BACHELOR’S THESIS COMPUTING SCIENCE

Extending ProFuzzBench

A Benchmark for Stateful Fuzzers

FouaAD LAMSETTEF
$1034545

June 28, 2023

First supervisor/assessor:
Dr. Ir. Erik Poll

Second assessor:
Prof. Dr. Frits Vaandrager

Second supervisor:
Cristian Daniele

Third supervisor:
Seyed Bahnam Andarzian

Radboud University :

AN,
‘crTe™

o

S
MiNe <Y

Abstract

Nowadays, fuzzing has become very popular in recent years due to its ef-
fectiveness in finding security vulnerabilities in a system under test (SUT),
which can be easily automated. Fuzzing uses a lot of carefully crafted,
automatically generated input and checks whether the SUT performs any
unexpected behaviour, like, for example, crashes, which may reveal valuable
information for an attacker. Fuzzing is an effective strategy for SUTs that
use stateless protocols. However, these fuzzers fall short for SUTs that use
stateful protocols because they unable to progress further to a meaningful
state in the system. This is mostly the case in network protocols, and the
research community has responded by developing a lot of fuzzers which are
better suited for stateful systems.

But how does one choose the fuzzer that is the "best” for a specific
stateful protocol? To answer that question, we must compare fuzzers with
each other for each stateful protocol. This is where ProFuzzBench can offer
a solution. ProFuzzBench is a benchmark that provides a framework for
testing fuzzers for network protocols. This benchmark includes a handful of
open-source network servers for popular network protocols like TLS, SSH,
and FTP.

The goal of ProFuzzBench is to provide a framework to benchmark
fuzzers in a well-defined environment to obtain reproducible and quanti-
tative results. In this thesis, we extend ProFuzzBench with three fuzzers,
namely SNPSFuzzer, Nyx-Net, and BooFuzz and evaluate the process of
extending ProFuzzBench. Furthermore, we compare the added fuzzers with
AFLnet and AFLnwe, fuzzers which are provided with ProFuzzBench. In
the end, we also discuss about the reproducibility of fuzzers.

Contents

B Prelminarics

[3.2 Installing ProkuzzBench|
[3.3 Running ProFuzzBench on LightF'TP|
[3.3.1 Analysing the results|.

Extending ProFuzzBench|

4.1 Finding compatible fuzzers|
4.2 Testing Environment| L.

4.4.1 Bulding and running SNPSFuzzer|
4.5 ProFuzzBench plotting modifications|
4.6 Coverage results of AFLnet, AFLnwe and SNPSFuzzer|. . . .

4.7.1 Bulding and running Bookuzzg

4.8 Performance results of Bookuzz on LightF'ITP|
19 Nv<N

[4.9.1 Building and running Nyx-Net|

[5 Reproducibility of fuzzing]
b.1 ACM artitact review for reproducibility]

6 Future Workl
6.1 Adding more fuzzers to ProFuzzBench|
6.2 Extending the duration of fuzzing|.
6.3 Testing on different SUT"s|
6.4 Adding coverage to blackbox fuzzers
6.5 Vulnerabilities as a performance metric|.

25
26

27
27
27
27
28
28

29

Chapter 1

Introduction

Fuzzing is an approach in which a system is fed a large amount of generated
inputs to detect security vulnerabilities, such as memory leaks or unexpected
crashes. A significant advantage of fuzzing is its ability to find a considerable
amount of bugs with relatively little effort. Fuzzers often target stateless
systems where the SUT (system under test) accepts only a single input and
the fuzzer attempts numerous inputs to achieve an undesired result[I].

However, some fuzzers struggle with stateful systems because fuzzers can
only try to multiple inputs for the initial state and fail to progress to deeper
states. This necessitates the use of fuzzers designed to work with stateful
systems.

Many network protocols require the system and client connection to be
in a state where messages can be exchanged. The state may change between
messages sent between the system and client. We refer to these protocols,
which require a sequence of messages, as stateful system. With stateful
systems, each input may alter the internal state of the system.

In this thesis we answer the following questions:

e Is ProFuzzBench a sufficient solution for benchmarking fuzzers for mul-
tiple targets like for example FTP and SSH?

e How easy is adding fuzzers to ProFuzzbench?

e Is benchmarking even necessary?

This thesis is outlined as follows: Chapter [2] defines the basic termi-
nology of fuzzing and different types of fuzzers. Chapter [3| presents the
ProFuzzBench tool and its usage. Chapter [4| presents our experiments and
in Chapter [5] we will discuss the reproducibility of fuzzing. In Chapter [6] we
will discuss potential future work and in Chapter [7| we present our conclu-
sion.

Chapter 2

Preliminaries

In this chapter we present background information regarding fuzzing tech-
niques and the underlying technology for ProFuzzBench like docker and
AFL. In section 2.1 we talk about the need for fuzzing. In section 2.2, 2.3,
we present an overview three high-level fuzzing approaches: blackbox, grey-
box and white box fuzzing. The feedback metrics like code coverage and
bugs are explained in section 2.4. A brief summary of docker and how it
works is introduced in section 2.5.

2.1 Fuzzing in general

Fuzzing is a way to detect security vulnerabilities in software. There are
many approaches for detecting security vulnerabilities in software.

e Static program analyzers that check for code structure like missing
a semicolon or missing brackets and are fast in flagging those kinds of
mistakes. It can also look if data objects in code are properly used
(data flow analysis). However, static program analyzers are prone to
false positives and they, unfortunately, won’t catch every bug.

e Code inspection, this consists of peer-reviewing code, which is al-
ready a common practice in software development. Another form of
manual code inspection is penetration testing where security ex-
perts review code where the focus is on the security of the code rather
than its functionality of the code. Penetration testing applies to any
software and does not require much tooling. However, penetration
testing is very labor-intensive and people who do penetration testing
are very specialized and they are in high demand|2].

This is where fuzzing can fit in between those two methods.

2.2 White- and blackbox fuzzers

There are many approaches of fuzzing. Most common ones of fuzzing are
greybox fuzzing, blackbox fuzzing and whitebox fuzzing.

Blackbox fuzzing often involves using generated input on software where
we do not know the internal implementation of the SUT. Blackbox fuzzing
requires some given knowledge of the input format[3]. Blackbox fuzzers
can make use of a approach which most commonly used in grammar-based
fuzzers which is using a given model or grammar. However, the downside
of those fuzzers is that it requires some effort in creating those models or
grammars. Another approach is supplying the fuzzer with a set of inputs
where the a part of the input is mutated in hopes to finding bugs. This
approach is commonly used in mutation-based fuzzers.

We have blackbox fuzzers where we do not know the internal implemen-
tation of the SUT. With whitebox fuzzzers on the other hand we have full
knowledge of the internal implementations of the SUT. This means we have
can see and analyse all of the code of the SUT. We can construct interesting
inputs to trigger certain branches. Whitebox fuzzers typically use symbolic
execution to gather constraints on inputs from branches encountered along
the execution[2]. With this the fuzzer can execute a new path with each
execution. This may take some time when dealing with larger programs
which typically have many paths.

2.3 Greybox fuzzers

We have discussed two ends of the fuzzing spectrum but there is another
approach of fuzzing which lies between blackbox and whitebox fuzzing, grey-
box fuzzing. Greybox fuzzers can observe some aspects of the SUT and use
the feedback to discover new paths. Their input is mutated after every ex-
ecution(like blackbox fuzzers) and use the feedback to make a meaningful
mutation for the next execution. One of the most popular greybox fuzzers
is AFL which is discussed in section

2.4 Feedback metrics

We need some sort of metric to evaluate the performance of a fuzzer on a
target (SUT). In this section we explain what code coverage entails and how
fuzzers can use these metrics as feedback.

2.4.1 Coverage

One metric that is commonly used to measure the quality of a test is code
coverage, where the number of lines executed by a set of tests is divided

by the number of lines of the program. This gives a broad idea of the
thoroughness of the test[4]. Code coverage can be used at different levels of
the code, in this work we mainly use line coverage and branch coverage.

Branch coverage, this measures the number of execution paths (e.g
if-statements, switch cases) that the fuzzer has found during execution.
Knowing which paths are executed can give a better insight of the flow
of the target. Branch coverage is mainly useful for whitebox and greybox
fuzzing due to the required internal knowledge of the target.

Line coverage, this measures the number of statements covered by the
fuzzers. The difference with line coverage and branch coverage is that a high
line coverage does not automatically mean a high branch coverage. Take this
if-statement for example:

if (cond) {
linel () ;
line2();
line3 () ;
line4 () ;
} else {
line5() ;
}
The line coverage will be 80 percent while the branch coverage is only 50
percent. Nonetheless, line coverage already gives meaningful insights on how
good a fuzzers works on a SUT, if a fuzzers does not have good line coverage
then the branch coverage will be even worse in a SUT where programs are
even larger then shown in the example.

2.4.2 Bugs

During the process of fuzzing the SUT, we see bugs as the number of times
the SUT crashes or hangs. Any fuzzers can also measure the number of
crashes that happened during the fuzzing of the SUT, a crash is unique if
it is not equivalent to previously occurred crashes. These unique crashes
could give insight on to why the SUT crashes on this input and where in
the code this happened, which means that we have found a bug. This gives
us a performance metric for fuzzers with the amount of crashes or hangs
found in the SUT. Fuzzers can be tested on how many known bugs it can
find in the SUT, but finding unique bugs usually a manual process mainly
due to bugs causing errors at several lines and different parts of the SUT.
This makes using bugs as a heuristic not ideal during fuzzing but it is great
as a performance evaluation after fuzzing.

2.5 Docker

ProFuzzBench uses docker to automate the building, compiling and running
of the fuzzers and the targets. Docker is a software platform that enables

rapid building, testing, and deployment of applications. It accomplishes
this by packaging software into standardized containers that contain all the
necessary components, such as libraries, system tools, code, and runtime,
needed for the software to operate. By utilizing Docker, applications can be
swiftly deployed and scaled in any environment with the assurance that the
code will function properly.

Chapter 3

ProFuzzBench

ProFuzzBench (Protocol Fuzzing Benchmark) is a benchmark for fuzzing of
stateful systems that are defined on network protocols like SSH, TLS and
FTP [5]. These protocols are packaged in open-source software in order
to do actual fuzzing. ProFuzzBench provides a framework for automating,
configuration and execution for fuzzing a stateful system. In section 3.1 we
discuss how to install ProFuzzBench. Furhtermore, We give an example how
of fuzzing a target with ProFuzzBench in section 3.2.

3.1 Workflow

ProFuzzBench uses a set of utilities to automate the compiling, running
and analyzing of the target. ProFuzzBench uses docker containers for this
automation and this is represented in figure During the build process,
the fuzzers and the SUT are downloaded from their respective repositories
and compiled. This happens during the building of the docker container
itself. In the second stage, the fuzzing is done inside the docker container
and those results are copied to the host machine. The third stage happens
on the host machine where coverage is computed and plotted.

The aim of ProFuzzBench is that we can do this workflow with other
fuzzers with a similar amount of steps.

Build Run Deploy

« Patch target software = Run docker containers « Run analysis on output data
+ Copy fuzzers, automation and cofiguration files « Copy output data to host machine « Happens on host machine

Figure 3.1: ProFuzzBench workflow using docker containers

w N

N

3.2 Installing ProFuzzBench

The ProFuzzBench repositorym has quite detailed documentation on how to
install ProFuzzBench on a local machine including instructions on building
the docker images of each protocol.

3.3 Running ProFuzzBench on LightFTP

If we want to run fuzzing on a protocol (for example FTP) we first need to
build the docker image containing the software (in this case light FTP). This
can be done with the following command:

cd $PFBENCH

cd subjects/FTP/LightFTP
docker build . -t lightftp

We need to store our results, so we make a folder and pass that path to
ProFuzzBench, we can then run both AFLnet and AFLnwe for 60 minutes
(3600 seconds):
mkdir results-lightftp
profuzzbench_exec_common.sh lightftp 4 results-lightftp aflnet

out-lightftp-aflnet "-P FTP -D 10000 -q 3 -s 3 -E -K -m
none" 3600 5 &

profuzzbench_exec_common.sh lightftp 4 results-lightftp aflnwe
out-lightftp-aflnwe "-D 10000 -K -m none" 3600 5

3.3.1 Analysing the results

The output of AFL fuzzers is in terms of code coverage over time (see chapter
4) and to make plots we need to reformat it into a csv file:

cd $PFBENCH/results-lightftp

; profuzzbench_generate_csv.sh lightftp 4 aflnet results.csv O

profuzzbench_generate_csv.sh lightftp 4 aflnwe results.csv 1

The results.csv file shown in table [77] has six columns showing the times-
tamp, subject program, fuzzer name, run index, coverage type and its value.
The file contains both line coverage and branch coverage over time informa-
tion. Each coverage type comes with two values, in percentage (-per) and in
absolute number (_abs). With this we can make our line coverage and edge
coverage plots.

"https://github.com /profuzzbench /profuzzbench

time subject | fuzzer | run | cov_type | cov
1684134470 | lightftp | aflnet | 1 l_per 37
1684134470 | lightftp | aflnet | 1 l_abs 417
1684134470 | lightftp | aflnet | 1 b_per 20.3
1684134470 | lightftp | aflnet | 1 b_abs 164
1684134471 | lightftp | aflnet | 1 l_per 38.9
1684134471 | lightftp | aflnet | 1 l_abs 438
1684134471 | lightftp | aflnet | 1 b_per 22.5
1684134471 | lightftp | aflnet | 1 b_abs 182
1684134476 | lightftp | aflnet | 1 l_per 39.3
1684134476 | lightftp | aflnet | 1 l_abs 443
1684134476 | lightftp | aflnet | 1 b_per 23.6
1684134476 | lightftp | aflnet | 1 b_abs 191
1684134480 | lightftp | aflnet | 1 l_per 40
1684134480 | lightftp | aflnet | 1 1_abs 451
1684134480 | lightftp | aflnet | 1 b_per 24.5
1684134480 | lightftp | aflnet | 1 b_abs 198
1684134491 | lightftp | aflnet | 1 l_per 40
1684134491 | lightftp | aflnet | 1 l_abs 451
1684134491 | lightftp | aflnet | 1 b_per 24.5
1684134491 | lightftp | aflnet | 1 b_abs 198
1684134505 | lightftp | aflnet | 1 I_per 40.9
1684134505 | lightftp | aflnet | 1 l_abs 461

Table 3.1: Example of the results.csv

3.4 Issues

3.4.1 Address sanitizer

10

Now that we have the results in a usable format and we run the following
command to generate the plots:

profuzzbench_plot.py -i results.csv -p lightftp -r 4 -c 60 -s 1
-0 cov_over_time.png

However, running ProFuzzBench did not go as smoothly as installing it.
Apparently, afl-fuzzers are included in the benchmark crash because afl-
fuzzers automatically set a memory limit when they run and that makes the
fuzzers crash with the adress sanitizer(a memory error detector for C/C++).

This can be fixed by running the fuzzers with the option -m none which
removes the memory limit on the fuzzers. This was not an easy thing to
debug and there is no documentation on it in the ProFuzzBench repository.

11

Chapter 4

Extending ProFuzzBench

In this chapter, we present the methodology used to implement new fuzzers
to ProFuzzBench and the limitations of ProFuzzBench. Furthermore, we do
a case study where we compare SNPSFuzzeIF_-I, AFLnet (which is included
by ProFuzzBench), BooFuzzE] and Nyx-Net on LightF TPH, an open source
FTP server. In section we discuss about compatible fuzzers for the
experiments. In section we present our testing environment. In this
testing environment, we extend ProFuzzBench:

4.1

We describe the functionality of AFLnet and AFLnwe. We show how
AFLnet and AFLnwe can be build and run on LightFTP in section
[4.3]

We describe the functionality of SNPSFuzzer and discuss the configu-
ration for running SNPSFuzzer on Light FTP in section[4.4] We discuss
the results of SNPSFuzzer, AFLnet and AFLnwe in section

We present the modifications done to the analysis script such that we
can plot the results from SNPSFuzzer on LightFTP in section

We describe the functionality of BooFuzz and show how we can build
and run BooFuzz on LightFTP in section We discuss the results
of BooFuzz in section L8

We describe the functionality and configuration of Nyx-Net. We also
discuss the results of Nyx-Net on LightFTP in section

Finding compatible fuzzers

The ideal of ProFuzzBench is that researcher could use any fuzzer of their
liking and extend ProFuzzBench with that fuzzers. However, due to the

"https://github.com/SNPSFuzzer /SNPSFuzzer
https://github.com/jtpereyda/boofuzz
3https://github.com/hfiref0x/Light FTP

12

scope of the thesis we only looked at AFL-based fuzzers such that meaningful
results could be presented. This is because ProFuzzBench already has an
implementation of AFLnet which should make it easier to extend new AFL-
based fuzzers with. Daniele et al. provide a comprehensive overview of
stateful fuzzers used today[3]. However, while some of these AFL-based
fuzzers that were mentioned in the article did not have any source code,
making them impractical for this experiment because there is no possible
way to run those fuzzers. FFuzzE] did provide source code but lacked proper
documentation of the software dependencies. In table 4.1 we present the
fuzzers that were mentioned in the article and tested if they were compatible
with ProFuzzBench.

Fuzzer Based on Source | Issues
code
Nyx-Net AFL yes Missing KVM modules
FFuzz AFL yes No documentation
FitM AFL yes No clear instruction
for fuzzing targets
SNPS-fuzzer | AFL yes No proper documenta-
tion on usage
EPF AFL yes
GANFuzz seq-gan model | no
SGPFuzzer | AFL no
SPFuzz AFL no
Chen et al AFL no
SeqFuzzer seq2seq model | no

Table 4.1: List of fuzzers which were tested if they could be extended with
ProFuzzBench

Some of the fuzzers like SGPFuzzer and FFuzz that had source code were
discovered solely through searching via GitHub on the repository name,
a simple Google search was not enough because of the non-SEO friendly
naming of those fuzzers. FitM (Fuzzer In The Middle) E] did have source code
and had proper documentation. However it was not a suitable candidate
due to the input requirements of FitM which we could not retrieve from
LightFTP due to time limitations. EPF was pretty well documented and
did provide source code, but was left out, again due to time limitations.
This leaves us with SNPSFuzzer and Nyx-net which we discuss in section
4.4 and section 4.6.

“https://github.com/Epeius/FFuzz/tree/master
Shttps://github.com /fgsect /FitM

13

4.2 Testing Environment
The fuzzing was done on one machine with the following specifications:

Hardware

0OS Ubuntu 22.04 LTS
AMD Ryzen 9 5900HX
(8 cores, 16 threads)
RAM | 32 Gigabytes

CPU

Table 4.2: Hardware specifications

The goal of our experiment is to find see how easy it is to fuzz a target
(LightFTP) from ProFuzzBench with a fuzzer of chosing. During this ex-
periment we fuzz LightF TP for one hour with AFLnet, AFLnwe and SNPS-
Fuzzer using 4 parallel docker builds. Furthermore, we give detailed expla-
nation on the modifications to integrate SNPSFuzzer to ProFuzzBench.

4.3 AFLnet and AFLnwe

We first look at the results of the fuzzers that come packaged with Pro-
FuzzBench. AFLnet and AFLnwe are both based on AFL. However, AFLnwe
differs in that it is just a "network-enabled” version of AFL where AFLnwe
sends mutated inputs over TCP/IP socket instead of using a file I/O[6].
AFLnet is much more modified fork of AFL. AFLnet organizes an input
as session with multiple messages and can mutate messages at the mes-
sage level[6][7]. This means it can drop and duplicate messages rather than
mutating bytes which is done with AFLnwe.

4.3.1 Building and running AFLnet and AFLnwe

ProFuzzBench already provides a dockerfile where we can build AFLnet and
AFLnwe together with LightFTP. We only need to run this command inside
of the ProFuzzBench repository:

cd $PFBENCH
cd subjects/FTP/LightFTP

3 docker build . -t lightftp-afl

2

We fuzz LightFTP for 1 hour with AFLnet and AFLnwe using this com-
mand:

profuzzbench_exec_common.sh lightftp 4 results-lightftp aflnet
out-lightftp-aflnet "-P FTP -D 10000 -q 3 -s 3 -E -K -m
none" 3600 5 &

profuzzbench_exec_common.sh lightftp 4 results-lightftp aflnwe
out-lightftp-aflnwe "-D 10000 -K -m none" 3600 5

14

We can use specific run time parameters of AFLnet to control the fuzzing
process:

1. (-p) is used to specify which protocol is used, in this case FTP.

2. (-p) is the optional waiting time for the server to complete initialization
before AFLnet starts fuzzing.

3. State selection (-q) and seed selection (-s) algorithm are both set to

favor.
4. We use (-k) option that allows the SUT to shutdown gracefully.
5. We enable state-aware mode using the (-E).

6. We disable the memory-limit imposed by ASAN by using the (-m none)
option. Both AFLnwe and AFLnet fail to start fuzzing without this
option.

4.4 SNPSFuzzer

SNPSFuzzer is a greybox fuzzer for stateful systems using snapshots. SNPS-
Fuzzer restores the SUT to a specific state that the fuzzer can do fuzzing
on. This should improve the message processing speed and increase edge
coverage[8]. SNPSFuzzer also makes us of a message chain algorithm which
in mutates messages in a certain message chain in order to get to a new state
in the SUT. We need to package SNPSFuzzer together with the LightF'TP
software in a Dockerfile. With this Dockerfile, we can make a docker image
which enables us to run the experiment with the same environment and cor-
rect environment variables every time. ProFuzzBench recommends to build
the new fuzzer on a new docker image seperate from the one that already
contains AFLnet and AFLnwe. This is because AFLnet sets environment
variables which SNPSFuzzer recognizes due to being based on AFL. Further-
more, this also creates issues with the afi-fuzz compiler which both AFLnet
and SNPSFuzzer use.

4.4.1 Building and running SNPSFuzzer

SNPSFuzzer uses the python-protobuf package for compiling the fuzzer itself.
python-protobuf is a python2 package and python2 is no longer supported and
most modern linux distributions already transitioned to python3. Nonethe-
less, using docker we can build an old Ubuntu 16.04 (or 18.04) and install
python-protobut directly with no issues. In appendix [A-1]is a complete imple-
mentation of SNPSFuzzer with docker. We also need to modify the provided
run. sh file which the docker containers use such that we can run SNPSFuzzer
with the profuzzbench_exec_common.sh such that it follows the ProFuzzBench
workflow (see section [3.1]). The run.sh starts with this:

15

1

-

#!/bin/bash
#Commands for afl-based fuzzers (e.g., aflnet, aflnwe)
if $(strstr $FUZZER "afl"); then

Fuzzing

It checks if the fuzzer argument which is given when profuzzbench_exec_common
.sh is run, contains the word ’afl’ which is not in SNPSFuzzer. We modify
run.sh as follows:

#!/bin/bash

#Commands for afl-based fuzzers (e.g., aflnet, aflnwe)

if [[$FUZZER = "aflnet" 1] || [[$FUZZER = "aflnwe" 1] || [[
$FUZZER = "SNPSFuzzer"]]; then
#Fuzzing

The run.sh runs AFLnet and AFLnwe as follows:

#!/bin/bash
#Commands for afl-based fuzzers (e.g., aflnet, aflnwe)
if $(strstr $FUZZER "afl"); then

Run fuzzer-specific commands (if any)

if [-e ${WORKDIR}/run-${FUZZER}]; then
source ${WORKDIR}/run-${FUZZER}

fi

TARGET _DIR=${TARGET_DIR:-"LightFTP"}
INPUTS=${INPUTS:-"${WORKDIR}/in-£ftp"}

#Step-1. Do Fuzzing

#Move to fuzzing folder

cd $WORKDIR/${TARGET_DIR}/Source/Release

echo "$WORKDIR/${TARGET_DIR}/Source/Release"

timeout -k O --preserve-status $TIMEOUT /home/ubuntu/${FUZZER
}/afl-fuzz -d -i ${INPUTS} -x ${WORKDIR}/ftp.dict -o
$0UTDIR -N tcp://127.0.0.1/2200 $0PTIONS -c ${WORKDIR}/
ftpclean ./fftp fftp.conf 2200

Due to SNPSFuzzer being based on AFL and thus uses the sameﬂ afl-fuzz
compiler on line 29. We only need to modify a bit to make the script run
SNPSFuzzer:

#!/bin/bash

#Commands for afl-based fuzzers (e.g., aflnet, aflnwe)
if [[$FUZZER = "aflnet"]] || [[$FUZZER = "aflnwe" 1] || [[
$FUZZER = "SNPSFuzzer"]]; then

Run fuzzer-specific commands (if any)

if [-e ${WORKDIR}/run-${FUZZER}]; then
source ${WORKDIR}/run-${FUZZER}

fi

TARGET_DIR=${TARGET_DIR:-"LightFTP"}

8Same in name and structure but not in configuration and environment variables!

16

11
12

14
15
16

17

19

20

N
[

INPUTS=${INPUTS:-"${WORKDIR}/in-ftp"}

#Step-1. Do Fuzzing

#Move to fuzzing folder

cd $WORKDIR/${TARGET_DIR}/Source/Release

echo "$WORKDIR/${TARGET_DIR}/Source/Release"

if [$FUZZER == "SNPSFuzzer"]; then
timeout -k O --preserve-status $TIMEOUT /home/ubuntu/${
FUZZER}/afl-fuzz -d -i /home/ubuntu/SNPSFuzzer/tutorials/
lightftp/in-ftp -x /home/ubuntu/SNPSFuzzer/tutorials/
lightftp/ftp.dict -o $0UTDIR -N tcp://127.0.0.1/2200
$0PTIONS -c ${WORKDIR}/ftpclean ./fftp fftp.conf 2200

else
timeout -k O --preserve-status $TIMEOUT /home/ubuntu/${
FUZZER}/afl-fuzz -d -i ${INPUTS} -x ${WORKDIR}/ftp.dict -o
$0UTDIR -N tcp://127.0.0.1/2200 $0PTIONS -c ${WORKDIR}/
ftpclean ./fftp fftp.conf 2200

fi

STATUS=$7

Now we can run SNPSFuzzer on each docker container, see appendix
for the full code of run.sh.

4.5 ProFuzzBench plotting modifications

The third step in the ProFuzzBench workflow(see figure is analysis.
Here ProFuzzBench already provides a script to get line and edge coverage
of the output in a CSV format. However, we again need to make some mod-
ifications to make it also plot the line and edge coverages from SNPSFuzzer.
Fortunately, it is very simple fix that we need to do in profuzzbench_plot.py
def main(csv_file, put, runs, cut_off, step, out_file):

#Read the results
df = read_csv(csv_file)

mean_list = []

for subject in [put]:
for fuzzer in ['aflnet', 'aflnwe']:

Must be changed to:

def main(csv_file, put, runs, cut_off, step, out_file):
#Read the results
df = read_csv(csv_file)

#Calculate the mean of code coverage
#Store in a list first for efficiency
mean_list = []

fuzzers = df.fuzzer.unique ()

for subject in [put]:
for fuzzer in fuzzers:

17

There is no need to hardcode the names of the fuzzers. By avoiding this,
ProFuzzBench becomes more configurable, saving time on bug fixing.

4.6 Coverage results of AFLnet, AFLnwe and SNPS-

Fuzzer
SNPSFuzzer SNPSFuzzer AFLnet AFLnwe
(no mca)
Executions | 7,5725 6,97 7,96 40,9125
per second
Total exe- | 28860 29809 33291 147746
cutions
Total paths | 274 264 279 69
Paths 272 262 277 67
found

Table 4.3: Additional fuzzing results of LightFTP using SNPSFuzzer,
AFLnet and AFLnwe

From figure and table we notice that SNPSFuzzer performs
almost identical or sometimes worse then AFLnet. We find this strange be-
cause one would assume that SNPSFuzzer which is based on AFLnet should
perform better when it also uses snapshotting. [§] claimes that SNPSFuzzer
should have find more paths in LightFTP than AFLnet. We suspect that
the snapshotting does not function correctly with LightFTP and we were
unable to find a workaround due to poor documentation.

We see that AFLnwe has the highest throughput in terms of executions
per second. However, AFLnwe is not a message-oriented fuzzer (like AFLnet
and SNPSFuzzer), which sends messages and analyzes the receiving message,
as AFLnwe just sends a uninterrupted stream of bytes. This explains the
high amount of executions per second. This also explains why AFLnwe does
not find much paths in comparison to AFLnet and SNPSFuzzer.

18

300 4 —— SNPSFuzzer

250 A

200

150 4

#edges

100 4

0 10 20 30 40 50 60
Time (in min)

100

—— SNPSFuzzer

80

o
S

8

Edge coverage (%)

20

30 40 50 60
Time (in min)

o
=
S
~
S

Figure 4.1: Edge coverage SNPSFuzzer on LightFTP

—— SNPSFuzzer

°
"
o

20 30 40 50 60
Time (in min)

100
—— SNPSFuzzer

80

o
S

8

Line coverage (%)

0 10 20 30 40 50 60
Time (in min)

Figure 4.2: Line coverage SNPSFuzzer on LightFTP

19

—— aflnet
300 4 —— aflnwe

30 40 50 60
Time (in min)

£}
=
15
N
15

100

—— aflnet
— aflnwe

80

60

Edge coverage (%)

201

30 40 50 60
Time (in min)

£}
=
15
N
15

Figure 4.3: Edge coverage of AFLnet and AFLnwe on LightFTP

20

700
—— aflnet

aflnwe

600 -

500 4

400 1

#lines

300

200 1

100 1

0 10 20 30 40 50 60
Time (in min)

100

—— aflnet
aflnwe

80 1

60 1

Line coverage (%)

201

0 10 20 30 40 50 60
Time (in min)

Figure 4.4: Line coverage of AFLnet and AFLnwe on LightFTP

4.7 BooFuzz

We also wanted to look at the performance of a blackbox fuzzer on Light F'TP.
For this thesis, we used BooFuzz, a grammar based fuzzer. BooFuzz uses
a provided grammar and mutates it to fuzz specific target that accept that
grammar. Furthermore, when the SUT crashes, BooFuzz logs the mutated
output which caused the crash and restarts the SUT for further fuzzing. For
this experiment we use a simple FTP grammar (see appendix and fuzz
LightFTP for one hour. Because BooFuzz does not use coverage and has no
knowledge of the iternal implementation of LightF TP, BooFuzz can not be
benchmarked with ProFuzzBench.

4.7.1 Building and running BooFuzz

Installing BooFuzz is straightforward with the pip install boofuzz command
and BooFuzz is in comparison with the fuzzers we discussed very documen-
tated. The SUT (LightFTP) needs to be already running before we begin
fuzzing with BooFuzz. We can manually run the LightF TP (version 2.0 for
fuzzing) server by compiling LightFTP using the AFL compiler:

cd /path/to/LightFTP/Source/Release #go to executable
LightFTP

21

3

CC=/path/to/AFL/AFL-clang-fast make clean all #compile
LightFTP
./fftp fftp.conf 2200 #run LightFTP on port 2200

With fftp.conf we configure the server such that it accepts certain users like
‘ubuntu’ that have a specific password and run it on localhost with port
2200. Now BooFuzz can fuzz on the LightF'TP server using that port. We
then need to run the following command to run BooFuzz for 1 hour:

time python3 boofuzz_lightftp.py 3600

4.8 Performance results of BooFuzz on LightFTP

Because BooFuzz only can register crashes we can only measure how many
crashes it finds. BooFuzz performed in total 135287 executions resulting in
a executions speed of 37,6 executions per second. However, after one hour
there were no crashes found with BooFuzz.

4.9 Nyx-Net

We also tried Nyx—Netﬂ a snapshot-based fuzzer. This fuzzer was most in-
teresting because the researchers used ProFuzzBench in their paper to fuzz
their targets. Nyx-Net uses a hypervisor for their snapshots[9]. Hypervisors
can run between the hardware and the guest-OS (type-1 hypervisor/bare-
metal hypervisors) or one can run the hypervisor between the host-OS
and the guest-OS[10]. To be more specific, Nyx-Net uses a modified ver-
sion of QEMUE] and KVME] that allows the Linux kernel to function as a
hypervisor[I1]. KVM uses hardware virtualization extensions provided by
modern CPU to run the guest-OS inside of the VM natively. This setup
ensures high performance virtualization[9].

4.9.1 Building and running Nyx-Net

Because we can not use docker with the modified version of QEMU that
Nyx-Net uses, we choose to use a Ubuntu 21.04 VM to install and use Nyx-
Net. The reason that we use Ubuntu 21.04 is to ensure we have similar setup
as [9] suggest. We already run into another issue that Ubuntu 21.04 is no
longer supported and using the standard sudo apt update && apt upgrade does
not work out of the box, but this is easily mitigated by using an archive of
the ubuntu package sources. This can be done using the following command:

Thttps://github.com/RUB-SysSec/nyx-net
8Quick Emulator
9Kernel-based Virtual Machine

22

S LI

w N

sudo sed -i -re 's/([a-z]{2}\.)?archive.ubuntu.com|security
.ubuntu.com/old-releases.ubuntu.com/g' /etc/apt/sources.
list
We can then compile Nyx-Net using the setup.sh script in the Nyx-Net
repository:

cd nyx-net
./setup.sh

Another issue with the current codebase (which also uses Rust) of Nyx-Net
is that it is not compatible with the current version of Rustf0} The rust
compilor gives the following error message:

error: reference to packed field is unaligned

222 4&self .feedback_data.shared.ijon.max_data

|
[
|
= warning: this was previously accepted by the compiler but
is being phased out; it will become a hard error in a
future release!

We avoid this error by using a older rust VersionEl Now that we have the
fuzzer compiled, we need to build LightFTP to make it compatible with
Nyx-Net. Fortunately, Nyx-Net already provides a script which builds and
packages LightFTP in a format which Nyx-Net can do fuzzing on. We run
this script using the following command:

./nyx-net/targets/packer_scripts/pack_lightFTP.sh

Before we can fuzz LightFTP with Nyx-Net we need to enable the KVM

module on our virtual machine. We use the following commands to enable

the KVM:

sudo modprobe -r kvm_amd #unload kvm module specific for AMD
CPU's

sudo modprobe -r kvm #unload standard kvm module

sudo modprobe kvm enable_vmware_backdoor=y #reload standard
kvm module with vmware backdoor enabled

sudo modprobe kvm_amd #reload kvm module specific for AMD
CPU's

To run Nyx-Net on LightF'TP we need to run the following command:
cargo run --release -- -s ../../targets/packed_targets/

nyx_lightftp/

We let Nyx-Net fuzz LightF'TP for one hour but unfortunately the results
were quite disappointing. From figure [£.4] we notice that Nyx-Net hangs at
around 26,5 percent line coverage and 15,4 percent edge coverage. Nyx-net
should perform 10 percent better than AFLnet [9].

10version 1.69.0

Hyersion 1.56

23

Time Fuzzer Lines_cov | Lines_abs | Edge_cov | Edge_abs
1685898808 | nyx-aggressive | 25.3 286 13,4 108
1685898810 | nyx-aggressive | 25.3 286 13,4 108
1685898812 | nyx-aggressive | 25.3 286 13,4 108
1685898813 | nyx-aggressive | 25.3 286 13,4 108
1685898814 | nyx-aggressive | 25.3 286 13,4 108
1685898816 | nyx-aggressive | 25.3 286 13,4 108
1685898818 | nyx-aggressive | 25.3 286 13,4 108
1685898822 | nyx-aggressive | 25.3 286 13,4 108
1685898828 | nyx-aggressive | 26.3 300 15,4 124
1685898828 | nyx-aggressive | 26.3 300 15,4 124

Table 4.4: Coverage data points of Nyx-Net on LightF'TP

We reached out to one of the researchers involved in the development
of Nyx-Net, and they informed us that the public version of the Nyx-Net
codebase, which was outdated, was not utilized for the paper. We noticed
similarities with the datalT_Z] they collected using the outdated version of Nyx-
Net with our results. The updated version of NYX—NGH did match with the
results from [9]. However, we can not use those results because we have no
way to verify those results.

2https://github.com/RUB-SysSec/nyx-net-profuzzbench/blob/
ab5078b3eda2f433eaacb5fd3d6c640f7ffc85e72/data/noseeds/lightftp.csv

“https://github.com/RUB-SysSec/nyx-net-profuzzbench/blob/
ab5078b3eda2f433eaac5fd3d6c640f7ffc85e72/data/with-newspec/lightftp.csv

24

https://github.com/RUB-SysSec/nyx-net-profuzzbench/blob/ab5078b3eda2f433eaac5fd3d6c640f7ffc85e72/data/noseeds/lightftp.csv
https://github.com/RUB-SysSec/nyx-net-profuzzbench/blob/ab5078b3eda2f433eaac5fd3d6c640f7ffc85e72/data/noseeds/lightftp.csv
https://github.com/RUB-SysSec/nyx-net-profuzzbench/blob/ab5078b3eda2f433eaac5fd3d6c640f7ffc85e72/data/with-newspec/lightftp.csv
https://github.com/RUB-SysSec/nyx-net-profuzzbench/blob/ab5078b3eda2f433eaac5fd3d6c640f7ffc85e72/data/with-newspec/lightftp.csv

Chapter 5

Reproducibility of fuzzing

As we can see from the results of SNPSFuzzer and Nyx-Net, we were not
able to reproduce the results which the researchers of those fuzzers claimed
in their respective papers[8, 9]. Even though the hardware differs from
those papers there should be at least a minimal improvement compared to
AFLnet. We also saw that some fuzzers discussed in this thesis(see section
did not provide source code or proper documentation of that source
code.

We are deeply concerned about reproducibility of the scientific results
from those fuzzers. Omne should assume that a scientific paper where a
researcher shows that for example fuzzer A performs significantly better
than fuzzer B that those results can be reproduced by different researcher
using a different machine.

However, this what not the case with the experiments reported in section
of this thesis. One cause maybe that the source code is not maintained
after the publication of the research. This was the case with Nyx-Net where
the researcher told us that the source code of Nyx-Net, which was public,
was not updated after the paper[d] was published.

25

Figure 5.1: ACM artifacts badges [12]

5.1 ACM artifact review for reproducibility

To further improve the repoducibility of fuzzers in research, ACM has par-
tially adopted the process of artifact review[I2]. An artifact in this case is
a digital object that was created and used by the authors in experiments.
This could be whole software systems, scripts to run the experiments, input
data or raw data collected in the experiment. This artifacts are also submit-
ted and reviewed. The corresponding paper will have badge that will state
whether artifacts were available, functional or reusable and if the results
were even reproducible (see figure |5.1)).

26

Chapter 6

Future Work

The subsequent sections provide a summary of research recommendations
aimed at extending ProFuzzBench even further.

6.1 Adding more fuzzers to ProFuzzBench

We only looked at adding three fuzzer to ProFuzzBench, extending Pro-
FuzzBench even further would offer more interesting comparisons with SNPS-
Fuzzer and AFLnet. For example, we can look at fuzzers like FitM[13] which
needs some further investigation how its inputs work in order for FitM to
work on ProFuzzBench. This could provide yet another meaningful compar-
ison to AFLnet which is also based on AFL. Daniele et al. also provide a lis
of other fuzzers which were not based on AFL like for example AspFuzz[14].
A nice inclusion to that article would be to also specify which fuzzers do
have or did not provide source code.

6.2 Extending the duration of fuzzing

Another area for further research could be the duration of the fuzzing. The
duration could be extended to for example like 24 hours as 1 hour of fuzzing
LightF'TP did not result in any crashes. However, we have doubts if fuzzing
for longer would improve the code coverage of SNPSFuzzer or AFLnet. From
figure[4.2]and [4.4] we notice no significant improvement in code coverage after
30 minutes.

6.3 Testing on different SUT’s

Furthermore, this thesis only looked at one target, LightFTP. Using more
targets may give a more comprehensive analysis of fuzzers on multiple tar-
gets. One could look at the performance of SNPSFuzzer and AFLnet on for
example Live555 (a RTSP server) or OpenSSH.

27

6.4 Adding coverage to blackbox fuzzers

There is also further research to be done on getting code coverage from
blackbox fuzzers. BooFuzz does have an open pull request where it adds
code coverage to BooFuzz using AFL instrumentationm This pull request is
not merged yet and thus not in the latest version of BooFuzz.

6.5 Vulnerabilities as a performance metric

We could use also look at vulnerabilities from CVEs or from OSS-Fuzz and
use those vulnerabilities as a metric whether a fuzzer can find them or not.
This approach is also used for AFLnet in [7] where AFLnet, AFLnwe and
BooFuzz are compared on how fast the fuzzers can find known CVEs.
OSS—FuzzE] is an open-source project maintained by Google which pro-
vides a framework for open source software to implement fuzzing technique
for finding more security vulnerabilities. It also provides a platform[ﬂ where
users can report bugs they found through fuzzing, such it can be fixed
quickly. Omne could use this platform to check for vulnerabilities in one
of the targets of ProFuzzBench. However, OSS-fuzz only supports stateless
fuzzing to find vulnerabilities in stateful SUTSs, so it can be the case that a
stateful fuzzer could find more bugs than what is reported in OSS-fuzz.

"https://github.com/jtpereyda/boofuzz/pull /508
*https://google.github.io/oss-fuzz/
3https://bugs.chromium.org/p/oss-fuzz/issues/list

28

Chapter 7

Conclusions

At first glance, fuzzing appears to be a simple and automated method to dis-
cover bugs and vulnerabilities. However, a significant amount of underlying
groundwork is required to ensure fuzzers work as intended. Think of com-
plications like software dependencies or incorrect compiler versions, which
could hours to debug. Consider, too, whether the fuzzer can operate within
a Docker container. For instance, it took approximately two weeks to get
SNPSFuzzer to compile and run inside of a Docker container. Furthermore,
it took us a monthE] to successfully set up Nyx-Net, but even then, it failed
to generate significant results due to outdated source code.

We then needed to figure out if we can run SNPSFuzzer and Nyx-Net on
LightFTP. It takes a considerable amount of time to make a specific SUT
like LightF'TP work with SNPSFuzzer and Nyx-Net.

Nevertheless, once we successfully executed SNPSFuzzer and Nyx-Net on
LightFTP, Further experimentation, like longer duration, on LightF TP with
SNPSFuzzer became relatively straightforward. In the case of SNPSFuzzer,
we accomplished this by building a Docker container in which we built and
compiled both SNPSFuzzer and LightF'TP, allowing us to subsequently run
SNPSFuzzer on LightFTP. Additionally, for Nyx-Net, we employed a vir-
tual machine configuration where Nyx-Net ran on a LightF'TP server. To
ensure that we ran Nyx-Net on the same LightF'TP server, we build a docker
container which only contained LightF'TP. This container ran inside of the
virtual machine.

Regrettably, should we wish to utilize a different SUT, it becomes nec-
essary once more to modify the SUT to ensure that we can run the SUT
with our fuzzers, and proceed with creating a docker container for the new
SUT following the ProFuzzBench workflow (see figure [3.1). This needs to
be repeated for each new fuzzer.

We can also look at blackbox fuzzers like BooFuzz are suited for fuzzing
a SUT like Light F'TP but it can not perform well without building a proper

Yworking full time 2 days per week

29

grammar which must be done for every SUT.

Furthermore, it is hard to compare blackbox fuzzers like BooFuzz with
greybox fuzzers like AFL. This is because BooFuzz does not use coverage to
mutate it messages and does not output coverage which makes it difficult to
compare it with AFL fuzzers like AFLnet and SNPSFuzzer. The only metrics
we could use to compare AFL fuzzers with BooFuzz is the number of crashes
and the executions per second. However, there are some advancements in
getting code coverage from blackbox fuzzers like BooFuzz (see section

We also discussed about the reproducibility of fuzzing. We noticed that
many researchers do not provide source code for their fuzzers (see table
and thus providing no way to replicate their results. We do see that
publishers such as ACM are trying to encourage researchers to make their
research more reproducible using artifact review (see chapter [5)). From our
experiments we concluded that it is not easy to extend ProFuzzBench with
more fuzzers, but do see the potential on how it can make artifact review
easier and thus improving reproducibility.

30

Bibliography

1]

Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian
Zhang. Fuzzing: State of the art. IEEE Transactions on Reliability,
67(3):1199-1218, 2018.

Patrice Godefroid. Fuzzing: hack, art, and science. Communications

of the ACM, 63(2):70-76, 2020.

Cristian Daniele, Seyed Behnam Andarzian, and Erik Poll. Fuzzers for
stateful systems: Survey and research directions. https://arxiv.org/
abs/2301.02490, 2023.

Pavneet Singh Kochhar, Ferdian Thung, and David Lo. Code coverage
and test suite effectiveness: Empirical study with real bugs in large
systems. In 2015 IEEE 22nd International Conference on Software
Analysis, Fvolution, and Reengineering (SANER), pages 560-564, 2015.

Roberto Natella and Van-Thuan Pham. ProFuzzBench: a benchmark
for stateful protocol fuzzing. ACM, International Symposium on Soft-
ware Testing and Analysis, 2021.

Roberto Natella. StateAFL: Greybox fuzzing for stateful network
servers. Springer, Empirical Software Engineering, 27(7):191, 2022.

Van-Thuan Pham, Marcel Béhme, and Abhik Roychoudhury. AFLnet:
A Greybox Fuzzer for Network Protocols. In 13th International Con-
ference on Software Testing, Validation and Verification (ICST), pages
460-465. IEEE, 2020.

Jungiang Li, Senyi Li, Gang Sun, Ting Chen, and Hongfang Yu. SNPS-
Fuzzer: A Fast Greybox Fuzzer for Stateful Network Protocols Using
Snapshots. IEEFE Transactions on Information Forensics and Security,
17:2673-2687, 2022.

Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Abbasi,
and Thorsten Holz. Nyx-Net: Network Fuzzing with Incremental Snap-
shots. In Proceedings of the Seventeenth European Conference on Com-
puter Systems. ACM, 2022.

31

https://arxiv.org/abs/2301.02490
https://arxiv.org/abs/2301.02490

[10]

[11]

[12]

[14]

Robert P Goldberg. Architectural principles for virtual computer sys-
tems. Technical report, Harvard University, 1973.

Gernot Heiser. The role of virtualization in embedded systems. In
1st Workshop on Isolation and Integration in Embedded Systems, pages
11-16. ACM, Apr 2008.

Artifact review and badging - current. https://www.acm.org/
publications/policies/artifact-review-and-badging-current)
Aug 2020.

Dominik Maier, Otto Bittner, Marc Munier, and Julian Beier. FitM:
Binary-Only Coverage-Guided Fuzzing for Stateful Network Protocols.
In Workshop on Binary Analysis Research (BAR). Internet Society,
2022.

Takahisa Kitagawa, Miyuki Hanaoka, and Kenji Kono. AspFuzz: A
state-aware protocol fuzzer based on application-layer protocols. In The
IEEE symposium on Computers and Communications, pages 202208,
2010.

Yingchao Yu, Zuoning Chen, Shuitao Gan, and X. F. Wang. SGP-
Fuzzer: A State-Driven Smart Graybox Protocol Fuzzer for Network
Protocol Implementations. IEEE Access, 8:198668-198678, 2020.

Wu Biao, Tang Chaojing, and Zhang Bin. FFUZZ: A Fast Fuzzing Test
Method for Stateful Network Protocol Implementation. In 2021 2nd

International Conference on Computer Communication and Network
Security (CCNS), pages 75-79. IEEE, 2021.

32

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

1

Appendix A

Appendix

A.1 Dockerfile SNPSFuzzer

FROM ubuntu:16.04

Install common dependencies

ENV DEBIAN_FRONTEND=noninteractive

RUN apt-get -y update && \
apt-get -y install sudo \
apt-utils \
build-essential \
openssl \
clang \
graphviz-dev \
git \
autoconf \
libgnutls28-dev \
libssl-dev \
1lvm \
python3-pip \
nano \
net-tools \

vim \
gdb \
netcat \
strace \
wget

Set up fuzzers

RUN sudo apt-get -y install libprotobuf -dev \

libprotobuf -c-dev \
protobuf -c-compiler\
protobuf -compiler \
python-protobuf \
libnl-3-dev \

libnet -dev \
libbsd-dev \
libaio-dev \

33

36 libcap-dev \

37 pkg-config

38

39 RUN sudo apt-get -y --no-install-recommends install asciidoc
40 RUN sudo apt-get -y --no-install-recommends install xmlto

42 # Add a new user ubuntu, pass: ubuntu

43 RUN groupadd ubuntu && \

44 useradd -rm -d /home/ubuntu -s /bin/bash -g ubuntu -G sudo
-u 1000 ubuntu -p "$(openssl passwd -1 ubuntu)"

16 RUN chmod 777 /tmp

148 RUN echo 'Y%sudo ALL=(CALL) NOPASSWD:ALL' >> \
19 /etc/sudoers

51 RUN pip3 install gcovr==4.2

53 # Use ubuntu as default username
54 USER ubuntu
55 WORKDIR /home/ubuntu

57 # Import environment variable to pass as parameter to make (e.g
., to make parallel builds with -j)
58 ARG MAKE_OPT

60 # Set up fuzzers

61 RUN git clone https://github.com/SNPSFuzzer/SNPSFuzzer.git && \
62 cd SNPSFuzzer && \

63 cd criu4snpsfuzzer && \

64 make && sudo make install && \

65 sudo cp ./lib/c/libcriu.so /usr/local/lib/libcriu.so.2 && \
66 sudo ldconfig && \

67 cd ~

60 ENV SNPSFUZZER="/home/ubuntu/SNPSFuzzer"

1 RUN cd ~

2> RUN cd $SNPSFUZZER && make &&\
3 cd 1lvm_mode && make &&\

4 cd .. &&\

5 sudo make install

77 # Set up environment variables for SNPSFUZZER

78 ENV WORKDIR="/home/ubuntu/experiments"

79 ENV LLVM_CONFIG="1llvm-config-3.8"

80 ENV PATH="${PATH}:${SNPSFUZZER}:/home/ubuntu/.local/bin:${
WORKDIRZ}"

g1 ENV AFL_PATH="${SNPSFUZZER}"

g2 ENV AFL_I_DONT_CARE_ABOUT_MISSING_CRASHES=1 \

83 AFL_SKIP_CPUFREQ=1 \

84 AFL_NO_AFFINITY=1

86 RUN mkdir $WORKDIR

34

s¢ COPY --chown=ubuntu:ubuntu fuzzing.patch ${WORKDIR}/fuzzing.
patch
89 COPY --chown=ubuntu:ubuntu gcov.patch ${WORKDIR}/gcov.patch

91 # Set up environment variables for ASAN

92 ENV ASAN_OPTIONS='abort_on_error=1:symbolize=0:detect_leaks=0:
detect_stack_use_after_return=1:detect_container_overflow
=0:poison_array_cookie=0:malloc_£fill_byte=0:
max_malloc_fill_size=16777216"

93

94 # Download and compile LightFTP for fuzzing

5 RUN cd $WORKDIR && \

96 git clone https://github.com/hfirefOx/LightFTP.git && \

97 cd LightFTP && \

98 git checkout 5980eal && \

99 patch -pl < ${WORKDIR}/fuzzing.patch && \

100 cd Source/Release && \

101 AFL_USE_ASAN=1 CC=afl-clang-fast make clean all $MAKE_OPT

102

103 # Set up LightFTP for fuzzing

104 RUN cd ${WORKDIR}/LightFTP/Source/Release && \

105 cp ${SNPSFUZZER}/tutorials/lightftp/fftp.conf ./ && \

106 cp ${SNPSFUZZER}/tutorials/lightftp/ftpclean.sh ./ && \

107 chmod 777 ftpclean.sh && \

108 cp -r ${SNPSFUZZER}/tutorials/lightftp/certificate /home/
ubuntu && \

109 mkdir /home/ubuntu/ftpshare

111 # Download and compile LightFTP for coverage analysis
112 RUN cd $WORKDIR && \

113 git clone https://github.com/hfirefOx/LightFTP.git LightFTP
-gcov && \

114 cd LightFTP-gcov && \

115 git checkout 5980eal && \

116 patch -pl < ${WORKDIR}/gcov.patch && \
117 cd Source/Release && \

118 make CFLAGS="-fprofile-arcs -ftest-coverage" CPPFLAGS="-
fprofile-arcs -ftest-coverage" CXXFLAGS="-fprofile-arcs -
ftest -coverage" LDFLAGS="-fprofile-arcs -ftest-coverage"

clean all $MAKE_OPT

120 # Set up LightFTP for fuzzing
121 RUN cd ${WORKDIR}/LightFTP-gcov/Source/Release && \
122 cp ${SNPSFUZZER}/tutorials/lightftp/fftp.conf ./ && \
3 cp ${SNPSFUZZER}/tutorials/lightftp/ftpclean.sh ./ && \
124 chmod 777 ftpclean.sh

27 COPY --chown=ubuntu:ubuntu in-ftp ${WORKDIR}/in-ftp

128 COPY --chown=ubuntu:ubuntu ftp.dict ${WORKDIR}/ftp.dict

120 COPY --chown=ubuntu:ubuntu cov_script.sh ${WORKDIR}/cov_script
130 COPY --chown=ubuntu:ubuntu run.sh ${WORKDIR}/run

131 COPY --chown=ubuntu:ubuntu clean.sh ${WORKDIR}/ftpclean

35

132
133
134
135
136

w N e

ST IO U R

VO NN NN NN NN
© ® N o A W N

31

For debugging purposes
USER root
RUN apt-get -y install ftp

7 USER ubuntu

A.2 DModifications ProFuzzBench Scripts

#!/bin/bash

FUZZER=$%1 #fuzzer name (e.g., aflnet) -- this name must
match the name of the fuzzer folder inside the Docker
container

OUTDIR=$2 #name of the output folder

OPTIONS=$3 #all configured options -- to make it flexible,
we only fix some options (e.g., -i, -o, -N) in this script

TIMEOUT=$4 #time for fuzzing

SKIPCOUNT=$5 #used for calculating cov over time. e.g.,
SKIPCOUNT=5 means we run gcovr after every 5 test cases

strstr () {
["${1#x$2x}" = "$1"] && return 1
return O

}
#Commands for afl-based fuzzers (e.g., aflnet, aflnwe)
if [[$FUZZER = "aflnet" 1] || [[$FUZZER = "aflnwe" 1] || [I[

$FUZZER = "SNPSFuzzer"]1]; then

Run fuzzer-specific commands (if any)

if [-e ${WORKDIR}/run-${FUZZER}]; then
source ${WORKDIR}/run-${FUZZER}

fi

TARGET _DIR=${TARGET_DIR:-"LightFTP"}
INPUTS=${INPUTS:-"${WORKDIR}/in-ftp"}

#Step-1. Do Fuzzing

#Move to fuzzing folder

cd $WORKDIR/${TARGET_DIR}/Source/Release

echo "$WORKDIR/${TARGET_DIR}/Source/Release"

if [$FUZZER == "SNPSFuzzer"]; then
timeout -k O --preserve-status $TIMEOUT /home/ubuntu/${
FUZZER}/afl-fuzz -d -i /home/ubuntu/SNPSFuzzer/tutorials/
lightftp/in-ftp -x /home/ubuntu/SNPSFuzzer/tutorials/
lightftp/ftp.dict -o $0UTDIR -N tcp://127.0.0.1/2200
$0PTIONS -c ${WORKDIR}/ftpclean ./fftp fftp.conf 2200

else
timeout -k O --preserve-status $TIMEOUT /home/ubuntu/${
FUZZER}/afl-fuzz -d -i ${INPUTS} -x ${WORKDIR}/ftp.dict -o
$0UTDIR -N tcp://127.0.0.1/2200 $0PTIONS -c ${WORKDIR}/
ftpclean ./fftp fftp.conf 2200

36

33

35

36

a7
37

39

40

41

13
1

15
46

fi

fi
STATUS=$7

#Step-2. Collect code coverage over time
#Move to gcov folder
cd $WORKDIR/LightFTP-gcov/Source/Release

#The last argument passed to cov_script should be O if the
fuzzer is afl/nwe and it should be 1 if the fuzzer is based
on aflnet
#0: the test case is a concatenated message sequence -- there
is no message boundary
#1: the test case is a structured file keeping several
request messages
if [$FUZZER = "aflnwe"]; then
cov_script ${WORKDIR}/${TARGET_DIR}/Source/Release/${0UTDIR
}/ 2200 ${SKIPCOUNT} ${WORKDIR}/${TARGET_DIR}/Source/
Release/${0UTDIR}/cov_over_time.csv O
else
cov_script ${WORKDIR}/${TARGET_DIR}/Source/Release/${0UTDIR
}/ 2200 ${SKIPCOUNT} ${WORKDIR}/${TARGET_DIR}/Source/
Release/${0UTDIR}/cov_over_time.csv 1
fi

gcovr -r .. --html --html-details -o index.html

mkdir ${WORKDIR}/${TARGET_DIR}/Source/Release/${0UTDIR}/
cov_html/

cp *.html ${WORKDIR}/${TARGET_DIR}/Source/Release/${0UTDIR}/
cov_html/

#Step-3. Save the result to the ${WORKDIR} folder
#Tar all results to a file

cd ${WORKDIR}/${TARGET_DIR}/Source/Release

tar -zcvf ${WORKDIR}/${OUTDIR}.tar.gz ${0UTDIR}

exit $STATUS

A.3 Grammar model BooFuzz

from boofuzz import *

session = Session(sleep_time=2, target=Target(

connection=SocketConnection("127.0.0.1", 2200, proto='tcp')
))

user = Request("user", children=(
String("key", "USER"),
Delim("space", " "),
String("val", "USER fouad"),
Static("end", "\r\n"),

))

37

passw = Request("pass", children=(

String("key", "PASS"),
Delim("space", " "),

String("val", "PASS fouad"),

Static("end", "\r\n"),

i))

))

stor = Request("stor", children=(
String("key", "STOR"),
Delim("space", " "),
String ("val", "AAAA"),
Static("end", "\r\n"),

retr = Request("retr", children=(
String("key", "RETR"),
Delim("space", " "),
String("val", "AAAA"),
Static("end", "\r\n"),

))

session.connect (user)

session.connect (user, passw)
#session.connect (passw, stor)
#session.connect (passw, retr)

session. fuzz ()

38

	Introduction
	Preliminaries
	Fuzzing in general
	White- and blackbox fuzzers
	Greybox fuzzers
	Feedback metrics
	Coverage
	Bugs

	Docker

	ProFuzzBench
	Workflow
	Installing ProFuzzBench
	Running ProFuzzBench on LightFTP
	Analysing the results

	Issues
	Address sanitizer

	Extending ProFuzzBench
	Finding compatible fuzzers
	Testing Environment
	AFLnet and AFLnwe
	Building and running AFLnet and AFLnwe

	SNPSFuzzer
	Building and running SNPSFuzzer

	ProFuzzBench plotting modifications
	Coverage results of AFLnet, AFLnwe and SNPSFuzzer
	BooFuzz
	Building and running BooFuzz

	Performance results of BooFuzz on LightFTP
	Nyx-Net
	Building and running Nyx-Net

	Reproducibility of fuzzing
	ACM artifact review for reproducibility

	Future Work
	Adding more fuzzers to ProFuzzBench
	Extending the duration of fuzzing
	Testing on different SUT's
	Adding coverage to blackbox fuzzers
	Vulnerabilities as a performance metric

	Conclusions
	Appendix
	Dockerfile SNPSFuzzer
	Modifications ProFuzzBench Scripts
	Grammar model BooFuzz

