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Abstract

Advances in the computer-composition of music have enabled algorithms
to compose music similar to that composed by humans. However, these
algorithms are generally tested only on the more mainstream genres like
jazz, pop, and classical, while other, more niche genres are neglected. This
leaves some doubt as to how generally these algorithms can perform. In this
research paper, we gathered three pre-existing computer-composition algo-
rithms and tested them on the task of generating Video Game Music (VGM).
Their generated samples, as well as human-made samples, were presented in
an online survey which performed both a Turing test and a Mean Opinion
Score test. While one model failed to train, results for the remaining two
showed that human-made music performed by far the best, followed by the
LakhNES (Transformer) model, and lastly the DeepJ (LSTM) model. For
the most part, computer composed music did not compare to human-made.
However, results did show the LakhNES model capable of generating music
that humans could not accurately identify as computer-generated.



Contents

1 Introduction 2

2 Preliminaries 4

3 Research 6

4 Related Work 14

5 Conclusions 16

A Appendix 19

1



Chapter 1

Introduction

Music is a form of entertainment that is enjoyed by almost everyone, and it
comes in such a variety of styles that there is always something to suit just
anyone’s tastes. Its use is not limited to only listening to it on its own—it
can accompany a (video) game or movie to set a theme and mood—and is
also often used as background noise in waiting rooms and shops.

Enjoyable as it is, a well-known problem of music is that it takes a great
deal of time, effort, and skill to compose a good piece. Not everyone has
those, and although there are plenty of musical pieces in the world already,
it is at times difficult to find a piece that matches exactly what one wants.
For a designer using it in, say, a game or movie, requiring the music to be
royalty-free is another hurdle. An increasingly popular solution to this is
computer composed music.

Computer composition is the process of using a computer to algorith-
mically compose music, either by having it aid a human in composing or
by doing it entirely automatically. Approaches to this have varied between,
among others, randomization, formal grammar rules, Markov chains, and
more recently deep learning Transformers, but in the modern day, the most
popular approaches include neural network architectures [15]. These neural
network models are capable of being trained on pre-existing music, which
adds a great deal of versatility, and means researchers do not have to dis-
cover and hardcode a complicated ruleset. Additionally, because music can
be approached much like a language, the models can be built similarly to
those for Natural Language Processing [11].

Much research has already been done on computer composition, but
many music generation algorithms are specialized in a specific style or genre,
like jazz, pop, or classical [3, 8–10], leaving other styles with no or unopti-
mized ways of being computer generated. One genre among many that has
lacked attention is Video Game Music (VGM). VGM is, of course, music
accompanying video games, but more specifically it is also a retro style of
synthesized electronic music made using sound chips. It is something of a
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subgenre of Chiptune or 8-bit music, with VGM being 8-bit music originated
from or in the style of retro games and consoles, and despite the consoles of
old now being long outdated, both VGM and Chiptune still have thriving
fanbases even today [7].

Chiptune, and by extension VGM, is a comparatively simple style of
music. This is due to the limited number of instruments and possible tones
in the music—in present day merely copied over from hardware limitations
of retro consoles—and by a score’s individual sequences being less vertically
dense as a result, this should make it easier to train for by a neural network.
Despite this—its reasonably large fanbase and comparative simplicity—very
little research has been done on the computer composition of Chiptune mu-
sic. Algorithms have been introduced that are shown to demonstrate good
performance on a multitude of styles, but these are only tested on more
mainstream genres, usually classical, meaning there is not much evidence
suggesting they will perform well on Chiptune music as well. For those
wishing to make their own Chiptune music, including some video game de-
signers, the ability to generate new music of this genre using algorithms
would be a great help.

In this research paper, we seek to find a pre-existing computer com-
position model capable of generating quality VGM music. We do this by
running three published computer composition algorithms on the task of
generating Video Game Music and then performing a Turing test on them
to see which algorithm’s generated music is most indistinguishable from
human-made music. The aim is to get an idea as to which model is best
suited for generating this genre of music. It is our expectation that, VGM
being comparatively simple compared to other genres, more complex models
will not get significantly better results than simpler ones.

In the next section, we give some basic explanation on various model ar-
chitectures used for computer composition. Section 3 explains the research
done for this paper. Previous research into the subject of computer compo-
sition is delved into in section 4, and section 5 closes off with the conclusions
drawn from our research.
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Chapter 2

Preliminaries

Methods of computer composition have varied over the years, but current
research focuses on neural networks—specifically, neural networks capable
of keeping track of time and structure. This is because music, much like a
language, is sequential in nature, meaning that each element, in this case
music notes, influences those that come after it. Among the various sequen-
tial model architectures used in algorithmic composition, the three that are
of importance in this research paper are the following: Recurrent Neural
Networks (RNNs); its successor, the Long Short-Term Memory networks
(LSTMs) [12]; and Transformers [18]. Below follow explanations on these
three architectures.

For starters, neural networks are a type of machine learning that mimics
the way neurons in (human) brains operate and interconnect. They are
made up of layers of nodes—an input layer, one or more hidden layers, and
an output layer—that are each connected to the layer above it and below it.
Each node has a weight and bias, and the sum of all the weighted outputs
of the previous layer (which all go into this node), plus the bias, is entered
into a nonlinear function. This function’s outcome is then weighted with
the node’s own weight and sent to all nodes of the next layer. This mimics
the way human brains function, and by altering each node’s weight and
bias through a process called training, the neural network can be tuned
to recognize certain patterns and give the right output when it spots data
matching that pattern. For its pattern recognition, this architecture finds
widespread use in a variety of computing tasks.

In Recurrent Neural Networks (RNNs), data is processed sequentially.
For example, when translating a sentence, the translation is done left to
right, and the words that came before are important as context for process-
ing the next word. RNNs achieve sequential processing by having the output
of the previous step be part of the input for the current state, thus “remem-
bering” the previous data input while working on the current one, and this
function is repeated for each data input (recurrence). For short-term de-
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pendencies, this works, but not long ones. This is because as “memories”
become stored into memories themselves, older data inputs become increas-
ingly less well-represented in the feedback loop. RNNs suffer from a kind of
memory loss where long-term dependencies cannot be captured well.

LSTMs are a way of addressing the long-term dependency issue RNNs
have. They do this by using a collection of “gates” to better control what
information is remembered and what is not. Forget gates “forget” long-
term memory, input gates retain memory, and output gates make it so only
relevant information is used for processing the current input. All of this
together provides LSTMs the capability of retaining long-term dependencies,
and thus capable of producing more globally structured outputs. Even so,
the same problems that plague RNNs can still occur with LSTMs if the
input is too long. With too much input, the model will not know which
previous data inputs are relevant to transforming the current input.

Because they process data sequentially, RNNs are slow, and LSTMs even
slower. Additionally, they can forget long-term dependencies if the input se-
quence is lengthy enough. These are two of the problems faced in neural
machine translation (tasks transforming an input sequence to an output se-
quence) and Transformers are a type of neural network architecture designed
to try and solve the latter of these problems. This is achieved through a
collection of components in the model, but the most important technique is
attention. Attention allows the model to know to “pay attention” to specific
dependencies when transforming input to output. In language translation,
for example, it will know some words in the sentence are more relevant to
a given word than others. It does this by giving each data input values
representing its connection to other data inputs. This makes it easier for
the model to use the relevant dependencies while transforming and thus
improves long-term dependencies.
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Chapter 3

Research

Algorithms and Dataset

We train three computer composition algorithms on the training set of the
Nintendo Entertainment System Music Database (NES-MDB) as provided
by Kaggle [6]. The dataset consists of 5278 songs from the soundtracks of
397 NES games, all in MIDI format, and split into three sets—training,
testing, and validation—with 4502, 373, and 403 songs, respectively. Al-
terations made to the algorithms and their pre-processing methods for the
training data are limited to what is absolutely necessary to make the algo-
rithms function with this dataset. However, we do perform fine-tuning on
parameters to get the best possible outputs.

The algorithms explored in this research are the following: the VGM-
RNN by Nicolas Mauthes [17]; DeepJ by Huanru Henry Mao, Taylor Shin,
and Garrison W. Cottrell [16]; and LakhNES by Chris Donahue, Garrison
W. Cottrell, Huanru Henry Mao, Julian McAuley, and Yiting Ethan Li [5].
The reason these particular models were chosen and not others is in large
part due to availability. We required these models to be accompanied by a
scientific paper, be trainable with a MIDI format dataset, and for the official
code to be available. These requirements combined resulted in a somewhat
sparse collection of options for us. Out of this limited set, the VGM-RNN
was chosen because it is a comparatively simple model: a bare-bones LSTM.
This made it ideal as a benchmark to compare the more complex models
to. DeepJ and LakhNES were selected because they are well-performing
and non-genre specific, meaning they should be able to be trained on VGM
music.

VGM-RNN

The VGM-RNN is an RNN model consisting of a single LSTM layer with
256 hidden units, and the output layer uses a softmax activation function
to build the distribution of note probabilities. For the input, the training
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data is first run through several filters to select songs fitting certain criteria.
This assures consistency of the dataset. Then, the files are transformed into
piano-rolls, which is a 2D-matrix with time in one axis and notes in another,
denoting when exactly which notes are playing. These piano-rolls are turned
into suitable training sequences by having each sequence in the piano-roll
get its subsequent sequence as its label. Fed into the model, this builds a set
of weights representing the probability of any sequence given the sequence
prior to it.

A starting sequence is randomly selected from amongst all sequences in
the training data. Given as input to the model, this outputs a prediction
for the next sequence in the form of a distribution of note probabilities.
A sampling threshold determines how likely a note must be to make it
into the subsequent sequence, where a low threshold allows more (unlikely)
notes, creating more chaotic music, while a higher threshold makes more
conservative music and a sparser piano-roll.

Once the second sequence of the song is generated, it too is fed into
the model, creating a recurrent loop of self-influenced generation. Once a
maximum number of sequences has been reached, the song is finished, and
the piano-roll is transformed into a MIDI file. Being an RNN model, this
model does struggle with long term dependencies, and this model specifically
is not designed to handle multiple instruments.

DeepJ

DeepJ is an improvement on the design of the Bi-axial LSTM [14], which
suffered from the inability to compose structured music. DeepJ introduces
the option to enforce styles by having a special weight for styles added to the
input of each of the four LSTM layers. Some styles have similarities in note
sequences, so a combination of those styles should give higher probabilities
to such similar sequences.

Data is represented as piano-rolls, which is the common representation,
but instead of using a binary system, where a 1 means a note is playing and
0 means it isn’t, the Bi-axial LSTM uses values between 1 and 0 to repre-
sent volume. When generating, the model produces three outputs for every
note at every time step: play probability, replay probability, and dynamics.
Because there is a difference between holding a note and replaying a note,
replay probability is separate from play probability and shows the likelihood
of re-attacking a note immediately after it ends, with no time steps between
the two note events. Dynamics was introduced by DeepJ and represents the
relative volume of a note.

Notes within each time step are modelled as probabilities conditioned on
all previous time steps, not only the most recent one, as well as all notes in
the current time step that have already been generated. In order to generate
sequences, the model samples from its probability distribution, using a coin
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flip to determine whether or not to play a note, and replay probability is
sampled to determine if a note should be re-attacked. No special method was
used to generate the first sequence, and so an adaptive, linear temperature
adjustment was applied that increased temperature for each time step of
silence produced and reset it upon a non-silent output.

The additions introduced by the researchers allow the DeepJ model to
solve the style consistency problems in the Bi-axial LSTM. However, it lacks
long term structure—a remaining problem for LSTMs—and does not work
for songs with more than one instrument.

LakhNES

The LakhNES model uses an extension of the Transformer model called
Transformer-XL [4], which is designed to handle longer sequences. Not much
more explanation on the model’s architecture is given in the paper, so we
surmise it works no differently than a Transformer-XL, which itself does not
work much differently than a Transformer. The model bases its predictions
of the next musical sequence based on a subset of musical events from the
past.

To improve the model’s performance beyond what the Transformer-XL
itself offers, the LakhNES model applies “standard music data augmentation
methods” on the training data to reduce overfitting, as well as some extra
methods the researchers developed themselves for the multi-instrumental
setting. The extra methods include adjusting the speed of a piece by a ran-
dom percentage between ±5% and occasionally removing random instru-
ments from the ensemble, but it is not made clear what standard methods
are meant or how they are applied. Besides the data augmentation, the
researchers pre-trained the model on the Lakh MIDI dataset.

When generating music, two hyperparameters influence the model’s gen-
eration process: temperature and topk. Temperature is a parameter that
affects the “confidence” a model has in a most likely response. At higher
temperatures, the model becomes less confident in any one option and more
creative, while a lower temperature makes it more confident but also more
conservative. Effectively, a temperature of 1 means the outputted probabil-
ity distribution is not altered, a temperature infinitely high would make the
distributions even across the board, and a very tiny temperature means the
most likely probability gets close to 100%. Topk, meanwhile, makes it so
that only the top so-many probabilities are considered. A topk of 16 would
mean that only the 16 most likely outputs could ever be generated while the
rest are discarded.
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Generation Results

VGM-RNN

Unfortunately, we were unable to generate results that compared to the
quality of what the original paper presented. Loss only increased during
training, and the unaltered model stopped the training early at only 11
epochs because the difference in loss between subsequent epochs had fallen
below a certain threshold. Trained on the original dataset used by the
research paper, loss started at 4.7 and only rose from there, and the training
stopped before the 20th epoch. Music generated from these trained weights
were without structure and completely unusable, and because it was our
intention not to change the models we tested, this meant the VGM-RNN
was not further used in our research. We tried but could not locate the
source of the problem.

DeepJ

Due to the model having been designed to only work with one instrument,
the training data had to be altered. Only one instrument’s notes could be
used. After some review, we discovered that out of the four instruments
the dataset uses—two pulse-wave generators (P1 and P2), a triangle-wave
generator (TR), and a percussive noise generator (NO)—it was the first
pulse-wave generator, P1, that contained the central melody. With this
decided, we separated this instrument’s notes from the others and saved
them as the new training set. Afterwards, a generator was coded to feed the
training data into the model, as it could not handle all of it at once. Since
all the data belonged to the same style, the DeepJ model’s style consistency
functions did not play a role. However, the dynamics output for notes was
still an improvement over the older Bi-axial LSTM model.

The model successfully trained, taking 57 epochs and 10 hours to go
from a loss of 0.0487 to 0.0246, and after having tested that the outputs
were coherent, 35 music samples were generated with the default generation
parameters. The DeepJ model does not have any generation parameters
other than style and length, and since there is only one style and the standard
length of 32 bars is more than enough for 15-second samples, these did
not require fine-tuning. The length of generated samples does not affect
how individual bars are generated: it generates as normal and simply stops
when it reaches the last bar. A third-party website was used to synthesize
the generated MIDI files into .wav files.

LakhNES

The LakhNES model comes with pre-trained models at various checkpoints,
which can save a great deal of time normally spent training, and since our

9



research uses the same dataset as the LakhNES paper did, we were able
to make use of these checkpoints. For our research, we used the NESAug
checkpoint, which did not apply pre-training with the Lakh MIDI dataset
but did use the NES-MDB training set with data augmentation. We made
the choice to not use a pre-trained model because we felt pre-training was not
a difference in model, only in training stratagem. Pre-training one model
and not the others was treating them unequally, and we wished to keep
as many variables equal as possible. Data augmentation, however, was a
difference in model, and was kept.

By using the checkpoints, we were saved the effort of having to train
the model ourselves, which meant we could instead spend our time fine-
tuning the generation parameters. After extensive testing it was found that
the best results were generated with a temperature of 1.05 and a topk of 32.
With these parameters, 35 music samples were generated, and the LakhNES
paper provided code that synthesized MIDI files into .wav files.

Evaluation

Once sufficiently fine-tuned, each algorithm is made to generate 35 songs,
and from the NES-MDB validation set, an equal number is randomly se-
lected. We then remove any songs that are of poor quality or, in the case of
the human-made validation set, are too recognizable in origin. From what
remains, the five best samples are selected for each of the four groups and cut
down to 10 to 15 seconds. This cut is made such that, where applicable, this
cut removes a change in melody. This is done to keep the samples’ melodies
more or less consistent regardless of the source of the sample. What we are
left with is a collection of human-made and computer-generated songs, and
we design an online survey to perform the evaluation test.

In the survey, subjects are presented with twenty 10-to-15-second frag-
ments of Video Game Music, distributed as five human-made and fifteen
computer-generated. Subjects are not told this distribution, and are instead
told not to expect it to be fifty-fifty. This is done to discourage subjects from
trying to force some sort of equilibrium in their answers, as this would skew
results.

At each fragment, subjects are asked to judge whether the origin is
from human-made or computer-generated, and they are asked to rate how
much they like the song on a scale of 1 to 10. The former question is a
Turing test, judging the model’s ability to generate music indistinguishable
from a human’s, while the second question serves to test the model’s ability
to generate enjoyable music. We operate by a framework that considers
a model successful if the music it produces sounds like or is preferred to
human-made [1].

In an attempt to partially account for subjects learning to discern human-
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made and computer-generated as they go, as well as to introduce the VGM
genre to people new to it, the actual test is preceded by a practice round.
In this round, the subjects are presented with two human-made fragments
and one computer-generated fragment, and are told which is which at the
end of the round. These samples are also selected from the sets of generated
data.

Evaluation Results

We shared the link for this online survey with a collection of university
students and kindly asked them to fill it in. After 7 days, 102 people had
answered. With these responses, we compiled the rate at which music was
identified as human-made and the mean opinion scores. This was done both
for individual samples and the set of each method.

It became apparent, even without performing significance tests, that in
most cases people were in fact capable of distinguishing human-made and
computer-generated samples. On average, the human-made samples were
identified correctly 86.7% of the time, while the best-performing computer
method, LakhNES, was misidentified by only 34.1%. For the ratings, as
well, human-made scored 7.1 on average and LakhNES 5.5. Noteworthy,
however, is that performance between different samples of the same gen-
eration method could vary greatly, and the most “misleading” sample was
misidentified as human-made by 55.9% of participants. Even one of the hu-
man samples was only identified as human-made 57.8% of the time. Figures
displaying all the results are shown in Appendix A.

Figure 3.1: Human estimates on whether music was human-made for all
samples. “H” stands for a human-made sample, “D” for DeepJ-made, and
“L” for LakhNES-made.
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Figure 3.2: Human estimates on
whether music was human-made,
averaged over methods. Error bars
are standard error.

Figure 3.3: Average human ratings
of music samples. Error bars are
standard error.

LakhNES music “deceived” listeners almost twice as often as DeepJ mu-
sic did, which shows it generates the most human-like VGM music of the two
methods tested, but it was not even half as convincing as genuine human-
made samples. For the sake of certainty, we performed a proportion test be-
tween the averages of DeepJ music and LakhNES music, then LakhNES and
human, to test statistical significance. The results of the two-sample pro-
portion tests indicated that there is a significant difference between DeepJ’s
percentage (17.5%) and LakhNES’s percentage (34.1%) with Z = 2.71 and
p = .007, and a significant difference between LakhNES’s percentage and
the human’s percentage (86.7%) with Z = 7.68 and p < .001. Additionally,
a two-tailed one sample proportion test between the best-performing com-
puter sample (LakhNES’s at 55.9%) and random guessing (50%) showed
with Z = 1.19 and p = .2334 that the null-hypothesis—here the probability
of the computer sample being correctly identified by subjects being equiv-
alent to that of random guessing—could not be rejected. This means that
this sample of computer-generated music was misidentified with a frequency
that may not be distinguished statistically from random guessing.

For statistical significance testing of the ratings, neither proportion test-
ing nor t-testing is appropriate. MOS ratings are not numeric, they are
ordinal. It is not possible to show that the difference between a 6 and a 7
is the same as between 1 and 2. Also, we cannot guarantee a normal distri-
bution needed for a t-test. Therefore, we utilized the Mann-Whitney U test
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instead. We performed this between the averages of DeepJ and LakhNES
and the averages of LakhNES and human. The results indicated that there
is a significant difference between DeepJ’s rating and LakhNES’s rating with
Z = −5.04 and p < .001, and a significant difference between LakhNES’s
rating and the human’s rating with Z = −13.37 and p < .001. From this, as
well as the earlier proportion tests, it is clear that in general, human-made
music performs the best, followed by the LakhNES model, and lastly the
DeepJ model.
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Chapter 4

Related Work

As mentioned in the introduction, much research has been done on computer
composition, but the models presented are rarely tested on anything other
than mainstream genres. That said, research on generating Chiptune or
VGM is not entirely unheard of. The VGM-RNN introduced in [17] applied
an LSTM network to probabilistically generating VGM music. The authors
succeeded in the task of training the model, and then ran a Turing test on
the resulting songs, as well as asking subjects to rate the songs’ quality.
The result was that subjects could correctly discriminate little over half the
time, not much better than chance, and the computer-generated song got
the highest rating. However, only six people answered the survey, and the
model was trained on a small dataset of 181 MIDI files. With such a small
sampling size, the results are inconclusive.

Another attempt was made by Chris Donahue et al in the form of the
LakhNES model, which utilized an improved Transformer architecture to
generate multi-instrumental music based on the NES-MDB dataset [5]. They
proposed several methods to adapt the Transformer architecture to multi-
instrumental music and also a pre-training technique, then compared their
generated chiptune clips to human-made music and several baselines from
other generation methods through use of Turing tests and preference tests.
The results were compelling, and they found that their methods improved
performance over older approaches like the Transformer-XL. However, in
the Turing tests, clips of only 5 seconds long were used, meaning long-
term dependencies played less of a role in the generated pieces. This may
have been done to give the other methods a fighting chance, as most of
those were not suited for such dependencies, but it does fail to present the
Transformer architecture’s strengths. Additionally, for the Turing tests,
computer-generated clips were always compared to human-made in pairs,
which should make it easier to identify which is human-made and which is
not. It does not represent how the algorithms perform “in a vacuum”.

For non-Chiptune music, a much earlier attempt at making monophonic
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music—music with a maximum of one note at each time step—utilized an
LSTM to overcome some of the limitations RNNs faced [9]. The results were
preliminary, but they paved the way to further study. Early work in poly-
phonic composition—multiple notes possible in one time step—attempted
to model musical sequences using a combination of RNNs and Restricted
Boltzman Machines (RBM) [2]. One key aspect of their design was that the
model not only looked at the previous notes when attempting to model the
music’s sequences, but also at current ones, working under the understand-
ing that while technically any combination of notes is possible, in reality
only a few are ever used. This work demonstrated excellent results.

Taking notes from this architecture, [14] created the Bi-axial LSTM,
which used probability distributions similar to those of the RNN-RBM. The
probabilities of notes in the current time step were conditioned on all pre-
vious time steps and the notes already generated for the current time step.
It was also translation invariant, meaning that, in the context of music, a
structure of notes could have its pitch be “translated” up or down and still
be considered the same. The Bi-axial LSTM was successful on prediction
tasks but lacked the ability to generate consistent music itself.

Improving upon the design of the Bi-axial LSTM, DeepJ was introduced
by the authors of [16]. The main addition here was the ability to enforce a
music style.

More recently, a multi-modal AI system called AudioGPT was intro-
duced for the generation, processing, and understanding of sound, including
speech and music [13]. For this purpose, it complements ChatGPT, a Large
Language Model (LLM), with foundation models and input/output inter-
faces, allowing the chat system to handle complex audio tasks. This ties
developments in chat systems with Generative Pre-trained Transformers
(GPTs) into those of audio systems by having a collection of audio pro-
cessing models be accessible through ChatGPT, and experimental results of
AudioGPT have shown potential.
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Chapter 5

Conclusions

In this paper we tasked three computer composition algorithms on the task
of generating Video Game Music (VGM) to see how they compare. We did
so by training them on the Nintendo Entertainment System Music Database
(NES-MDB), fine-tuning their generation parameters, and offering up the
best generated samples in an online survey along with human-made samples.
Though one model failed to train, results on the remaining two show that
human-made music performed by far the best, followed by the LakhNES
(Transformer) model, and lastly the DeepJ (LSTM) model. Additionally,
though the survey subjects were not often fooled by the computer-composed
music, we did encounter an instance where subjects estimated a LakhNES
sample to be human-made with a frequency not statistically distinguishable
from random guessing. This shows it is possible for a computer to compose
VGMmusic that humans cannot accurately identify as human or not human,
and that the LakhNES model is better suited for this than the DeepJ model.
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Appendix A

Appendix

Figure A.1: Human accuracy
on identifying human-made
music. They are labeled in
order of occurrence in the test.

Figure A.2: Average human
ratings of human-made music
samples. Error bars are stan-
dard deviation. They are la-
beled in order of occurrence in
the test.
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Figure A.3: Human esti-
mates on whether DeepJ mu-
sic was human-made. They
are labeled in order of occur-
rence in the test.

Figure A.4: Average human
ratings of DeepJ music sam-
ples. Error bars are standard
deviation. They are labeled
in order of occurrence in the
test.
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Figure A.5: Human esti-
mates on whether LakhNES
music was human-made.
They are labeled in order of
occurrence in the test.

Figure A.6: Average human
ratings of LakhNES music
samples. Error bars are stan-
dard deviation. They are la-
beled in order of occurrence
in the test.
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