
Bachelor’s Thesis Computing Science

Syntax and Type Checking of Truncated
Type Theory

Bram van Veenschoten
s1030516

March 22, 2023

First supervisor/assessor:
Prof. Dr. Herman Geuvers

Second assessor:
Dr. Niels van der Weide

Abstract

Dependent type systems are formal languages that can serve as foundations
for programming languages and theorem proving systems. The Calculus of
Constructions (CC) in particular is a dependent type system which has a
lot of expressive power, relative to its simplicity. CC admits encodings of
datatypes such as booleans, natural numbers and lists, but leaves their cor-
responding induction principles to be desired. Certain useful extensionality
principles are also not derivable. This thesis introduces Truncated Type
Theory (TTT) as an extension of CC, using concepts from Cubical Type
Theory. We show that Function Extensionality is derivable. Furthermore,
we present a bidirectional type checking algorithm for TTT.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 The Simply Typed Lambda Calculus 5
2.2 System F . 7
2.3 System Fω . 8
2.4 The Calculus of Constructions 11
2.5 Universes & Impredicativity 13

3 Equality in Dependent Type Theory 14
3.1 Martin Löf Type Theory . 14
3.2 Observational Type Theory 15
3.3 Cubical Type Theory . 16

4 Truncated Type Theory 17
4.1 The Interval & Equality type 17
4.2 Proving with cubical equality 18
4.3 Type-directed coercion . 19

5 Metatheory 22
5.1 Subject Reduction . 22
5.2 Strong Normalization . 22
5.3 Confluence . 23
5.4 Consistency . 23
5.5 Canonicity . 24

6 Type Checking 25
6.1 Syntax . 25
6.2 Evaluation . 26
6.3 Conversion checking . 29
6.4 Bidirectional type-checking 31
6.5 Implementation . 33

1

7 Conclusion & Future Work 34
7.1 Limitations . 34
7.2 Future Work . 35
7.3 Acknowledgements . 35

A Syntax 40

B Typing Rules 41
B.1 Specification . 41
B.2 Standard Pure Type System Rules 41
B.3 The Sigma Type . 42
B.4 Cubical constructs . 42

C Reduction Rules 43

D Conversion Rules 44
D.1 Reduction Equivalence . 44
D.2 Eta Rules . 44
D.3 Regularity . 45
D.4 Congruence Rules . 45

2

Chapter 1

Introduction

Dependent type systems are formal languages for programming and logic.
Proof assistants based on dependent type theory allow their users to write
programs and proofs about them, and the system checks whether the proofs
are correct. The validity of the proofs then depends on the reliability of the
proof checker. The smaller and simpler the checker is, the more confidence
one may have that it is correct. This software engineering principle is called
the De Bruijn Criterion [6]. Of course, checking a proof is only simple if
the rules of the type system are. This means that the implementation of
a proof-assistant requires a trade-off between simplicity and expressivity of
the underlying type system.

Induction is one concept that is arguably essential, as it allows the defi-
nitions of data types such as the natural numbers, lists and trees. On top of
inductive types one can build additional features such as indexed inductive
types, and functions defined by dependent pattern matching and structural
recursion. Modern proof assistants based on dependent type theory such
as Coq [24], Agda [26] and Lean [15] implement these features to various
extents. They have indexed inductive type schemas as part of the trusted
kernel. Users can specify data types from a number of constructors. The
system then checks whether the specification is well-founded and the in-
dices are well-formed. After that it derives appropriate induction principles.
The necessary checks are quite involved, and add significant complexity to
a system that would otherwise be simple.

The complexity of conventional datatype systems motivates our search
for an alternative. The Calculus of Constructions (CC)[14] is a dependent
type system in which one can encode inductive types, but their correspond-
ing induction principles are not derivable. Awodey et al. [4] have shown that
the induction principles are provable if the CC is extended with a few con-
cepts from Homotopy Type Theory (HoTT). The particular features they
use are the axiom of Function Extensionality (FunExt) and small dependent
sum types.

3

However, the theory used by Awodey et al. is not satisfactory because it
relies on axioms that do not compute. In dependent type theory, terms are
computationally equal if they compute to the same term. Computational
equality requires no proof, which means reasoning with computational equal-
ity is effectively automated. On the other hand, axioms can block computa-
tion, so equational reasoning involving axioms does require proof, which can
be quite cumbersome. We would like to augment the theory so that FunExt
does not get in the way of reduction. This is the main problem we address
in this thesis.

We use concepts from Cubical Type Theory [12], which has been devel-
oped to implement FunExt and the univalence axiom with computational
content. The latter axiom identifies types that are isomorphic. Implement-
ing computational univalence comes at the cost of adding complexity to the
type system. We make different trade-off, favouring simplicity. Fortunately,
the constructions of Awodey et al. do not require univalence. We observe
that if we leave univalence out of Cubical Type Theory, we are left with a
simple type system wherein induction is derivable, and computation does
not get blocked by axioms. This system we call Truncated Type Theory
(TTT).

Overview We give an introduction to the Calculus of Constructions in
Chapter 2. In Chapter 3 we discuss approaches and problems related to
equality in dependent type theory. We present and explain Truncated Type
Theory (TTT) in Chapter 4. We discuss some meta-theoretical properties
of TTT in Chapter 5. In Chapter 6 we present a bidirectional type checking
algorithm for TTT, with some novel features specific to TTT.

4

Chapter 2

Preliminaries

We give a brief overview of Type Theory. For a more detailed treatment
we refer to [6, 8, 17]. The concepts are quite abstract and may be hard to
grasp when presented directly. We attempt to give a gentle introduction
by presenting it as a series of extensions to a simpler system. We first
present the Simply Typed Lambda Calculus (STLC), then we gradually
introduce extensions to System F, System Fω, and finally the Calculus of
Constructions.

2.1 The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus (STLC) was originally introduced by
Church [11]. The terms and types of the STLC are defined as follows.

A,B,C ∈ Type ::= X type variable

| A → B function type

f, g, t, u ∈ Term ::= x variable

| λx.t abstraction

| f t application

Before we define the rules for determining the correct type of a term, we
need a notion of contexts, assigning types to variables.

Γ ∈ Context ::= · empty context

| Γ, x : A context extension

Now, we define the typing judgment.

Γ ⊢ t : A In context Γ, the term t has type A

The typing rules are defined as follows.

5

Γ, x : A ⊢ t : B
Lam

Γ ⊢ λx.t : A → B

x : A ∈ Γ
Var

Γ ⊢ x : A

Γ ⊢ t : A → B Γ ⊢ u : A
App

Γ ⊢ t u : B

The Var rule states that a variable is well typed if it is in the context. The
App rule states that an application t u is well typed if t has a function type,
and the type of u is the domain of t. The whole application then has as
type the range of t. Finally, the Lam rule states that a λ-abstraction has a
function type if, in the context extended by the bound variable x with the
function domain A, the body t has type B.

The STLC has a notion of computation, which allows it to serve as a
foundation for programming languages. Computation in λ-calculi is defined
by β-reduction. A single step of computation is defined by the following
rule.

Beta
(λx.t)u ⇒ t[x := u]

The Beta rule states that an abstraction λx.t applied to an argument u
reduces to its body t[x := u]. We write t[x := u] to mean the usual capture
avoiding substitution. We continue the use of the notation t ⇒ t′ to denote
computation rules.

Readers familiar with natural deduction may notice a similarity between
the Lam, App and Var rules and Implication Introduction, Implication
Elimination and Assumption rules, respectively. Indeed, STLC can be used
as a deduction system, where we interpret types as propositions, in par-
ticular function types as implications, and terms as proofs. STLC may be
extended with constructs corresponding to truth, falsehood, disjunction and
conjuction, but these are subsumed by the extensions described in the next
section, so we do not discuss them here. The notion that types correspond to
propositions is called the Curry-Howard correspondence, after the persons
who discovered it [21].

As an example, we construct the derivation for function composition,
which corresponds to syllogism in logic.

Example 1. Let A,B and C be arbitrary types/propositions. We construct
function composition/a proof of syllogism.

· ⊢ λx.λy.λz.x (y z) : (B → C) → (A → B) → A → C

Our example works independently of the types we choose for A, B and
C. If we want to state this fact in our deduction system, we need to extend
it with a notion of universal quantification, as we discuss in the next section.

6

2.2 System F

If we extend STLC with universal quantification we get the Polymorphic
λ-calculus, or System F, introduced independently by Girard [19, 18] and
Reynolds [29]. We extend the syntax of types with variables and quantifi-
cation.

A,B,C ∈ Type ::= X type variable

| A → B function type

| ∀X.A quantification

We extend terms with constructors and eliminators for quantification.

f, t, u ∈ Term ::= x variable

| λx.t abstraction

| f t application

| ΛX.t generalization

| t[A] instantiation

Finally, we extend contexts with type variables.

Γ ∈ Context ::= · empty context

| Γ, x : A context extension

| Γ, X type variable extension

We remark that our presentation is non-standard, but in the style of Domain-
free Pure Type Systems [9]. This presentation corresponds more intuitively
with our type checking algorithm in Chapter 6. We extend the typing rules of
the STLC with rules for instantiation and generalization, defined as follows.

Γ, X ⊢ t : A X ̸∈ Γ
Gen

Γ ⊢ ΛX.t : ∀X.A

Γ ⊢ t : ∀X.A
Inst

Γ ⊢ t[B] : A[X := B]

Now we can restate our composition example.

Example 2. Polymorphic composition/syllogism

· ⊢ ΛX.ΛY.ΛZ.λx.λy.λz.x (y z) : ∀X.∀Y.∀Z.(Y → Z) → (X → Y) → X → Z

The fact that universal quantification is itself a type makes System F very
powerful. For example, we can encode the connectives of propositional logic
missing from the previous section. Functional programmers may recognize
conjunction and disjunction correspond to 2-tuples and the Either type,
respectively. We also encode natural numbers in System F.

Example 3. Conjunction A ∧ B is encoded as ∀X.(A → B → X) → X.
We define the introduction- and elimination rules.

Γ ⊢ t : A Γ ⊢ u : B
Γ ⊢ con-intro(t, u) ≡ ΛX.λx.x t u : A ∧B

7

Γ ⊢ t : A ∧B
Γ ⊢ fst(t) ≡ t[A](λx.λy.x) : A

Γ ⊢ t : A ∧B
Γ ⊢ snd(t) ≡ t[B](λx.λy.y) : B

Example 4. Disjunction A∨B is encoded as ∀X.(A → X) → (B → X) →
X. We define the introduction- and elimination rules.

Γ ⊢ t : A
Γ ⊢ inl(t) ≡ ΛX.λx.λy.x t : A ∨B

Γ ⊢ t : B
Γ ⊢ inr(t) ≡ ΛX.λx.λy.y t : A ∨B

Γ ⊢ t : A ∨B Γ ⊢ f : A → C Γ ⊢ g : B → C

Γ ⊢ dis-elim(f, g, t) ≡ t[C]f g : C

Example 5. Negation ¬A is encoded as A → (∀X.X). We define the
elimination rule.

Γ ⊢ t : ¬A Γ ⊢ q : A

Γ ⊢ neg-elim(t, q) ≡ t q[B] : B

Example 6. We encode N as ∀X.X → (X → X) → X. Given a type C, a
term t : C and a function f : C → C and the encoding of a natural number
n, the term n[C] t f applies f to t, n times. We define some numerals and
addition.

0 ≡ ΛX.λx.λy.x

1 ≡ ΛX.λx.λy.y x

2 ≡ ΛX.λx.λy.y (y x)

3 ≡ ΛX.λx.λy.y (y (y x))

n+m ≡ ΛX.λx.λy.n[X] (m[X] x y) y

2.3 System Fω

In the previous section, we showed how to encode the conjunction or dis-
junction of two propositions. In our example we informally made use of
type operators. Conjunction and disjunction can be seen as operators (or
functions) that take two types as arguments, and produce a new one. This
kind of reasoning can be quite useful, when incorporated in System F, we
get a type system called Fω, also described in [19]. The type operators in
Fω are subject to a kinding-discipline similar to the typing rules of STLC,
to ensure they are well-formed. We refer to the expressions denoting proper
types and type functions as ‘constructors’. We define the syntax of kinds.

K ∈ Kind ::= ∗ The kind of proper types

| K1 → K2 type function

8

We extend the syntax of types with functions and applications. Quantifica-
tions now specify the kind of the type they quantify over.

A,B,C ∈ Constructor ::= X constructor variable

| λx.A constructor abstraction

| A B constructor application

| A → B function type

| ∀X : K.A quantification

We change the syntax of contexts so that constructors specify their kind.

Γ ∈ Context ::= · empty context

| Γ, x : A context extension

| Γ, X : K constructor variable extension

Now, we need judgments to ensure constructors and contexts are well-
formed.

Γ ⊢ ctx The context Γ is well-formed

Γ ⊢ A : K The constructor A has kind K

The well-formedness rules for contexts and constructors are defined as fol-
lows. Note that the rules of the STLC are still valid, while those of System
F are replaced.

EmptyCtx· ⊢ ctx

Γ ⊢ ctx Γ ⊢ A : ∗ x ̸∈ Γ
ExtendTerm

Γ, x : A ⊢ ctx

Γ ⊢ ctx X ̸∈ Γ
ExtendCon

Γ, X : K ⊢ ctx

Γ ⊢ ctx X : K ∈ Γ
ConVar

Γ ⊢ X : K

Γ ⊢ A : K1 → K2 Γ ⊢ B : K1
ConApp

Γ ⊢ A B : K2

Γ, X : K1 ⊢ A : K2
ConLam

Γ ⊢ λX.A : K1 → K2

Γ ⊢ A : ∗ Γ ⊢ B : ∗
Fun

Γ ⊢ A → B : ∗

9

Γ, X : K ⊢ A : ∗
Forall

Γ ⊢ ∀X : K.A : ∗

The fact that types can be computed by simple programs means there are
multiple ways to express one type. For example, we want the types (λX.X)A
and A to be considered one and the same, because applying β-reduction to
the former yields the latter. Therefore, Fω has a notion of convertible types,
which we consider to be interchangeable.

Γ ⊢ t : A Γ ⊢ B : ∗ Γ ⊢ A ≡ B : ∗
Conv

Γ ⊢ t : B

We remark that our presentation of conversion is not standard, because we
include kinding information in the judgments. This is consistent with our
presentation in Chapter 4, where it is necessary. The conversion relation is
reflexive, symmetric and transitive. Of course, it also includes β-reduction.

Γ ⊢ A : K
Refl

Γ ⊢ A ≡ A : K
Γ ⊢ A ≡ A′ : K

Sym
Γ ⊢ A′ ≡ A : K

Γ ⊢ A ≡ A′ : K Γ ⊢ A′ ≡ A′′ : K
Trans

Γ ⊢ A ≡ A′′ : K

Γ ⊢ A,B : K A ⇒ B
RedConv

Γ ⊢ A ≡ B : K

Finally, we have congruence rules stating that compound expressions are
convertible if their components are.

Γ, X : K ⊢ A ≡ A′ : ∗
ForallCong

Γ ⊢ ∀X : K.A ≡ ∀X : K.A′ : ∗

Γ ⊢ A ≡ A′ : ∗ Γ ⊢ B ≡ B′ : ∗
FunCong

Γ ⊢ A → B ≡ A′ → B′ : ∗

Γ ⊢ A ≡ A′ : K1 → K2 Γ ⊢ B ≡ B′ : K1
TyAppCong

Γ ⊢ A B ≡ A′ B′ : K2

Γ, X : K1 ⊢ A ≡ A′ : K2
TyLamCong

Γ ⊢ λX.A ≡ λX.A′ : K1 → K2

Now we may write abstractions over higher-kinded structures. For example,
we encode the Haskell language’s notion of functor in Fω

Example 7. We encode functoriality as follows. We show the identity
function on types is a Functor.

Functor := λF.∀X.∀Y.(X → Y) → F X → F Y : (∗ → ∗) → ∗
map-id := ΛX.λY.λx.x : Functor (λX.X)

10

2.4 The Calculus of Constructions

So far, System Fω allows us to do propositional reasoning, write functional
programs that compute types, and universally quantify over types. If we
want to reason about the regular programs we write, we need to extend the
Curry-Howard isomorphism to predicate logic. If ∗ is the type of propo-
sitions, then for a type A, a predicate P on A should have kind A → ∗.
Furthermore, we should have universal quantification ∀x : A.P x : ∗. Note
how kinds must now include functions out of types, and how similar quantifi-
cation over terms is to quantification over types. Also recall the similarities
between the kinding rules of Fω and the typing rules of STLC. Instead of ex-
tending the syntax yet again, we collapse the languages of terms, types and
kinds into one language of terms. The resulting system is the Calculus of
Constructions (CC), introduced by Coquand and Huet [14], also referred to
as λC. The dependent product type

∏
now acts as universal quantification

over types and kinds, as well as the type of functions. Simple functions are
now a special case of dependent functions, and we continue to write A → B
for when the bound variable does not occur in B. The typing of terms and
the kinding of types is now determined by the same rules. We add a sort □
to act as the ‘type’ of kinds. We define the syntax below.

f, t, u, A,B ∈ Term ::= ∗ kind of types

| □ superkind of kinds

| x variable

|
∏

x : A.B dependent product type

| λx.t abstraction

| t u application

The typing- and kinding rules for quantification and function types are all
subsumed by the dependent product rule. We define a set of sorts S and a set
of kinding rules R determining functions between which sorts are allowed.
This is in line with the pure type system presentation of Barendregt [5]. For
now the rules allow domains and ranges of any sort, but that will change as
we extend CC.

S = {∗,□}

R = {(∗, ∗, ∗), (∗,□,□), (□, ∗, ∗), (□,□,□)}

Γ ⊢ A : s0 Γ, x : A ⊢ B : s1 (s0, s1, s2) ∈ R
Pi

Γ ⊢
∏

x : A.B : s2

Γ ⊢ t :
∏

x : A.B Γ ⊢ u : A
App

Γ ⊢ t u : B[x := u]

11

The remainder of the typing- and conversion rules are very similar to those
of Fω, so we omit them here. They can be found in Appendix B.1 and D
(in addition to some extensions). Fω has a syntactical distinction between
terms, constructors and kinds. Although in CC these are collapsed into a
single syntactic category, the stratification between them is preserved by the
typing system.

Definition 1. We define the sets of objects, constructors and kinds of CC

Object := {t ∈ Term | ∃Γ, A[Γ ⊢ A : ∗ ∧ Γ ⊢ t : A]}
Constructor := {A ∈ Term | ∃Γ,K[Γ ⊢ K : □ ∧ Γ ⊢ A : K]}

Kind := {K ∈ Term | ∃Γ[Γ ⊢ K : □]}

Note that these sets are not disjoint.

A new thing we can do in CC is equational reasoning with Leibniz equal-
ity.

Example 8. Leibniz’ principle of the identity of indiscernables states that
two objects are equal if they have the same properties. We can encode this
in CC.

x =A y :=
∏

P : A → ∗.P x → P y : ∗

Suppose A : ∗ and x, y, z : A. We show equality is reflexive, symmetric,
transitive and substitutive. Symmetry may be surprising given the defini-
tion, but it holds because our definition of equality is included in the type
of predicates it quantifies over.

refl := λP.λp.p : x =A x

sym := λy.λe.e (λz.z =A x) refl : x =A y → y =A x

trans := λe.λe′.λP.λp.e′ P (e P p) : x =A y → y =A zx =A z

subst := λe.e : x =A y →
∏

P : A → ∗.P x → P y

Functors are supposed to obey certain laws. With Leibniz equality, we
can encode these in CC. Our identity functor satisfies these laws.

Example 9. Let F : ∗ → ∗ be a functor and A : ∗. We define the identity
law for F as follows.

F-id : map A A (λx.x) =F A→F A λx.x

Let F : ∗ → ∗ be a functor, A,B,C : ∗, f : A → B and g : B → C. The
composition law is defined as follows.

F-comp : λx.map B C g (map A B f x) =F A→F C map A C (λx.g (f x))

12

While CC affords a lot of expressive power, it leaves some things to be
desired. For one, Leibniz equality does not satisfy Function Extensionality
(FunExt) or Uniqueness of Identity Proofs (UIP). That is, the following
types are not inhabited.

funext := (
∏

x : A.f x =B x g x) → f =∏
x:A.B x g

uip :=
∏

e : x =A x.e =x=Ax refl

Another drawback is that induction principles of impredicative encodings
are not derivable.

2.5 Universes & Impredicativity

The sort ∗ in CC is closed under quantification, meaning that for any Γ ⊢
A : s and Γ, x : A ⊢ B : ∗ we have Γ ⊢

∏
x : A.B : ∗ regardless of the

sort s. In type theory, this feature is called impredicativity. In contrast,
in predicative systems a type

∏
x : A.B inhabits a sort no smaller than

either of the sorts of A or B. Predicative type systems may have an infinite
hierarchy of sorts □i indexed by natural numbers, with the following axiom
and dependent product formation rule.

A := {(□i,□i+1} R := {(□i,□j ,□max(i,j))}

Impredicative systems have more expressive power compared to predicative
ones, for example the Church-encoding of datatypes cannot be encoded in
predicative type theories. This expressivity does come at the cost of being
much harder to reason about the meta-theory of impredicative systems, as
well as them being incompatible with a number of other features and axioms.

13

Chapter 3

Equality in Dependent Type
Theory

As stated previously, equality in CC leaves Function Extensionality to be
desired. In this section we explore several approaches to equality that have
been developed.

3.1 Martin Löf Type Theory

Martin Löf Type Theory [23, 25] is a predicative type theory, variants of
which generally come in two flavours: Extensional (ETT) and Intensional
(ITT). ITT has an equality type as a primitive, along with introduction-
and elimination rules.

Γ ⊢ A : Ui Γ ⊢ t, u : A

Γ ⊢ t =A u : Ui

Γ ⊢ A : Ui Γ ⊢ t : A
Γ ⊢ refl t : t =A t

Γ ⊢ A : Ui Γ ⊢ t, u : A

Γ ⊢ P :
∏

x : A.t =A u → Uj

Γ ⊢ p : t =A u

Γ ⊢ v : P t (refl t)

Γ ⊢ J(A, t, u, p, P, v) : P u p

Γ ⊢ A : Ui

Γ ⊢ P :
∏

x : A.t =A u → Uj

Γ ⊢ t : A
v : P t (refl t)

J(A, t, t, refl t, P, v) ⇒ v

Although the J-rule in ITT is slightly stronger than Leibniz equality in
CC, ITT also does not have UIP or FunExt. ETT has the same rules as
ITT described above, with additionally an equality reflection rule, stating
that two terms are convertible if there is a proof of their equality.

Γ ⊢ e : t =A u

Γ ⊢ t ≡ u

14

UIP and FunExt are derivable in ETT. Equality reflection adds a lot of
strength to type theory, arguably too much, because it also breaks a num-
ber of desirable meta-theoretical properties, such as normalization and de-
cidability of type-checking [20].

3.2 Observational Type Theory

Observational type Theory (OTT) [2] has been developed with the aim of
affirming UIP and FunExt like ETT, while retaining decidability of type-
checking like ITT. It features equality between terms and types, as well as
casts between provably equal types.

Γ ⊢ A,B : U

Γ ⊢ A =U B : U

Γ ⊢ A : U Γ ⊢ t, u : A

Γ ⊢ t =A u : U

Γ ⊢ A,B : U Γ ⊢ e : A =U B Γ ⊢ t : A

Γ ⊢ cast(A,B, e, t) : B

The equality type in OTT is actually an eliminator that computes on the
type structure, relying on the fact that universes U are closed. Similarly,
cast also computes on the type structure. For example, equality between
two dependent product types reduces to a pair of equalities of the domains
and ranges, respectively. A cast between two function types reduces to a
cast over the domain and range equalities.

Γ ⊢ A,A′ : U Γ, x : A ⊢ B : U Γ, x′ : A ⊢ B′ : U

(
∏

x : A.B) =U (
∏

x′ : A′.B′) ⇒∑
e : A′ =U A.

∏
x′ : A′.B (cast(A′, A, e, x′)) =U B′x′

Γ ⊢ A,A′ : U Γ, x : A ⊢ B : U

Γ ⊢ e : (
∏

x : A.B) =U (
∏

x′ : A′.B′)

Γ, x′ : A′ ⊢ B′ : U

Γ ⊢ t :
∏

x : A.B x′′ := cast(A′, A, e.π1, x
′)

Γ ⊢ cast(
∏

x : A.B,
∏

x′ : A′.B′, e, t) ⇒ λx′.cast(B[x := x′′], B′e.π2 x′, t x′′))

Equality on functions reduces to point-wise equality, hence FunExt holds in
OTT.

Γ ⊢ A : U Γ, x : A ⊢ B : U Γ ⊢ f, g :
∏

x : A.B

f =∏
x:A.B g ⇒

∏
x : A.f =B g

UIP is simply a conversion rule in OTT. While predicative variants of OTT
have been shown to be normalizing, [27], this property does not extend
to impredicative sorts. Abel and Coquand presented a counterexample to
normalization in impredicative type theory with a proof-irrelevant coercion
operator [1]. Pujet and Tabareau have shown normalization in OTT may be
preserved with a proof-irrelevant impredicative sort [28], but types in such
a sort cannot encode programs, only logical propositions. For the purposes
of adding FunExt and UIP to CC, observational equality turns out to be
too strong still.

15

3.3 Cubical Type Theory

In a different line of work, Cubical Type Theories [12] were developed to
give a computational interpretation of Homotopy Type Theory (HoTT) [31]
and the Univalence Axiom (UA). The latter states that two types are equal
if they are equivalent.

(A = B) ≃ (A ≃ B)

Here, ‘equivalence’ can mean a one-to-one correspondence, or some equiva-
lent notion. UA can be seen as an extensionality principle for the universe,
but it is not consistent with UIP [20].

In order to provide a computational interpretation of UA, Cubical Type
Theories extend ITT with a number of features. The first is an abstract
interval I with two constant values i0 and i1. Functions out of the interval
are interpreted as lines, and lines with fixed endpoints are called paths.
Paths induce a notion of heterogeneous equality in cubical type theories.

Second is Kan operations to compose and transport along paths. A
detailed discussion of these is out of scope for this thesis. We note that
transport along paths computes on the structure of types, similarly to cast
in OTT. We will be using a simplified notion of transport for Truncated
Type Theory in the next section.

The third feature of cubical type theories is glue types to embed equiva-
lences into paths, thus adding a computational interpretation of the univa-
lence axiom. The details are very complex and out of scope of this thesis.
XTT [30] is a variant of cubical type theory without glue types or univa-
lence, instead validating UIP through boundary separation. Similarly, we
have no need for univalence for our purposes, and more use for UIP. Our
theory is very similar to XTT in that regard.

16

Chapter 4

Truncated Type Theory

We define Truncated Type Theory by extending CC with constructs in-
spired by cubical Agda [32]. This section introduces and explains the new
constructs. The full system of TTT is in the Appendix.

4.1 The Interval & Equality type

Equality in TTT depends on an abstract interval I, which has constant
endpoints i0 and i1:

I
Γ ⊢ I : □I

I0
Γ ⊢ i0 : I

I1
Γ ⊢ i1 : I

The interval type comes with its own special sort. Dependent function
formation with this sort is restricted, we can make functions out of the in-
terval, but standard CC-terms cannot eliminate into the interval. It should
be noted that in cubical type theories, the interval has a geometric interpre-
tation as a line. While TTT borrows the cubical syntax, the semantics of
the interval do not carry over to TTT. The following are the type formation,
introduction and elimination rules for our equality type:

Γ ⊢ A : I → ∗ Γ ⊢ t : A i0 Γ ⊢ u : A i1 Eq
Γ ⊢ t =A u : ∗

Γ ⊢ A : I → ∗ Γ ⊢ p :
∏

i : I.A i
EqIntro

Γ ⊢ ⌊p⌋ : (p i0) =A (p i1)

Γ ⊢ A : I → ∗
Γ ⊢ u : A i1

Γ ⊢ t : A i0
Γ ⊢ e : t =A u Γ ⊢ i : I

EqElim
Γ ⊢ Elim=(A, t, u, e, i) : A i

The eliminator has computation rules:

EqElim0
Elim=(A, x, y, e, i0) ⇒ x

17

EqElim1
Elim=(A, x, y, e, i1) ⇒ y

The introduction rule states that for any function out of the interval p, its
applications to the endpoints i0 and i1 are equal: p i0 =A p i1. Conversely,
the eliminator allows us to construct a function out of the interval from an
equality proof. This function, when applied to an endpoint will return either
equated term. As such the interval allows us to ’view’ an equation from a
particular side.

This idea is also used in the equality type itself. For a function A : I → ∗,
we can equate two terms of the types A i0 and A i1. In this way equalities
can depend on each other, so we can equate terms of types that are provably
equal even if they are not convertible. Similarly to function types, a non-
dependent equality can be encoded by a constant type function: When
we have t, u : A we can form the equality type t =λ .A u. We introduce
abbreviations for the equality type and its eliminator.

Notation 1. We write t =λ .A u as t = u if A can be inferred.

Notation 2. We write Elim=(A, t, u, e, i) as e@i if the type of e can be
inferred.

4.2 Proving with cubical equality

With the rules introduced so far, we can already prove some interesting
theorems. For an arbitrary term t, we prove t = t by applying the equality
introduction rule on a constant function returning t.

Example 1. Let t : A. We have:

⌊λ .t⌋ : t = t

We also prove congruence of application.

Example 2. Let f, f ′ :
∏

x : A.B be functions and let e : f = f ′ be a
proof of their equality. Let t, t′ : A be terms of the accepted by f, f ′ and
e′ : t = t′ a proof of their equality, we prove that their respective applications
are equal.

⌊λi.(e@i)(e′@i)⌋ : f t =λi.B (e@i) f
′ t′

Note that f t and f ′ t′ have different types, so we use a heterogeneous
equality here.

One important property of our cubical presentation is function exten-
sionality is now derivable as a theorem.

Example 3. Let f, f ′ :
∏

x : A.B be functions and e :
∏

x : A.f x = f ′x a
proof of their point wise equality. We prove f = f ′.

⌊λi.λx.e x i⌋ : f = f ′

18

The rules presented so far are not sufficient to derive the Leibniz sub-
stitution property like we have in CC or MLTT. For that, we introduce a
coercion operation that casts terms between provably equal types. When
casting between convertible types, coercion is the identity:

Γ, i : I ⊢ A : s Γ ⊢ t : A[i := i0] s ∈ {∗,□}
Coe

Γ ⊢ [i.A] ▷ t : A[i := i1]

Γ, i : I ⊢ A : s

Γ ⊢ t : A[i := i0]

s ∈ {∗,□}
Γ ⊢ A[i := i0] ≡ A[i := i1] : s

CoeId
Γ ⊢ [i.A] ▷ t ≡ t : A[i := i1]

Now we can derive the Leibniz substitution principle:

Example 4. Let t, u : A be terms and e : t = u a proof of their equality.
Also, let P : A → ∗ and p : P t be a predicate with a proof that it holds for
t. We prove P u.

[(λi.P (e@i)).p]▷ :P u

4.3 Type-directed coercion

We would like for coercion to reduce by recursion on the type of the coerced
term, similarly to OTT. This means we need reduction rules for coercion
for each type-former, those being

∏
,
∑

and ∗. Before we can do that, we
need some additional manipulations on points of the interval. We introduce
inverse (−), minimum (∧) and maximum (∨) operations, which together
form a De Morgan algebra. The De Morgan algebra states the equalities one
would expect for the interval with i0 as the minimum and i1 as the maximum
element. For the typing- and conversion rules, we refer the interested reader
to the Appendix. The inverse operator maps the constant interval points
to their counterpart, and so allows us to invert the view on an equality.
Effectively, we can use it to show symmetry of equality:

Example 5. Let t, u : A be two terms and e : t = u be a proof of their
equality. We prove:

⌊λi.e@(−i)⌋ : u = t

Now we can define type-directed reduction rules for coercion. First of
all, coercion of sorts is simply always the identity:

CoeStar
[i.I∗] ▷ t ⇒ t

19

The reduction rules for the dependent type-formers
∏

and
∑

are quite
complex, so we first consider their non-dependent counterparts for the sake
of clarity. Let us first consider coercion for simple functions. Suppose we
have some domain and range A,B : I → ∗ and a function f : A i0 → B i0,
we want to coerce it to a function of type A i1 → B i1. We first λ-abstract
to bring a variable x : A i1 in scope. We use negation and coercion to cast
it to A i0:

[i.A (−i)] ▷ x : A i0

We then apply f to the result, and cast the application from B i0 to B i1.
As such the following coercion rule for simply-typed functions is admissible:

[i.A → B] ▷ f ⇒ λx.[i.B] ▷ (f ([i.A[i := −i]] ▷ x))

Coercion of dependent functions is a bit more complicated. We have a
range B :

∏
i : I.A i → ∗ and a function f :

∏
x : A i0.B i0 x, so the

result of the application has to be cast from B i0 ([λi.A (−i).x]▷) to B i1 x.
Here, we use the maximum operator (∨) to get a type-correct result. The
full reduction behaviour for coercion on dependent functions is given by the
rule:

g := λj.λx.[i.A[i := j ∨ −i]] ▷ x
CoePi

[i.
∏

x : A.B] ▷ f ⇒ λx.[j.B[i := j, x := g j x]] ▷ f (g i0 x)

Note that we define some abbreviations above the line to keep the rule
concise.

Now, we want to define coercion for dependent pairs. Let us first consider
how coercion would go for simple pairs. We once again have a domain and
range A,B : I → ∗ and now a term t : A i0 × B i0. There is no need for
symmetry this time, as we can just coerce the pair component-wise. The
following rule is admissible:

[i.A×B] ▷ t ⇒ ⟨[i.A] ▷ t.π1, [i.B] ▷ t.π2⟩

For dependent pairs, we once again need some additional effort to correct
the types, this time using the minimum (∧) operator:

g := λj.λt.[i.A[i := j ∧ i]] ▷ t
CoeSigma

[i.
∑

x : A.B] ▷ t ⇒ ⟨g i1 (t.π1), [j.B[i := j, x := g j (t.π1)]] ▷ t.π2⟩

There are no reduction rules for coercion of equality proofs, but we do not
need any. Equality proofs are computationally irrelevant, as no reduction
rule depends on their structure. In particular, the equality eliminator does
not inspect its proof. We reify this fact by adding UIP as a conversion rule.

20

Γ ⊢ e, e′ : t =A u
UIP

Γ ⊢ e ≡ e′ : t =A u

Definition 2. We define Truncated Type Theory (TTT) as the extension of
the Calculus of Constructions (CC) with the

∑
-type; the interval with De

Morgan operations; an equality type with definitional UIP; and a coercion
operator with type-directed reduction rules.

21

Chapter 5

Metatheory

There are a number of interesting meta-theoretical properties that we would
like a type-system to have. An extensive treatment of the meta-theory of
type theory can be found in [8]. We discuss a number of them in relation to
TTT.

5.1 Subject Reduction

Definition 3. A type system has subject reduction if the following rule is
admissible.

Γ ⊢ t : A t ⇒ u
Γ ⊢ u : A

In other words, reduction preserves typing. This is intuitively important
for correctness, as we would not expect a program of one type to yield a
term of a different type after normalization. All new reduction rules in TTT
preserve typing. It is worth noting that the reduction rules for coercion on∏

and
∑

types are simplified with respect to Cubical Agda’s, the addition
of the CoeId rule ensures type preservation in these cases.

Conjecture 1. TTT has Subject Reduction.

5.2 Strong Normalization

A type system is said to be Strongly Normalizing (SN) if for any well-typed
term, repeated application of reduction rules will eventually yield a term for
which no reduction rules apply. A term that is not reducible is said to be
in normal form. In other words, in a strongly normalizing type system all
computations are terminating. SN for a type theory is a desirable property
because, together with Confluence, it implies decidability of type-checking.
To check if two types are convertible, simply reduce both and compare their
normal forms.

22

CC is known to be strongly normalizing [16], though extensions with
proof-irrelevant or observational equality have been shown to break SN [1,
28]. The proof-irrelevant equality in TTT is restricted however, to only
equate objects, not constructors or kinds. One consequence is that the
counterexample to SN, given by Abel and Coquand [1], is not derivable in
TTT. In general, we conjecture that the extensions of TTT preserve SN.

Conjecture 2. TTT is Strongly Normalizing.

5.3 Confluence

Definition 4. Let t ⇒′ u denote the reflexive and transitive closure of the
reduction relation t ⇒ u. Let t1, t2, t3, t4 ∈ Term. A type system is confluent
if t1 ⇒′ t2 and t1 ⇒′ t3 and t2 ⇒′ t4 implies t3 ⇒′ t4.

With SN, this implies reduction to be deterministic. CC is well known
to be confluent [7]. The reduction rules introduced by TTT introduce no
new critical pairs, so confluence should be preserved.

Conjecture 3. TTT is confluent.

5.4 Consistency

A type theory is consistent if it is not possible to prove all theorems. This
is quite important if a type system is to serve as a proof assistant. For
impredicative type theories, this means that the type

∏
A : ∗.A is not

inhabited in the empty context. We conjecture that TTT is consistent.

Conjecture 4. TTT is consistent.

An interesting property of CC is that it admits both proof-relevant and
proof-irrelevant models. A proof-irrelevant interpretation of an impredica-
tive sort sees it purely as a deductive system. Types formed in ∗ are seen as
mere propositions, and their inhabitants are considered equal. On the other
hand, a proof-relevant interpretation sees the inhabitants of types in ∗ as
programs, which are distinguishable. The notion of proof-irrelevance can be
encoded as a proposition in TTT (or in CC, using Leibniz equality instead):∏

A : ∗.
∏

x : A.
∏

y : A.x = y

The possibility of both models is reflected by the fact that neither proof-
irrelevance nor its negation are derivable. Adding certain axioms or ex-
tensions may imply one model or the other. For example, the law of the
excluded middle implies proof-irrelevance, whereas a type of booleans that
can eliminate into ∗ (compute types) implies the opposite. We conjecture
that TTT preserves this property, despite its extensions with respect to CC.

23

Conjecture 5. Neither proof-irrelevance nor its negation are derivable in
TTT.

That being said, TTT is only really interesting with a proof-relevant
model in mind. New theorems derivable in TTT, such as Function Ex-
tensionality, follow trivially from proof-irrelevance, as it does for Leibniz
equality in CC.

5.5 Canonicity

A term of a certain type is said to be canonical if it is built from the con-
structors of that type. A type system is said to enjoy canonicity if any term
reduces to canonical form in the empty context. This basically means that
terms compute, and the system can serve as a foundation for a program-
ming language. The exact definition of Canonicity differs per type system,
as it depends on the type formers of a system. The terms of TTT are all
convertible with introduction forms due to their types satisfying η-laws, so
a more consequential definition of canonicity can be given with regards to
Church-encoded booleans:

Definition 5. TTT satisfies canonicity if for every term t in the empty
context, if · ⊢ t :

∏
X : ∗.X → X → X, then t ≡ λX.λx.λy.x or t ≡

λX.λx.λy.y

Adding axioms to a type system can break canonicity, as axioms can
block computation. We remark that adding an extensional equality type to
CC, while preserving canonicity, is the goal of TTT.

Conjecture 6. TTT enjoys canonicity.

While a proof for canonicity is out of scope for this thesis, we can analyse
the computational behaviour of TTT, in particular about coercions. The
following conjectures are used in the evaluation algorithm in Section 6. Let
Γ ∈ Context, A,B, t, u ∈ Term.

Conjecture 7. Suppose Γ ⊢ ([i.A] ▷ t) u : B, then ([i.A] ▷ t) u is a redex.

Conjecture 8. Suppose Γ ⊢ ([i.A] ▷ t).π1 : B, then ([i.A] ▷ t).π1 is a redex.

Conjecture 9. Suppose Γ ⊢ ([i.A] ▷ t).π2 : B, then ([i.A] ▷ t).π2 is a redex.

Conjecture 10. Suppose Γ ⊢ A : □, then ([i.A] ▷ t) is a redex.

Proof Sketch By induction on the normal form of A. Note that A[i :=
i1] must be convertible with a type- or kind-former in order for any of the
conjectured redexes to be well-typed. If A is a type- or kind-former, it is a
redex according to the CoePi, CoeSigma or CoeStar rules. Any other
term is not well typed. We remark in particular that the equality eliminator
Elim= cannot be a type-constructor, because equality in TTT only equates
objects, not constructors or kinds.

24

Chapter 6

Type Checking

In this section we describe a Bidirectional Type Checking algorithm for TTT,
based on an algorithm by Coquand [13]. The algorithm accepts a slightly
modified presentation of the syntax, which we describe in Section 6.1. Terms
may be reduced to normal form by the evaluation algorithm described in
Section 6.2. Convertibility of normal forms is decided by a type-directed
conversion checker described in Section 6.3. Finally, we present a bidirec-
tional type-checking algorithm in Section 6.4.

6.1 Syntax

We have terms (T) defined the grammar below, which is the input for the
type-checking algorithm. Variables are natural numbers, denoted I in the
grammar

T ::= ⋆ | □ | □I | ΠT.T | ΣT.T | λT | ⟨T,T⟩ | I | T T | T.π1 | T.π2
| i0 | i1 | I | − T | T ∨ T | T ∧ T | Eq(T,T,T)

| Intro=(T,T) | T ▷ T | Elim=(T,T,T,T,T) | let T : T in T

The syntax differs from that presented in Chapter 4 in three respects: For
one, instead of named variables we use De Bruijn indices (I), represented by
natural numbers. This representation simplifies evaluation of terms, albeit
at the cost of readability. Second difference is the addition of a let-in con-
struct. The type-checking algorithm rejects terms that contain β-redexes.
The let-in construct recovers some of the expressivity lost due to this fact.
Thirdly, coercion no longer binds an interval variable in the type, instead
expecting a function out of the interval. This is to simplify the presentation.

Terms are evaluated to normal forms (NF), which are defined by the
following grammar. Here variables are natural numbers with a type anno-
tation, denoted L : Nf in the grammar.

Ne ::= L : Nf | Elim=(Nf,Nf,Nf,Nf,L) | D(Nf) | R(Nf) | Ne.π1 | Ne.π2 | Ne Nf

25

Nf ::= ⋆ | □ | □I | ΠNf.T[σ] | ΣNf.T[σ] | λT[σ] | ⟨Nf,Nf⟩ | Ne
| i0 | i1 | I | −Nf | Nf ∨Nf | Nf ∧Nf | Nf ▷Nf

| Eq(Nf,Nf,Nf) | Intro=(Nf,Nf)

There are a number of notable aspects of normal forms:

1. A Nf is either head-normal or a neutral (Ne). A neutral term is ei-
ther a variable, or an elimination (application, projection, equality
elimination) stuck on a neutral.

2. Variables are represented by de Bruijn levels (L), the counterpart to
de Bruijn indices. Furthermore, they are annotated with their type,
which is used in the conversion algorithm.

3. D(−) and R(−) are dummies used in evaluation and are explained in
Section 6.2

4. Substitutions (σ) are used in evaluation, as is explained in Section 6.2.

5. The domains of binders (Π,Σ,λ) are not normal forms but closures,
consisting of a term and a substitution, denoted as T [σ] These will be
explained in Section 6.2.

Finally, we have substitutions σ for evaluation, and contexts Γ for type
checking. Both are lists of normal forms.

Γ ::= · | Γ,Nf σ ::= · | σ,Nf

Note that variables in contexts are unnamed, which is consistent with
the nameless presentation of the syntax.

6.2 Evaluation

The evaluation algorithm uses Normalization by Evaluation (NbE). The first
description of NbE for typed lambda calculi was given in [10]. Our algorithm
is mainly based on [22]. We extend it to handle the cubical constructs of
TTT, With a novel way to compute coercions. Evaluation is carried out by
the mutually recursive functions:

J−K[−] : T → σ → Nf

− · − : Nf → Nf → Nf

fst(−) : Nf → Nf

snd(−) : Nf → Nf 26

neg(−) : Nf → Nf

max(−,−) : Nf → Nf → Nf

min(−,−) : Nf → Nf → Nf

J⋆K[σ] = ⋆

J□K[σ] = □
J□IK[σ] = □I

JΠt.uK[σ] = Π(JtK[σ]).u[σ]
JΣt.uK[σ] = Σ(JtK[σ]).u[σ]

JλtK[σ] = λt[σ]

J⟨t, u⟩K[σ] = ⟨JtK[σ], JuK[σ]⟩
Jlet t : in uK[σ] = JuK[(σ, JtK[σ])]

Jt uK[σ] = JtK[σ] · JuK[σ]
Jt.π1K[σ] = fst(JtK[σ])
Jt.π2K[σ] = snd(JtK[σ])

Ji0K[σ] = i0

Ji1K[σ] = i1

JIK[σ] = I

J−iK[σ] = neg(JiK[σ])
Ji ∧ jK[σ] = min(JiK[σ], JjK[σ])
Ji ∨ jK[σ] = max(JiK[σ], JjK[σ])
Jt ▷ uK[σ] = JtK[σ] ▷ JuK[σ]

JEq(a, t, u)K[σ] = Eq(JaK[σ], JtK[σ], JuK[σ])
JIntro=(a, t)K[σ] = Intro=(JaK[σ], JtK[σ])

JElim=(a, t, u, e, i)K[σ] = JtK[σ] if JiK[σ] = i0

JElim=(a, t, u, e, i)K[σ] = JuK[σ] if JiK[σ] = i1

JElim=(a, t, u, e, i)K[σ] = Elim=(JaK[σ], JtK[σ], JuK[σ], JeK[σ], JiK[σ]) otherwise

J0K[σ, v] = v

Ji+ 1K[σ, v] = JiK[σ]

neg(i0) = i1

neg(i1) = i0

neg(−i) = i

neg(i ∧ j) = neg(i) ∨ neg(j)

neg(i ∨ j) = neg(i) ∧ neg(j)

neg(i) = −i

27

min(i0, i) = i0

min(i1, i) = i

min(i, i0) = i0

min(i, i1) = i

min(i, j) = i ∧ j

max(i0, i) = i

max(i1, i) = i1

max(i, i0) = i

max(i, i1) = i1

max(i, j) = i ∨ j

aux = λ(λλλλ(3 0 (2 0 1)))[·] (= λabgxj.b j (g j x))

auxΠ = λ(λλ(λ3(2 ∨ −0)) ▷ 0)[·] (= λajx.(λi.a (−i ∨ j)) ▷ x)

auxΣ = λ(λλ(λ3(2 ∧ 0)) ▷ 0)[·] (= λajt.(λi.a (i ∧ j)) ▷ t)

λt[σ] · v = JtK[σ, v]
(a ▷ f) · v = (aux ·D(a) ·R(a) · (auxΠ ·D(a)) · v) ▷ (f · (auxΠ ·D(a) · i0 · v))
D(v) · v′ = a if v · v′ = Πa.b[σ]

D(v) · v′ = a if v · v′ = Σa.b[σ]

R(v) · v′ = λb[σ] if v · v′ = Πa.b[σ]

R(v) · v′ = λb[σ] if v · v′ = Σa.b[σ]

v · v′ = v v′

fst(⟨v, w⟩) = v

fst((a ▷ v)) = D(a) ▷ fst(t)

fst(v) = v.π1

snd(⟨v, w⟩) = u

snd((a ▷ v)) = (aux ·D(a) ·R(a) · (auxΣ ·D(a)) · (fst(t))) ▷ (snd(t))
snd(v) = v.π2

JtK[σ] means to evaluate the term t under the substitution σ. The pro-
cedure has as precondition that the range of free indices in t is smaller than
the length of σ. The evaluation of an index n under the substitution σ is
simply the nth value of σ, so the precondition ensures that all free variables
in t will be assigned a value by σ.

Due to this precondition, evaluation does not proceed under binders,
instead creating a closure, consisting of the term to be evaluated, and the
substitution. Evaluation may proceed when there is a value assignment for
the bound variable, such as when a value is applied to a λ-closure.

The functions − · −, fst, snd, neg, min and max just reconstruct
applications, projections and de Morgan operations, respectively. β-redexes
are reduced as they emerge.

28

Application of a λ-closure λt[σ] and a value v resumes evaluation of t,
with the substitution σ extended by v.

The treatment of coercion in our system is of particular interest. The co-
ercions make use of some auxiliary abbreviations. We added named versions
for clarity. Let us first remark that coercions only compute under applica-
tion or projections. This corresponds to the following reduction rules, which
are admissible because of η-equivalence.

A′ := λi.A B′ := λi.λx.B
g := λj.λx.(λi.A′(j ∨ −i)) ▷ x

((λi.
∏

x : A.B) ▷ f) t ⇒
(λj.B′ j (g j t)) ▷ f (g i0 t)

A′ := λi.A B′ := λi.λx.B
g := λj.λt.(λi.A′ (j ∧ i)) ▷ t

((λi.
∑

x : A.B) ▷ t).π1 ⇒ g i1 (t.π1)

A′ := λi.A B′ := λi.λx.B
g := λj.λt.(λi.A′ (j ∧ i)) ▷ t

((λi.
∑

x : A.B) ▷ t).π2 ⇒
(λj.B′ j (g j (t.π1))) ▷ t.π2

The redexes defined by the reduction rules have the type former under
a lambda abstraction binding an interval variable. This would present a
problem for NbE, because the algorithm does not reduce under binders, it
cannot check if a term under a λ-abstraction normalizes to a type former.
Fortunately, in our theory, well-typed coercions under applications and pro-
jections are guaranteed to be redexes, as stated in Chapter 5. This is why we
introduce the domain- and range extraction closures, D(−) and R(−). We
illustrate their reduction behaviour with pseudo-rules. The extraction clo-
sures only reduce under application. They await a second argument, which
they apply to the type function. Then they extract the components.

D(λj.
∏

x : A.B) i ⇒ A[j := i]

R(λj.
∏

x : A.B) i ⇒ λx.B[j := i]

6.3 Conversion checking

βη-conversion is decided for normal forms by the conversion checker. The
conversion checking algorithm is type-directed, similarly to the algorithm
presented in [26]. Since it is a fallible algorithm, and we do not want to
clutter the presentation with failure propagation, we opt to present the

29

algorithm as syntax-directed derivation rules. We remark that that the
algorithm assumes the input terms are well-typed, as a precondition. There
are three judgments, which correspond to mutually recursive functions:

Γ ⊢ v ≡ w : a In context Γ, v and u of type a are convertible (type-directed)

Γ ⊢ v ≡ w In context Γ, v and u are convertible (untyped)

Γ ⊢ v ≡ w ⇝ a In context Γ, v and u are convertible and synthesise type a

We present and explain the conversion rules below. Type-directed con-
version eagerly η-expands terms. There are three interesting cases. In the
case for dependent functions, both functions are applied to a fresh unknown
(De Bruijn level). The function fresh(Γ) just returns the length of Γ.

l := fresh(Γ) Γ, a ⊢ v · (l : a) ≡ v′ · (l : a) : JbK[σ, (l : a)]
Γ ⊢ v ≡ v′ : Πa.b[σ]

Pairs are compared component-wise:

Γ ⊢ fst(v) ≡ fst(v′) : a Γ ⊢ snd(v) ≡ snd(v′) : JbK[σ, fst(v)]
Γ ⊢ v ≡ v′ : Σa.b[σ]

Equality proofs are unconditionally convertible:

Γ ⊢ e ≡ e′ : t =a u

For neutral types and sorts, no η-rules apply, so the algorithm defers to
untyped conversion:

a ∈ Ne ∨ a ∈ S Γ ⊢ v ≡ v′

Γ ⊢ v ≡ v′ : a

The untyped conversion rules mostly deal with congruences, which we omit
here. Interesting exceptions are coercions, binders, binary de Morgan oper-
ations and neutrals. The rule for coercions implements the CoeId rule with
transitivity, in a syntax-directed manner.

Γ ⊢ a · i0 ≡ a · i1 Γ ⊢ t ≡ t′

Γ ⊢ a ▷ t ≡ t′

For binders, a fresh unknown value is generated to evaluate the range clo-
sures, which are then compared.

l := fresh(Γ) Γ ⊢ a ≡ a′ Γ, a ⊢ JbK[σ, (l : a)] ≡ Jb′K[σ′, (l : a)]

Γ ⊢ Πa.b[σ] ≡ Πa′.b′[σ′]

Neutral terms are deferred to the type-synthesizing conversion check, though
the resulting type will be discarded.

30

v, v′ ∈ Ne Γ ⊢ v ≡ v′ ⇝ a

Γ ⊢ v ≡ v′

For the binary de Morgan operations, the algorithm checks for congruence
or commutativity in order.

Γ ⊢ i ≡ i′ Γ ⊢ j ≡ j′

Γ ⊢ i ∧ j ≡ i′ ∧ j′

Γ ⊢ i ≡ j′ Γ ⊢ j ≡ i′

Γ ⊢ i ∧ j ≡ i′ ∧ j′

For neutral terms, conversion checking is also untyped, but the algorithm
synthesizes the type if successful. The synthesized type is used for the type-
directed check of application arguments.

Γ ⊢ (l : a) ≡ (l : a)⇝ a

Γ ⊢ a ≡ a′ : I → ⋆ Γ ⊢ t ≡ t′ : a · i0 Γ ⊢ u ≡ u′ : a · i1 Γ ⊢ i ≡ i′

Γ ⊢ Elim=(a, t, u, e, i) ≡ Elim=(a
′, t′, u′, e′, i′)⇝ a · i

Γ ⊢ f ≡ f ′ ⇝ Πa.b[σ] Γ ⊢ v ≡ v′ : a

Γ ⊢ f v ≡ f ′ v′ ⇝ JbK[σ, v]

Γ ⊢ t ≡ t′ ⇝ Σa.b[σ]

Γ ⊢ t.π1 ≡ t′.π1 : a

Γ ⊢ t ≡ t′ ⇝ Σa.b[σ]

Γ ⊢ t.π2 ≡ t′.π2 : JbK[σ, t.π1]

6.4 Bidirectional type-checking

The type-checking algorithm is based on Kovács work [22], which in turn is
based on an algorithm by Coquand [13]. We present the algorithm again as
syntax-directed derivation rules. There are two judgments:

Γ, σ ⊢ t :? v ⇓ w

Γ, σ ⊢ t ⇑ u : v

We read Γ, σ ⊢ t :? v ⇓ w as: ”In context Γ, under substitution σ, the
term t checks against the type v, and evaluates to w”. We read Γ, σ ⊢ t ⇑
u : v as: ”In context Γ, under substitution σ, the term t synthesizes the type
v and evaluates to w. The fact that the checking and synthesis algorithms

31

normalize well-typed terms is new with respect to Coquands algorithm, but
the other than that our presentation is standard.

Type assignment works for let-expressions, lambda-abstractions and pairs.
Any other case defers to the Conv rule. Note that there are no synthesis
rules for let, lambda and pairs. Furthermore, applications can only be typed
if the function type can be synthesized, similarly for projections of pairs. As
such, the algorithm will fail to type terms containing β-redexes.

Star
Γ, σ ⊢ ∗ ⇑ ∗ : □

I
Γ, σ ⊢ I ⇑ I : □I

I0
Γ, σ ⊢ i0 ⇑ i0 : I

I1
Γ, σ ⊢ i1 ⇑ i1 : I

Γ, σ ⊢ i :? I ⇓ i′
Neg

Γ, σ ⊢ −i ⇑ neg(i′) : I

Γ, σ ⊢ i :? I ⇓ i′ Γ, σ ⊢ j :? I ⇓ j′
Min

Γ, σ ⊢ i ∧ j ⇑ min(i′, j′) : I

Γ, σ ⊢ i :? I ⇓ i′ Γ, σ ⊢ j :? I ⇓ j′
Max

Γ, σ ⊢ i ∨ j ⇑ max(i′, j′) : I
ix0

(Γ, v), (σ,w) ⊢ 0 ⇑ v : w
Γ, σ ⊢ i ⇑ v : w

ixS
(Γ, v), (σ,w) ⊢ Si ⇑ v : w

l := fresh(Γ) (Γ, a), (σ, l) ⊢ t :? (JbK[(σ′, l)]) ⇓ v
Lambda

Γ, σ ⊢ λt :? Πa.b[σ′] ⇓ λt[σ]

Γ, σ ⊢ t ⇑ v : Πa.b[σ′] Γ, σ ⊢ u :? a ⇓ w
App

Γ, σ ⊢ t u ⇑ v · w : JbK[(σ′, w)]

Γ, σ ⊢ t ⇑ v : Σa.b[σ′]
Fst

Γ, σ ⊢ t.π1 ⇑ fst(v) : a

Γ, σ ⊢ t ⇑ v : Σa.b[σ′]
Snd

Γ, σ ⊢ t.π2 ⇑ snd(v) : JbK[(σ, (v · π0))]

Γ, σ ⊢ t ⇑ v : w Γ, σ ⊢ w ≡ w′ v ∈ Ne
Conv

Γ, σ ⊢ t :? v ⇓ w′

l := fresh(Γ) Γ, σ ⊢ a ⇑ v : s0 (Γ, a), (σ, l) ⊢ b ⇑ w : s1 (s0, s1) ∈ R
Pi

Γ, σ ⊢ Πa.b ⇑ Πv.b[σ] : s1

l := fresh(Γ) Γ, σ ⊢ a ⇑ v : ∗ (Γ, v), (σ, l) ⊢ b ⇑ w : ∗
Sigma

Γ, σ ⊢ Σa.b ⇑ Σv.w[σ] : ∗

32

Γ, σ ⊢ t :? v ⇓ a Γ, σ ⊢ u :? w ⇓ JbK[(S′, v)]
Pair

Γ, σ ⊢ ⟨t, u⟩ :? Σa.b[σ′] ⇓ ⟨v, w⟩

Γ, σ ⊢ a ⇑ a′ : s s ∈ S Γ, σ ⊢ t :? a
′ ⇓ v (Γ, a′), (σ, v) ⊢ u :? b ⇓

Let
Γ, σ ⊢ let t : a in u :? b ⇓ JuK[σ, v]

Γ, σ ⊢ a :? ΠI. ∗ [·] ⇓ a′ Γ, σ ⊢ t :? a
′ · i0 ⇓ t′ Γ, σ ⊢ u :? a

′ · i1 ⇓ u′
Eq

Γ, σ ⊢ Eq(a, t, u) ⇑ Eq(a′, t′, u′) : ∗

Γ, σ ⊢ a :? ΠI. ∗ [·] ⇓ a′ Γ, σ ⊢ t :? a
′ · i0 ⇓ t′

EqIntro
Γ, σ ⊢ Intro=(a, t) ⇑ Intro=(a

′, t′) : Eq(a′, t · i0, t · i1)

6.5 Implementation

We implemented a rudimentary proof assistant written in Haskell. While
by no means as expressive as Coq or Agda, the checker accepts text files
with definitions and axioms. Our system implements the type-checking al-
gorithm, with a few additional features on top:

1. The user language has named variables, while the internal represen-
tation uses de Bruijn indices. The elaborator translates variable names
to indices while type-checking. Binders still store the user-given names,
so the prettyprinter can restore the named presentation for error re-
porting. This approach is similar to the one of used in the Matita
proof assistant [3].

2. A file consists of a sequence of definitions. Each definition is in scope
of all subsequent ones and may be unfolded for conversion checking.
The evaluator does not unfold definitions eagerly, rather using glued
evaluation as was described by Kovács [22].

3. A simple module system. A file is a module. An import statement
in one file brings the definitions of another in scope. A name may
be defined in multiple modules, and be disambiguated by prefixing it
with the module name.

We implemented impredicative encodings of some inductive types such
as booleans, natural numbers and quotients in the style of [4], which are
accepted by our checker. The derivations are somewhat simplified: because
UIP is built-in we do not need to encode Set with a

∑
-type. One interesting

result we found, due to the strong reduction behaviour of coercions, com-
putation rules for the induction principles hold definitionally for apparently
any (higher) inductive type without recursive point constructors.

33

Chapter 7

Conclusion & Future Work

We have developed Truncated Type Theory by extending CC with an in-
terval, path types and type-directed coercion. We conjecture normalization
and canonicity for TTT. Assuming these properties, we devised an efficient
normalization procedure. We implemented a rudimentary proof-assistant in
Haskell, with a proof-checking kernel of about 420 lines of code. Our checker
accepts derivations of induction principles for a number of (higher) induc-
tive types. We believe we have shown TTT to be an adequate type system
for a proof-assistant by striking a balance between simplicity and expressive
power.

7.1 Limitations

We have identified a number of limitations. First and foremost is the equality
type in TTT being restricted to only equate objects. This is the price we pay
for having impredicativity and definitional UIP. In addition to the lack of
universes, this means TTT is probably unsuitable for reasoning on a higher
level of abstraction. TTT is unlikely to be able to formalize category theory.
But it should be a solid foundation for programming and proving, given that
it is strictly stronger than System Fω.

Regarding the type checking algorithm, we suspect the type-directed
conversion check is quite inefficient, at least when it comes to eta-expanding
dependent pairs. If we have some pairs p, p′ then the conversion checker will
check p.π1 ≡ p′.π1 and p.π2 ≡ p′.π2 separately, even if both p and p′ evaluate
to neutral terms, and regardless of how expensive computing p ≡ p′ is. This
potentially results in a lot of work duplication.

although inductive types are derivable and accepted by our proof-checker,
the computation rules only hold propositionally, not definitionally. This is
in stark contrast to proof assistants like Agda, Coq or Lean, which do satisfy
definitional ι-rules [26, 24, 15]. A proof-assistant based on TTT would need
to provide a additional automation for it to hold a candle to Agda, Coq or

34

Lean.

7.2 Future Work

There are a number of opportunities for improvement. Firstly, a number
of meta-theoretical properties are merely conjectured. Proofs for canonicity
and normalization would be invaluable for the goals of TTT. We believe the
latter can be shown by erasure to Fω, similarly to existing proofs of SN for
CC.

Secondly, we would like to address the lack of definitional ι-rules. A sim-
plifier like Leans’s [15] might adequately compensate. Another possibility
would be to strengthen the theory further. TTT could be extended with
inductive schemas like CIC. Although this would not result in a small proof-
kernel, an inductive TTT would still have an advantage over CIC due to the
computational coercions. Alternatively, we can address the lack of defini-
tional ι-rules by adding equality reflection to the system. If we do so, we can
recover decidability of type-checking by checking the full type derivations,
or translating them to regular, intensional CC with extra axioms. This last
approach would result in a much simpler kernel than TTT has, albeit at
the cost of imposing the burden of translation upon the untrusted part of
the proof system. It would also remedy the problem that type-directed con-
version checks are inherently less efficient than untyped checks, due to the
necessary reconstruction of type information to trigger η-rules.

7.3 Acknowledgements

I would like to thank Herman Geuvers and Niels van der Weide. Their
knowledge, advice, and our discussions have been invaluable.

35

Bibliography

[1] Andreas Abel and Thierry Coquand. Failure of normalization in im-
predicative type theory with proof-irrelevant propositional equality.
Log. Methods Comput. Sci., 16(2), 2020.

[2] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observa-
tional equality, now! In Aaron Stump and Hongwei Xi, editors, Pro-
ceedings of the ACM Workshop Programming Languages meets Program
Verification, PLPV 2007, Freiburg, Germany, October 5, 2007, pages
57–68. ACM, 2007.

[3] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico
Tassi. A compact kernel for the Calculus of Inductive Constructions.
Sadhana, 34:71–144, 02 2009.

[4] Steve Awodey, Jonas Frey, and Sam Speight. Impredicative encodings of
(higher) inductive types. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’18, page 76–85, New
York, NY, USA, 2018. Association for Computing Machinery.

[5] Henk Barendregt. Introduction to Generalized Type Systems. Journal
of Functional Programming, 1(2):125–154, 1991.

[6] Henk Barendregt and Herman Geuvers. Proof-assistants using depen-
dent type systems. In John Alan Robinson and Andrei Voronkov, ed-
itors, Handbook of Automated Reasoning (in 2 volumes), pages 1149–
1238. Elsevier and MIT Press, 2001.

[7] Henk P. Barendregt. The lambda calculus, its syntax and semantics.
North-Holland, Amsterdam, second, revised edition, 1984.

[8] Henk P. Barendregt. Lambda calculi with types. In D.M. Gabbai
Samson Abramski and T.S.E. Maiboum, editors, Handbook of Logic in
Computer Science. Oxford University Press, Oxford, 1992.

[9] Gilles Barthe and Morten Heine Sørensen. Domain-free Pure Type
Systems. Journal of Functional Programming, 10(5):417–452, 2000.

36

[10] U. Berger and H. Schwichtenberg. An inverse of the evaluation func-
tional for typed lambda -calculus. In [1991] Proceedings Sixth Annual
IEEE Symposium on Logic in Computer Science, pages 203–211, 1991.

[11] Alonzo Church. A formulation of the simple theory of types. The
Journal of Symbolic Logic, 5(2):56–68, 1940.

[12] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg.
Cubical Type Theory: A constructive interpretation of the univa-
lence axiom. In Tarmo Uustalu, editor, 21st International Conference
on Types for Proofs and Programs, TYPES 2015, May 18-21, 2015,
Tallinn, Estonia, volume 69 of LIPIcs, pages 5:1–5:34. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2015.

[13] Thierry Coquand. An algorithm for type-checking dependent types.
Sci. Comput. Program., 26(1-3):167–177, 1996.

[14] Thierry Coquand and Gérard Huet. The Calculus of Constructions.
Information and Computation, 76(2):95–120, 1988.

[15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Doorn, and
Jakob Raumer. The lean theorem prover (system description). volume
9195, pages 378–388, 08 2015.

[16] Herman Geuvers. A short and flexible proof of strong normalization
for the Calculus of Constructions. In P. Dybjer, B. Nordström, and
J. Smith, editors, Selected Papers 2nd Int. Workshop on Types for
Proofs and Programs, TYPES’94, B̊astad, Sweden, 6–10 June 1994,
volume 996, pages 14–38. Springer-Verlag, Berlin, 1995.

[17] Herman Geuvers. Introduction to type theory. In Ana Bove, Lúıs Soares
Barbosa, Alberto Pardo, and Jorge Sousa Pinto, editors, Language En-
gineering and Rigorous Software Development, International LerNet
ALFA Summer School 2008, Piriapolis, Uruguay, February 24 - March
1, 2008, Revised Tutorial Lectures, volume 5520 of Lecture Notes in
Computer Science, pages 1–56. Springer, 2008.

[18] J.-Y. Girard, Yves Lafont, and Paul Taylor. Proofs and types, vol-
ume 7 of Cambridge tracts in theoretical computer science. Cambridge
University Press, Cambridge, 1989.

[19] Jean-Yves Girard. Interprétation fonctionelle et élimination des
coupres de l’arithmétique d’ordre supérieur. PhD thesis, Universite
Paris VII, June 1972.

[20] Martin Hofmann. Extensional concepts in intensional type theory. PhD
thesis, University of Edinburgh, 1995.

37

[21] William Alvin Howard. The formulae-as-types notion of construction.
In Haskell Curry, Hindley B., Seldin J. Roger, and P. Jonathan, editors,
To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism. Academic Press, 1980.

[22] András Kovács. smalltt. https://github.com/AndrasKovacs/smalltt,
2023.

[23] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In
H.E. Rose and J.C. Shepherdson, editors, Logic Colloquium ’73, vol-
ume 80 of Studies in Logic and the Foundations of Mathematics, pages
73–118. Elsevier, 1975.

[24] The Coq development team. The Coq proof assistant reference manual,
2004. Version 8.0.

[25] B. Nordström, K. Peterson, and J. M. Smith. Programming in Martin-
Löf ’s Type Theory : an introduction. Oxford Science Publications,
1990.

[26] Ulf Norell. Towards a practical programming language based on depen-
dent type theory. PhD thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, SE-412 96 Göteborg,
Sweden, September 2007.

[27] Löıc Pujet and Nicolas Tabareau. Observational equality: Now for
good. Proc. ACM Program. Lang., 6(POPL):1–27, 2022.

[28] Löıc Pujet and Nicolas Tabareau. Impredicative observational equality.
Proc. ACM Program. Lang., 7(POPL), jan 2023.

[29] John C. Reynolds. Towards a theory of type structure. In Bernard J.
Robinet, editor, Programming Symposium, Proceedings Colloque sur la
Programmation, Paris, France, April 9-11, 1974, volume 19 of Lecture
Notes in Computer Science, pages 408–423. Springer, 1974.

[30] Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. Cubical syn-
tax for reflection-free extensional equality. In Herman Geuvers, editor,
4th International Conference on Formal Structures for Computation
and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany,
volume 131 of LIPIcs, pages 31:1–31:25. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

[31] The Univalent Foundations Program. Homotopy
Type Theory: Univalent Foundations of Mathematics.
https://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

38

[32] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: A
dependently typed programming language with univalence and higher
inductive types. J. Funct. Program., 31:e8, 2021.

39

Appendix A

Syntax

A,B, t, u, i, j ∈ Term ::= ∗ | □ | □I sort

|
∏

x : A.B | λx.t | x | t u lambda-calculus

|
∑

x : A.B | ⟨t, u⟩ | t.π1 | t.π2 dependent pair

| I | i0 | i1 | − i | i ∧ j | i ∨ j interval

| t =A u | ⌊t⌋ | Elim=(A, t, u, e, i) equality

| [i.A] ▷ t coercion

Γ ∈ Context ::= · | Γ, x : A

40

Appendix B

Typing Rules

B.1 Specification

S = {∗,□,□I}

A = {(∗,□)}

R = {(∗, ∗, ∗), (∗,□,□), (□, ∗, ∗), (□,□,□), (□I, ∗, ∗), (□I,□,□)}

B.2 Standard Pure Type System Rules

EmptyCtx· ⊢ ctx

Γ ⊢ ctx Γ ⊢ A : s s ∈ S x ̸∈ Γ
ExtendCtx

Γ, x : A ⊢ ctx

Γ ⊢ ctx (s0, s1) ∈ A
Sort

Γ ⊢ s0 : s1

Γ ⊢ A : s0 Γ, x : A ⊢ B : s1 (s0, s1, s2) ∈ R
Pi

Γ ⊢
∏

x : A.B : s2

Γ, x : A ⊢ t : B Γ ⊢
∏

x : A.B : s
Abs

Γ ⊢ λx.t :
∏

x : A.B

Γ ⊢ t :
∏

x : A.B Γ ⊢ u : A
App

Γ ⊢ t u : B[x := u]

Γ ⊢ ctx x : A ∈ Γ
Var

Γ ⊢ x : A

Γ ⊢ t : A Γ ⊢ B : s Γ ⊢ A ≡ B : s
Conv

Γ ⊢ t : B

41

B.3 The Sigma Type

Γ ⊢ A : ∗ Γ, x : A ⊢ B : ∗
Sigma

Γ ⊢
∑

x : A.B : ∗

Γ ⊢ t : A Γ ⊢ u : B[x := t]
Pair

Γ ⊢ ⟨t, u⟩ :
∑

x : A.B

Γ ⊢ t :
∑

x : A.B
Fst

Γ ⊢ t.π1 : A

Γ ⊢ t :
∑

x : A.B
Snd

Γ ⊢ t.π2 : B[x := t.π1]

B.4 Cubical constructs

I
Γ ⊢ I : □I

I0
Γ ⊢ i0 : I

I1
Γ ⊢ i1 : I

Γ ⊢ i : I Γ ⊢ j : I
Min

Γ ⊢ i ∧ j : I

Γ ⊢ i : I Γ ⊢ j : I
Max

Γ ⊢ i ∨ j : I

Γ ⊢ i : I
Neg

Γ ⊢ −i : I

Γ ⊢ A : I → ∗ Γ ⊢ t : A i0 Γ ⊢ u : A i1 Eq
Γ ⊢ t =A u : ∗

Γ ⊢ A : I → ∗ Γ ⊢ p :
∏

i : I.A i
EqIntro

Γ ⊢ ⌊p⌋ : (p i0) =A (p i1)

Γ ⊢ A : I → ∗
Γ ⊢ u : A i1

Γ ⊢ t : A i0
Γ ⊢ e : t =A u Γ ⊢ i : I

EqElim
Γ ⊢ Elim=(A, t, u, e, i) : A i

Γ, i : I ⊢ A : s Γ ⊢ t : A[i := i0] s ∈ {∗,□}
Coe

Γ ⊢ [i.A] ▷ t : A[i := i1]

42

Appendix C

Reduction Rules

Neg0−i0 ⇒ i1

Min0L
i0 ∧ i ⇒ i0

Min1L
i1 ∧ i ⇒ i

Max0L
i0 ∨ i ⇒ i

Max1L
i1 ∨ i ⇒ i1

FstRed⟨t, u⟩.π1 ⇒ t

Beta
(λx.t)u ⇒ t[x := u]

Neg1−i1 ⇒ i0

Min0R
i ∧ i0 ⇒ i0

Min1R
i ∧ i1 ⇒ i

Max0R
i ∨ i0 ⇒ i

Max1R
i ∨ i1 ⇒ i1

SndRed⟨t, u⟩.π2 ⇒ u

CoeStar
[i.I∗] ▷ t ⇒ t

g := λj.λx.[i.A[i := j ∨ −i]] ▷ x
CoePi

[i.
∏

x : A.B] ▷ f ⇒ λx.[j.B[i := j, x := g j x]] ▷ f (g i0 x)

g := λj.λt.[i.A[i := j ∧ i]] ▷ t
CoeSigma

[i.
∑

x : A.B] ▷ t ⇒ ⟨g i1 (t.π1), [j.B[i := j, x := g j (t.π1)]] ▷ t.π2⟩

43

Appendix D

Conversion Rules

D.1 Reduction Equivalence

Γ ⊢ t : A
Refl

Γ ⊢ t ≡ t : A

Γ ⊢ t ≡ t′ : A
Sym

Γ ⊢ t′ ≡ t : A

Γ ⊢ t ≡ t′ : A Γ ⊢ t′ ≡ t′′ : A
Trans

Γ ⊢ t ≡ t′′ : A

Γ ⊢ t ⇒ u
RedConv

Γ ⊢ t ≡ u

D.2 Eta Rules

Γ ⊢ f :
∏

x : A.B
PiEta

Γ ⊢ f ≡ λx.f x :
∏

x : A.B

Γ ⊢ t :
∑

x : A.B
SigmaEta

Γ ⊢ t ≡ ⟨t.π1, t.π2⟩ :
∑

x : A.B

Γ ⊢ i : I
DoubleNeg−(−i) ≡ i : I

Γ ⊢ i : I Γ ⊢ j : I
MaxComm

i ∨ j ≡ j ∨ i : I

Γ ⊢ i : I Γ ⊢ j : I
MinComm

i ∧ j ≡ j ∧ i : I

Γ ⊢ e, e′ : t =A u
UIP

Γ ⊢ e ≡ e′ : t =A u

44

D.3 Regularity

Γ, i : I ⊢ A : s

Γ ⊢ t : A[i := i0]

s ∈ {∗,□}
Γ ⊢ A[i := i0] ≡ A[i := i1] : s

CoeId
Γ ⊢ [i.A] ▷ t ≡ t : A[i := i1]

D.4 Congruence Rules

Γ ⊢ A ≡ A′ : s1 Γ ⊢ B ≡ B′ : s2
PiCong

Γ ⊢
∏

x : A.B ≡
∏

x : A′.B′ : s2

Γ, x : A ⊢ t ≡ t′ : B
LamCong

Γ ⊢ λx.t ≡ λx.t′ :
∏

x : A.B

Γ ⊢ f ≡ f ′ :
∏

x : A.B Γ ⊢ t ≡ t′ : A
AppCong

Γ ⊢ f t ≡ f ′ t′ : B[x := t]

Γ ⊢ A ≡ B′ : ∗ Γ ⊢ A ≡ B′ : ∗
SigmaCong

Γ ⊢
∑

x : A.B ≡
∑

x : A′.B′ : ∗

Γ ⊢ t ≡ t′ : A Γ ⊢ u ≡ u′ : B[x := t]
PairCong

Γ ⊢ ⟨t, u⟩ ≡ ⟨t′, u′⟩ :
∑

x : A.B

Γ ⊢ t ≡ u :
∑

x : A.B
FstCong

Γ ⊢ t.π1 ≡ u.π1 : A

Γ ⊢ t ≡ u :
∑

x : A.B
SndCong

Γ ⊢ t.π2 ≡ u.π2 : B[x := t.π1]

Γ ⊢ i ≡ i′ : I
NegCong

Γ ⊢ −i ≡ −i′ : I

Γ ⊢ i ≡ i′ : I Γ ⊢ j ≡ j′ : I
MinCong

Γ ⊢ i ∧ j ≡ i′ ∧ j′ : I

Γ ⊢ i ≡ i′ : I Γ ⊢ j ≡ j′ : I
MaxCong

Γ ⊢ i ∨ j ≡ i′ ∨ j′ : I

Γ, i : I ⊢ A ≡ A′ : s Γ ⊢ t ≡ t′ : A[i := i0] s ∈ {∗,□}
CoeCong

Γ ⊢ [i.A] ▷ t ≡ [i.A′] ▷ t′ : A[i := i1]

Γ ⊢ A ≡ A′ : I → ∗ Γ ⊢ t ≡ t′ : A i0 Γ ⊢ u ≡ u′ : A i1 EqCong
Γ ⊢ t =A u ≡ t′ =A′ u′ : ∗

45

Γ ⊢ A ≡ A′ : I → ∗ Γ ⊢ p ≡ p′ :
∏

i : I.A i
EqIntroCong

Γ ⊢ ⌊p⌋ ≡ ⌊p′⌋ : p i0 =A p i1

Γ ⊢ A ≡ A′ : I → ∗
Γ ⊢ t ≡ t′ : A i0

Γ ⊢ u ≡ u′ : A i1
Γ ⊢ i ≡ i′ : I

EqElimCong
Γ ⊢ Elim=(A, t, u, e, i) ≡ Elim=(A

′, t′, u′, e′, i′) : A i

46

