
Bachelor’s Thesis Computing Science

Developing a fallback decryption method
for Postguard

Esther Shi
s1021508

January 26, 2023

First supervisor/assessor:
Dr. Hanna Schraffenberger
h.schraffenberger@cs.ru.nl

Second assessor:
Prof. Dr. Bart Jacobs
b.jacobs@cs.ru.nl

Abstract

While the usage of email is ubiquitous, email encryption remains scarcely
adopted for a number of reasons, which range from difficulty of key man-
agement to a negative user perception of encryption. This thesis is centered
on Postguard, which offers end-to-end encryption (E2EE) for email via an
add-on that is available for Thunderbird and Outlook. Postguard also pro-
vides a fallback, an alternative option to decrypt emails for those without
the add-on. We extend the existing fallback by creating a functional proto-
type with additional features that improve usability. A usability inspection
is performed on both the current and the prototype fallback. We examine
the shortcomings of each fallback, and the improvements in the new fall-
back. Ultimately, we conclude that the new prototype fallback has useful
additions, but still retains usability issues. To this end, we provide recom-
mendations for future work that can further improve usability.

Keywords: email encryption, Postguard, usability study

Contents

1 Introduction 4

2 Preliminaries 6
2.1 A short overview of email and email encryption 6

2.1.1 Public-key cryptography 7
2.2 Why the adoption of email encryption is limited 9
2.3 Proposals for increasing email encryption adoption 14
2.4 Identity-based encryption (IBE) 15
2.5 IRMA . 17
2.6 Postguard . 20
2.7 Usability inspection . 21

2.7.1 Cognitive walkthrough 21
2.7.2 Heuristic evaluation principles 26

3 Evaluation of the current fallback 31
3.1 Explanation of the current fallback 31
3.2 Cognitive walkthrough . 35
3.3 Issues with the current fallback 37
3.4 Proposed solutions . 40
3.5 Deciding on a prototype . 44

4 Development of the prototype 45
4.1 Setup . 45
4.2 Decryption Page . 46
4.3 Email History Page . 51
4.4 Settings Page . 52

5 Usability inspection of the prototype 53
5.1 Usability inspection conclusions 59

6 Discussion 60
6.1 Current and new fallback . 60
6.2 Limitations . 61
6.3 Future work . 61

1

7 Conclusion 62

A Cognitive walkthrough of current fallback 69

B Cognitive walkthrough of prototype fallback 75

2

Acknowledgements

I would like to thank Dr. Hanna Schraffenberger for her invaluable guid-
ance, contributions, and support – without whom this thesis would not
have been possible. Many thanks go to Prof. Dr. Bart Jacobs for providing
his feedback and time. I would also like to extend my gratitude to Leon
Botros, who was an immense help with the practical part of my thesis and
contributed many suggestions. Another thank you to Onno de Gouw and
Laura Kolijn for taking part in the usability inspection. Finally, thank you
to Martan van der Straaten and Nadezhda Dobreva for proofreading.

3

Chapter 1

Introduction

Email is one of the most commonly used tools on the web. To give a sense
of scale, around 4.2 billion people worldwide use email services, and 306.4
billion emails are sent out daily (Statista, 2022), 45.37% of which are spam
emails (according to The Radicati Group Inc., cited in Moorthy (2022)).
Despite being the universal standard for private communication, email traf-
fic remains overwhelmingly unencrypted (Stransky et al., 2022).

To this end, Postguard1, which is developed by a team at Radboud
University, is introduced. Postguard is a tool that provides end-to-end en-
crypted email via an add-on, which can be installed for Thunderbird and
Outlook. For people who can not or will not install the add-on, Postguard
offers a fallback service for decryption. However, this substitute option has
rudimentary features and is inconvenient to work with. In this thesis we
develop a prototype fallback that includes more features and improves the
user experience.

Our research question is as follows:
“How to provide a better usability experience for the Postguard fallback

website?”

To support our research question, we have the following sub-questions:

• How good is the usability of the current fallback and where does it fall
short?

• How good is the usability of the newly developed prototype fallback,
and in which ways is this an improvement over the current fallback?

1https://postguard.eu/

4

https://postguard.eu/

In the preliminaries, we shall first give the necessary background infor-
mation for the thesis. Then, to answer our first sub-question: “How is the
usability of the current fallback and where does it fall short?”, we inspect the
current Postguard fallback website by applying two usability inspections: a
heuristic evaluation and a cognitive walkthrough. Based on the results of
these, we propose a list of features that we implement in a functional pro-
totype. After the functional prototype is developed, we answer our second
sub-question: “How is the usability of the newly developed prototype fall-
back, and in what ways is this an improvement over the current fallback?”
using the same usability inspection methods as before. We are interested in
whether our prototype actually improves the user experience. Finally, this
leads us to answer our initial research question.

5

Chapter 2

Preliminaries

In this chapter, we present the preliminary knowledge needed for the rest of
the thesis. First, we provide a short overview on the history of email and
email encryption. Then, we present findings from previous research that
clarify why the adoption of email encryption is so limited. Additionally, we
write out the proposals for how this can be improved. Following that, we
explain IRMA and Identity-Based Encryption, both of which are required
as they provide the foundation for Postguard. For analyzing the Postguard
fallback, we introduce two usability inspection methods.

2.1 A short overview of email and email encryp-
tion

The first email system was created in 1965 for IBM (Van Vleck, 2012). To
send a message, one would use the MIT computer to leave a message for a re-
cipient in their private ‘mail box’. This primitive system required the sender
and recipient to have access to the same machine, which could be achieved
through remote dial-up. Shortly afterward, in 1971, Ray Tomlinson would
go on to develop email communication over ARPANET (Spicer and Tom-
linson, 2016). ARPANET was a computer network developed by the United
States Government for academic and research purposes. In order to send an
email to a recipient, one had to denote the recipient’s username and the ma-
chine to send it to, specified in the now iconic format username@computer.
In these early days, email was mostly in use amongst researchers and aca-
demics (Leiner et al., 1997). In an effort to streamline email, Simple Mail
Transfer Protocol (SMTP) was developed in 1980. SMTP proposed spec-
ifications on the sending, receiving, and redirecting of email over servers.
These specifications are published in Request for Comments (RFCs), where
RFC 8211 pertains to SMTP. Email, and the internet, garnered widespread

1https://www.ietf.org/rfc/rfc0821.txt

6

https://www.ietf.org/rfc/rfc0821.txt

use in the 1990s following the invention of the World Wide Web in 1989
(Roser, 2018). The concern for email encryption arose as internet use be-
came mainstream. As a result, several implementations concerning email
security were developed. Before we elaborate on these, we must first pro-
vide a short explanation on public-key cryptography.

2.1.1 Public-key cryptography

Public-key cryptography is an asymmetric key encryption system that makes
use of a set of keys, a public key PK and a private key SK. Each user
possesses a combination of these keys. The PK is openly shared with others
while the SK remains known only to the user. Say Bob wants to send an
encrypted message C to Alice. He uses Alice’s public key PKAlice to do this:

C = M + PKAlice

If Alice wants to read Bob’s encrypted message, she uses her own secret key
to decrypt it:

M = C + SKAlice

In practice, the process of encryption and decryption involves a complicated
mathematical operation. However, for the sake of providing a simplified
explanation, we depict this with the ‘+’ operator.

Figure 2.1: Public-key encryption scheme (from Public-key cryptography
(2023)

In order to distribute the keys, public-key encryption needs a key man-
agement model. There are two distinct options for this: a decentralized
model and a centralized model (Huang, 2019).

7

The decentralized model operates via a distributed system. One data en-
cryption tool that uses this is Pretty Good Privacy (PGP), which operates
via a concept known as the ‘Web of Trust’. In this decentralized approach,
keys are verified among users, and the more verifications a key has by other
users it is in contact with, the more reliable a key is regarded as. Thus,
key management and the reliability that its owners are trustworthy are or-
ganized in a peer-to-peer fashion: users put their trust in the belief that
their ‘network’ (composed of other users) verifies the legitimate keys. This
naturally means that users need to actively extend their network to increase
their collection of verified keys, this is extra work that can be seen as a
disadvantage of the decentralized model.

The centralized model operates via a hierarchical system by using a con-
cept known as ‘Certificate Authorities’ (CA). When a CA signs a key, this
means that the key is legitimate and can be trusted by other users. There
are multiple layers of CAs, where the trust of each CA lies in the trust of
its superior CA. With this, users can verify the legitimacy of a key simply
by checking the respective CA. This is the model that is used by Secure
/ Multipurpose Internet Mail Extensions (S/MIME). One disadvantage of
the centralized model is that it is vulnerable to man-in-the-middle attacks
(Huang, 2019). In a man-in-the-middle attack, a malicious actor positions
themselves between two parties, both parties think they are directly com-
municating with each other, unaware that there is a third party listening in.
In the case of a centralized model, it is also possible for a malicious actor to
trick the CA into providing a rogue certificate. This is what happened with
the DigiNotar incident, which resulted in significant damage (Arthur, 2017).

It must be noted that both PGP and S/MIME only encrypt the body of
the email. Metadata, such as titles, senders, recipients, and dates, remain
unencrypted. Both PGP and S/MIME provide end-to-end encryption
(E2EE), which means that data is encrypted at the source and only de-
crypted at the destination.

8

2.2 Why the adoption of email encryption is lim-
ited

Despite email being so ubiquitous, email encryption is rarely adopted. Ac-
cording to a study at Hannover University, of the 81 million emails they
analyzed, only 0.06% were encrypted (Stransky et al., 2022). Yet, a study
conducted by Reuter et al. (2021) found that 66% of the participants con-
sidered secure email as important or very important. If users are aware of
the importance of encryption, then why is adoption still so low? Availabil-
ity itself does not seem to be the issue, as many email clients support tools
such as S/MIME and PGP, which enables the use of end-to-end encryption
(E2EE) (Farrell, 2009). According to findings from multiple studies, the
problems that hold people back can be summarized in the following points,
which will be elaborated on below:

• Usability of key management and key migration: Whitten and Tygar
(1999), Sheng et al. (2006), Garfinkel et al. (2005), Stransky et al.
(2022)

• Misunderstanding of encryption principles: LaFleur and Chen (2014),
Dechand et al. (2019), Renaud et al. (2014), Wu and Zappala (2018)

• Negative user perception of encryption: Dechand et al. (2019), Gaw
et al. (2006), Wu and Zappala (2018), Ruoti et al. (2013), Atwater
et al. (2015)

• Distrust of authority and companies in charge of encryption: Markoff
(1996), Greenwald (2013), Sanger and Perlroth (2015), Pop (2022),
Ritson (2018), Confessore (2018), Guild (2022), ProPublica (2021),
Doffman (2021), Reporter (2018), Brody and Bergen (2019), Chin
(2023), (Bai et al., 2017)

Usability of key management and key migration

The concept of key management is unintuitive to the regular computer user.
In the paper ‘Why Johnny Can’t Encrypt’ by Whitten and Tygar (1999),
12 participants were tasked with using the encryption tool PGP5. It was
demonstrated that getting people to understand and perform key manage-
ment was difficult. Only 4 out of 12 participants were eventually able to
sign and encrypt an email within the predetermined 90 minutes. Most par-
ticipants failed to complete the tasks within this time. Whitten and Tygar
(1999) noticed that participants had considerable difficulty with encrypting
the email with the correct keys, decrypting the received emails, and one par-
ticipant could not figure out how to encrypt at all. The researchers noted

9

that ‘failure to understand the public key model was widespread’. Par-
ticipants did not properly understand the difference between a public and
private key. Examples of this are participants only encrypting the email with
their own public key, or sending out emails to the entire team using only one
individual’s public key. Some participants also made catastrophic mistakes
by sending the secret email in plain text. Another problem was that users
were confused by the icons used to represent the private and public key, not
understanding which represented which.

In a similar study conducted by Sheng et al. (2006) on PGP9, it was
found that despite marginal improvements in key management, participants
still had significant problems. Users were not able to successfully perform
key verification. There was also a lack of user feedback, which denotes a
usability shortcoming. For example, it was not clear to the user whether
an outgoing email would be encrypted or signed. In a study by Garfinkel
et al. (2005), 58% of participants reported being unaware that they would
be unable to access their encrypted mail if their private key was lost.

Another problem with key management is the issue of key migration. If
users want to access their encrypted emails on multiple devices, which is
increasingly common in modern times, the decryption keys needed to unlock
the emails must also be available on all the devices that the user has. Many
people nowadays make use of multiple email clients. Because of the hassle
of key migration, using different email clients decreased the likelihood of
signing emails by 51.76% (Stransky et al., 2022).

Misunderstanding of encryption principles

Encryption is a foreign concept to the layman. This is apparent from multi-
ple studies. LaFleur and Chen (2014) noted that 44% of their surveyed par-
ticipants did not understand encryption, or felt no need to use it. Dechand
et al. (2019) reported that most of its participants had heard of encryption,
but people have misconceptions about the technical details. For example,
participants believed that SMS is more secure than Whatsapp, for the sole
reason that Whatsapp works via the internet (as opposed to SMS being cel-
lular) (Dechand et al., 2019). Participants also overestimate hackers, and
underestimate encryption, with the general belief that hackers are able to
break it eventually (Dechand et al., 2019). In Renaud et al. (2014), partici-
pants reported to be aware of email privacy issues, but they were unaware
that this is possible both on the mail server itself, and when the email is in
transit.

In a study by Wu and Zappala (2018), participants were interviewed on
their mental model of encryption. Wu and Zappala (2018) define a men-
tal model as ‘the representation of your thought process of how something
works’. Wu and Zappala (2018) made a number of observations.

10

Firstly, they observed that the mental model that people have of encryption
is that of symmetric cryptography. Most participants understand encryp-
tion as using something much like a key to ‘scramble’ a piece of text, and
also needing the same key to ‘descramble’ it. There were some participants
who did not understand that encryption would transform the data, in turn
describing that encryption was a way of hiding or obscuring a piece of in-
formation behind a barrier. These participants were largely unsure on the
strength of encryption, giving widely varying estimates on how long they
think it takes to break an encryption. Wu and Zappala (2018) noted that
participants correlated encryption strength with the capabilities of hackers.
For example, one participant thought encryption could not be that strong
as she saw in popular movies that hackers could easily break into places.
Wu and Zappala (2018) also noted that the existence of data breaches led
participants to believe that it must not be that hard for hackers to access
encrypted data.

Negative user perception of encryption

The aforementioned points have shown that misunderstanding of email en-
cryption hampers its usage. However, this does not seem to be the only
roadblock to widespread use. Studies also show that people view encryption
negatively. Dechand et al. (2019) interviewed a number of employees at an
anonymous company on their views of encryption. They report that, among
other reasons, people do not trust encryption and do not feel protected by
technology. These participants also do not feel that they are the target audi-
ence for email encryption. Additionally, while they understand in principle
why encryption is useful in certain cases, such as the exchange of medical
information, routine use of encryption is considered paranoid behavior (Gaw
et al., 2006). Participants in another study also believed that personal use
of encryption is reserved for illicit activity (Wu and Zappala, 2018). In both
Dechand et al. (2019) and Gaw et al. (2006), participants feel no need to en-
crypt their email traffic. From these papers, participants express sentiments
that external parties would not be interested in their correspondence. Even
if external parties were to be reading along, participants said that they would
not exchange information over email they were afraid of getting leaked. One
interviewee from the paper of Gaw et al. (2006) had written in a pamphlet:
“Some good advice: if you don’t want something you put in an e-mail to get
into the wrong hands, don’t write it in the first place.” Encrypted emails
were also seen as ‘more urgent’, prompting users to respond swiftly. Receiv-
ing encrypted emails with mundane information, such as a cooking recipe
or a newsletter, is seen as unnecessary and even irritating (Gaw et al., 2006).

11

Email encryption as such is still seen as an ‘extra step’ in terms of caution
(Gaw et al., 2006). Gaw et al. (2006) propose that ‘equating of encryp-
tion with confidentiality might disappear if encryption was invisible to the
user’. However, automating and hiding the process of encryption might also
result in confusion. Dechand et al. (2019) discussed Whatsapp, which has
enabled end-to-end-encryption automatically for all users since 20162. In
the interviews, participants reported not even being aware they were using
Whatsapp’s encryption feature, claiming that they had no idea what the
E2EE notification meant, or that they had to perform some action before
they could ‘activate encryption’. Another paper by Ruoti et al. (2013) tested
a number of participants on two email encryption systems: one which mostly
obscured the process of encryption, and another which showed its encryp-
tion steps explicitly. It was found that users had greater trust in a system
with manual encryption steps, and its added complexity did not hamper
usability.

In Atwater et al. (2015), it was found that one third of participants trust
a standalone encryption service over a service that provides its functional-
ity via a browser extension that integrates into a mail client. Participants
believe that ‘desktop applications are less likely to transmit their personal
messages back to the developer of the software’ (Atwater et al., 2015). How-
ever, these participants eventually preferred the integrated service because
of usability advantages.

Distrust of authority and companies in charge of encryption

There are valid reasons why there is distrust of authority and companies,
especially of those based in the United States. This is because the United
States and its US-based companies have garnered considerable controversy
regarding data protection and privacy.
After Phil Zimmermann’s encryption software PGP was leaked to the pub-
lic, he was investigated by the US federal government as his program was
classified as ‘munition’. The investigation was eventually dropped (Markoff,
1996). The famous whistleblower Edward Snowden revealed in 2013 that the
NSA had been surveilling US citizens without their knowledge or consent.
Lavabit, the email service used by Snowden, opted to shut down instead of
relinquishing its encryption keys to the US court (Greenwald, 2013). Levin-
son, the owner of Lavabit, issued a statement in which he said: “I would
strongly recommend against anyone trusting their private data to a company
with physical ties to the United States.” The National Security Agency
(NSA), the US intelligence department, advocates against encryption, ar-
gumenting that bad actors might use encrypted forms of communication to
organize their attacks (Sanger and Perlroth, 2015).

2https://faq.whatsapp.com/820124435853543

12

https://faq.whatsapp.com/820124435853543

Data protection laws in the United States are also more lax when com-
pared to Europe. While Europe has adopted the GDPR, the United States
tends to favor the company’s commercial interests when it comes to data
regulation (Pop, 2022).

Meta and Google together are coined the ‘digital duopoly’, as combined
they make up 84% of global digital media (Ritson, 2018). Both are also
US-based companies. Whatsapp, which is owned by Meta, provides end-to-
end encryption (E2EE) for its messaging service. To provide this feature,
it acts as the central key distributor (Bai et al., 2017). Apple also provides
EE2E for its messaging app3 using the same method. Acting as the central
key distributor carries a risk that the companies themselves can carry out a
man-in-the-middle attack on its users (Bai et al., 2017). In 2018, Facebook,
also part of Meta, garnered controversy for allowing Cambridge Analytica
to collect millions of users’ data without their consent (Confessore, 2018).
This is only the most significant scandal in Facebook’s long list of data
privacy breaches (Guild, 2022). Meta’s ownership of Whatsapp continues
to receive widespread media scrutiny, with publications questioning its user
monitoring process (ProPublica, 2021), and its data aggregation policies
(Doffman, 2021).

In 2018, it was revealed that Google had been tracking the location data
of an estimated 2 billion users even when explicitly told not to (Reporter,
2018). For this, Google paid a 392 million dollar fine. In 2019, Google’s
YouTube was exposed for breaching child privacy laws (Brody and Bergen,
2019). It had been collecting data on children under the age of 13 without
their parents’ consent. Google ended up paying a 170 million dollar fine.

Tangentially related, large companies are also often the target of data
leaks. In a long list of history’s largest data breaches, many of the largest
companies such as Yahoo, Microsoft, and Facebook, are included (Chin,
2023). One study conducted by Malwarebytes showed that distrust and pri-
vacy concerns of social media, such as Google and Facebook, were present
amongst all age groups (Umawing, 2019). All of this combined evokes le-
gitimate concern over the trustworthiness of these large companies being in
charge of and managing encryption.

3https://www.apple.com/privacy/features/

13

https://www.apple.com/privacy/features/

2.3 Proposals for increasing email encryption adop-
tion

Various studies made proposals they believe could increase the adoption of
email encryption. These can be summarized as follows, and are explained
below in short:

• Simplify key management: Stransky et al. (2022), Bai et al. (2017)

• Improve mental models of encryption: Dechand et al. (2019), Wu and
Zappala (2018)

• Normalize encryption through widespread adoption: LaFleur and Chen
(2014), Dechand et al. (2019)

• Improve usability: Smetters and Grinter (2002), Stransky et al. (2022)

Simplify key management

Since key management has proven to be a draconian effort, multiple studies
propose to simplify the process. In Stransky et al. (2022), participants noted
that they prefer to register their public keys on a public page and automat-
ically retrieve keys of recipients, over the effort of manual key management.
They also state that simplifying the key verification process by using a trust
on first use (TOFU) approach could help. Bai et al. (2017) concluded in
their research that participants preferred it when key distribution was taken
care of for them.

Improve mental models of encryption

In order to get more people interested in encryption, the often faulty mental
models that people have need to be improved (Dechand et al., 2019). Dec-
hand et al. (2019) note that developers should consider the mental models
that people have of encryption when creating a system. However, (Wu and
Zappala, 2018) point out that changing the mental models that people have
is not easy, and additionally, not sufficient to increase adoption. Wu and
Zappala (2018) propose that ‘improved risk communication is necessary’.
When explaining the importance of encryption, one must also focus on the
why. They give as example that one participant noted they would under-
stand the personal use of encryption as a means to protect oneself from a
corrupt government. It was previously mentioned that (Wu and Zappala,
2018) noted that participants understood encryption strength in terms of
the capabilities of hackers. Therefore, they recommend that it would help
to frame encryption strength in terms of attacker capabilities.

14

Normalize encryption through widespread adoption

LaFleur and Chen (2014) believe that widespread adoption of encryption
by companies will lead to other companies following in their footsteps. In
the study of Dechand et al. (2019), participants claim that they would make
use of encrypted messaging services if more people used them. However,
one must note that this is also a circular issue: in order for more people or
companies to adopt encryption, other people or companies must take the
first step.

Improve usability

Improving the usability of encryption systems is also important. Smetters
and Grinter (2002) propose that encryption systems should be re-designed
from the ground up with usability in mind. For instance, Stransky et al.
(2022) states that making use of color-coded messages for digitally signed
messages made ‘users significantly less susceptible to social engineering at-
tacks overall’.

2.4 Identity-based encryption (IBE)

Identity-based encryption (IBE) is an encryption scheme that mitigates
the inconvenience of key management in public-key encryption (Identity-
based encryption, 2022). See Figure 2.2 for a graphical representation of
the scheme. Implementations of IBE make use of a trusted third party
that controls a Private Key Generator (PKG). This PKG is in charge of
distributing and computing the necessary keys using a Master Public Key
(MPK) that it shares with users, and a Master Private Key (MSK) that
is kept secret. In IBE, the user’s public key is known as an ‘identifier’ ID.
This identifier is unique and can take on the form of any string, such as an
email address.

In an example adapted from Youngblood (2005), Bob has a message M
he wants to encrypt C and send to Alice. He first obtains a Master Public
Key from the PKG (MPKPKG). This MPKPKG is combined with the
identifier of the recipient, Alice (IDAlice), to create the encrypted email C:

C = M +MPKPKG + IDAlice

When Alice receives C, she must first authenticate herself to the PKG
that she is the owner of IDAlice. After successful authentication, she re-
ceives her private key SKIDAlice, which she uses to decrypt the message
into plaintext:

M = C + SKIDAlice

15

In practice, the process of encryption and decryption involves a complicated
mathematical operation. However, for the sake of providing a simplified
explanation, we depict this with the ‘+’ operator.

Figure 2.2: Identity-based encryption scheme (from Identity-based encryp-
tion (2022))

In IBE, the task of key management is delegated to the PKG, which centrally
distributes keys upon request. As a consequence, if the trusted third party
is compromised, so is the encrypted content. This is a risk of IBE.

16

2.5 IRMA

IRMA4, an acronym for ‘I Reveal My Attributes’, is an identity management
platform for the purposes of authentication and digital signing. Originally
developed at Radboud University, it is distributed via the Privacy by Design
Foundation5 and SIDN6. The platform is available as a mobile application.
IRMA can be regarded as a digital wallet that stores an individual’s personal
information, which are referred to as ‘attributes’ (See Figure 2.3). Exam-
ples of these attributes are an email address, phone number, date of birth,
or student identification. The attributes are provided by a number of veri-
fied instances known as ‘issuers’. In order to obtain an attribute, the user
must first prove that they possess it. Authentication of possession is avail-
able, among others, through a verification code or link, or through DigiD
(the identity management platform of The Netherlands). Currently, IRMA
is focused on providing authentication for Dutch credentials, but there are
plans for internationalization (IRMA in detail, n.d.).

IRMA is developed with two central principles in mind: privacy by design
and data minimization (IRMA in detail, n.d.). Privacy by design stipulates
that privacy is taken into account throughout the entire infrastructure of
a product, and is therefore not treated as an afterthought. IRMA achieves
this by informing the user about the attributes they possess and where they
were obtained from. Upon authentication, users are shown explicitly which
attributes they are sharing with external instances. Additionally, obtained
attributes are only stored on the user’s phone. This transparency encourages
users to be aware of their online privacy and gives them more control over
their data. Data minimization instructs that only the strictly necessary
information is exchanged, and nothing more.

4https://irma.app/
5https://privacybydesign.foundation/
6https://www.sidn.nl/

17

https://irma.app/
https://privacybydesign.foundation/
https://www.sidn.nl/

Figure 2.3: IRMA App with a number of attributes loaded in

To illustrate the benefits of using IRMA over conventional authentication
methods, we provide an example. Imagine there is a website that requires all
its users to be students. In conventional methods, the website will require a
user to log in with their educational institute’s email. However, this means
that the website gains more information than is strictly necessary – they not
only know that the user is a student, but they also know the university of
the student, and their name (as most such emails contain one’s full name).
Considering the data minimization principle, we want to prevent this.

Now imagine the case where this website has adopted authentication via
IRMA. The website requests that a user possesses the ‘student’ attribute.
In order for the user to authenticate themselves, they scan a QR code dis-
played on the website (Figure 2.4). After scanning, the user is notified which
attribute(s) they will be sharing with the website (Figure 2.5). In this case,
the student agrees to share with the website that they indeed possess the
‘student’ attribute. The website receives the information that authentica-
tion was successful, but no additional information (Figure 2.6). We can
now see that only strictly necessary information has been exchanged. A live
demo of the above example and similar ones can be found on the Privacy
by Design website7.

7https://privacybydesign.foundation/demo/

18

https://privacybydesign.foundation/demo/

Figure 2.4: QR code
that the user must
scan

Figure 2.5: asking
confirmation to user
whether they want
to disclose these at-
tributes

Figure 2.6:
Translation: Stu-
dent authentication
successful!

Next to authentication, IRMA also provides digital signatures. An in-
dividual can choose to digitally sign a product with certain attributes they
possess. For example, if someone receives a digitally signed email from their
doctor, they can scan the signature and confirm that the sender is indeed a
certified medical specialist. However, it is important to note that the scope
of the thesis is limited to the authentication aspect.

19

2.6 Postguard

Postguard provides end-to-end encryption (E2EE) for email and file sharing,
and it is being developed by iHub8 at Radboud University. Our focus lies
on its email encryption feature, which works via an add-on that is currently
available for Thunderbird and Outlook. Postguard makes use of Identity-
Based Encryption, thus Postguard also acts as the central key manager. As
mentioned in Section 2.4, IBE requires users to authenticate themselves to
prove that they are the rightful owner of an identity. Authentication is han-
dled by IRMA.

Postguard provides the ability to make users authenticate with multiple
attributes. Each unique combination of attributes requires separate authen-
tication to the PKG, in order to obtain the right key. For example, when
sending an encrypted email, the sender can mandate that its recipient is a
student and/or have a certain date of birth, and/or have a certain name.
When the recipient receives the email, they must prove that they possess all
the required attribute(s) by authenticating themselves via IRMA.

Sometimes, an individual is unable or unwilling to install the add-on.
This can be for various reasons, for example, they do not have Thunderbird
or Outlook, or their job restricts them from using it. In this case, Postguard
also provides a backup option called the ‘fallback’ that can be used to de-
crypt an email (Figure 2.7). The details of how the fallback works will be
discussed in detail in Section 3.1.

Figure 2.7: Postguard fallback website

8https://ihub.ru.nl/

20

https://ihub.ru.nl/

2.7 Usability inspection

Below, we describe two methods for conducting a usability inspection. Us-
ability describes whether a system is easy and intuitive for a user to navigate,
whether the information presented is clear, and whether users are encour-
aged to perform the tasks in the way that is recommended (Kruger et al.,
2020). Developing systems for usability is difficult. For example, it is easy
for experts to make assumptions that the general user would not understand.
It is also easy to forget that users have different preferences. Usability in-
spections can be conducted by different parties; they can be conducted by
experts or end users. Ideally, we would like to perform inspections with
both, but due to the time constraints of the thesis, we opted for experts.
We introduce two usability inspection methods: the cognitive walkthrough
and the heuristic evaluation principles. These aim to detect usability prob-
lems early on in the design process, so that amendments can be made more
easily.

2.7.1 Cognitive walkthrough

A cognitive walkthrough is a technique where domain experts evaluate the
usability of a system from the perspective of a new user (Polson et al.,
1992). A domain expert is someone who is familiar with the system at hand.
Examples of this can be a developer of the system, a UI/UX designer, or
someone who is knowledgeable in the field of usability, design, or psychology.
A new user is someone who encounters the product for the first time, and has
no prior experience with similar products. This technique aims to evaluate
whether such a user can, in an intuitive manner, navigate through the system
and carry out the tasks required of them. A cognitive walkthrough focuses
on the learnability of a system: “Learnability considers how easy it is for
users to accomplish a task the first time they encounter the interface and
how many repetitions it takes for them to become efficient at that task.”
(Joyce, 2019). Those who participate in the cognitive walkthrough shall be
referred to as ‘evaluators’.

Evaluator group

Instead of domain experts, our evaluators consist of three interns at Post-
guard (which includes the author of this thesis) who are familiar with both
the technical and UI concepts of Postguard. Ideally, we would have liked
to include the employees at Postguard, but because of resource and time
constraints, this was not possible.

21

Setup

The cognitive walkthroughs were conducted on both the current fallback and
the newly developed prototype fallback. These were conducted physically. It
must be noted that inspection of both the current and prototype fallback was
conducted in one session toward the end of the project. Due to scheduling
constraints, it was more efficient to reserve one session for the evaluation
so that all evaluators could be present. First, the concept of a cognitive
walkthrough was explained to all evaluators. Then, the evaluators were
given a physical sheet, called an evaluation form, seen in Figure 2.8. The
specifics of the evaluation method are described further below.

User personas

In order to immerse the evaluators in the perspective of a new user, we
employ user personas. User personas are fictionalized characters that have
their own skill-sets, preferences, and behaviors (Harley, 2015). Individual
traits and expertise greatly influence how a user understands the information
that is presented to them. For example, someone with little knowledge of the
Internet will have a much harder time navigating a technically dense system.
Therefore, it is important that we take these different user perspectives
into account, such that we do not make assumptions about knowledge and
behavior.

Below are the two user personas we employed for the cognitive walk-
through. Names are randomly generated and faces are taken from https:

//thispersondoesnotexist.com/

22

https://thispersondoesnotexist.com/
https://thispersondoesnotexist.com/

Sofia Burton

Burton is a 39 year old Fiscal lawyer. She has one child
and likes to spend her free time on practicing Judo and is
the chair of the local Book Club.
Preferences: Rarely uses the Internet outside of browsing
the news and checking her mail inbox.
Experience: Not experienced with the Internet.
Context: Uses Postguard because her friend sends her encrypted emails.

Richard Hastings

Hastings is a 22 year old Information Sciences student, with
a special interest in digital privacy. In his free time he likes
to play Dungeons and Dragons with his friends and does
the occasional DJ-gig.
Preferences: Uses social media and plays online games.
Experience: Tech-savy and experienced with the Inter-
net.
Context: Uses Postguard for his internship.

We intend to diversify the user personas such that they would have
different interests and specialties. For example, we can expect that Burton
is less adept at using the internet than Hastings. Someone like Burton is
also more likely to have difficulty with email encryption. For our cognitive
walkthrough, we focus on the less technically apt persona, Burton, as it is
important to us that the system is easy to use for a large public. In the
case of Hastings, we can expect that this user has an easier time navigating
complex interfaces, as they are more used to technology. However, we must
note that the system must also be intuitive for someone who is good with
technology, and not only focus on the technologically inept.

23

Evaluation method

To systematically evaluate the walkthrough, evaluators will review a number
of tasks that users are expected to carry out with the system. Each task
is broken down into the individual steps that must be carried out. An
evaluation form is used to systematically review each step, see Figure 2.8.
This form is taken from Salazar (2022), which is adapted from Wharton
et al. (1994). We explain the questions in the form using examples from an
email communication context.

The questions are as follows:

1. Will users try to achieve the right result?
Do users understand that the action (step) at hand is needed to reach
their larger goal?
Example: if a user needs to finish sending an email, they need to
understand they first need to click on the ‘send email’ button before
their email is sent over the network. If this is not made clear to users,
then they might be confused as to what the next step of their task is,
or they might not even be aware that they have yet to perform another
step to complete their task.

2. Will users notice that the correct action is available?
Is the interactive element that achieves the step visible or easily find-
able?
Example: if a user needs to finish sending an email, users need to be
able to find the ‘send email’ button in the first place. If this is not
clear, then users will not understand how to complete their task.

3. Will users associate the correct action with the result they’re
trying to achieve?
Even if the correct action is clear to the user, is the result also in the
form they expect? Or do they mistake it for something else?
Example: if a user needs to delete an email, they expect to find a delete
button somewhere next to the email. However, in the case a button
is unclear (for example, they don’t recognize the recycle bin symbol)
or in the case the label is misleading (for example, not properly dis-
tinguishing between archiving an email or permanently deleting one),
then users might be confused. This confusion can lead to users making
mistakes. For example, they might accidentally archive an email they
wanted to permanently delete.

24

4. After the action is performed, will users see that progress is
made toward the goal?
Is enough feedback presented to the user so they know that they have
made the right choice?
Example: if a user has clicked on the ‘send email’ button, they should
be clearly informed that the email has indeed been sent. One example
is by displaying a notification popup.

This evaluation form will be assessed for each individual step in the task. A
step is only successful if all questions are answered with ‘Yes’. An action is
only successful if all steps are answered with ‘Action success’.

Figure 2.8: Evaluation form for the cognitive walkthrough (from Salazar
(2022))

It is important to note that the IRMA flow is included in the cognitive
walkthrough for completion, but the focus of the thesis is not on the usability
of IRMA. Feedback on that front will therefore be limited. Some steps in
our task flow will also be skipped to prevent repetition. For example the
steps such as opening or reading the email, setting up and authentication of
IRMA, are only presented once.

25

2.7.2 Heuristic evaluation principles

A heuristic evaluation is, as defined by Nielsen and Molich (1990) “an in-
formal method of usability analysis where a number of evaluators are pre-
sented with an interface design and asked to comment on it.” There are
multiple methods for conducting a heuristic evaluation, we will be using the
10 principles developed by Nielsen (1994) and the design principles for ac-
tual security developed by Brandon et al. (2022). In our case, we use these
heuristic evaluation principles in order to better identify and categorize the
usability issues on both the current and new fallback websites.

Nielsen’s heuristics

When designing a system, Nielsen and Molich (1990) noted that developers
had difficulty following the many design and usability guidelines that already
existed. They proposed to condense and categorize these guidelines in a
small set of principles that would be easier to evaluate.

Heuristic evaluations are preferably conducted by a small group of eval-
uators, ideally 5 (Nielsen and Landauer, 1993). Adding more evaluators
did not significantly improve the number of problems found (Nielsen and
Landauer, 1993). The list of heuristics we used and their descriptions are
adapted from Nielsen (2020), which are in turn based on Nielsen (1994). We
explain each heuristic using general examples.

1. Visibility of system status
The system should always keep users informed about what is going
on, through appropriate feedback within reasonable time.
Example: if a user needs to fill in a long form, they should be kept up
to date on how many pages and/or questions are left until they are at
the end of the form. This keeps users updated on how far they are in
the process.

2. Match between system and the real world
The system should speak the users’ language, with words, phrases
and concepts familiar to the user, rather than system-oriented terms.
Follow real-world conventions, make information appear in a natural
and logical order.
Example: users should not have to read industry specific terms, also
known as jargon. An example of jargon might be the word ‘cache’.
While it is easy for tech-savy people to understand, the general public
might not know what this word means.

26

3. User control and freedom
Users often choose system functions by mistake and will need a clearly
marked ‘emergency exit’ to leave the unwanted state without having
to go through an extended dialogue. Support undo and redo.
Example: if a user has accidentally removed an email they did not
want to remove, they should be easily able to restore it from their
trash bin. The trash bin should be easy to find for the user and not
hidden behind redirections or layers of pages.

4. Consistency and standards
Users should not have to wonder whether different words, situations,
or actions mean the same thing. Follow platform conventions.
Example: it is important to stick to the same term on the same web-
site. There might be multiple synonyms for the word ‘send’, such as
send, compose, create, etc. A system should not use ‘send a message’
for sending a message on one page, but then use ‘compose a message’
on another page.

5. Error prevention
Even better than good error messages is a careful design which pre-
vents a problem from occurring in the first place. Either eliminate
error-prone conditions or check for them and present users with a con-
firmation option before they commit to the action.
Example: if users want to delete all their messages at once, they should
be presented with a confirmation button, such as ‘Are you sure you
want to delete all your messages?’ It is easy to make a mistake when
clicking a button, so for important decisions it is better to ask to
confirm.

6. Recognition rather than recall
Minimize the user’s memory load by making objects, actions, and
options visible. The user should not have to remember information
from one part of the dialogue to another. Instructions for use of the
system should be visible or easily retrievable whenever appropriate.
Example: if a user needs a tutorial on how to navigate a site for
the first time, it is better to break the tutorial down in individual
steps instead of presenting them with a long list of explanation in one
go. Whenever a user encounters a feature for the first time, a popup
window appears to explain the feature to them. This results in an
easier learning experience and does not overwhelm the user.

27

7. Flexibility and efficiency of use
Accelerators – unseen by the novice user – may often speed up the
interaction for the expert user such that the system can cater to both
inexperienced and experienced users. Allow users to tailor frequent
actions.
Example: if an action is used often, a system can provide keyboard
shortcuts.

8. Aesthetic and minimalist design
Dialogues should not contain information which is irrelevant or rarely
needed. Every extra unit of information in a dialogue competes with
the relevant units of information and diminishes their relative visibility.
Example: do not provide more images, colors, and/or styles than is
needed. Too many decorations can overwhelm and distract a user.

9. Help users recognize, diagnose, and recover from errors
Error messages should be expressed in plain language (no codes), pre-
cisely indicate the problem, and constructively suggest a solution.
Example: if a user misspells a word in a text box, they should be
presented with a suggestion of the correct word.

10. Help and documentation
Even though it is better if the system can be used without documen-
tation, it may be necessary to provide help and documentation. Any
such information should be easy to search, focused on the user’s task,
list concrete steps to be carried out, and not be too large.
Example: if a user is navigating a new social media site for the first
time, they are provided with a step-by-step guide on what the different
buttons, pages, and terms mean.

28

Design Principles for Actual Security

It must be noted that Nielsen’s set of heuristics apply to a broad range of
systems and thus do not have security in mind specifically. For this reason,
we use the 6 design principles for actual security developed by Brandon
et al. (2022). They argue that some systems diminish actual security in
favor of ease of use. Brandon et al. (2022) defines actual security as “the
security provided by a system in practice, determined by (1) the security of
the underlying technologies, and by (2) the extent to which users adopt the
intended secure behavior”. We explain each principle using examples from
an email communication context.

1. Consider Consequential Insecure Behavior
Users should be prevented from making insecure decisions, and enough
information should be provided to guide users to make the most secure
decisions. The system should also be sufficiently usable such that users
will not try to create workarounds or avoid the system altogether.
Example: if a user needs to fill in their password every time they
need to send an email, this could lead them to pick out a very simple
password, just so that they can avoid having to type out a difficult
password multiple times.

2. Enable the Intended Secure Behavior
The system should make the secure flow as seamless as possible and
provide good feedforward that is intuitive to users.
Example: the secure behavior should not be hidden or hard to find for
the user. If a user wants to encrypt their email, the ‘encrypt’ button
should be easily visible to the user as they are writing the email. It
should, for example, not be hidden behind multiple tabs.

3. Prevent Insecure Behavior
Good UI/UX design and restrictions should be employed to prevent
users from making insecure decisions.
Example: using warning labels and color coding for messages and
buttons.

4. Explain the Intended Secure Behavior
Users should be required to make as little effort as possible to under-
stand what is expected of them. Adding explanations gives the user a
feeling of control and makes them more likely to put in effort.
Example: if a user is writing an email, and they are presented with the
option to encrypt or digital sign their message, the system should also
explain to users what these terms mean. Otherwise, they are more
likely to skip the option altogether because they do not know what
the result is.

29

5. Reduce Social Obstacles and Resistance, and Create Trust
Users should be motivated to display secure behavior. Some ways to
reduce social obstacles are to 1) build common ground, 2) address
shared responsibility, and 3) make the security action a fun and coop-
erative activity through gamification.
Example: one way to create trust is to show to the user that an email
has indeed been decrypted, for example by showing that only an en-
crypted ciphertext of the email is sent out.

6. Support Awareness, Recall, Remembering and Secure Habit
Formation
Users should explicitly be made aware of security features so that they
remember them. The secure behavior should include some friction and
be distinct.
Example: it should be clear to a user when they have chosen to encrypt
an email. For example, by giving encrypted emails a different color,
symbol, or label, that distinguishes it from unencrypted emails.

30

Chapter 3

Evaluation of the current
fallback

In this chapter, we first explain how the current Postguard fallback website
works. Secondly, we perform a cognitive walkthrough. Thirdly, we inspect
the issues the current fallback has with the help of the usability heuristics.
We then propose a number of solutions that can be used to patch the afore-
mentioned issues. From this, we decide upon a blueprint of the prototype
which will be developed in Chapter 4.

3.1 Explanation of the current fallback

When a user receives an email that has been encrypted by Postguard, they
are given two options to view the content. The first option is to make use
of the Postguard add-on1. This is also the option that is recommended by
Postguard as it will make future encrypted correspondence easier. However,
Postguard provides a fallback option for users who do not or can not install
the add-on. The fallback is located on the Postguard website, thus it needs
to be accessed via the browser. While the Postguard website itself is built
in Svelte, a modern and high-performance frontend framework, the fallback
is embedded as an iframe and written in Rust.

Firstly, an explanation of how the current fallback methods works:

1. The user receives an encrypted email.

2. The e-mail contains an attachment with the encrypted content, which
they must download.

3. The attachment is selected on the fall-back website.

1https://postguard.eu/#addons

31

https://postguard.eu/#addons

4. If the email contains multiple recipients, the user is prompted to select
their own email.

5. The user authenticates themselves by scanning a QR-code with the
IRMA app.

6. If the authentication is successful, the attachment is decrypted and
they can read the plaintext email.

When a user is sent a Postguard encrypted email, they are first given
information on what Postguard is, and how to decrypt the email (see Figure
3.1).

The current design of the fallback consists of a label prompting users to
download the ‘postguard.encrypted’ attachment they received in the email,
and to add it in the filepicker box underneath. See Figure 3.2 below. It
is important to note that at no point the contents of the file are uploaded
to any server, even though the appearance of a file picker might suggest
otherwise.

Once the encrypted file is added, the file is first checked for the number
of recipients. If there are multiple recipients, the user is prompted to select
which email belongs to them, as seen in Figure 3.3. This step is necessary as
the fallback is unable to detect what the email of the user who is requesting
the decryption is. Then, the user is prompted to authenticate themselves
via the IRMA app. All the attributes must match precisely for successful
authentication. After authentication, the decrypted email is displayed, as
seen in Figure 3.4.

This is the extent of the features in the current fallback.

32

Figure 3.1: User receives an email from Postguard informing them they have
been sent an encrypted email

33

Figure 3.2: Current fallback page

Figure 3.3: If an email has
multiple recipients, the user
must select their own email

Figure 3.4: The decrypted
email is displayed

34

3.2 Cognitive walkthrough

For the current fallback, we evaluate the following task:
Task 1: Download the encrypted file and decrypt it.

A visual guide to all the steps of this task can be found in Appendix A.

Task 1: Download the encrypted file and decrypt it

1. Download the encrypted file and decrypt it

2. Click on the link in the email for people without an add-on

3. Upload the postguard.encrypted file

4. Install the IRMA app from the App Store

5. Open the IRMA app

6. Navigate to ‘Adding cards’

7. Choose ‘email address’ and click on ‘Add’

8. Fill in your email address

9. Click on the confirmation link in the email you received

10. Scan the QR code with the IRMA app

11. Fill in the pairing code

12. Click on ‘Yes’

13. Scan the QR code on the fallback website

14. Click ‘Yes’

15. View decrypted email

After evaluating the steps, we conclude that all steps are successful.
However, there are a number of usability remarks.

At step 3, the file picker insinuates that the file will be uploaded to some
server. This is not the case. Nielsen (1994)’s 10th heuristic suggests that
it is good to provide help and documentation to the user when needed. It
is advised to add explanation for the user that all the decryption happens
on the client-side, and the website will not be able to see the encrypted nor
the decrypted file. The label of the file picker could also be refined. Instead
of the label being named ‘Choose File’, it is advised to make the command
more explicit by titling it ‘Choose file you want to decrypt’.

35

Additionally, if a user wishes to remove a file, an explicit remove file button
should be present. This is in line with Nielsen (1994)’s 3rd heuristic: user
control and freedom. If users make a mistake, they should be presented with
a clear option to undo their choice.

After the user has picked their encrypted file, an IRMA QR code pops up.
However, IRMA will be unfamiliar to a new user. Extra information about
IRMA should be presented (again, Nielsen (1994)’s 10th heuristic: Help and
documentation). The system wrongfully makes the assumption that they are
familiar with the IRMA app. We are aware that information on IRMA is
included in the email, but the user might have already forgotten this by the
time they are on the site. It is possible to only display the information when
the user needs it, for example, by adding an information symbol that the
user can choose to click on.

36

3.3 Issues with the current fallback

In addition to the issues identified after the cognitive walkthrough, we also
identified a number of bigger problems with the current fallback that hamper
its usability. This was executed via an informal inspection by navigating the
site. In order to improve on the current fallback we must first analyze its
shortcomings. With the help of the usability heuristics, and through internal
discussion with the Postguard development team, we identify a number of
issues. It is important to note that for identifying the issues, we take into
account the perspective of a user who must use the fallback regularly. With
regularly, we define that they must decrypt multiple emails per day with the
fallback.

We then label the issues with a priority-indicator, which can be one of
{High, Medium, Low}. The weights of the priorities are defined as follows:

• High: this is an issue that makes the fallback near-unusable because
the usability concerns make the process incredibly complex for the
user.

• Medium: this is an issue that makes the process inconvenient for the
user.

• Low: this is an issue that only slightly inconveniences the user, but it
does not affect usability that much.

Issue 1: Downloading the attachment

The user receives an email with an attachment. They have to save this
attachment somewhere on their device where they can find it (such as the
downloads folder), and then select the attachment on the fallback website.
This entire process is cumbersome. Downloading an attachment is particu-
larly inconvenient on a mobile device, as they have a less sophisticated file
manager compared to a computer. Prompting users to save an attachment
that might be foreign to them breaks one of the ‘Design Principles for Actual
Security’ by Brandon et al. (2022). Namely, it breaks ‘Design Principle 1:
Consider Consequential Insecure Behavior’. The email wrongfully encour-
ages users to download an attachment they are most likely unfamiliar with.
Users should instead be warned to distrust unknown attachments, especially
those with uncommon extensions such as ‘.encrypted’. Attachments are also
often associated with malware. All of this combined makes downloading an
attachment an issue that hampers both usability and security.

37

Issue 2: Re-authentication with IRMA

If you use Postguard via the add-on, the add-on caches the IRMA cre-
dentials for a certain period. This means that the user does not need to
re-authenticate every time they open a new email, given that the requested
credentials are identical and not more than one day has passed.

However, the fallback has no such caching feature, which means that the
IRMA app is needed to authenticate every session. Performing the IRMA
authentication step every time one needs to decrypt an email is cumbersome.
As a consequence, this complication is so severe that it breaks ‘Design Prin-
ciple 1: Consider Consequential Insecure Behavior’. Users would encourage
others not to make use of Postguard’s encryption so they do not have to
make the effort of using the fallback. In the worst case, people would prefer
not to use encryption so as to not inconvenience their recipients, or their
emails would simply not get read anymore.

Issue 3: Accessing previously decrypted emails

Once the email has been decrypted, the fallback provides no way to store
it. This means that the user cannot read, search, reply to, or forward
their previously decrypted emails. In short, most, if not all facets of a
regular email correspondence become impossible. As a result, if the user
wants to revisit their emails, they must store it somewhere on their device.
Users are thus unintentionally led to save their plaintext emails in Word
documents, or somewhere on the cloud, which could expose them to a data
leak in case of a security breach. This shortcoming breaks Brandon’s ‘Design
Principle 3: Prevent Insecure Behavior’. If users store their plaintext email
correspondence in unsafe locations, this nullifies the purpose of encrypting
them via Postguard in the first place.

Issue 4: Inability to reply to email

Another issue that becomes apparent is that once the email is decrypted,
users are unable to directly reply. If they want to reply, they need to manu-
ally compose an email to the sender’s email address. As a result, most people
would also copy-paste the contents of the decrypted email to provide con-
text to the recipient. Users cannot respond with an encrypted email from
their own email address as this requires the functionality of the add-on.
This results in similar problems as presented in Issue 3, which is that people
are encouraged to perform insecure behavior that nullifies the purpose of
Postguard.

38

Issue 5: Inability to access emails on multiple devices

One last identified issue is that users cannot access their previously de-
crypted emails on multiple devices. Most people use at least both their
computer and mobile phone for email communication, and it is inconvenient
to be reliant upon one device.

Problem Priority Explanation

1: Downloading attachment Medium Having to download an attachment results
in extra work. This is especially inconve-
nient on mobile devices.

2: Re-authentication with
IRMA

High Having to re-authenticate oneself every
time one wants to read an email can
quickly become a great annoyance.

3: Accessing previously de-
crypted emails

High Not being able to read previous emails, or
having to save them elsewhere, can be con-
sidered a quite significant overhead for the
user and can also lead to insecure behav-
ior. It is also a central feature of emails to
be able to read them back.

4: Inability to reply to email Low While inconvenient, this is not a must-
have for usability.

5: Inability to access emails
on multiple devices

Low While inconvenient, this is not a must-
have for usability.

39

3.4 Proposed solutions

Now that we have evaluated the current fallback and detected the various
issues, we move on to evaluating the potential solutions. These solutions
are the combined effort of suggestions made by the supervisor Dr. Hanna
Schraffenberger, the Postguard team, and the author of this thesis. Each
solution solves a different subset of the aforementioned issues, and might
present new issues of their own, which will be described.

Solution 1: Forward decrypted email after authentication

This is a proposal to solve Issue 1: Downloading the attachment.
The idea of this solution is that once the user has authenticated themselves
on the fallback, the decrypted content is sent via an email to the user.
The decrypted content would need to be sent from an email address that is
controlled by Postguard. However, this solution presents a glaring problem:
in order for the user to receive the decrypted email, the plaintext content is
sent over insecure means. This nullifies the purpose of using Postguard in the
first place. Another disadvantage is that this adds overhead for Postguard,
as it becomes responsible for sending out every decrypted email. To add,
this solution has been implemented by TweedeGolf in an earlier prototype,
but has been discarded because of the aforementioned disadvantages. Due
to this, Solution 1 is not recommended.

Solution 2: Place encrypted email in URL

This is a proposal to solve Issue 1: Downloading the attachment.
Postguard can include the encrypted email content in a URL, which will
be presented to the user in the form of a link. The format of the URL is
composed of a referrer to the fallback site, concatenated with the encrypted
email in Base64 format:

postguard.eu/decrypt#encrypted={encrypted_email_in_base64}

In a URL, everything that is placed after the hash symbol # does not
get sent to a server. This means that the contents of the encrypted email is
processed entirely client-side, preserving privacy. By clicking on the link, the
user is redirected to the fallback site, which detects the encrypted content,
and can then be prompted to decrypt this after successful IRMA authenti-
cation.

However, there are two problems with this approach. Firstly, there are
limitations to the maximum length that a URL can be. This presents a
problem as large emails, such as those including attachments, can quickly
result in a URL length that exceeds this maximum. It is advised that URLs

40

be no longer than 2,048 characters2 if one wants them to be functional in
most popular browsers. However, this advice only holds for the section
of the URL that is sent to servers. As we mentioned before, the content
of the URL placed after a hash symbol # is ignored by the server, giving us
more leeway. Different browsers handle different such limits. By conducting
an analysis of some of the most popular browsers, the following results were
found:

• Chrome: 512KB

• Firefox: 512KB

• Safari: up to 10MB or even higher. It seems that Safari does not
impose a fixed limit.

In the case of Safari, it must be noted that a URL of 10MB slows down
the site enormously, resulting in a load time of more than 10 seconds. This
is very slow for internet speed. Therefore, while technically possible, it is
strongly discouraged to operate with URLs of this size.

The average size of an email is 75KB (Tschabitscher, 2021), thus it is
viable to use the URL approach in most cases. We should also consider that
the maximum email size that Gmail allows is 25MB. If an email is larger,
Gmail will prompt you to make use of Google Drive to transfer your attach-
ment instead3. It should be noted that Postguard also offers an encrypted
file sharing solution4 for files up to 2GB, which should be plenty for most
cases. It can thus be argued that, in the case that a user needs to include a
large attachment, they should make use of Postguard’s file sharing feature
instead. It is also possible for Postguard to implement a feature that au-
tomatically converts a large attachment into Postguard’s file sharing link,
facilitating a good user experience. In short, while URL limitations present
difficulty with attachments, there are workarounds that are feasible.

The second problem is, while this solution takes care of Issue 1, it intro-
duces a security concern, namely encouraging users to click on links. Ac-
cording to ’Design Principle 1: Consider Consequential Insecure Behavior’,
users should not be taught insecure behavior. Especially in this case, when
we have a very long link with unreadable encrypted content, which should
alert the user. However, this disadvantage can be mitigated as Brandon
et al. (2022) suggest to accompany links with a warning text. This text ex-
plains what the URL contains and cautions users to never just click on links
without examining its content. While this does not completely make up for
the insecure design, it can be considered a decent compromise, especially as
it avoids the hassle of downloading an attachment.

2https://www.sitemaps.org/protocol.html
3https://support.google.com/mail/answer/6584?hl=en&co=GENIE.Platform%3DDe

sktop#zippy=%2Cattachment-size-limit
4https://postguard.eu/#filesharing

41

https://www.sitemaps.org/protocol.html
https://support.google.com/mail/answer/6584?hl=en&co=GENIE.Platform%3DDesktop##zippy=%2Cattachment-size-limit
https://support.google.com/mail/answer/6584?hl=en&co=GENIE.Platform%3DDesktop##zippy=%2Cattachment-size-limit
https://postguard.eu/##filesharing

Solution 3: Include decryption module in e-mail

This is a proposal to solve Issue 1: Downloading the attachment.
Postguard can send the encrypted email and the decryption module as at-
tachments. The decryption module is a few kilobytes in size. The user can
download the decryption module and use this to decrypt the email.
However, the disadvantage is that the size of the decryption module is an
overhead for email traffic, the module itself is only a few kilobytes, but this
scales as large volumes of email are sent out, which makes this option less
practical.

Solution 4: Copy paste content

This is a proposal to solve Issue 1: Downloading the attachment.
Instead of Postguard sending the encrypted email as an attachment, it can
include it in the email body itself. Users will have to copy-paste this ci-
phertext from the email to the fallback website and authenticate as usual to
read the content. There are some concerns when it comes to displaying the
entire encrypted content for the user to see. Firstly is the issue of length.
As emails can run very lengthy, so can the resulting encrypted content. This
means that the body of the email can become very large, and the user would
have to manually copy all of this text. While not infeasible, it does hamper
usability. For those on mobile, copying large bodies of text is even more
difficult. Secondly, the presence of encrypted text can intimidate a user.
When the content is sent as a file, the encryption acts largely as a black
box, the user needs only to download the file, they do not need to know
or understand what is in it. In this approach, we must explain to the user
that what they are copying is their email, but encrypted. One argument in
favor of this approach is that it offers more transparency to the user. The
study of Ruoti et al. (2013) supports this argument, as users preferred the
encryption tool where the encryption steps were performed explicitly.

Solution 5: Cache emails and IRMA credentials on fallback

This is a proposal to solve Issue 2: Re-authentication with IRMA.
The fallback site can cache the IRMA authentication like the Postguard add-
on does. As explained in Section 2.6 in the preliminaries, every combination
of credentials is unique. When the site requests authentication via IRMA,
a JSON Web Token (JWT) is returned in case of successful authentication.
This JWT is valid for a certain period. Each combination of credential(s)
and its respective token will then be stored in local storage for as long as
it is valid. The next time a user requests to decrypt a file with a credential
that has already been validated, the fallback can immediately decrypt the
email without having to ask for authentication.

42

Implementing this solution takes care of Issue 3, users do not need to have
their phone at hand at all times if they are on their desktop, and it reduces
overhead. To address security concerns, we are aware that by caching the
credentials, this might expose the user to data leaks in case a malicious actor
gets access to the victim’s device. This would mean that they are able to
decrypt emails with credentials that are cached at the moment. However, it
must be noted that the same security risk is present with Postguard’s add-
on, as it also caches these credentials. It is important to note that the JWT
is stored in local storage, this makes the process relatively secure. Therefore,
the efficiency of caching is a larger advantage over the security risk.

Solution 6: Caching on multiple devices using storage.sync

This is a proposal to solve Issue 5: Inability to access emails on multiple
devices and Issue 3: Accessing previously decrypted emails.
A version of local storage for multiple devices is possible using storage.sync5.
This enables the data to be cached and accessed on all browsers where the
user is logged in. On Chrome this means that the user must be logged in on
their Google account. On Firefox the user must be logged in and have their
Add-ons enabled. It must be noted that while this solution improves ease-of-
use, it also means that the emails and IRMA credentials will automatically
be available on all devices the user is logged into their browsers. This is a
small disadvantage for security.

Additionally, and more importantly, to provide this feature means that
the data will be stored on a server. As this is in conflict with our goals,
Solution 6 is not recommended.

5https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/A

PI/storage/sync

43

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/storage/sync
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/storage/sync

3.5 Deciding on a prototype

In this section, we pick a subset of the solutions proposed in the previous
section to implement for the prototype. Ideally, we would have liked to
develop prototypes for multiple solutions, however, because of the scope of
this thesis, we limit ourselves to implementing one solution for each issue.

Issue 1: Downloading the attachment

For solving Issue 1, we opt for ‘Solution 2: Place encrypted email in URL’.
One benefit of this solution is its ease of use, that gives it an advantage
over ‘Solution 4: Copy paste content’, which requires users to copy paste
text themselves. Another benefit is that it does not increase the size of the
email, like ‘Solution 3: Include decryption module in e-mail’ would. The
disadvantage of using URLs is that there is a size limit, but we believe this
limit to be sufficiently small that the benefits outweigh them.

Issue 2: Re-authentication with IRMA and Issue 3: Accessing
previously decrypted emails

To solve Issue 2 and 3, we opt for ‘Solution 5: Cache emails and IRMA
credentials on fallback’ by storing the credentials and emails in local storage.

Issue 4: Inability to reply to email

After some evaluation, we come to the conclusion that this issue cannot
be solved in a proper way. This is because there is no way to compose an
encrypted reply that is sent from the user’s email address via the fallback.
We note that it is in some way possible to use a third-party email (one
that Postguard is in charge of, in similar fashion to Solution 1) to send an
encrypted email to the recipient. However, we want to prevent the usage of
a method that requires a ‘middle-man’.

Issue 5: Inability to access emails on multiple devices

While it is technically possible to solve this issue as can be seen with Solution
6, we decide that we do not want to have the decrypted emails and JWT
tokens stored on a server.

44

Chapter 4

Development of the
prototype

In this chapter we explain how a functional prototype of the fallback was
developed. The prototype is available on the Github repository1.

4.1 Setup

The current fallback is built in Rust, which is embedded as an iframe on
the Postguard website. We opted to build the prototype in Svelte2 as this
is the language that the Postguard website is written in, so for the goal of
uniformity, the prototype will be in the same language. First, we recreated
the same functionality that the current fallback has, namely, the ability to
authenticate via IRMA and decrypt an email. Then, we implemented the
features decided upon in Section 3.5:

• Cache the IRMA credentials so that the amount of times one has to
authenticate is reduced

• Cache the decrypted emails so they can be re-accessed later

• Implement a method to decrypt an email via URL

The caching feature makes use of local storage3 which allows you to store
information that is only available client-side.

1https://github.com/esthrshi/postguard-fallback-thesis
2https://svelte.dev/
3https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

45

https://github.com/esthrshi/postguard-fallback-thesis
https://svelte.dev/
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

4.2 Decryption Page

Figure 4.1: Decryption page

The decryption page allows users to decrypt an email via an attachment or
via the URL. Decryption is possible by using the IRMAseal web assembly
modules4, which takes care of the file decryption itself. Figure 4.2 shows
the implemented decryption flow from start to finish. The current fallback
contains steps 1, 2, 3, 6, and 7. The prototype adds the steps 4 and 5 for
the IRMA caching in between. We explain all the steps below.

4https://www.npmjs.com/package/@e4a/irmaseal-wasm-bindings

46

https://www.npmjs.com/package/@e4a/irmaseal-wasm-bindings

Figure 4.2: Implemented decryption flow

1: Add encrypted file
To decrypt a file, the user adds the ‘postguard.encrypted’ file attached to
the Postguard email to the file picker. It must be noted that the file picker
does not upload anything to a server. The entire process of decryption takes
place client-side. The file is encoded in Base64.
We also offer the possibility of decryption via URL. To make this possible,
the encrypted email is included as a parameter:

postguard.eu/decrypt#encrypted={encrypted_email_in_base64}

However, as mentioned before, this alternative has a size limit. The
tested limit is 512KB on Chrome and Firefox. It is possible for the Post-
guard plugin to disable this option if they detect that an email content
exceeds 512KB.

47

2: Extract policies
IRMAseal will then extract the policies from the file. Policies contain infor-
mation about the recipient(s) of the email. The key(s) are the recipient’s
email addresse(s), together with a list of the requested attributes and their
values.

bob@email.com:

con:

0:

t: ’pbdf.gemeente.personalData.surname’

v: ’’

1:

t: ’pbdf.pbdf.surfnet-2.id’

v: ’s123****’

2:

t: ’pbdf.sidn-pbdf.email.email’

v: ’’

3:

t: ’pbdf.sidn-pbdf.mobilenumber.mobilenumber’

v: ’+3161234****’

ts: 1234567890

The format of these attributes are defined by IRMA5. Sometimes, a user
can have multiple instances of the same attribute. For example, a user can
have multiple phone numbers. In this case, a hint is visible and this will
also be displayed to the user.

3: Check number of recipients
An email can be addressed to one or multiple recipients. In case the email
has multiple recipients, the fallback needs to ask the user which recipient
belongs to them. This is done via a dropdown menu.

4: Check if recipient is already cached
Firstly, the system checks whether the recipient’s credentials are already
cached. The requested attributes and their values must be exactly the same
for a match.

If recipient is not cached – 4a: IRMA authentication
Before authentication, the key request must be composed. This consists
of the requested credentials with their values removed. The validity key
specifies how long the requested key should be valid for. Currently, the
upper limit is set to one day by the Postguard plugin, but this limit can be
adjusted by Postguard.

5https://privacybydesign.foundation/attribute-index/

48

 https://privacybydesign.foundation/attribute-index/

con:

0:

t: ’pbdf.gemeente.personalData.surname’

1:

t: ’pbdf.pbdf.surfnet-2.id’

2:

t: ’pbdf.sidn-pbdf.email.email’

3:

t: ’pbdf.sidn-pbdf.mobilenumber.mobilenumber’

validity: 25351

For authentication, a request is sent to IRMA, and users will have to
authenticate their identity by scanning a QR code. After successful authen-
tication, the server returns a JSON-Web Token (JWT). Using this JWT,
the fallback makes a request to the Private Key Generator (PKG), located
at https://main.irmaseal-pkg.ihub.ru.nl, to obtain a User Secret Key
(USK).
If the user has enabled ‘Cache my IRMA credentials’ in Settings, then this
JWT will be stored in local storage. It must be noted that each combination
of attributes is unique and requires its own JWT. Additionally, the expira-
tion date must be included to know when a JWT has expired. Therefore,
a cache entry consists of the combination of attributes, its respective JWT,
and its expiration date.

If recipient is cached – 5b: Use stored JWT to request usk
If the local storage has already cached a recipient with the exact same at-
tributes, the JWT is taken from this cache. Using this JWT, the fallback
performs the same request to the PKG as in Step 4a to obtain the USK.

6: Perform decryption
After the USK is obtained, the file is decrypted using the IRMAseal module.
This results in a plaintext email in MIME format.

7: Display email
The returned plaintext email is thus parsed and displayed.

Date: Thu, 08 Dec 2022 19:03:02 GMT

MIME-Version: 1.0

To: bob@email.com

From: Alice <alice@email.com>

Subject: this is an encrypted email

Content-Type: text/html; charset=utf-8

This is the body of an email

49

https://main.irmaseal-pkg.ihub.ru.nl

The process of how the IRMA credentials cache works is illustrated in
Figure 4.3.

Figure 4.3: IRMA cache flow

50

4.3 Email History Page

Figure 4.4: Email History page

Decrypted emails are stored under the page ‘Email History’ if the user has
enabled ‘Cache my emails’ in Settings. All emails are stored in local storage.
This page mimics a typical email client such as Outlook as we want to make
the layout intuitive to the user.

In the left sidebar, users will see a list of their emails with the subject,
sender, and date of each. If they want to view the body of an email, they
must click on one of the items. This will open the entire email in the right
body. Users are also able to download or delete an email. Downloading an
email will give the user their email in .eml format.

Local storage unfortunately has a storage limit of only 10MB. We advise
that emails should be stored without their attachments, as they can make
the file very large. Instead, we encourage users to use Postguard’s file sharing
solution6 for attachments.

6https://postguard.eu/#filesharing

51

https://postguard.eu/#filesharing

4.4 Settings Page

Figure 4.5: Email History page

On the Settings page, users can choose whether they want their emails and
IRMA credentials cached. They can also view all the IRMA credentials that
have been cached, and have the option to delete them individually. Users
can also choose to delete all of their emails and IRMA credentials at once.

52

Chapter 5

Usability inspection of the
prototype

In this chapter we describe the usability inspection on the newly created
prototype that was carried out using a cognitive walkthrough. We also in-
corporate the usability heuristics in our feedback of the walkthrough. A
visual guide to all the tasks can be found in Appendix B. We conclude with
a highlight of our findings.

For the fallback prototype, we evaluate the following tasks:

• Task 1: Download the encrypted file and decrypt it

• Task 2: Turn on IRMA- and email caching in settings

• Task 3: Decrypt another email (same credentials as previous one) with
the URL

• Task 4: Decrypt another email with multiple recipients and different
credentials as previous one

• Task 5: View a cached email and download it

• Task 6: Remove all cached emails and all IRMA attributes

Aside from Task 1 being the same as the one in the current fallback,
Tasks 2-6 are newly added. This is because the added features in the pro-
totype allow for more extensive testing using a cognitive walkthrough.

53

Task 1: Download the encrypted file and decrypt it

1. Add the postguard.encrypted file

2. Click on ‘Decrypt’

3. Perform IRMA authentication

4. View email

All steps are successful but there are some usability concerns for the
decryption page.

Step 1: Add the postguard.encrypted file - SUCCESS
Firstly, the grayed out buttons, made to signify that the button is inactive
and thus cannot be clicked on, can be hard to read for those with visual
impairments. Instead, it might be more effective to change the color of an
active button to green.

The confusion with the file picker from the current prototype remains. It
must be made explicit that users are not uploading their encrypted content
anywhere.

Step 2: Click on ‘Decrypt’ - SUCCESS
No remarks.

Step 3: Perform IRMA authentication - SUCCESS
At step 3, the same issue from the current prototype regarding the IRMA
authentication remains. The fallback does not provide enough information
to the user about what IRMA is (and why they need it).

Step 4: View email - SUCCESS
The download button does not clearly communicate that it will download
a file with the email content. Additionally, the design of the button is also
identical to the preceding ‘Decrypt’ button, this gives users the impression
that somehow it is a button they must press to finish their task. One
suggestion is to provide additional information in a label, such as “Want to
download this email to your device? Click on the download button below.”
in order to stress it is an optional decision.

54

Task 2: Turn on email- and IRMA caching in settings

1. Go to ‘Settings’

2. Check ‘Cache my emails’ and ‘Cache my IRMA credentials’

Step 1: Go to ‘Settings’ - SUCCESS
No remarks.

Step 2: Check ‘Cache my emails’ and ‘Cache my IRMA creden-
tials’ - FAIL
Step 2 presents some glaring usability problems, especially on the topic of
jargon. On the evaluation form, the following question “Will the user as-
sociate the correct action with the effect they’re trying to achieve?” was
answered with NO. It was concluded that users will have difficulty under-
standing what caching is, this is therefore seen as jargon. Nielsen (1994)’s
second heuristic “Match between system and the real world” stipulates that
familiar phrases should be used. It is better to use a more general term such
as ‘Remember my emails’. This conveys more or less the same message as
caching does, but it saves the user from jargon, and also saves the interface
from adding too much text that could make the page look bloated.

It is also beneficial to add an information block to explain that all infor-
mation is stored on the user’s device – no information is sent over servers.
This could be written out in a more user-friendly way such as ‘No one but
you can see this information’. By describing the feature in terms of security,
it immediately communicates to the user that this information is secure in
a way they can understand.

Furthermore, it is also important to add why caching the IRMA cre-
dentials makes the user’s life easier. Extra information such as this can be
included in an information window next to the setting.

The evaluation question “After the action is performed, will users see
that progress is made toward the goal?” also resulted in a NO. When the
checkbox changes state, the settings are updated instantly. However, from
a user perspective this is unclear, as users expect to see either a save button
(to save their choices), or a notification to announce that their settings have
been updated. Nielsen (1994)’s first heuristic also suggests this: “Visibility
of system status”, which specifies that users should be kept informed of the
system status. This lack of feedback makes it unclear for the user. It is
therefore necessary to either add a save button or a notification popup that
appears whenever the user has made a change.

55

Task 3: Decrypt another email (same credentials as previous
one) with the URL

1. Click on the link in the email for people without an add-on (URL
version)

2. Click on ‘Decrypt’

Step 1: Click on the link in the email for people without an add-on
(URL version) - SUCCESS
At Step 1 there are some problems with the interface. Firstly, the hyperlink
is unclear to the user. It is best to rewrite ‘Please click on this link’ to ‘Please
click on the following link’ followed by a hyperlink of ‘Decrypt this email’.
Instead of using a hyperlink, it might be more intuitive to use a button.
Secondly, it is also important to explain to the user that the button or link
contains the entire encrypted email, so users are informed what link they
are clicking on. Nielsen (1994)’s tenth heuristic “Help and documentation”
also stipulates that users should be presented with extra information when
needed.

Step 2: Click on ‘Decrypt’ - FAIL
The evaluation question “Will the user try to achieve the right result?”
yielded NO. The first problem is that the label ‘Found an encrypted email
which can be decrypted!’ is confusing to the user. The user might not un-
derstand that the website has parsed the contents of the URL and therefore
has detected the encrypted content. To the user, they’ve simply clicked on
a link they were told would show them their email. Secondly, the word
‘detected’ scares users, as detected is often associated with viruses. The
text should be rewritten to include active language, explanation should be
offered to the user, and it should include a call-to-action to make explicit
what the user needs to do to read the email. An example: “The link you
clicked on includes an encrypted email. You can read this email after you
have proven yourself to be the intended recipient. To do this, please click
on ‘Decrypt’.”

56

Task 4: Decrypt another email with multiple recipients and
different credentials from the previous one

1. Select the email address that belongs to the recipient

2. Click on ‘Decrypt’

Step 1: Select the email address that belongs to the recipient -
FAIL
The evaluation question “Will users associate the correct action with the
effect they’re trying to achieve?” received a NO. This step is confusing
as users do not understand the need for selecting their own email. Users
are accustomed to their own email client, which automatically knows what
their email is, so why do they need to select their own email here again?
The system should explain that the fallback website does not know what
the user’s email is because an email can have multiple recipients, and the
user is completely anonymous to the system. This fits with Nielsen (1994)’s
tenth heuristic “Help and documentation”.

Step 2: Click on ‘Decrypt’ - SUCCESS
While Step 2 succeeds, the displayed hints are confusing to the user. There
should be an explanation on why these hints are necessary, namely, to let
the user know which attribute they need to authenticate. Additionally, the
word ‘credential’ can be seen as jargon. It is better to replace it with a more
general term such as ‘detail’.

Task 5: View a cached email and download it

1. Go to ‘Email History’

2. Click on an email

3. Download the selected email

Step 1: Go to ‘Email History’ - SUCCESS
Step 1 succeeds but the label ‘Email History’ is unclear. It is better to re-
name it to ‘Mail Inbox’.

Step 2: Click on an email - SUCCESS
No remarks.

Step 3: Download the selected email - FAIL
Step 3 fails. For the evaluation question, “Will the user try to achieve the
right result?” the answer was NO. The download and delete buttons are not
familiar to everyone, especially those who are less used to technology. It is
recommended to add a text label together with the symbol.

57

Task 6: Remove all cached emails and all IRMA attributes

1. Go to ‘Settings’

2. Click on ‘Delete all IRMA credentials’ and ‘Delete all cached emails’

Step 1: Go to ‘Settings’ - SUCCESS
No remarks.

Step 2: Click on ‘Delete all IRMA credentials’ and ‘Delete all
cached emails’ - SUCCESS No remarks.

While both steps pass, there are some general usability remarks. The
buttons for deleting all IRMA credentials and cached emails should be col-
ored red. The choice to delete everything has vast consequences and the gray
colored button does not convey enough caution. When all IRMA credentials
are deleted, feedback is immediately displayed as the table with credentials
will become empty. However, this feedback is missing with the ‘Delete all
cached emails’ button. It is recommended to show a label with the amount
of emails that are currently saved. On deletion, this amount is changed to 0,
to communicate to the user that all their emails have indeed been deleted.
This is also stipulated by Nielsen (1994)’s first heuristic “Visibility of system
status”.

58

5.1 Usability inspection conclusions

Our cognitive walkthrough has resulted in useful feedback which is sum-
marized here. We noticed that usability concerns still remained, largely on
the front of providing sufficient help and documentation, and also providing
sufficient system feedback.

Firstly, the website should make use of notifications to announce when
the user has performed a task, such as when the user has made a change to
the settings, or when an email has been deleted. This gives users explicit
feedback on their actions.

Secondly, users should be provided with more documentation on what
certain concepts are. For example, they should receive explanation on IRMA
when requested. Also, when the system prompts the user to select their
own email in the case there are multiple recipients, they should be provided
with information why this is necessary. Providing sufficient explanation also
results in more transparency from the system.

Thirdly, the website would benefit from more user-friendly language.
Terms such as ‘caching’ and ‘attributes’ should be replaced in favor of words
that are easier to understand for the layman. It is also important to provide
labels for buttons and symbols that are not immediately clear to the user,
such as the download and delete buttons.

Lastly, while the website has minimalist design, which is in line with
Nielsen (1994) 8th heuristic “aesthetic and minimalist design”, it could make
use of more colors. The buttons should be colored to signify their impor-
tance. A delete button is usually red for instance. This communicates to
the user that they need to pay extra attention on certain choices.

59

Chapter 6

Discussion

6.1 Current and new fallback

From our evaluation of the current fallback, it was found that despite provid-
ing the necessary feature of email decryption, there were significant short-
comings that made usage of the fallback inconvenient. We took these short-
comings in consideration while developing the functional prototype. The
hassle of downloading an attachment was taken care of partially by im-
plementing a link that contains the encrypted content in a URL. We also
reduced the amount of IRMA authentication requests by caching the cre-
dentials for a limited period. Additionally, we implemented a way for users
to re-read their decrypted emails. After performing a usability inspection
on the prototype, it was concluded that users would largely have a decent
time navigating the interface, but that usability issues still remained.

The usability issues largely boiled down to a lack of elaboration on con-
cepts that could appear foreign to the user. For example, the implemented
URL-feature has the possibility of confusing the user, as it replaces the pro-
cess of downloading an encrypted attachment. The user is not sufficiently
informed of the fact that the encrypted content is passed as a parameter in
the URL. The prototype could also benefit from adopting more user-friendly
language. For example, jargon such as ‘caching’ or ‘credentials’ should not
be used as they are rather technical and risk confusing the user. We be-
lieve that after implementing the suggestions proposed during the usability
inspection, the added functionality of the prototype has practical usage for
the Postguard fallback.

60

6.2 Limitations

Our first limitation concerns that of the cognitive walkthrough. While our
walkthrough was conducted by interns at Postguard, we would have liked to
have experts, such as the developers, or the UI/UX designers, at Postguard
present for the walkthrough too. We believe that their expertise would have
led to additional useful feedback that was possibly missed by the interns.
Additionally, since the usability inspection was only performed by those
internally involved at Postguard, we must take into account that positive
bias exists, as those involved in a product itself are more likely to have a
positive view of the product.

To mitigate the risk of positive bias we would have ideally liked to con-
duct a qualitative and quantitative user test. However, this was not possible
due to time constraints. This user test would serve the purpose of survey-
ing the general public on the functional prototype, and thus gather more
representative feedback on its features and issues.

Ideally, we would also like to implement the feedback from the usability
inspections into the prototype. After implementing the feedback, it would
have been beneficial to conduct another iteration of the usability inspection.
However, because of the limited scope of the thesis and the limited time
available, there was only room for one iteration. An additional iteration
would have provided useful feedback and may have discovered new issues of
its own.

6.3 Future work

For future work, we like to explore the limitations we previously discussed.
Ideally, we would like to conduct a user test, implemented the suggestions
from the usability inspections and the user test, and perform another usabil-
ity inspection to measure the improvements. We believe this would result
in useful feedback that could be incorporated into the fallback.

While Postguard makes use of identity-based encryption (IBE), there is
also another encryption scheme known as attribute-based encryption (ABE)
(Venema et al., 2022). IBE relies on the workings of a stringified identi-
fier as explained in Section 2.4, which means that with each combination
of attributes, a different IRMA authentication is required. With ABE it
is possible to re-combine attributes client-side, thus reducing the need for
IRMA re-authentication. For future work, it would be interesting to exam-
ine the specific advantages and disadvantages of ABE, and examine whether
Postguard would benefit from an ABE encryption scheme.

61

Chapter 7

Conclusion

In this thesis, we have conducted a usability inspection on Postguard’s fall-
back website and based on our findings, developed a functional prototype
that has added features. We remark that it is a considerable effort to com-
bine usability with security. We also conducted a usability inspection on the
prototype. In conclusion, we hope that the Postguard fallback will be im-
plemented on the website and serve as a stepping stone for users to consider
adopting email encryption.

62

Bibliography

Charles Arthur. DigiNotar SSL certificate hack amounts to cyberwar, says
expert, 2 2017. URL https://www.theguardian.com/technology/201

1/sep/05/diginotar-certificate-hack-cyberwar.

Erinn Atwater, Cecylia Bocovich, Urs Hengartner, Edward Lank, and Ian
Goldberg. Leading Johnny to Water: Designing for Usability and Trust.
Symposium On Usable Privacy and Security, pages 69–88, 1 2015. URL
https://cs.uwaterloo.ca/~uhengart/publications/soups15_1.pdf.

Wei Bai, Doowon Kim, Moses Namara, Yichen Qian, Patrick Gage Kelley,
and Michelle L. Mazurek. Balancing Security and Usability in Encrypted
Email. IEEE Internet Computing, 21(3):30–38, 5 2017. doi: 10.1109/mi
c.2017.57. URL http://dx.doi.org/10.1109/mic.2017.57.

Merel Brandon, Hanna Kathrin Schraffenberger, Wouter Sluis-Thiescheffer,
Thea van der Geest, Daniel Ostkamp, and Bart Jacobs. Design Principles
for Actual Security. Adjunct Proceedings of the 2022 Nordic Human-
Computer Interaction Conference, 10 2022. doi: 10.1145/3547522.354768
4. URL http://dx.doi.org/10.1145/3547522.3547684.

Ben Brody and Mark Bergen. Google to Pay $170 Million for YouTube
Child Privacy Breaches, 9 2019. URL https://www.bloomberg.com/ne

ws/articles/2019-09-04/google-to-pay-170-million-for-youtube

-child-privacy-breaches.

Kyle Chin. Biggest Data Breaches in US History [Updated 2023] — Up-
Guard, 1 2023. URL https://www.upguard.com/blog/biggest-data-b

reaches-us.

Nicholas Confessore. Cambridge Analytica and Facebook: The Scandal and
the Fallout So Far, 11 2018. URL https://www.nytimes.com/2018/04/

04/us/politics/cambridge-analytica-scandal-fallout.html.

Sergej Dechand, Alena Naiakshina, Anastasia Danilova, and Matthew
Smith. In Encryption We Don’t Trust: The Effect of End-to-End Encryp-
tion to the Masses on User Perception. 2019 IEEE European Symposium

63

https://www.theguardian.com/technology/2011/sep/05/diginotar-certificate-hack-cyberwar
https://www.theguardian.com/technology/2011/sep/05/diginotar-certificate-hack-cyberwar
https://cs.uwaterloo.ca/~uhengart/publications/soups15_1.pdf
http://dx.doi.org/10.1109/mic.2017.57
http://dx.doi.org/10.1145/3547522.3547684
https://www.bloomberg.com/news/articles/2019-09-04/google-to-pay-170-million-for-youtube-child-privacy-breaches
https://www.bloomberg.com/news/articles/2019-09-04/google-to-pay-170-million-for-youtube-child-privacy-breaches
https://www.bloomberg.com/news/articles/2019-09-04/google-to-pay-170-million-for-youtube-child-privacy-breaches
https://www.upguard.com/blog/biggest-data-breaches-us
https://www.upguard.com/blog/biggest-data-breaches-us
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html

on Security and Privacy (EuroS&P), 6 2019. doi: 10.1109/eurosp.2019.
00037. URL http://dx.doi.org/10.1109/eurosp.2019.00037.

Zak Doffman. Why You Should Quit WhatsApp As Critical New Update
Confirmed, 3 2021. URL https://www.forbes.com/sites/zakdoffma

n/2021/03/06/stop-using-whatsapp-after-facebook-apple-imess

age-signal-and-telegram-privacy-backlash/.

Stephen Farrell. Why Don’t We Encrypt Our Email? IEEE Internet
Computing, 13(1):82–85, 1 2009. doi: 10.1109/mic.2009.25. URL
http://dx.doi.org/10.1109/mic.2009.25.

Simson L. Garfinkel, David Margrave, Jeffrey I. Schiller, Erik Nordlander,
and Robert C. Miller. How to make secure email easier to use. Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, 4
2005. doi: 10.1145/1054972.1055069. URL http://dx.doi.org/10.11

45/1054972.1055069.

Shirley Gaw, Edward W. Felten, and Patricia Fernandez-Kelly. Secrecy,
flagging, and paranoia. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 4 2006. doi: 10.1145/1124772.1124862.
URL http://dx.doi.org/10.1145/1124772.1124862.

Glenn Greenwald. Email service used by Snowden shuts itself down, warns
against using US-based companies, 8 2013. URL https://www.theguard

ian.com/commentisfree/2013/aug/09/lavabit-shutdown-snowden-s

ilicon-valley.

Team Guild. A timeline of trouble: Facebook’s privacy record and regulatory
fines, 7 2022. URL https://guild.co/blog/complete-list-timelin

e-of-facebook-scandals/.

Aurora Harley. Personas Make Users Memorable for Product Team Mem-
bers, 2 2015. URL https://www.nngroup.com/articles/persona/.

Yahsin Huang. Decentralized Public Key Infrastructure (DPKI): What is it
and why does it matter?, 5 2019. URL https://hackernoon.com/decen

tralized-public-key-infrastructure-dpki-what-is-it-and-why

-does-it-matter-babee9d88579.

Identity-based encryption. Identity-based encryption, 5 2022. URL https:

//en.wikipedia.org/wiki/Identity-based_encryption.

IRMA in detail, n.d. URL https://privacybydesign.foundation/irm

a-explanation/.

Alita Joyce. How to Measure Learnability of a User Interface, 10 2019. URL
https://www.nngroup.com/articles/measure-learnability/.

64

http://dx.doi.org/10.1109/eurosp.2019.00037
https://www.forbes.com/sites/zakdoffman/2021/03/06/stop-using-whatsapp-after-facebook-apple-imessage-signal-and-telegram-privacy-backlash/
https://www.forbes.com/sites/zakdoffman/2021/03/06/stop-using-whatsapp-after-facebook-apple-imessage-signal-and-telegram-privacy-backlash/
https://www.forbes.com/sites/zakdoffman/2021/03/06/stop-using-whatsapp-after-facebook-apple-imessage-signal-and-telegram-privacy-backlash/
http://dx.doi.org/10.1109/mic.2009.25
http://dx.doi.org/10.1145/1054972.1055069
http://dx.doi.org/10.1145/1054972.1055069
http://dx.doi.org/10.1145/1124772.1124862
https://www.theguardian.com/commentisfree/2013/aug/09/lavabit-shutdown-snowden-silicon-valley
https://www.theguardian.com/commentisfree/2013/aug/09/lavabit-shutdown-snowden-silicon-valley
https://www.theguardian.com/commentisfree/2013/aug/09/lavabit-shutdown-snowden-silicon-valley
https://guild.co/blog/complete-list-timeline-of-facebook-scandals/
https://guild.co/blog/complete-list-timeline-of-facebook-scandals/
https://www.nngroup.com/articles/persona/
https://hackernoon.com/decentralized-public-key-infrastructure-dpki-what-is-it-and-why-does-it-matter-babee9d88579
https://hackernoon.com/decentralized-public-key-infrastructure-dpki-what-is-it-and-why-does-it-matter-babee9d88579
https://hackernoon.com/decentralized-public-key-infrastructure-dpki-what-is-it-and-why-does-it-matter-babee9d88579
https://en.wikipedia.org/wiki/Identity-based_encryption
https://en.wikipedia.org/wiki/Identity-based_encryption
https://privacybydesign.foundation/irma-explanation/
https://privacybydesign.foundation/irma-explanation/
https://www.nngroup.com/articles/measure-learnability/

Rendani Kruger, Jacques Brosens, and Marie Hattingh. A Methodology to
Compare the Usability of Information Systems. Lecture Notes in Com-
puter Science, pages 452–463, 2020. doi: 10.1007/978-3-030-45002-1\{ }
39. URL http://dx.doi.org/10.1007/978-3-030-45002-1_39.

Kendal Stephens LaFleur and Lei Chen. Email Encryption: Discovering
Reasons Behind its Lack of Acceptance. Proceedings of the International
Conference on Security and Management, pages 124–129, 1 2014. URL
http://works.bepress.com/lei-chen/60/.

Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard
Kleinrock, Daniel C. Lynch, Jon Postel, Lawrence G. Roberts, and
Stephen S. Wolff. The past and future history of the Internet. Communi-
cations of the ACM, 40(2):102–108, 2 1997. doi: 10.1145/253671.253741.
URL http://dx.doi.org/10.1145/253671.253741.

John Markoff. Data-Secrecy Export Case Dropped by U.S., 1 1996. URL
https://www.nytimes.com/1996/01/12/business/data-secrecy-exp

ort-case-dropped-by-us.html.

Jyothiikaa Moorthy. 23 Email Spam Statistics to Know in 2022, 8 2022.
URL https://www.mailmodo.com/guides/email-spam-statistics/.

Jakob Nielsen. Enhancing the explanatory power of usability heuristics.
Proceedings of the SIGCHI conference on Human factors in computing
systems celebrating interdependence - CHI ’94, 1994. doi: 10.1145/1916
66.191729. URL http://dx.doi.org/10.1145/191666.191729.

Jakob Nielsen. 10 Usability Heuristics for User Interface Design, 11 2020.
URL https://www.nngroup.com/articles/ten-usability-heurist

ics/.

Jakob Nielsen and Thomas K. Landauer. A mathematical model of the
finding of usability problems. Proceedings of the SIGCHI conference on
Human factors in computing systems - CHI ’93, 1993. doi: 10.1145/1690
59.169166. URL http://dx.doi.org/10.1145/169059.169166.

Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. Pro-
ceedings of the SIGCHI conference on Human factors in computing sys-
tems Empowering people - CHI ’90, 1990. doi: 10.1145/97243.97281.
URL http://dx.doi.org/10.1145/97243.97281.

Peter G. Polson, Clayton Lewis, John Rieman, and Cathleen Wharton.
Cognitive walkthroughs: a method for theory-based evaluation of user
interfaces. International Journal of Man-Machine Studies, 36(5):741–
773, 5 1992. doi: 10.1016/0020-7373(92)90039-n. URL http:

//dx.doi.org/10.1016/0020-7373(92)90039-n.

65

http://dx.doi.org/10.1007/978-3-030-45002-1_39
http://works.bepress.com/lei-chen/60/
http://dx.doi.org/10.1145/253671.253741
https://www.nytimes.com/1996/01/12/business/data-secrecy-export-case-dropped-by-us.html
https://www.nytimes.com/1996/01/12/business/data-secrecy-export-case-dropped-by-us.html
https://www.mailmodo.com/guides/email-spam-statistics/
http://dx.doi.org/10.1145/191666.191729
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
http://dx.doi.org/10.1145/169059.169166
http://dx.doi.org/10.1145/97243.97281
http://dx.doi.org/10.1016/0020-7373(92)90039-n
http://dx.doi.org/10.1016/0020-7373(92)90039-n

Cristina Pop. EU vs US: What Are the Differences Between Their Data
Privacy Laws?, 9 2022. URL https://www.endpointprotector.com/bl

og/eu-vs-us-what-are-the-differences-between-their-data-pri

vacy-laws/.

ProPublica. How Facebook Undermines Privacy Protections for Its 2 Billion
WhatsApp Users, 10 2021. URL https://www.propublica.org/artic

le/how-facebook-undermines-privacy-protections-for-its-2-bil

lion-whatsapp-users.

Public-key cryptography. Public-key cryptography, 1 2023. URL https:

//en.wikipedia.org/wiki/Public-key_cryptography.

Karen Renaud, Melanie Volkamer, and Arne Renkema-Padmos. Why
Doesn’t Jane Protect Her Privacy? Privacy Enhancing Technologies,
pages 244–262, 2014. doi: 10.1007/978-3-319-08506-7\{ }13. URL
http://dx.doi.org/10.1007/978-3-319-08506-7_13.

Guardian Staff Reporter. Google records your location even when you tell
it not to, 8 2018. URL https://www.theguardian.com/technology/2

018/aug/13/google-location-tracking-android-iphone-mobile.

Adrian Reuter, Ahmed Abdelmaksoud, Karima Boudaoud, and Marco
Winckler. Usability of End-to-End Encryption in E-Mail Communica-
tion. Frontiers in Big Data, 4, 7 2021. doi: 10.3389/fdata.2021.568284.
URL http://dx.doi.org/10.3389/fdata.2021.568284.

Mark Ritson. Mark Ritson: Why you should fear the ‘digital duopoly’ in
2018, 10 2018. URL https://www.marketingweek.com/ritson-digit

al-duopoly-2018/.

Max Roser. The Internet’s history has just begun, 10 2018. URL https:

//ourworldindata.org/internet-history-just-begun.

Scott Ruoti, Nathan Kim, Ben Burgon, Timothy van der Horst, and Kent
Seamons. Confused Johnny. Proceedings of the Ninth Symposium on
Usable Privacy and Security, 7 2013. doi: 10.1145/2501604.2501609.
URL http://dx.doi.org/10.1145/2501604.2501609.

Kim Salazar. How to Conduct a Cognitive Walkthrough Workshop, 4 2022.
URL https://www.nngroup.com/articles/cognitive-walkthrough

-workshop/.

David Sanger and Nicole Perlroth. Encrypted Messaging Apps Face New
Scrutiny Over Possible Role in Paris Attacks, 11 2015. URL https:

//www.nytimes.com/2015/11/17/world/europe/encrypted-messagi

ng-apps-face-new-scrutiny-over-possible-role-in-paris-attac

ks.html.

66

https://www.endpointprotector.com/blog/eu-vs-us-what-are-the-differences-between-their-data-privacy-laws/
https://www.endpointprotector.com/blog/eu-vs-us-what-are-the-differences-between-their-data-privacy-laws/
https://www.endpointprotector.com/blog/eu-vs-us-what-are-the-differences-between-their-data-privacy-laws/
https://www.propublica.org/article/how-facebook-undermines-privacy-protections-for-its-2-billion-whatsapp-users
https://www.propublica.org/article/how-facebook-undermines-privacy-protections-for-its-2-billion-whatsapp-users
https://www.propublica.org/article/how-facebook-undermines-privacy-protections-for-its-2-billion-whatsapp-users
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
http://dx.doi.org/10.1007/978-3-319-08506-7_13
https://www.theguardian.com/technology/2018/aug/13/google-location-tracking-android-iphone-mobile
https://www.theguardian.com/technology/2018/aug/13/google-location-tracking-android-iphone-mobile
http://dx.doi.org/10.3389/fdata.2021.568284
https://www.marketingweek.com/ritson-digital-duopoly-2018/
https://www.marketingweek.com/ritson-digital-duopoly-2018/
https://ourworldindata.org/internet-history-just-begun
https://ourworldindata.org/internet-history-just-begun
http://dx.doi.org/10.1145/2501604.2501609
https://www.nngroup.com/articles/cognitive-walkthrough-workshop/
https://www.nngroup.com/articles/cognitive-walkthrough-workshop/
https://www.nytimes.com/2015/11/17/world/europe/encrypted-messaging-apps-face-new-scrutiny-over-possible-role-in-paris-attacks.html
https://www.nytimes.com/2015/11/17/world/europe/encrypted-messaging-apps-face-new-scrutiny-over-possible-role-in-paris-attacks.html
https://www.nytimes.com/2015/11/17/world/europe/encrypted-messaging-apps-face-new-scrutiny-over-possible-role-in-paris-attacks.html
https://www.nytimes.com/2015/11/17/world/europe/encrypted-messaging-apps-face-new-scrutiny-over-possible-role-in-paris-attacks.html

S Sheng, C Koranda, J Hyland, and L Broderick. Proceedings of the Second
Symposium on Usable Privacy and Security. 2006.

D. K. Smetters and R. E. Grinter. Moving from the design of usable security
technologies to the design of useful secure applications. Proceedings of the
2002 workshop on New security paradigms, 9 2002. doi: 10.1145/844102
.844117. URL http://dx.doi.org/10.1145/844102.844117.

Dag Spicer and Raymond Tomlinson. Interviews: Raymond Tomlinson:
Email Pioneer, Part 1. IEEE Annals of the History of Computing, 38(2):
72–79, 2016. doi: 10.1353/ahc.2016.0024. URL http://dx.doi.org/10.

1353/ahc.2016.0024.

Statista. Number of e-mails per day worldwide 2017-2025, 9 2022. URL
https://www.statista.com/statistics/456500/daily-number-of-e

-mails-worldwide/.

Christian Stransky, Oliver Wiese, Volker Roth, Yasemin Acar, and Sascha
Fahl. 27 Years and 81 Million Opportunities Later: Investigating the Use
of Email Encryption for an Entire University. 2022 IEEE Symposium on
Security and Privacy (SP), 5 2022. doi: 10.1109/sp46214.2022.9833755.
URL http://dx.doi.org/10.1109/sp46214.2022.9833755.

Heinz Tschabitscher. Why Are Email Files so Large?, 6 2021. URL https:

//www.lifewire.com/what-is-the-average-size-of-an-email-mes

sage-1171208.

Jovi Umawing. Labs survey finds privacy concerns, distrust of social media
rampant with all age groups, 3 2019. URL https://www.malwarebytes

.com/blog/news/2019/03/labs-survey-finds-privacy-concerns-d

istrust-of-social-media-rampant-with-all-age-groups.

T. Van Vleck. Electronic Mail and Text Messaging in CTSS, 1965-1973.
IEEE Annals of the History of Computing, 34(1):4–6, 1 2012. doi: 10.110
9/mahc.2012.6. URL http://dx.doi.org/10.1109/mahc.2012.6.

Marloes Venema, Greg Alpár, and Jaap-Henk Hoepman. Systematizing core
properties of pairing-based attribute-based encryption to uncover remain-
ing challenges in enforcing access control in practice. Designs, Codes and
Cryptography, 91(1):165–220, 9 2022. doi: 10.1007/s10623-022-01093-5.
URL http://dx.doi.org/10.1007/s10623-022-01093-5.

Cathleen Wharton, John Rieman, Clayton Lewis, and Peter G. Polson. The
cognitive walkthrough method: a practitioner’s guide. John Wiley Sons,
Inc. eBooks, pages 105–140, 6 1994. URL https://dl.acm.org/citat

ion.cfm?id=189214.

67

http://dx.doi.org/10.1145/844102.844117
http://dx.doi.org/10.1353/ahc.2016.0024
http://dx.doi.org/10.1353/ahc.2016.0024
https://www.statista.com/statistics/456500/daily-number-of-e-mails-worldwide/
https://www.statista.com/statistics/456500/daily-number-of-e-mails-worldwide/
http://dx.doi.org/10.1109/sp46214.2022.9833755
https://www.lifewire.com/what-is-the-average-size-of-an-email-message-1171208
https://www.lifewire.com/what-is-the-average-size-of-an-email-message-1171208
https://www.lifewire.com/what-is-the-average-size-of-an-email-message-1171208
https://www.malwarebytes.com/blog/news/2019/03/labs-survey-finds-privacy-concerns-distrust-of-social-media-rampant-with-all-age-groups
https://www.malwarebytes.com/blog/news/2019/03/labs-survey-finds-privacy-concerns-distrust-of-social-media-rampant-with-all-age-groups
https://www.malwarebytes.com/blog/news/2019/03/labs-survey-finds-privacy-concerns-distrust-of-social-media-rampant-with-all-age-groups
http://dx.doi.org/10.1109/mahc.2012.6
http://dx.doi.org/10.1007/s10623-022-01093-5
https://dl.acm.org/citation.cfm?id=189214
https://dl.acm.org/citation.cfm?id=189214

Alma Whitten and J. D. Tygar. Why Johnny can’t encrypt: a usability
evaluation of PGP 5.0. USENIX Security Symposium, page 14, 8 1999.
URL http://css.csail.mit.edu/6.858/2014/readings/johnny.pdf.

Justin C.Y. Wu and Daniel Zappala. When is a Tree Really a Truck? Ex-
ploring Mental Models of Encryption. Symposium On Usable Privacy and
Security, pages 395–409, 1 2018. URL https://www.usenix.org/syste

m/files/conference/soups2018/soups2018-wu.pdf.

Carl Youngblood. An Introduction to Identity-based Cryptography. Tech-
nical report, 3 2005. URL https://courses.cs.washington.edu/cour

ses/csep590/06wi/finalprojects/youngblood_csep590tu_final_pa

per.pdf.

68

http://css.csail.mit.edu/6.858/2014/readings/johnny.pdf
https://www.usenix.org/system/files/conference/soups2018/soups2018-wu.pdf
https://www.usenix.org/system/files/conference/soups2018/soups2018-wu.pdf
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/youngblood_csep590tu_final_paper.pdf
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/youngblood_csep590tu_final_paper.pdf
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/youngblood_csep590tu_final_paper.pdf

Appendix A

Cognitive walkthrough of
current fallback

Task 1: Download the encrypted file and decrypt it

1. Download the encrypted file and decrypt it

2. Click on the link in the email for people without an add-on

3. Upload the postguard.encrypted file

4. Install the IRMA app from the App Store

5. Open the IRMA app

6. Navigate to ‘Adding cards’

7. Choose ‘email address’ and click on ‘Add’

8. Fill in your email address

9. Click on the confirmation link in the email you received

10. Scan the QR code with the IRMA app

11. Fill in the pairing code

12. Click on ‘Yes’

13. Scan the QR code on the fallback website

14. Click ‘Yes’

15. View decrypted email

69

70

71

72

73

74

Appendix B

Cognitive walkthrough of
prototype fallback

Task 1: Download the encrypted file and decrypt it

1. Add the postguard.encrypted file

2. Click on ‘Decrypt’

3. Perform IRMA authentication

4. View email

75

Task 2: Turn on email- and IRMA caching in settings

1. Go to ‘Settings’

2. Check ‘Cache my emails’ and ’Cache my IRMA credentials’

76

Task 3: Decrypt another email (same credentials as previous one)
with the URL

1. Click on the link in the email for people without an add-on (URL
version)

2. Click on ‘Decrypt’

Step 1

Step 2

77

Task 4: Decrypt another email with multiple recipients and dif-
ferent credentials as previous one

1. Select the email address that belongs to the recipient

2. Click on ‘Decrypt’

78

Task 5: View a cached email and download it

1. Go to ‘Email History’

2. Click on an email

3. Download the selected email

79

Task 6: Remove all cached emails and all IRMA attributes

1. Go to ‘Settings’

2. Click on ‘Delete all IRMA credentials’ and ‘Delete all cached emails’

80

	Introduction
	Preliminaries
	A short overview of email and email encryption
	Public-key cryptography

	Why the adoption of email encryption is limited
	Proposals for increasing email encryption adoption
	Identity-based encryption (IBE)
	IRMA
	Postguard
	Usability inspection
	Cognitive walkthrough
	Heuristic evaluation principles

	Evaluation of the current fallback
	Explanation of the current fallback
	Cognitive walkthrough
	Issues with the current fallback
	Proposed solutions
	Deciding on a prototype

	Development of the prototype
	Setup
	Decryption Page
	Email History Page
	Settings Page

	Usability inspection of the prototype
	Usability inspection conclusions

	Discussion
	Current and new fallback
	Limitations
	Future work

	Conclusion
	Cognitive walkthrough of current fallback
	Cognitive walkthrough of prototype fallback

