
Bachelor’s Thesis Computing Science

Level 1 BLAS routines in SaC

Casper Fabritius
s1023960

April 6, 2023

First supervisor/assessor:
Prof. dr. Sven-Bodo Scholz

Second assessor:
Dr. Pieter Koopman

Abstract

This bachelor’s thesis is about the creation and evaluation of an implementa-
tion of the level 1 BLAS routines in the programming language SaC. BLAS
(Basic Linear Algebra Subprograms) is a specification for common linear
algebra operations. The level 1 routines in particular specify operations
on vectors and scalars. SaC (Single-Assignment C) is a purely functional
programming language with imperative style syntax that specialises in op-
erating on arrays. SaC is designed with three core goals in mind: 1. High
performance rivalling hand-optimised low-level code. 2. High productivity
allowing the programmer to write programs easily with high-level syntax.
3. High portability allowing a SaC program to run on many different ar-
chitectures with a single source code. The goal of this thesis is to put the
high performance promise to the test. By implementing the BLAS routines,
comparisons can be made to other hand-optimised BLAS implementations.
By comparing the performance of the BLAS implementation in SaC to such
a hand-optimised implementation, conclusions can be drawn on the perfor-
mance of SaC as a whole, specifically in relation to vectors.

Contents

1 Introduction 3
1.1 Single-Assignment C (SaC) 3
1.2 Basic Linear Algebra Subprograms (BLAS) 4
1.3 Research . 5

2 Implementation 6
2.1 Types . 6
2.2 Length Parameter . 7
2.3 Increment Parameter . 7
2.4 Loops . 8
2.5 Correctness . 9
2.6 Optimisation . 9
2.7 Routines . 10

2.7.1 drotg . 10
2.7.2 drotmg . 10
2.7.3 drot . 11
2.7.4 drotm . 12
2.7.5 dswap . 13
2.7.6 dscal . 14
2.7.7 dcopy . 14
2.7.8 daxpy . 15
2.7.9 ddot . 15
2.7.10 dsdot . 16
2.7.11 dnrm2 . 16
2.7.12 dznrm2 . 17
2.7.13 dasum . 18
2.7.14 idamax . 18

3 Performance Analysis 19
3.1 Performance Quantification 20
3.2 Optimised BLAS Library . 20
3.3 Obtaining Performance Data 21

1

4 Results 22
4.1 Input Size . 23
4.2 Multi-threading . 24
4.3 Increment Parameters . 27
4.4 Compiler Optimisations . 28

5 Conclusions 29

A System Specifications 32

B Graphs 33
B.1 Input Size . 33
B.2 Thread Count . 40
B.3 Increment Parameters . 46
B.4 Compiler Optimisations . 50

2

Chapter 1

Introduction

1.1 Single-Assignment C (SaC)

SaC is a purely functional programming language with imperative style
syntax (similar to languages such as C or C++). SaC is also an array
programming language, which can be seen in the following three key features
of the language:

1. All data in SaC programs is represented by arrays. This entails that
standard functions and operators (such as + and *) work on arrays as
well.

2. Arrays in SaC are call by value. In many other programming lan-
guages with similar syntax, such as C, C++, JavaScript or Python,
when an array is passed to a function, the function only gets access to
a reference pointer to the data of that array in memory. When changes
to that array are made, those changes affect the original version of the
array, thereby performing a side-effect. This is called call by reference.
In SaC however, when an array is passed to a function, the function
gets access to a copy of the array1. When changes are made to this
array within the function, it does not affect the original array, thereby
preserving the functional nature of the language.

3. There is support for truly multi-dimensional arrays in SaC[2]. For
example, instead of accessing elements in an array through individual
indices for every dimension, SaC supports so called index vectors,
which can scale to any dimensionality.

1This only happens conceptually. In practice, the array is only copied as is necessary[1].

3

SaC is designed with three core goals in mind[2][3]:

1. High Performance: To deliver performance rivaling hand-optimised
low-level code.

2. High Productivity: To write programs easily without burdening the
programmer with low-level implementation details.

3. High Portability: To run on many different architectures with a single
source code.

Programs written in SaC can be parallelised without requiring any changes
to the source code. This is accomplished with one of its unique language con-
structs, the with-loop[1][2]. The with-loop works similarly to a list compre-
hension in other languages, but it is more flexible. It allows the programmer
to set a specific range for the output array, to define multiple ranges which
allows for different partitions of the output array to be calculated differently,
and to generate multi-dimensional arrays within the same with-loop. In a
with-loop, every value of the output array is computed independently of
the other values. This guarantees that race conditions will not occur and is
what allows the code to be parallelised without any modifications.

1.2 Basic Linear Algebra Subprograms (BLAS)

BLAS is a specification for a set of routines that perform common linear
algebra operations. It was originally developed starting in 1979 as a library
for Fortran[4]. Afterwards it was standardised in a reference implementa-
tion (which is also written in Fortran). While this reference implementation
is relatively portable, it is not well optimised for performance. For this
reason (and because BLAS is used everywhere in software), many differ-
ent hand-optimised libraries have been made, all targeting various specific
architectures. These optimised libraries sacrifice portability for better per-
formance.

Additionally, all routines in the specification also come in four different vari-
ants, each variant using a different datatype; single (i.e. float), double,
complex and double complex. For this thesis, only the double variant is
used.

The specification is split into three different levels, each level focused on
routines with increasing complexity. The level 1 routines only concern vec-
tor and scalar operations. The Level 2 routines build upon the level 1
routines by introducing matrix-vector operations. And the level 3 routines
build upon the level 2 routines by introducing matrix-matrix operations.
For this thesis, only the level 1 routines are used.

4

1.3 Research

The goal of this bachelor’s thesis is to put the promise of high performance
of SaC to the test. Implementing the BLAS routines in SaC provides a
good benchmark to compare performance to hand-optimised low-level code.
Also, since SaC is an array programming language and the BLAS routines
operate on arrays, it is only fitting to implement the BLAS routines in SaC.

The performance is analysed by comparing several different variables to an
optimised BLAS library. These variables are: The different routines them-
selves, the size of the input vector(s), multi-threading, different values for
the increment parameters and different compiler optimisations. These are
all explained in greater detail in chapter 3 and the increment parameter in
particular is explained in section 2.3.

The document is structured as follows:

• In chapter 2, the implementation of the fourteen level 1 BLAS routines
is explained.

• In chapter 3, the way in which the performance is measured is ex-
plained.

• In chapter 4, the results from the performance analysis are explained.

• In chapter 5, the conclusions drawn from the results and future work
are discussed.

5

Chapter 2

Implementation

This SaC implementation is based on the Fortran reference implementa-
tion. For routines of which the implementation is not too long, the code
is added to the subsection of the respective routine. The full code for this
implementation can be found at the following repository:
https://github.com/SacBase/BLAS/blob/master/src/blas/BlasLevel1.sac

The code for the original reference implementation can be found at:
https://netlib.org/blas/#_level_1

2.1 Types

Since there are minimal differences between the four different data types
(single, double, complex, double complex) used in BLAS, only one datatype
has been implemented for the SaC implementation. At first this was the
single variant, but at a later stage this was changed to the double variant,
because the added precision improves the performance measurements.

Every routine, aside from drotg and drotmg, has at least one vector param-
eter. In the SaC implementation these are represented by the double[.]

type, where the [.] specifically denotes a one-dimensional array.

Another feature of some of the routines is that they return multiple pieces
of data as output. In the reference implementation, this is accomplished
by modifying the data via its corresponding pointer, because all data in
Fortran is call by reference. However, since SaC is a functional language
and all data is call by value, this approach cannot be taken. Instead, SaC
supports returning tuples of data, which is how this is replicated in the SaC
implementation.

6

2.2 Length Parameter

Every routine with a vector parameter also has a length parameter (called
N) to determine the number of elements that should be operated upon. For
lower-level programming languages (such as C and Fortran) this parameter
is useful because arrays in those languages generally do not store their own
length. In SaC however, this use of the length parameter is not be neces-
sary. The length parameter also allows for a smaller number of elements to
be specified, in which case the routine will stop pre-maturely before every
element in the input vector has been operated upon.

In terms of expected values for the length parameter; It has to be smaller
than the number of elements in the smallest input vector (since many rou-
tines take two vectors as input) and greater than zero.

2.3 Increment Parameter

Every routine has an additional increment parameter (called incx / incy)
for each one of their vector parameters. These determine the increment
size between elements of the vector. For example, by setting an increment
parameter to three, only every third element of the corresponding vector
will be accessed. This also means that the routine will iterate through the
vector at three times the speed that it normally would, so to compensate,
the length parameter must be adjusted to be at most a third of the total
elements of this vector.

Another feature of this parameter is that by setting an increment parameter
to a negative value, the vector will be accessed in reverse order. However,
due to increased complexity, this behaviour has not been replicated in the
SaC implementation.

Lastly, in the reference implementation, when an increment parameter is set
to zero, behaviour depends on the routine, but the majority will repeatedly
access the first element of the vector. Due to the fact that this behaviour
appears inconsistent between routines, it has also not been replicated in
the SaC implementation. For certain routines this behaviour coincidentally
happens to be the same as in the reference implementation, which is why
in the code for the SaC implementation, for some routines it is specified
through a comment that one of the increment parameters is allowed to be
zero.

7

2.4 Loops

In the reference implementation there are many instances where iterative
loops are being used. In SaC however, for-loops cannot be parallelised.
Therefore, tensor comprehensions[5] are used for every routine which oper-
ates on vectors (except idamax, which is explained in subsection 2.7.14). In
SaC, tensor comprehensions are syntactic sugar for with-loops. They are
much more concise than with-loops (syntax-wise they are more similar to
list comprehension) and are therefore preferred over with-loops.

In order to explain how tensor comprehensions work, see the following ex-
ample:

1 { i v −> 2∗X[iv] | [0] <= iv < [n] s tep [2] ; i v −> X[iv] }

Starting from the left, an index vector is defined. This index vector can
either be defined with a specific dimensionality (by for example defining it
as [i] or [i,j] for a one- or two-dimensional array respectively), or it can
be left as a single variable, like it is in this example. In this case the SaC
compiler will try to infer the dimensionality of the index vector based on
its usage in the tensor comprehension. In this example, the index vector is
one-dimensional.

After the arrow comes the generator-expression. This expression defines
what the output values of the tensor comprehensions will become. In this
example, those output values are defined as the values of some vector X mul-
tiplied by two.

After the vertical bar comes the generator-range. This range determines
which values get changed according to the generator-expression. In this
example, the tensor comprehension ranges from zero to some value n. Ad-
ditionally, by defining a step, values can be skipped over. In this example,
by setting it to two, every second value will be skipped over. So only one in
every two values of X, up to n, will be multiplied by two.

Values which fall outside of the defined range get passed on to the next
generator-expression. For tensor comprehensions any number of generator-
expressions can be defined, but since this example is meant to illustrate
the way tensor comprehensions have been used for this BLAS implementa-
tion, only a single additional generator-expression is defined. This secondary
generator-expression also does not have a corresponding generator-range de-
fined, which means that the default range of every element of X will be used.
This way, this second generator-expression acts as a sort of fallback and all
remaining values will simply be left as their corresponding values in X.

8

2.5 Correctness

In order to ensure that the output of the routines in the SaC implementa-
tion is correct, output of the SaC routines, given various different inputs,
has been tested and compared against output from the reference implemen-
tation. Aside from slight accuracy differences on input vectors with sizes
larger than around 107 elements, the SaC implementation appears to per-
form correctly.

2.6 Optimisation

Since one of the goals of SaC is to offer high productivity, most of the
optimisation work is handled automatically by the compiler. Only select
few optimisations have been added by hand, which will be pointed out in
the subsections of the respective routines that these optimisations are used
in.

9

2.7 Routines

2.7.1 drotg

This routine performs preparatory work for a Givens rotation. A Givens
rotation is a rotation in the plane spanned by two coordinates axes.

The SaC implementation:

1 double , double , double , double drotg (double a , double b) {
2 i f (b == 0d) {
3 r = a ;
4 z = 0d ;
5 c = 1d ;
6 s = 0d ;
7 } e l s e i f (a == 0d) {
8 r = b ;
9 z = 1d ;

10 c = 0d ;
11 s = 1d ;
12 } e l s e {
13 sigma = tod (abs (a) > abs (b) ? s i gn (a) : s i gn (b)) ;
14 r = sigma ∗ s q r t (a∗a + b∗b) ;
15 c = a/ r ;
16 s = b/ r ;
17 z = abs (a) > abs (b) ? s : c == 0d ? 1d : 1d/c ;
18 }
19 re turn (r , z , c , s) ;
20 }

This routine is one of two routines, along with drotmg, that do not operate
on any vectors. For this reason, optimisation is not a concern. Instead the
focus is put into making the implementation as readable as possible.

2.7.2 drotmg

This routine also performs preparatory work, just like drotg, but this time
for a modified Givens rotation. The main difference is that the input and
output parameters are different.

The SaC implementation for this routine is too long to include here and
can be found on the aforementioned repository.

This is the other routine which does not operate on any vectors. Like-
wise, optimisation is also not a concern for this routine. However, in the
reference implementation, this routine is by far the longest out of all level
1 routines. Because of this, it turned out to be too difficult to significantly
simplify it for the SaC implementation.

10

One aspect that is simplified from the reference implementation however
is the use of control flow. In the reference implementation, many different
control flow constructions are used which cannot be replicated in SaC (for
example, early return statements out of if statements). Because SaC is a
purely functional language, there is actually no control flow[1]. The lan-
guage only allows for variables to be conditionally bound within if-else and
while statements.

Lastly, this routine is one of two routines that use the param parameter.
This routine sets up the parameter and returns it, and drotm takes it as
a parameter. The parameter is explained in more detail in the section on
drotm.

2.7.3 drot

This routine performs the Givens rotation, using values supplied by drotg.

The SaC implementation:

1 double [.] , double [.] drot (i n t n , double [.] X, i n t incx , double
[.] Y, i n t incy , double c , double s)

2 {
3 // expect s n > 0 , incx > 0 , incy > 0
4 re turn (
5 { i −> c∗X[i] + s ∗Y[(i ∗ incy) / incx]
6 | [0] <= i < [n∗ incx] s tep [incx]
7 ; i −> X[i]}
8 ,
9 { i −> c∗Y[i] − s ∗X[(i ∗ incx) / incy]

10 | [0] <= i < [n∗ incy] s tep [incy]
11 ; i −> Y[i]}
12) ;
13 }

This routine uses two tensor comprehensions, one for generating the output
X vector and the other for generating the output Y vector. Both tensor com-
prehensions use the same features explained in the example in section 2.4,
with x and y values being flipped between the two tensor comprehensions.

11

2.7.4 drotm

This routine performs the modified Givens rotation, using values supplied
by drotmg.

The SaC implementation:

1 double [.] , double [.] drotm (i n t n , double [.] X, i n t incx , double
[.] Y, i n t incy , double [5] param)

2 {
3 // expect s n > 0 , −2 <= param [0] <= 1
4 f l a g = param [0] ;
5 h11 = param [1] ;
6 h21 = param [2] ;
7 h12 = param [3] ;
8 h22 = param [4] ;
9

10 i f (n < 1 | | f l a g == −2d) {
11 X prime = X;
12 Y prime = Y;
13 } e l s e i f (f l a g < 0d) {
14 X prime = { i −> X[i]∗ h11 + Y[(i ∗ incy) / incx]∗ h12
15 | [0] <= i < [n∗ incx] s tep [incx]
16 ; i −> X[i] } ;
17 Y prime = { i −> X[(i ∗ incx) / incy]∗ h21 + Y[i]∗ h22
18 | [0] <= i < [n∗ incy] s tep [incy]
19 ; i −> Y[i] } ;
20 } e l s e i f (f l a g == 0d) {
21 X prime = { i −> X[i] + Y[(i ∗ incy) / incx]∗ h12
22 | [0] <= i < [n∗ incx] s tep [incx]
23 ; i −> X[i] } ;
24 Y prime = { i −> X[(i ∗ incx) / incy]∗ h21 + Y[i]
25 | [0] <= i < [n∗ incy] s tep [incy]
26 ; i −> Y[i] } ;
27 } e l s e {
28 X prime = { i −> X[i]∗ h11 + Y[(i ∗ incy) / incx]
29 | [0] <= i < [n∗ incx] s tep [incx]
30 ; i −> X[i] } ;
31 Y prime = { i −> −X[(i ∗ incx) / incy] + Y[i]∗ h22
32 | [0] <= i < [n∗ incy] s tep [incy]
33 ; i −> Y[i] } ;
34 }
35

36 re turn (X prime , Y prime) ;
37 }

This is the other routine that uses the param parameter. This parameter
is a vector consisting of a flag (called flag) and four values (called h11,

h21, h12, h22) which represent a 2x2 matrix. Despite the fact that this
parameter is of type double, the flag is only ever expected to be either -2,
-1, 0 or 1, and depending on the value of the flag, this routine changes which
values of the 2x2 matrix are used in the computation.

12

For this reason the routine has four different cases, three of which have
pairs of slightly different tensor comprehensions for both output vectors
and a fourth case for when the flag is equal to -2 where vectors X and Y

remain unchanged. This is particularly of note because in the reference
implementation, the case where the flag is equal to -2 gets checked first and
the case where the flag is equal to 1 is left as the else case. This means that
if the flag is equal to any value other than -2, -1 or 0, it will be treated as
1. This behaviour has been replicated in the SaC implementation.

2.7.5 dswap

This routine swaps values between vectors X and Y.

The SaC implementation:

1 double [.] , double [.] dswap (i n t n , double [.] X, i n t incx , double
[.] Y, i n t incy)

2 {
3 // expect s n > 0 , incx > 0 , incy > 0
4 re turn (
5 { i −> Y[(i / incx) ∗ incy]
6 | [0] <= i < [n∗ incx] s tep [incx]
7 ; i −> X[i]}
8 ,
9 { i −> X[(i / incy) ∗ incx]

10 | [0] <= i < [n∗ incy] s tep [incy]
11 ; i −> Y[i]}
12) ;
13 }

This routine is implemented in an identical way to drot; with a pair of
tensor comprehensions, one for each output vector. The only difference is
that this routine does not modify values of the input vectors in the generator-
expression. As mentioned in section 2.1, SaC allows for tuples of data to
be returned, which is how the swapping of X and Y is achieved here. Due to
the functional nature of SaC, it would not be possible to actually modify
the two vectors, so copies are returned here instead.

13

2.7.6 dscal

This routine performs scalar-vector multiplication (x := a ∗ x).

The SaC implementation:

1 double [.] d s ca l (i n t n , double a , double [.] X, i n t incx)
2 {
3 // expect s n > 0 , incx > 0
4 re turn { i −> a ∗ X[i]
5 | [0] <= i < [n∗ incx] s tep [incx]
6 ; i −> X[i] } ;
7 }

This routine is one, along with dnrm2, dznrm2, dasum and idamax, that
operates on a single vector. As a result the tensor comprehension used
here is simpler. It only multiplies the length parameter by the increment
parameter to get the right index of the input vector, then sets the step size
equal to the increment parameter.

2.7.7 dcopy

This routine copies values from vector X into vector Y.

The SaC implementation:

1 double [.] dcopy (i n t n , double [.] X, i n t incx , double [.] Y, i n t
incy)

2 {
3 // expect s n > 0 , incx >= 0 , incy > 0
4 re turn { i −> X[(i / incy) ∗ incx]
5 | [0] <= i < [n∗ incy] s tep [incy]
6 ; i −> Y[i] } ;
7 }

Since SaC is a functional language, vector Y is not actually modified and
instead a copy of the vector is returned by the routine.

14

2.7.8 daxpy

This routine performs scalar-vector multiplication, as well as vector-vector
addition (y := a ∗ x+ y).

The SaC implementation:

1 double [.] daxpy (i n t n , double a , double [.] X, i n t incx , double
[.] Y, i n t incy)

2 {
3 // expect s n > 0 , incx >= 0 , incy > 0
4 i f (a == 0d) {
5 r e s u l t = Y;
6 } e l s e {
7 r e s u l t = { i −> a ∗ X[(i / incy) ∗ incx] + Y[i]
8 | [0] <= i < [n∗ incy] s tep [incy]
9 ; i −> Y[i] } ;

10 }
11 re turn r e s u l t ;
12 }

The tensor comprehension used in this routine works exactly as explained
in section 2.4. The only other detail about this implementation that is
noteworthy is that a special case for when a = 0 was added, because in this
case the Y vector can be returned as is, since y := a ∗ x+ y = 0 ∗ x+ y = y.

2.7.9 ddot

This routine computes the dot product of its two vectors.

The SaC implementation:

1 double ddot (i n t n , double [.] X, i n t incx , double [.] Y, i n t incy)
2 {
3 // expect s n > 0 , incx >= 0 , incy >= 0
4 re turn sum({ i −> X[i ∗ incx] ∗ Y[i ∗ incy] | [0] <= i < [n]}) ;
5 }

The tensor comprehension in this routine does not need to change the step
size, because it does not iterate over either of its input vectors, instead it
generates an entirely new vector composed of values of both input vectors.

15

2.7.10 dsdot

This routine computes the dot product, just like ddot, but with extended
precision accumulation.

The SaC implementation:

1 double dsdot (i n t n , f l o a t [.] X, i n t incx , f l o a t [.] Y, i n t incy)
2 {
3 // expect s n > 0 , incx >= 0 , incy >= 0
4 re turn sum(
5 { i −> tod (X[i ∗ incx]) ∗ tod (Y[i ∗ incy]) | [0] <= i < [n]}
6) ;
7 }

This routine is identical to ddot, except that it takes two float vectors.
The values from these vectors are converted to double values, then multi-
plied together. This way, if there is a large difference between the orders
of magnitude of both elements, their product will produce a more accurate
result, due to the upgrade from float to double values.

2.7.11 dnrm2

This routine computes the Euclidean norm. The Euclidean norm is the in-
ner product of two vectors in Euclidean space.

The SaC implementation:

1 double dnrm2(i n t n , double [.] X, i n t incx)
2 {
3 // expect s n > 0 , incx > 0
4 re turn sq r t (sum(
5 { i −> X[i]∗X[i] | [0] <= i < [n∗ incx] s tep [incx]}
6)) ;
7 }

This routine, just like dscal, only operates on a single vector. However,
unlike dscal, the tensor comprehension in this routine does not specify
a secondary generator-expression, because without any other generator-
expression to fall back on, the output values will be set to zero, which is
actually what desirable here. The output of the tensor comprehension gets
summed afterwards, so zero values will not change the result in any way.

16

2.7.12 dznrm2

This routine also computes the Euclidean norm, but for vectors of complex
numbers.

The SaC implementation:

1 double dznrm2 (i n t n , complex [.] X, i n t incx)
2 {
3 // expect s n > 0 , incx > 0
4 X prime = { i −> X[i ∗ incx]
5 | [0] <= i < [n]
6 ; i −> zero ()
7 | i < [n∗ incx] } ;
8 re turn sq r t (sum(normSq(X prime))) ;
9 }

This routine works similar to dnrm2 in theory, but in the actual imple-
mentation there are many differences. Firstly, this routine uses a vector of
complex values. The complex datatype in SaC is defined as double[2],
which means an array with two values representing the real and the imagi-
nary components of the complex number. In the reference implementation
and in Fortran in general, complex values are defined in the same way.

Secondly, to correctly get the right elements from the input vector given
the increment parameter, an extra step is needed for this routine. This is a
tensor comprehension which generates complex zero values as a fallback. It
does this through the standard library function zero, which simply returns
an array with two values which are both zero. It does not matter that these
values are not removed altogether, because they all get summed afterwards,
so the zero values do not change the results, just like in dnrm2.

Lastly, SaC also has a function in its standard library for computing the
squared norm of an array of complex numbers, called normSq, which was
used in this implementation.

17

2.7.13 dasum

This routine computes the sum of absolute value of the given vector.

The SaC implementation:

1 double dasum(i n t n , double [.] X, i n t incx)
2 {
3 // expect s n > 0 , incx > 0
4 re turn sum(
5 { i −> abs (X[i]) | [0] <= i < [n∗ incx] s tep [incx]}
6) ;
7 }

This routine simply converts every element (taking the length and increment
parameters into account) to its absolute value, then sums every element
together. For this reason a secondary generator-expression was not required,
as the default value of zero can be used here.

2.7.14 idamax

This routine finds the first index of the largest absolute value.

The SaC implementation:

1 i n t idamax (i n t n , double [.] X, i n t incx)
2 {
3 // expect s n > 0 , incx > 0
4 max i = 0 ;
5 max v = 0d ;
6 i x = 0 ;
7 f o r (i = 0 ; i < n ; i++) {
8 cu r r en t v = abs (X[ix]) ;
9 i f (cu r r en t v > max v) {

10 max i = i ;
11 max v = cur r en t v ;
12 }
13 i x += incx ;
14 }
15

16 re turn max i ;
17 }

This routine is the only one which uses a for-loop in its implementation
instead of a tensor comprehension. This was done because tensor compre-
hensions compute their output values independently of each other, which
makes it difficult to know what the largest value is going to be. SaC does
have a max function in its standard library, but this function returns the
actual value instead of the first index, so it was not used in this routine.

18

Chapter 3

Performance Analysis

As mentioned in the introduction, several different variables have been in-
vestigated for the performance analysis:

1. Twelve out of the fourteen routines; Since drotg and drotmg do not
operate on vectors, their performance is in a different class from the
other routines and were therefore left out of the performance analysis.

2. Input size; The number of elements in the input vector(s).

3. Multi-threading; The number of threads that the program runs on.

4. Different values for the increment parameters.

5. Different compiler optimisations.

The system specifications of the machine on which the performance is mea-
sured can be found in appendix A.

19

3.1 Performance Quantification

To quantify the performance of the SaC implementation, the time taken to
run the routines is measured and from this data, two different results are
calculated: The number of floating point operations per second (flop/s) and
the number of reads and writes per second (memory bandwidth). These
results are calculated from formulas which are manually defined based on
the implementation of each routine. For example, in the implementation of
ddot:

1 sum({ i −> X[i ∗ incx] ∗ Y[i ∗ incy] | [0] <= i < [n]})

Here, the tensor comprehension will read a value from X and a value from Y,
then perform one floating point operation, then write the result to memory,
for all n elements of the vectors. This results in 2∗n+n reads and writes and
n flops. After the tensor comprehension is done, the results are summed,
which adds another n flops.

As a result of this method however, these calculated values do not take
potential compiler optimisations into account. For instance in the above
ddot example, it is assumed that the sum function will only be evaluated
after the tensor comprehension is finished. However, the compiler will most
likely combine these two operations into a single one which computes each
element of the tensor comprehension and then immediately adds it to the
partial sum. So for this thesis potential compiler optimisations are not taken
into account.

3.2 Optimised BLAS Library

The performance of every individual routine (except drotg and drotmg) is
compared against the performance of the same routine ran from an op-
timised BLAS library. Because the test system uses an AMD processor,
AMD’s optimised BLAS library, which is part of AOCL (AMD Optimizing
CPU Libraries), has been selected[6]. AOCL actually implements the BLIS
framework, but BLIS (BLAS-like Library Instantiation Software) is a super-
set of BLAS, so it implements every routine, uses the same interface and is
therefore fully compatible with BLAS.

The library comes with precompiled routines for use in both Fortran and C
programs. In order to make the comparison as fair as possible, the precom-
piled C-code is called from within the same SaC program which also calls
the native SaC routines. This is possible because SaC programs first get
compiled to C-code, which allows external C-code to be called from within
a SaC program.

20

3.3 Obtaining Performance Data

In order to obtain the performance data, both native SaC and AOCL rou-
tines are run from the same SaC program. Unless stated otherwise this
program is always compiled with the GCC compiler flag -ffast-math. This
flag cuts certain corners to speed the program up. It has been enabled be-
cause the optimised BLAS library likely cuts similar corners, so enabling
this flag should make comparisons fairer. The flag is explained further in
section 4.4. In a single run of the program, every data point for a given
routine is sampled 100 times to get an average in order to reduce variability
in the results.

Another measure that is taken to reduce variability is that CPU frequency
scaling has been disabled. CPU frequency scaling is a feature present in most
modern CPU’s which allows them to dynamically alter the clock frequency
of their cores. This does however cause the performance of the routines
to fluctuate in tandem with the clock speeds of the corresponding core(s),
which is why it has been disabled. Despite these measures the results still
show some variance. This is likely due to interference from other tasks that
are running in the background. If this is indeed the case then there is little
that could be done to reduce the variability further. The graphs show the
variance at each data point by means of a vertical bar (which indicates the
standard deviation from all 100 samples of that data point). The graphs are
explained at the start of the next chapter.

Another aspect worth mentioning is that during the measuring process, the
first time a routine is called, execution is slower than on subsequent calls.
This happens because during the first call, the input parameters have not
yet been loaded into the CPU’s cache and they need to be loaded from RAM
instead, which is referred to as cold cache. Then on every subsequent call
to the routine, the input parameters have already been loaded into cache,
which is referred to as warm cache. In this case the difference in performance
between the first and subsequent runs is about a factor of ten. However,
considering that every data point is sampled 100 times, this performance
difference of the first run is deemed insignificant and has not been filtered
out of the results (also, both native SaC and AOCL routines are measured
the same way, so this does not give either version an advantage).

Lastly, for testing the multi-threading, increment parameters and compiler
optimisations, the SaC program runs multiple times with different compiler
settings to gather all data. This most likely does not impact the results in
any way, but it should be mentioned just in case.

21

Chapter 4

Results

In order to accurately analyse the input size and multi-threading variables,
both variables needed their own type of graph. The remaining two variables,
increment parameters and compiler optimisations, did not need their own
type of graph, since these variables are binary. These two variables reuse
the graphs for input size. All graphs have been generated using Python’s
Matplotlib library.

(a) Input size (b) Thread count

Figure 4.1: The two types of graph

In figure 4.1 both types of graph are shown. Both types have their re-
spective variable plotted along the x-axis. The input size graphs have three
lines; a blue line for SaC in single-threaded mode, a green line for the opti-
mised BLAS library (AOCL) and an orange line for SaC in multi-threaded
mode (with eight threads). In the thread count graphs only a single line is
shown, which represents the SaC version. Both types of graphs have both
the flop/s and memory bandwidth plotted along the y-axis. The dswap and
dcopy routines only perform read/write operations, so for those graphs the
axis with flop/s has been left out. All graphs can be found in appendix B.

22

4.1 Input Size

For half of the tested routines, the performance of the SaC implementation
is on par with the AOCL implementation, as is the case in figure 4.2. Only
with ddot, dnrm2, dznrm2 and idamax did the AOCL implementation sig-
nificantly outperform the SaC implementation.

Figure 4.2: Example input size graph (drot)

For idamax, this performance difference is likely caused by the use of a
for-loop in the SaC implementation. For the other three routines it is not
entirely known why they perform so much worse. In the case of dznrm2
it might be related to the use of the complex datatype, as this is the only
routine which uses it. One feature that all three routines have in common
is that they call sum on the output of a tensor comprehension, but those are
not the only three routines that do this.

23

On the other hand, the SaC versions of dsdot and dasum actually out-
performed their AOCL counterparts. This is an unexpected outcome, since
both of these routines also call sum on the output of a tensor comprehen-
sion. Although it is also worth noting that for these two routines their
performance in the AOCL version is relatively worse than the performance
of the other AOCL routines. It is possible that these routines have not been
optimised as well as the other routines. However, since I do not have access
to the source code of the AOCL library, it is difficult to say for sure and
these routines will have to be considered optimised and the results have to
be taken as is.

Another detail that can be found in the results of every routine and happens
for both SaC and AOCL implementations is that past 2 ∗ 106 elements, the
performance drops considerably. This is most probably caused by the fact
that past this point, the input vectors no longer fit in L3 cache in their
entirety. The test system has 32 megabytes of L3 cache. Two vectors of
2 ∗ 106 elements each, each element taking up 8 bytes in memory (because
the double datatype takes up 8 bytes), would lead to 32 megabytes. This
calculation shows that this would be the limit on the size of the input vec-
tors before they no longer fit in L3 cache and thus explains the performance
drop in the graphs. Additionally, past this point the performance drops to
about 50GB/s in terms of memory bandwidth, which is about the same as
the bandwidth of the RAM on the test system. This also confirms that past
this point the input data no longer fits in L3 cache and is loaded from RAM
instead.

4.2 Multi-threading

Firstly, from the input size graphs (figure 4.2 and appendix B.1) it becomes
clear that the performance of the SaC version in multi-threaded mode only
gets better as the input size increases (until it no longer fits in the CPU’s
cache). This is because multi-threading always introduces overhead, since
dividing up the work and scheduling also takes time.

Also observable in the input size graphs is a drop in performance of the
multi-threaded version specifically at 200 elements. This is caused by a
SaC compiler flag, called -minmtsize. This compiler flag determines when
operations on arrays should actually start being multi-threaded. This is
done because the overhead of multi-threading makes it not worth using on
smaller sized arrays, as can be seen in the graphs right after it is enabled,
where the performance drops before gradually climbing back up again.

24

In regards to the thread count graphs; Initially it was intended for the
multi-threaded SaC performance to be compared against the multi-threaded
AOCL performance. However, after much trial and error I was unable to
get the multi-threaded AOCL library working as intended on my machine.
After installing the library and running the routines, they showed identical
performance to the single-threaded version and upon closer inspection, also
only used one CPU core. For this reason this comparison has been left out of
the thesis and SaC’s multi-threaded performance is only compared against
its single-threaded performance, as can be seen in figure 4.3 and in appendix
B.2. This does however still lead to some interesting findings.

Figure 4.3: Example thread count graph (drot)

All routines showed results similar results to the example shown in figure
4.3. The only exception to this is idamax, which performs entirely differ-
ently, due to the use of a for-loop, which do not get parallelised by the SaC
compiler. For all other routines performance generally scales linearly with
the number of threads. Also noteworthy is that as the number of threads
increase, so does the variability between the different samples.

25

The routines ddot, dsdot, dnrm2, dasum and idamax all have a perfor-
mance drop going from single-threaded to multi-threaded with two threads.
For idamax this is to be expected, since the implementation uses a for-loop.
For the other four routines however, it is unknown why this happens. They
do all have in common that they call sum on a tensor comprehension, but it
is not clear why this would cause a drop in performance here.

For every routine (except idamax), at eight threads, the performance ei-
ther does not increase as fast as it did before, or it even drops. This is due
to the fact that the test system only has eight physical cores. After that,
going from nine to ten threads, the performance increases once again, for
every routine (including idamax). It is not quite known why this happens.
For idamax this behaviour is even less explainable, because it happens de-
spite the fact that this routine is not parallelised. For the other routines
this behaviour past eight threads could be explained by hyper-threading.

26

4.3 Increment Parameters

Based on testing it turns out that these parameters only impact performance
when changed from one to a value higher than one (based on testing there
is no significant difference when going from two to three or from three to
four). As explained in section 2.3, this SaC implementation does not sup-
port increment parameters to be set to zero or lower, so this has not been
tested.

When an increment parameter is set to a value higher than one, it causes
performance to universally get worse and this goes for both the SaC and
AOCL versions, as can be in figure 4.4 and in appendix B.3). The only
exception to this is AOCL dasum, which performs the same. This perfor-
mance loss could be explained by the fact that when an increment parameter
is higher than one, instead of accessing the contiguous array in sequence,
values are skipped. It might be slower to access the array this way, instead
of accessing contiguous sequences of values at once.

(a) incx = 1, incy = 1 (b) incx = 2, incy = 2

Figure 4.4: Example increment parameter comparison (ddot)

27

4.4 Compiler Optimisations

Initially, it was planned for multiple compiler flags to be tested, but in the
end only -ffast-math has been tested. As mentioned before, this flag cuts
certain corners in order to speed up the program. These cut corners include
breaking compliance with the IEEE specification for floating point numbers
and making certain assumptions which allows the compiler to skip many
safety checks[7].

This flag only impacts the performance of ddot, dsdot, dnrm2 and dasum.
In all four cases it greatly improves the performance, as can be seen in figure
4.5 and in appendix B.4. It is unknown exactly why this is, but it might be
related to the fact that all four of these routines call sum on a tensor com-
prehension (a common pattern that has occurred a few times before already).

Additionally, this compiler optimisation also only appears to work in single-
threaded mode. One detail about the input size graphs that has not yet
been discussed is that in the graphs for ddot, dsdot, dnrm2 and dasum
(these can be found in appendix B.1), the performance of the SaC ver-
sion in multi-threaded mode at the start of the graph is actually worse
than in single-threaded mode. As explained in section 4.2, for vector sizes
smaller than 200 elements, the SaC compiler will (by default) not run the
operations multi-threaded. This means that the performance here in multi-
threaded mode is worse than in single-threaded mode, despite the fact that
in multi-threaded mode the array operations are computed single-threaded.
This anomaly can be explained by the fact that the -ffast-math compiler
flag does not work in multi-threaded mode. It is unknown why this is the
case.

(a) -ffast-math enabled (b) -ffast-math disabled

Figure 4.5: Example -ffast-math comparison (ddot)

28

Chapter 5

Conclusions

In terms of the three core design goals of SaC:

• High Performance: The SaC implementation performed comparable
to the optimised BLAS library in half of the tested routines. two
routines even outperformed this hand-optimised library.

• High Productivity: The SaC implementation has not been hand-
optimised at all. Nor were there any other low-level implementation
details to be concerned with.

• High Portability: The SaC implementation runs on single- & multi-
threaded CPU’s, GPU’s, clusters and more, while the reference imple-
mentation will only work on single-threaded CPU’s and the optimised
BLAS library will work only on supported AMD CPU architectures
(all with a single source code).

In conclusion, in regards to the level 1 BLAS routines, SaC definitely de-
livers on the promise of high performance.

As for future work, first and foremost would be further testing. Comparing
more compiler optimisations and comparing multi-threaded SaC to a multi-
threaded BLAS library have already been mentioned.

Another comparison that could be made is comparing the performance of
the SaC implementation with the performance of the Fortran reference im-
plementation. This was not done for this thesis, because the current per-
formance measurements of both the SaC and optimised library versions
are taken from within the same SaC file. This cannot be done for mea-
surements of the reference implementation, because SaC cannot call native
Fortran code. Therefore, it would require measurements to be taken from a
separate Fortran program. And for these measurements it would be much
more difficult to say for sure whether or not they can be directly compared

29

to the measurements taken from the SaC program (in terms of what kind
of time is measured among other aspects).

Another possible aspect to analyse is chaining multiple routines together.
Here SaC should start to outperform any optimised library, since the library
can only call optimised individual routines, whereas the SaC compiler might
be able to figure out more advanced optimisations when dealing with mul-
tiple routines. Some experimentation with this was done over the course
of this thesis, but it was concluded that this would introduce too many
variables (both in terms of number of chains and combinations of different
routines) to also cover here.

For figuring out the details in the performance analysis that were left unan-
swered in this thesis, it would be beneficial to investigate the assembly code
generated by the SaC compiler. This was also considered for this thesis,
but was ultimately also left out.

Aside from further testing, some routines of this implementation can likely
be optimised further. The implementation of drotmg can most certainly be
simplified to have less lines of code, which would improve readability. And
it might be possible to use a tensor comprehension in the implementation
of idamax, which would make it perform much better than it does now.

As mentioned in section 2.3, this SaC implementation does not allow for
the increment parameters to be negative. In the reference implementation
negative increment parameters allow the corresponding input arrays to be
traversed backwards. To implement this in the SaC version would require
an extra bit of code inside every routine that checks if one of the increment
parameters is negative and if so, either reverses the order of the correspond-
ing vector, or leads to a second tensor comprehension which traverses the
corresponding vector backwards. Either way it would add many extra lines
of code for functionality that is absolutely non-essential, since one can sim-
ply reverse the vector before and after calling the routine. For this reason
it has been left out of the implementation in this thesis.

Lastly, the level 2 and level 3 BLAS routines could be implemented next.
Due to the fact that these routines operate on matrices, which, unlike vec-
tors, are very difficult to optimise, it was decided that these were beyond
the scope of this bachelor’s thesis.

30

Bibliography

[1] Scholz, S.B., Herhut, S., Penczek, F., Grelck, C., Šinkarov, A. &
Viessmann, H.N. Single Assignment C Tutorial, March 2022. Ver-
sion 1.2.1, Retrieved from https://www.sac-home.org/_media/docs:

tutorial.pdf.

[2] Grelck, C. Single Assignment C (SAC): High Productivity Meets High
Performance. In V. Zsók, Z. Horváth, and R. Plasmeijer, editors, 4th
Central European Functional Programming Summer School (CEFP’11),
Budapest, Hungary, volume 7241 of Lecture Notes in Computer Science,
pages 207–278. Springer, 2012. Retrieved from https://www.sac-home.

org/_media/publications:pdf:2012_1.pdf.

[3] About SaC [SaC-Home]. Accessed April 6, 2023. https://www.

sac-home.org/index.

[4] Lawson, C.L., Hanson, R.J., Kincaid, D.R. & Krogh, F.T. Basic lin-
ear algebra subprograms for Fortran usage. ACM Transactions on
Mathematical Software (TOMS), 5(3):308–323, 1979. Retrieved from
https://dl.acm.org/doi/pdf/10.1145/355841.355847.

[5] Scholz, S.B. & Šinkarovs, A. Tensor comprehensions in SaC. In
Proceedings of the 31st Symposium on the Implementation and Ap-
plication of Functional Programming Languages, IFL ’19, New York,
NY, USA, 2019. ACM. Retrieved from https://www.sac-home.org/

_media/publications:pdf:tensor-comprehensions-ifl19.pdf.

[6] AMD. AOCL User Guide, November 2022. Revision 4.0, Re-
trieved from https://developer.amd.com/wp-content/resources/

57404_AOCL_v4.0_GA_UG.pdf.

[7] Free Software Foundation. Using the GNU Compiler Collection
(GCC). Retrieved from https://gcc.gnu.org/onlinedocs/gcc/

Optimize-Options.html.

31

Appendix A

System Specifications

These are the specifications of the test system on which all performance
measurements were taken:

• CPU: AMD Ryzen 7 7700x

– Zen4 architecture

– 5.5GHz max clock speed (single core load)

– 4.5GHz max clock speed (all core load)

– 8 cores / 16 threads

– Cache:

∗ L1: 512KB (32KB per core)

∗ L2: 8MB (1MB per core)

∗ L3: 32MB (L3 cache is shared between cores)

– AVX512 is supported

• Motherboard: Asrock x670e

• DRAM: 16GB DDR5 at 4800MT/s

– ∼50GB/s bandwidth

• Operating system: Ubuntu 20.10

• SaC compiler version 1.3.3-MijasCosta-705-g41ed2

• C compiler: GCC 12.2.0

• Optimised BLAS library: AOCL 4.0

32

Appendix B

Graphs

B.1 Input Size

33

34

35

36

37

38

39

B.2 Thread Count

40

41

42

43

44

45

B.3 Increment Parameters

46

47

48

49

B.4 Compiler Optimisations

-ffast-math enabled:

-ffast-math disabled:

50

-ffast-math enabled:

-ffast-math disabled:

-ffast-math enabled:

51

-ffast-math disabled:

-ffast-math enabled:

52

-ffast-math disabled:

53

