (Kalousis et al., 2007), the new evaluation
method works better. As we have seen during the interviews, (internal)
fidelity is not a good predictor of explanation quality. This was also the
case in the questionnaire as can be seen in table 5.2. The stability axiom
also does not seem to be a good predictor of explanation quality for feature
relevance explanations of short sentences.

5.3 Limitations

5.3.1 Models used

While the explanation method, SHAP, is widely applicable, the interviews
have reviewed only the classification of short texts (of at most 64 words). We
chose this to keep the interviews shorter and more interesting for the par-
ticipants. The drawback is that the axioms could, however, work differently
for longer texts or different types of NLP tasks (such as translation).

5.3.2 Purpose of explanation

As mentioned in the literature research, explanations in artificial intelligence
can have several purposes: justifying, controlling, and improving the model,
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Evaluation method’s quality Participants’ preference

Opt 1 Opt 2 Opt 3 Opt 4 Opt 1 Opt 2 Opt 3 Opt 4

0 0.75 0 0 7 4

0.34 0.22 9 2

0.31 0.35 0.21 1 7 3

0.5 1 0.25 0.5 4 3 0 4

0 0.04 0.06 0.07 2 2 2 5

0.62 0.61 0.57 0.42 4 5 1 1

0.63 0.61 0.42 0.56 3 0 5 2

0 0.33 0 0 1 2 0 8

0.36 0.44 0.31 0.48 2 4 2 3

0.52 0.40 0.50 0.51 1 5 4 1

0.2 1 0 0.07 7 1 2 1

0 0.5 0 0.5 1 8 2 1

0.52 0.55 0.65 0.52 1 0 6 4

0.13 0.06 0.5 0.13 0 7 0 4

0.4 0.38 0.25 0.14 2 0 7 2

0.56 0.50 0.67 0.55 2 2 5 2

Table 5.1: Evaluation method’s quality (left size) vs number of votes indi-
cating participants’ preferences (right side)
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Fidelity Stability

- +

- +

× -

-

- -

+ +

+ -

-

×
-

-

- +

- -

+ +

- +

Table 5.2: Accuracy of the evaluation for each of the axioms. Every row
represents one of the classifications. ‘+’ means there is a positive correlation
between axiom and explanation quality; ‘-’ means a negative correlation; ‘×’
means no correlation; blank means not measured.
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and learning from the model (Adadi & Berrada, 2018). The explanations
presented in the interview were presented in the context of justifying the
model. Explanations in the context of controlling, improving, or learning
from the model could require different characteristics than explanations to
justify.

5.3.3 Measurement of axioms

The axioms ‘distinctiveness’, ‘contrast’ and ‘fidelity’ could not be measured
or known by the participants in question 4 of the interview. Distinctiveness
depends on the other training samples, which the participants had not seen.
Contrast and fidelity both depend on the model, which cannot be known
by the participants, because the model is a black box model. Consequently,
the distinctiveness, contrast, and fidelity axioms could not be accurately
validated in the interview (we could only ask general questions about those
axioms). A solution for distinctiveness could have been to show the partic-
ipants multiple data samples in order to give them the context needed to
judge distinctiveness. We did not choose to do that to keep the interviews
shorter and more interesting for the participants.

5.3.4 When are explanations necessary

During the interviews, four of the participants questioned the effectiveness
of explanations in general. P2e said that “one of the good points of AI [...] is
that it is able to make connections which we generally don’t see.” Explana-
tions of those models may not make sense to people seeing them. The model
may not make sense to us, but we need to think about the question: “if the
model works, isn’t that more important than if the explanation makes sense
or not?”

P3e brought up a contradicting point, saying that “if you provide ex-
planations, they might think: ah now I can trust [the model], even if you
cannot.” So the mere existence of an explanation may convince people that
the model is correct, even if it is not and the explanation doesn’t make
sense. He claimed that “you need transparency throughout the whole sys-
tem, from data collection until the explanation” in order to be able to trust
the system. This includes the data distributions in the train data and real
world, the used preprocessing techniques, and how the model was trained
and evaluated.

In addition, P6e said that explanations require time to evaluate and that
“explanations are [only] useful in the setting when you have enough time to
evaluate.” This means explanations are only helpful when it is important
that every single prediction is correct.

Last, P9 indicated that the explanation method used in this thesis “lack[s]
a lot of sophistication, like splitting up things into these basic blocks without
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evaluating the combination of these blocks seems like a missed opportunity.”
And that “it doesn’t explain why it uses various words”, meaning that P9
does not consider feature relevance attributions valid explanations. These
criticisms are inherent to the explanation method and could be mitigated
using a different explanation method. However, this thesis focuses on fea-
ture relevance explanations and comparing different explanation methods is
thus out of scope.

5.3.5 Dependence on model and input data

P2e said that the quality of the model is also important to the perceived
quality of an explanation. “A good explanation for a bad model is a bad
explanation.” This means that the explanation will not justify the model.
It could be argued that this explanation is good in the sense that it shows
the model is bad. However, this requires the user to see a lot of different
explanations from different models. This is because if you see one bad
explanation, it is impossible to know if the model is bad or if the explanation
method itself is bad.

P3e experienced that the quality of the explanation also depends on the
quality of the input data, while evaluating the generated explanations. “The
[text] itself is already not making sense, so it’s hard making sense from the
explanations. It shows well that explanations are also connected to the data.
Garbage in is garbage out.” In summary, a good explanation method does
not necessarily imply a good explanation: the quality of the model and the
input data likely impact the quality of the explanation as well.
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Chapter 6

Conclusions and outlook

In this thesis, we have made a functionally grounded evaluation method for
feature-relevance explanations in natural language classification For expla-
nations of classification models, the method depends on keywords. Key-
words are words that are highly one of the classes. Given an explanation
consisting of a feature relevance for every word in the input text, the method
works as follows. If the input text has keywords that are strongly associated
with the predicted class, the quality of the explanation is the number of
keywords that have a high relevance squared divided by the number of all
words with high relevance and by the number of keywords in the input text,
as shown in equation 6.1. If the input text does not contain any of these
keywords, the quality is determined by how uniformly feature relevance val-
ues are distributed along the words. One way of doing this is by computing
the standard deviation over the feature relevance values.

quality =
(#keywords highlighted)2

#keywords in input×#words highlighted
(6.1)

This explanation method was found by answering the 6 questions from
the introduction.

6.1 Research questions

In this section, we will provide short answers to the questions from the
introduction.

6.1.1 What is an explanation from a social scientific perspec-
tive?

An explanation is an answer to a ‘why’-question with an implicit ‘whether’-
question. Different topologies for explanations exist. For example, Aristotle
distinguishes material explanations (considering the material of an object),
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formal explanations (considering the form or shape of an object), efficient
explanations (considering who or what caused a change to an object), and
final explanations (considering the end-goal). This explanation is formed in
our minds by attributing causes and selecting the best of these causes. It is
then transferred socially, according to the rules for cooperative conversation.

6.1.2 How do humans understand explanations?

There are many sets of principles that describe how humans understand
explanations. For example, explanations should be coherent, simple, and
general.

6.1.3 What are current functionally grounded evaluation meth-
ods?

Some examples of functionally grounded evaluation methods include the
combination of the axioms of stability and fidelity. Stability is the degree
to which similar data and predictions generate similar explanations, and
fidelity measures how well an explanation approximates the actual model.
Other functionally grounded evaluation methods include the sets of metrics
identity, separability, and stability; sensitivity and implementation invari-
ance; or completeness, correctness, and compactness.

6.1.4 What functionally grounded evaluation axioms can be
extracted from the social sciences?

From the social sciences and existing functionally grounded evaluation meth-
ods, we extracted six axioms that should be able to determine the quality
of an explanation. These are fidelity, completeness, compactness, distinc-
tiveness, contrast, and realism. In the interviews, it was found that most
people agreed with fidelity, contrast, distinctiveness, and realism. However,
when applied to natural language classification, none of these axioms could
determine the quality of an explanation.

6.1.5 How can the functionally grounded evaluation methods
be improved, according to people?

From the interviews, it was found that people mainly focused on keywords
(words that are strongly associated with one of the classes), when it comes
to feature relevance explanations in natural language classification. These
keywords should have higher relevance in the explanation than other words
for the explanation to be considered of higher quality. The new metric
was based mainly on that finding. In case there were no keywords, people
generally preferred explanations where the relevance was spread more evenly
across words.
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6.1.6 How does the new functionally grounded evaluation
method perform compared to other functionally grounded
evaluation methods?

The new evaluation method mimics human evaluations of feature relevance
explanations better than randomly guessing. The evaluation method that
combines fidelity and stability does not perform better than random. We
can thus conclude that the new evaluation method performs better than
some of the existing evaluation methods.

6.2 Future work

The domain in which the evaluation method works is in the classification
of short texts. An important addition to this method is broadening the
scope in which it works. This means having the method work on longer
texts and with other explanation methods. Another addition is extending
the method such that it takes into account other factors to the quality of the
explanation. For example, one of the results from the interview which has
not been incorporated into the method for simplicity was the highlighting of
punctuation. Involving this (and potentially other) metrics could improve
the evaluation method.
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López, S., & Saboya, M. (2009). On the relationship between shapley and
owen values. Central European Journal of Operations Research, 17,
415–423. https://doi.org/10.1007/s10100-009-0100-8

Lundberg, S. (2018). Shap api reference [Accessed: 2023-05-09].
Lundberg, S., & Lee, S.-I. (2017). A unified approach to interpreting model

predictions.
Miller, T. (2019). Explanation in artificial intelligence: Insights from the

social sciences. Artificial Intelligence, 267, 1–38. https://doi.org/10.
1016/j.artint.2018.07.007

Moitra, A., Wagenaar, D., Kalirai, M., Ahmed, S. I., & Soden, R. (2022).
Ai and disaster risk: A practitioner perspective. Proc. ACM Hum.-
Comput. Interact., 6 (CSCW2). https://doi.org/10.1145/3555163

Oates, B. J. (2006). Researching information systems and computing (1st ed.).
SAGE Publications Ltd.

Read, S. J., & Marcus-Newhall, A. (1993). Explanatory coherence in social
explanations: A parallel distributed processing account. Journal of
Personality and Social Psychology, 65 (3), 429–447. https://doi.org/
10.1037/0022-3514.65.3.429

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ”why should i trust you?”:
Explaining the predictions of any classifier.
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Appendix A

Appendix

A.1 The interview

Artificial intelligence (AI) has the ability to improve lives in many different
ways. However, in many cases, it is important to be able to trust the
technology and understand its limitations. For example, we do not want
bias in our system. We can do this by letting the computer explain itself.

During this interview, we would like to learn when such explanations are
good. The interview consists of two parts. During the first part, we will ask
you some open-ended questions about explanations. We would like to learn
how you would evaluate the quality of an explanation, in general. In the
second part, we would like to learn how you evaluate explanations in more
specific cases. We will show you computer-generated explanations from dif-
ferent domains: disaster risk management, e-commerce, spam filtering, and
sentiment analysis.

Before we begin, we would like to know about your experience with ma-
chine learning.

0. What is your current experience with machine learning?

Let us begin with the first part: investigating explanations using general
questions.

1. We just gave you a vague description of such an explanation: some-
thing that conveys how the computer works in order to understand
and trust it; to understand why the computer made the predictions it
did. What would such an explanation require? Or phrased in a differ-
ent way: what are the characteristics of a good explanation, according
to your intuition?

2. Before the interview started, we found a few characteristics as well.
Without having seen any explanations, can you give your considera-
tions in ranking the following six statements?
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(a) Explanation of a model should say what the model bases its de-
cision on. [fidelity]

(b) One explanation should explain as many cases as possible. [com-
pleteness]

(c) Short explanations are generally better than long ones. [com-
pactness]

(d) Unique characteristics of an event should be used in an explana-
tion. [distinctiveness]

(e) Explanations of a prediction should mention what separated the
prediction from other predictions. [contrast]

(f) Explanations need to make sense in the real world (also if the
model does not know the real world). [realistic]

For the second part of the interview, we created four artificial intelligence
models in four domains: disaster risk management, e-commerce, spam fil-
tering, and sentiment analysis. Let us first explain the use cases for each of
the models.

• Disaster risk management: Imagine there has just been a flood
in Queensland, a state in Australia. You are part of a disaster risk
management team and you want to get the latest updates about the
flood from social media. This can give your team crucial information
about the flood. You use artificial intelligence to filter the posts, such
that you get only posts that are relevant to the flood. This saves much-
needed time, compared to filtering these posts by hand. We let this
artificial intelligence explain itself to justify whether you are getting
all social media posts that are relevant to the flood (not just a small
part of them).

• E-commerce: Imagine you have an online store that automatically
resells books and electronics from other stores. Your competitor (an-
other online store) does not categorize its products, but you want
your website to do so for a better customer experience. You want your
website to automatically categorize a product based on its description.
This saves you a lot of time, compared to doing it manually. You let
this artificial intelligence explain itself to justify whether its prediction
is based on valid reasons.

• Spam filtering: Imagine your children get a lot of emails from robots
or scammers. You do not want your children to be exposed to the
harmful content in some of those emails, so you use an app to filter
them. The app uses an AI to make this decision. The app also gives
an explanation of its decision. You test the app on your own inbox and
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you investigate the explanation to justify whether the app’s prediction
is based on valid reasons.

• Sentiment analysis: Imagine you want to decide to buy stocks of an
airline company. The diligent investor you are, you want to know what
people on social media think of the company. Investigating social me-
dia content allows you to see the company from multiple angles. You
use an AI that automatically determines whether a review is positive
or negative. Because there are thousands of reviews, you cannot do
this by hand. You let an artificial intelligence model explain itself to
understand why the prediction was made and whether the prediction
was based on valid reasons.

Before we go to evaluating the actual explanations, we would like to
know how humans would make such an explanation. So we are putting you
in the computer’s place.

3. We will give you a sentence that the computer can use to make a
prediction and explain why it made that prediction. Keep in mind
that for some of the sentences, the prediction may be obvious to you.
But we are interested in the explanation anyway, because the AI can
make mistakes in explaining predictions that are obvious to people.

During the next part of the interview, one type of explanation will be
investigated. We will show you some explanations of this type that the
computer made. We would like to ask you to evaluate them based on how
useful and understandable they are. The explanations that the computers
made are the words with a background color that indicates how important
the word is to the prediction.

4. We will give you a few pages of explanations generated by a computer.
A little clarification is needed to make clear how these explanations
work. Before making the prediction, the computer removes certain
abundant words (such as ’a’, ’to’, and ’but’) because they generally
add little to the meaning of the sentence. The color behind a word
indicates how strongly it affects the prediction of the model. Given
this information, we ask you to rank the explanations on each page.
We would like to ask you to evaluate whether the prediction of the
computer was based on the right words. You are encouraged to explain
your thinking process in detail (so as to explain why you prefer some
explanations over others).

Now you have seen what the computer’s explanations look like. We
would like to ask you the same questions as in the beginning. But this time,
we ask them about the type of explanation we presented in the previous
question.
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5. You indicated that the characteristics [CHARACTERISTICS] are im-
portant to the quality of an explanation. Is this also the case for the
type of explanation that we presented, and why?

6. What are other characteristics of good explanations of the type we
presented in the last question (so with the color marking)?

7. How would you determine/measure [CHARACTERISTICS]? If it helps,
you can look at some explanations from the previous question.

Thank you for participating.
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A.2 Explanations shown

Please rank the following explanations for this prediction:
Domain: disaster;
Prediction: not relevant
Input: “@TW Baron my picks 1,4,8,7 for this race SirBaron,will miss the race tonite working”

•

•



Please rank the following explanations for this prediction:
Domain: disaster;
Prediction: relevant
Input: “#news: New South Wales braces for river peaks as Queensland counts flood cost: Four deaths confir... http://t.co/LPfxlnWZ #guardianudate”

•

•

•



Please rank the following explanations for this prediction:
Domain: disaster;
Prediction: relevant
Input: “Flood hits Queensland and foam car appears out of nowhere http://t.co/qYmY64v3”

•

•

•



Please rank the following explanations for this prediction:
Domain: e-commerce;
Prediction: electronic
Input: “Lenovo Tab4 8 Plus Tablet (8 inch, 64GB, Wi-Fi + 4G LTE + Voice Calling), Aurora Black”

•

•

•



Please rank the following explanations for this prediction:
Domain: e-commerce;
Prediction: book
Input: “Brain Freezer J DSLR SLR Camera Lens Shoulder Backpack Case for Canon Nikon Sigma Olympus (Black)”

•

•

•

•



Please rank the following explanations for this prediction:
Domain: e-commerce;
Prediction: electronics
Input: “Philips BHS386 Kera Shine Straightener (Purple) This Philips hair straightener is specially designed for Indian hair. With SilkPro Care technology and advanced
keratin ceramic coating, plates smoother than silk resulting in less heat exposure and minimal friction. 2 professional styling temperatures designed for salon result with
extra care and control.”

•

•

•



Please rank the following explanations for this prediction:
Domain: sentiment analysis;
Prediction: negative
Input: “@united I would encourage you to re-interview the sole flight attendant on UAL 6166 from BUF to ORD. Blatantly not stable. Uncomfortable.”

•

•

•

•



Please rank the following explanations for this prediction:
Domain: sentiment analysis;
Prediction: Positive
Input: “@JetBlue oh. And thank you for responding”

•

•

•



Please rank the following explanations for this prediction:
Domain: sentiment analysis;
Prediction: negative
Input: “@SouthwestAir you only hear about the bad things. Flying the last to weekends, the flights and crews were awesome. Thank you. [thumbs up emoji]”

•

•



Please rank the following explanations for this prediction:
Domain: spam filtering;
Prediction: spam
Input: “Subject: the most expensive car sold in graand ! cheap cars in graand !”

•

•

•



Please rank the following explanations for this prediction:
Domain: spam filtering;
Prediction: spam
Input: “Subject: rely on us for your online prescription ordering . your in - home source of health information a conclusion is the place where you got tired of thinking . a
man paints with his brains and not with his hands . a poet more than thirty years old is simply an overgrown child . one shoud always play fairly when one has the winning
cards .”

•

•

•



Please rank the following explanations for this prediction:
Domain: spam filtering;
Prediction: spam
Input: “Subject: contact info i will be in one of these two paces - - my home : 011 91 80 3312635 my in - laws ’ home : 011 91 80 5262719 you can also contact me by email
at vshanbh @ yahoo . com , but it is better to call since i do not have easy access to a computer , and there may be a delay with reading email . vasant”

•

•

•



A.3 Questionnaire

The questionnaire was made using Google Forms and included the following
sections.

Section 1 Dear participant, here is some information about the question-
naire.

This questionnaire is part of a bachelor thesis at the Radboud University.
The thesis tries to answer the question “What is a good explanation?” The
answer to this question forms the basis of the product of this thesis: a
metric that judges whether a (particular type of) explanation is good. This
means the explanation is understandable and makes sense. Your answers will
be used to validate the method that judges the quality of an explanation
automatically.

Section 2 - Introduction Artificial intelligence (AI) has the ability to
improve lives in many different ways. However, in many cases, it is important
that we are able to trust the technology and understand its limitations. For
example, we do not want bias in our system. One way of doing this is by
letting the computer explain itself.

During this questionnaire, we would like to learn when such explanations
are good. The questionnaire consists of sixteen questions. One type of
explanation will be investigated. We will show you some explanations of
this type that the computer made. We would like to ask you to evaluate
them based on how useful and understandable they are.

The thesis focuses on AI models that make a prediction based on text.
The explanations will show you how important different words from that
text are to making the prediction.

Section 3 - Informed consent When you participate in the interview:

• You are allowed to skip any question.

• You can decide to stop your participation at any time, for any reason.

• You can download the thesis from https://www.cs.ru.nl/bachelors-
theses/ once it has been completed.

Text in this interview may contain explicit content.
The questionnaire is expected to take about 10 to 15 minutes.
Do not forget to submit after you are done.

Section 4 - the four AI models The four AI models:

77



• Disaster risk management: Imagine there has just been a flood in
Queensland, a state in Australia. You are part of a disaster risk man-
agement team and you want to get the latest updates about the flood
from social media. This can give your team crucial information about
the flood. You use artificial intelligence to filter the posts, such that
you get only posts that are relevant to the flood. This saves much-
needed time, compared to filtering these posts by hand. We let this
artificial intelligence explain itself to justify whether you are getting
all social media posts that are relevant to the flood (not just a small
part of them).

• E-commerce: Imagine you have an online store that automatically
resells books and electronics from other stores. Your competitor (an-
other online store) does not categorize its products, but you want
your website to do so for a better customer experience. You want your
website to automatically categorize a product based on its description.
This saves you a lot of time, compared to doing it manually. You let
this artificial intelligence explain itself to justify whether its prediction
is based on valid reasons.

• Sentiment analysis: Imagine you want to decide to buy stocks of an
airline company. The diligent investor you are, you want to know what
people on social media think of the company. Investigating social me-
dia content allows you to see the company from multiple angles. You
use an AI that automatically determines whether a review is positive
or negative. Because there are thousands of reviews, you cannot do
this by hand. You let an artificial intelligence model explain itself to
understand why the prediction was made and whether the prediction
was based on valid reasons.

• Spam filtering: Imagine your children get a lot of emails from robots
or scammers. You do not want your children to be exposed to the
harmful content in some of those emails, so you use an app to filter
them. The app uses an AI to make this decision. The app also gives
an explanation of its decision. You test the app on your own inbox and
you investigate the explanation to justify whether the app’s prediction
is based on valid reasons.

Following sections The following sections were all multiple-choice ques-
tions where the participants were asked to select the best explanation out
of a set of explanations shown. The sets of explanations that were shown
are in section A.4.
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A.4 Explanations shown in questionnaire

Please rank the following explanations: Domain: disaster risk management
Prediction: relevant
Input: “Photos: Flood water rises in Australia”

1.

2.

3.



Please rank the following explanations: Domain: disaster risk management
Prediction: not relevant
Input: “I’m back :) (@ Metropolitan South Institute of TAFE) http://t.co/KfRsYzbt”

1.

2.



Please rank the following explanations: Domain: disaster risk management
Prediction: not relevant
Input: “WHAT OMG PEOPLE’S ELBOW INTERRUPTED WHO IS IT RoyalRumble”

1.

2.

3.



Please rank the following explanations: Domain: disaster risk management
Prediction: relevant
Input: “@TIME Major Flood in brisbane,qld,australia!#qldflood http://t.co/V6CtOQ6y”

1.

2.

3.

4.



Please rank the following explanations: Domain: product classification
Prediction: electronic
Input: “Logitech C922x Pro Stream 1080p Webcam for HD Video Streaming Recording At 60Fps Logitech c922x pro stream webcam 1080p camera for HD video streaming
records 60fps 960-001176.”

1.

2.

3.

4.



Please rank the following explanations: Domain: product classification
Prediction: electronic
Input: “AmazonBasics 1/2-Male to 2-Male RCA Audio interconnects - 8 feet, 2-Male to 2-Male”

1.

2.

3.

4.



Please rank the following explanations: Domain: product classification
Prediction: electronic
Input: “RHCSA/RHCE Red Hat Linux Certification Study Guide Exams EX200 EX300 About the Author Michael Jang, Senior Technical Writer, ForgeRock. Alessandro
Orsaria, Red Hat RHCE and RHCA certified IT Professional.”

1.

2.

3.

4.



Please rank the following explanations: Domain: product classification
Prediction: electronic
Input: “NISUN External Optical Drive USB 2.0 CD/DVD-RW(Read-Write) Drive for Laptop and Desktop PC -Black”

1.

2.

3.

4.



Please rank the following explanations: Domain: sentiment analysis
Prediction: negative
Input: “@united Usually an issue with Express our of SFO. Positive note: Mainline p.s. was enjoyable.”

1.

2.

3.

4.



Please rank the following explanations: Domain: sentiment analysis
Prediction: negative
Input: “@SouthwestAir Left my computer on the plane. Two weeks Late Flightr they found it and sent it to me. greatservice. happy customer”

1.

2.

3.

4.



Please rank the following explanations: Domain: sentiment analysis
Prediction: negative
Input: “@VirginAmerica lost my luggage 4 days ago on flight VX 112 from LAX to IAD amp; I’m calling every day, no response.Please give me back my stuff”

1.

2.

3.

4.



Please rank the following explanations: Domain: sentiment analysis
Prediction: negative
Input: “@united I lost my sunglasses on the flight from OKC to IAH this morning (8am takeoff) .. is there any way to retrieve them?”

1.

2.

3.

4.



Please rank the following explanations: Domain: spam filtering
Prediction: no spam
Input: “Subject: real option conference vince , i was brought to my attention that an interesting real option conference is taking place in march 27 - 28 . i would like to
attend this conference if possible . thanks . alex”

1.

2.

3.

4.



Please rank the following explanations: Domain: spam filtering
Prediction: spam
Input: “Subject: re : congratulations right back at you . . . . . great job”

1.

2.

3.

4.



Please rank the following explanations: Domain: spam filtering
Prediction: spam
Input: “Subject: more site sales do you take credit cards ? if you do you will make more money . easy set up . . no credit checks - 100 % approval . . . . make more money
now ! try now remove info is found on web site”

1.

2.

3.

4.



Please rank the following explanations: Domain: spam filtering
Prediction: no spam
Input: “Subject: a letter i sent fiona , ? i sent you a letter a while ago to obtain enron ’ s approval of the text . ? are you still ? my contact for this ? ? if not , please let
me know who i should send the ? promotional material for approval . ? thanks , julie brennan ? lacima group - covering letter for book brochures - final . doc”

1.

2.

3.

4.



A.5 Evaluation method from literature

The evaluation method is defined as a combination of the following axioms:

A.5.1 Contrast

import numpy as np

def ablate(x, i):

x[i] = 0

for j in range(i, len(x)-1):

x[j] = x[j+1]

x[-1] = 0

return x

def compute_contrast(X, model, explanation):

"""

X: the word ids in the shape of #elements x #words

model: the model that is being explained

explanation: the feature relevances in the shape of #elements x #features

returns an array of length #elements

"""

contrast = [0]*len(X)

for i in range(len(X)):

old_prediction = model(np.array([X[i]]))

for j in range(len(X[i])):

x = ablate(copy.deepcopy(X[i]), j)

new_prediction = model(np.array([x]))

if (new_prediction != old_prediction):

contrast[i] += explanation[i][j]

return contrast
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A.5.2 Distinctiveness

import numpy as np

def compute_distinctiveness(X, train_data, explanation):

"""

X: the word ids in the shape of #elements x #words

explanation: the feature relevances in the shape of #elements x #features

train_data: the word ids from the train_data

returns an array of length #elements

"""

distinctiveness = [0] * len(X)

frequencies = []

for x in np.unique(train_data):

frequencies.append((np.mean(np.array(train_data) == x), x))

sorted_frequencies = sorted(frequencies)

word_specialty = {0: 0}

for i, (f, x) in enumerate(sorted_frequencies):

word_specialty[x] = 1 - i / len(sorted_frequencies)

for i in range(len(X)):

for j in range(len(X[i])):

try:

distinctiveness[i] += word_specialty[X[i][j]] * explanation[i][j]

except:

distinctiveness[i] += explanation[i][j]

return distinctiveness
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A.5.3 Fidelity

import numpy as np

def compute_fidelity(X, explanation, model):

"""

X: the word ids in the shape of #elements x #words

explanation: the feature relevances in the shape of #elements x #features

model: the model that is being explained

returns an array of length #elements

"""

fidelity = [0] * len(X)

samples = 5

for i in range(len(X)):

change_ratings = [0]*len(X[i])

x = 0

while x < len(X[i]):

change_rating = 0

for change in range(samples):

new_X = copy.deepcopy(X[i])

new_X[x] = new_X[x] + (100 * change / samples)

if (model(np.array([X[i]])) == model(np.array([new_X]))):

change_rating += 1/samples

change_ratings[x] = change_rating

if (X[i][x] == 0):

x = len(X[i])

x += 1

for j in range(len(X[i])):

fidelity[i] += change_ratings[j] * explanation[i][j]

return fidelity
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A.5.4 Realism

import numpy as np

from nltk.corpus import wordnet as wn

def compute_realism(sentences, explanation, positive_words, negative_words, predictions):

"""

sentences: the words in the shape of #elements x #words

explanation: the feature relevances in the shape of #elements x #features

positive_words: a list of words (wordnet synsets) associated with prediction 1

negative_words: a list of words (Wordnet synsets) associated with prediction 0

predictions: a list in the shape of #elements containing the predictions

returns an array of length #elements

"""

metrics = [0] * len(sentences)

for i in range(len(sentences)):

if (predictions[i] == 1):

for j in range(len(sentences[i])):

vals = [0]

for w in positive_words:

try:

vals.append(w.wup_similarity(wn.synsets(sentences[i][j])[0]))

except:

pass

metrics[i] += explanation[i][j] * np.max(vals)

else:

for j in range(len(sentences[i])):

vals = [0]

for w in negative_words:

try:

vals.append(w.wup_similarity(wn.synsets(sentences[i][j])[0]))

except:

pass

metrics[i] += explanation[i][j] * np.max(vals)

return metrics
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A.5.5 Compactness

import numpy as np

def compute_compactness(explanations):

"""

explanations: the feature relevances in the shape of #elements x #features

returns an array of length #elements

"""

results = []

for data in explanations:

q0, q4 = np.percentile(data, [0, 100])

iqr = q4 - q0

upper_bound = q4 - (0.4 * iqr)

outliers = len([x for x in data if x > upper_bound])

if outliers == 0:

results.append(0)

else:

results.append(max(0, 1.25 - (0.25 * outliers)))

return results
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A.6 Evaluation method from interviews

The evaluation method can be defined as:

def evaluate(words, ids, model, positive_words, negative_words, explanation):

"""

words: the list of words for a prediction

ids: the list of token ids for a prediction

model: the prediction model

positive words: words associated with the ’positive’ class (1)

negative words: words associated with the ’negative’ class (0)

explanation: the explanation of the prediction with size

returns the quality of an explanation (generally a number between 0 and 1)

"""

# remove padding

num_words = np.sum(np.array(words) != "[PAD]")

# Find keywords

keywords = realism(words, positive_words, negative_words, model(np.array([ids])), num_words)

quality = None

# The algorithm for quality

if len(keywords) > 0:

if (compactness(keywords, explanation, num_words) == 0):

quality = 0

else:

quality = correctness(keywords, explanation, num_words) *

correctness(keywords, explanation, num_words) /

compactness(keywords, explanation, num_words) /

len(keywords)

else:

quality = nuance(explanation, num_words)

return quality

Where the functions realism, compactness, correctness, and nuance are defined as:
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A.6.1 Realism

def realism(sentence, positive_words, negative_words, prediction, num_words):

"""

sentence: the list of words for a prediction

positive words: words associated with class 1

negative words: words associated with class 0

prediction: the prediction (1 or 0)

returns the indices of the realistic words, if there are any

"""

keywords = set()

for (i, word) in enumerate(sentence):

if (i >= num_words):

return keywords

if (prediction == 0):

for nw in negative_words:

try:

if (wn.synsets(word)[0].wup_similarity(wn.synsets(nw)[0]) > 0.75):

keywords.add((i, word))

except:

if (word == nw):

keywords.add((i, word))

if (prediction == 1):

for pw in positive_words:

try:

if (wn.synsets(word)[0].wup_similarity(wn.synsets(pw)[0]) > 0.75):

keywords.add((i, word))

except:

if (word == pw):

keywords.add((i, word))

return keywords

101



A.6.2 Compactness

def compactness(keywords, explanation, num_words):

"""

explanation: the feature attributions

"""

explanation = explanation[:num_words]

q0, q4 = np.percentile(explanation, [0, 100])

iqr = q4 - q0

upper_bound = q4 - (0.4 * iqr)

outliers = len([x for x in explanation if x > upper_bound])

return outliers

A.6.3 Correctness

def correctness(keywords, explanation, num_words):

"""

keywords: the list of keywords + their indices

explanation: the feature attributions

"""

explanation = explanation[:num_words]

q0, q4 = np.percentile(explanation, [0, 100])

iqr = q4 - q0

upper_bound = q4 - (0.4 * iqr)

result = 0

for (index, word) in keywords:

if explanation[index] > upper_bound:

result += 1

return result

A.6.4 Nuance

def nuance(explanation, num_words):

"""

explanation: the feature attributions

"""

explanation = explanation[:num_words]

if (np.max(explanation) == np.min(explanation)):

return 1

return 1 - np.std(explanation)/np.std([np.max(explanation), np.min(explanation)])
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A.7 Validating the evaluation method

A.7.1 Evaluating the new method

def compare_predictor_vs_random(tuples):

"""

tuples: a list of tuples (chance, predictor, actual), where:

chance: random chance

predictor: normalized quality according to the evaluation method (where the highest explanation for a given sentence is 1)

actual: the number of votes for that explanation

"""

total = len(tuples) * n_answers

correct_predictor = 0

correct_random = 0

for chance, predictor, actual in tuples:

if predictor == 1:

correct_predictor += actual

correct_random += actual * chance

predictor_accuracy = correct_predictor / total

random_accuracy = correct_random / total

p_value = stats.binom_test(correct_predictor, total, random_accuracy)

if predictor_accuracy > random_accuracy:

return f"Evaluation method performs better than random chance (p-value: {p_value})."

elif predictor_accuracy < random_accuracy:

return f"Evaluation method performs worse than random chance (p-value: {p_value})."

else:

return f"Evaluation method performs the same as random chance (p-value: {p_value})."

result = compare_predictor_vs_random(flat_chance_evaluation_actual)

print(result)
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A.7.2 Evaluating fidelity and stability

def fidelity(x, model, num_words):

"""

x: the input words

model: the prediction model

"""

keywords = []

samples = 5

for (i, w) in enumerate(x):

if (i >= num_words):

return keywords

if (w != 0):

change_rating = 0

for change in range(samples):

new_x = copy.deepcopy(x)

new_x[i] = new_x[i] + (100 * change / samples)

if (model(np.array([x])) != model(np.array([new_x]))):

change_rating += 1/samples

if (change_rating > samples * 3 / 4):

keywords.append((i, w))

return keywords

def stability(X, explanation, explainer, n_words):

"""

X: the input ids

explanation: the explanation of the prediction of X

explainer: the SHAP explainer used to make the explanation

n_words: the number of words in the sentence

"""

new_explanations = []

distances = []

for n in range(int(n_words/4)): # /4 is for performance reasons

X[n] += 10

new_explanations.append(explainer(np.array([X])).values[0])

X[n] -= 10

for n_exp in new_explanations:

distances.append(np.linalg.norm(explanation - n_exp))

return np.mean(distances)
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