
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Fast And Furious: Implementing Optuna and Early Stopping in
CNN-based SCA

Author:
Gabriele Serafini
s1060638

First supervisor/assessor:
Dr Lejla Batina

Second assessor:
Dr Stjepan Picek

July 11, 2023

Abstract

This study adapts the capabilities of the open-source Optuna framework,
known for its state of art hyperparameters optimization (HO), to enhance
the efficiency and performance of Convolutional Neural Network (CNN)
models in Side-Channel Analysis(SCA). Particularly, we examine the Sam-
pling Algorithm Tree-structured Parzen Estimator and early stopping based
on previous models, combined with the classical patience-based early stop-
ping mechanism, considering their role in fine-tuning the exploration-exploitation
trade off in machine learning HO and their computational resource savings
in SCA. Through different Optuna studies using two distinct datasets, AS-
CADf and ASCADr, the warm up values have been systematically varied.
This approach allowed their influence on computational resources usage and
model performance to be analyzed. The Optuna framework’s adaptabil-
ity, and ready-to-use features significantly streamlined the workflow for this
work, illustrating the potential of integrating such established machine learn-
ing frameworks into SCA research. The results, suggest a consistent per-
formance across all early stopping, with the best models achieving a Guess-
ing Entropy (GE) of 0 using approximately 200 traces on average for both
datasets. Interestingly,for ASCADr, models obtained from experiments with
a shorter warm-up value displayed superior performance, reinforcing the no-
tion that aggressive early stopping can still yield optimal models. This
approach may also facilitate earlier identification of promising configura-
tions during the optimization process, consequently leading to significant
resource savings. However, the effectiveness of the models and the observed
effects could be attributed to multiple factors such as the number of models
tried in each HO experiment, the relative simplicity of the models required
to analyse these datasets, and the vastness of the search space. Therefore,
these findings should be interpreted considering these elements. In conclu-
sion, our research lends support to the implementation of 2 different early
stopping strategies in HO for CNN-based SCA. It highlights the invaluable
benefits of adapting open-source frameworks like Optuna, thus encouraging
further integration of such versatile tools into the SCA field.

Contents

1 Introduction 3
1.1 The background of the problem 3
1.2 The problem . 4
1.3 The solution . 5
1.4 The contribution and the outline 6

2 Preliminaries 8
2.1 Side-Channel Analysis . 8

2.1.1 Non-profiled Side-Channel Analysis 9
2.1.2 Profiled Side-Channel analysis 10
2.1.3 Side-channel analysis: the steps before the attack . . . 11
2.1.4 Leakage Models . 12
2.1.5 Countermeasures . 14
2.1.6 Side-Channel Analysis metrics 15

2.2 Deep Learning . 16
2.2.1 Definition . 16
2.2.2 deep learning challenges 17

2.3 Deep feedforward networks 17
2.3.1 Forward Propagation 17
2.3.2 Backpropagation . 18

2.4 Convolutional Neural Networks 19
2.4.1 Kernels . 20
2.4.2 Downsampling . 20
2.4.3 Pooling Layer . 20
2.4.4 Batch Normalization Layer 21

2.5 Convolutional Neural Networks and Side-Channel Analysis . 21
2.6 Hyperparameter optimization 22

2.6.1 Exploration-Exploitation trade off 23
2.6.2 Pruning strategies in Hyperparameter Optimization . 23
2.6.3 Tree-structured Parzen Estimator 24

2.7 Early Stopping . 25
2.8 Optuna . 25
2.9 Ascad Dataset . 27

1

3 Related Work 28

4 Our approach & methodologies 31
4.1 Study Settings . 31
4.2 Methodologies . 31

4.2.1 Hyperparameter Optimization Process 32
4.2.2 Hyper parameter search space 33
4.2.3 The creation of CNN models 33
4.2.4 Early stopping . 35
4.2.5 The evaluation of the models 36

4.3 Results . 37
4.3.1 Experiments for ASCADf 37
4.3.2 Experiments for ASCADr 39

5 Conclusions 43
5.1 Future work . 44

6 Appendix 52
6.1 Selecting Hyperparameters From the Search Space 52

6.1.1 retrieve hyperparameters 52
6.1.2 create CNN models . 54

6.2 Optuna studies for ASCADf 55
6.3 Optuna studies for ASCADr 57

2

Chapter 1

Introduction

1.1 The background of the problem

From personal smart gadgets to sophisticated industrial machinery, devices
embedded with sensors, software, and other technologies are becoming an
integral part of our daily lives. These devices, collectively referred to as
the Internet of Things (IoT), have the ability to connect and exchange data
with other devices and systems over the internet, thus becoming a modern
necessity that automates various aspects of our daily activities and processes.
However, as we integrate these IoT devices further into our lives and systems,
we must address growing security concerns. One of the most critical concerns
is the potential vulnerability of these devices to cyberattacks, which can
lead to unauthorized access, data theft, or even control over the device’s
functions, posing significant risks to personal privacy and security.
Because of these concerns, many of these devices require rigorous security
assessments to exhibit their safety. Side-Channel Analysis (SCA) is a critical
component of these evaluations. This technique entails analyzing informa-
tion that has unintentionally leaked from electronic devices while they are in
use. This analysis can provide insights into the device’s internal workings,
exposing vulnerabilities to security breaches.
In the context of evaluation of cryptographic implementations, SCA repre-
sents a class of non-invasive attacks that focuses on the information leaked
during the physical implementation of a cryptographic algorithm, rather
than the theoretical weaknesses of the latter. In Literature, the concept
emerged for the first time with Paul Kocher’s groundbreaking work on
Differential Power Analysis(DPA)[26] and timing attacks[27]. Ever since,
a wide array of side channels have been studied, including electromag-
netic emissions[16, 44], sound[3], light production[14], heat emissions[24]
and faults[7]. In a traditional scenario, an attacker obtains a sequence of
side-channel observations (also called traces), collected during the execution
of a cryptographic operation. These traces typically include patterns which

3

are influenced by the intermediate computations of the cryptographic algo-
rithm and the secret key. The main objective is to statically analyze these
traces to successfully retrieve the secret key.
In its early days, SCA relied heavily on simple, straightforward statistical
techniques, like DPA cited above, which provided crucial insights into the
hidden information processed by electronic devices. These methods were
pivotal in the advancement of SCA and continue to be relevant in many
contexts.
As the field progressed, new techniques were introduced. One such devel-
opment was the emergence of Template Attacks (TAs)[10]. In a TAs, a
statistical template is created for every possible secret key. This template is
then used to determine the most likely key.
In the continued evolution of SCA, Machine Learning (ML) emerged as
another key technique. The early integration of ML in SCA saw the appli-
cation of algorithms such as Random Forests and Support Vector Machines,
which were used to predict key bits from side-channel measurements. This
shift was set in motion in the study by Hospodar et al. (2011)[19], which
was the first to use ML in SCA (even though machine learning was already
used in cryptanalysis[46]). With the growing exploitation of ML techniques
in SCA[18], the advent of deep learning techniques further propelled the
field[43], offering advanced pattern recognition capable of detecting intricate
patterns that traditional methods might overlook. A notable advantage of
these deep learning methods is that they eliminate the need for extensive
preprocessing of the data, streamlining the SCA process.
Among the various deep learning techniques, Convolutional Neural Net-
works (CNNs) have emerged as a particularly powerful tool for side-channel
analysis[4]. CNNs are designed to automatically and adaptively learn spatial
hierarchies of features, which make them incredibly effective at recognizing
subtle, complex patterns in side-channel data.
By training a CNN on a labeled dataset of side-channel traces, the network
can learn to find the secret key associated with the unlabeled side-channel
traces. This enables the side channel community to use CNNs models to
predict the secret key based on given side-channel traces, providing a highly
effective tool for side-channel analysis.

1.2 The problem

A fundamental challenge when using CNNs in side channel analysis is the
tuning of hyperparameters. Hyperparameters define the configuration of the
model and have a significant impact on the model performance. The sheer
size of the hyperparameter space and the expense of evaluating each config-
uration make the hyperparameter optimization (HO) task computationally
demanding and time-consuming.

4

This situation is further complicated by the well-known ”portability prob-
lem” in SCA[6]. In essence, the portability problem refers to the issue that
a model optimized for one dataset or device might not perform well when
applied to another. This means that in practice, it’s often necessary to go
through the time-consuming process of finding a new, optimized model for
each different dataset. Each of these optimized models will likely require
a different set of hyperparameters, further increasing the complexity of the
task.
This issue represents a significant bottleneck in the field of SCA. As the land-
scape of the Internet of Things (IoT) continues to grow, the need for efficient
and effective SCA in different settings has never been greater. Therefore,
the complexity of the hyperparameter optimization problem is of crucial
importance in this area.
The difficulty of navigating the vast hyperparameter space and the neces-
sity of addressing the portability problem underline the need for an efficient
framework for HO. Such a framework should ideally be capable of consis-
tently and lightly generating highly effective models for different datasets.
Existing tools and methods for hyperparameter optimization are explored
in the context of SCA, aiming to improve the efficiency of the HO process,
thereby boosting the effectiveness of CNN-based SCA methods. By doing
so, this research aim to contribute to improving the reliability and efficiency
of cryptographic implementation analysis.

1.3 The solution

In response to the complex issues of HO and the portability problem in
SCA, this research solution does not seek to reinvent the wheel but rather,
optimizes it. While some efforts have been made within the SCA community
to develop new frameworks for these tasks[9, 45, 40, 53], here a different
approach is proposed.
Optuna, an established machine learning frameworks [2] which have already
seen widespread adoption in the deep learning community is suggested in
this research. This existing framework come with support for state-of-the-
art hyperparameter optimization algorithms that can easily be integrated
and parallelized across a variety of libraries and systems.
Moreover, this framework includes additional features that can further en-
hance efficiency. One such feature is Early Stopping strategies based on pre-
vious models, which allow for the early termination of unpromising models
based on intermediate results of previous models[2]. This saves computa-
tional resources and allows the HO process to allocate more time to explore
other, potentially more fruitful hyperparameters configurations.
In this work the capabilities of state-of-the-art ML framework Optuna are
integrated with other resources-friendly strategies, aiming to develop an

5

effective solution to the challenge of hyperparameter optimization in CNN-
based side-channel analysis. In doing so, this research seeks to contribute a
valuable tool for improving the security evaluation of embedded devices in
our interconnected world.

1.4 The contribution and the outline

The following points provide a more detailed overview of the study’s focal
areas:

1. The Tree-structured Parzen Estimator (TPE), a Sampling Algorithm,
is used as HO algorithm to guide the selection of hyperparameter con-
figurations.

2. An objective value, whose computation is based on the Guessing En-
tropy (GE), is used to guide the HO process. This objective value is
an estimation of the effort in terms of amount of traces needed by the
model to reach a GE value of 0.

3. An introductory analysis is conducted with the aim of enhancing the
efficiency of hyperparameter optimization. By suggesting the incorpo-
ration of early stopping strategies, the study attempts to expedite the
optimization process while minimizing the compromise on the quality
of results. The integration of these techniques offers more flexibility in
dealing with the exploration-exploitation trade-off during hyperparam-
eter tuning. Patience Early stopping is used to halt training models
that appear to have converged around a value and so further training
is unlikely to significantly enhance performance. Median Early Stop-
ping strategy is used to stop the training of models that appear to
have little likelihood of improving previously run models.

4. This study introduces the integration of the Optuna framework into
the SCA context. This is an initial attempt to explore the poten-
tial benefits of applying widely recognized machine learning frame-
works within the distinct landscape of SCA, providing a basis for fu-
ture research. The utilization of Optuna is aimed at simplifying and
standardizing the hyperparameter optimization process in SCA, thus
paving the way for further exploration with other optimization algo-
rithms or machine learning frameworks in the SCA setting. Optuna
already includes HO Sampling Algorithms and early stopping mech-
anisms. The objective value described in section 4 can then be com-
puted and used by Optuna to guide the Sampling Algorithm during
the HO process.

The remainder of this thesis is structured as follows: Section 2 supplies read-
ers with necessary background knowledge on side-channel analysis (SCA),

6

hyperparameter optimization (HO), and Convolutional Neural Networks
(CNN) needed for this research. Section 3 delves into the exploration of
relevant studies and related work in the field. The research undertaken
within this thesis is discussed comprehensively in Section 4. Lastly, Sec-
tion 5 concludes the thesis, summarizing the insights gained and suggesting
directions for future research.

7

Chapter 2

Preliminaries

2.1 Side-Channel Analysis

Side-Channel Analysis (SCA) seeks to exploit information leaked from the
physical implementation of a cryptographic algorithm, as opposed to crypt-
analysis, which examines the algorithm’s theoretical underpinnings. This
leakage can take various forms, including timing information, power con-
sumption, electromagnetic emissions, or even sound. By collecting and ana-
lyzing this information, an attacker can potentially extract secret data, such
as cryptographic keys, that compromise the system’s security.
SCA poses a significant threat to both hardware and software cryptographic
implementations, especially those found in embedded devices and Internet
of Things (IoT) technologies. These systems often use cryptographic al-
gorithms to ensure secure data transmission and storage. However, their
physical attributes can betray the secrets they aim to protect, making them
potential targets for side-channel attacks.
SCA can be divided in 2 categories: Active and Passive Analysis. Active
Side-Channel Analysis involves the attacker actively interacting with the de-
vice to induce it into a state that increases the leakage of information. This
could be done through methods such as fault injection, where the attacker
causes the device to malfunction or make errors. The induced faults might
alter the device’s normal behavior, causing it to skip certain operations, mal-
function, or operate in unintended ways. Even if these faults don’t directly
lead to traditional side-channel leakages like differences in power consump-
tion or processing time, they could still compromise the security of the device
or its data. For instance, a fault might cause the device to skip a critical se-
curity step creating exploitable weaknesses. Active analysis is more intrusive
than passive analysis and carries a higher risk of detection or even causing
permanent damage to the device. In contrast, Passive Attacks Side-Channel
Analysis involves observing the behaviour of a device without actively mod-
ifying its operation. In a passive analysis, the attacker monitors and records

8

the data leaked through side-channels, such as power consumption, while the
device is operating under normal conditions. Passive Analysis can be more
difficult to detect since it doesn’t necessarily require interaction with the
device. Examples of Passive Side-Channel Analysis techniques are Simple
Power Analysis (SPA), Differential Power Analysis (DPA)[26], Correlation
Power Analysis (CPA)[8] and Template Attacks (TAs)[10]
Depending on the amount of knowledge and access an attacker has to the
target device or a copy of the target device, passive Side-channel analysis
generally fall into two categories: profiled and non-profiled. The division be-
tween profiled and non-profiled analysis significantly influences the method
and feasibility of the attack. Non-profiled analysis often require less prior
knowledge and are generally more applicable, but they may struggle with
more complex and variable device behaviors. Conversely, profiled analysis
can be highly effective but require a copy of the device for the profiling
phase, which may not always be accessible.

2.1.1 Non-profiled Side-Channel Analysis

Non-profiled side-channel analysis primarly rely on patterns found within
side-channel emissions of a single target device. Here, the attacker has no
prior knowledge or additional access to similar devices for profiling. They
must base their entire analysis on observations from the target device. The
simplest type of side-channel analysis is Simple Power Analysis (SPA). In
this scenario the attacker directly interprets power consumption measure-
ments taken while the target device is operating. By closely inspecting the
power traces, they can infer information about the operations that the device
is performing.
For example, various operations such as exponentiation in RSA[47] and point
additions in ECC[32, 25] may consume different amount of powers or take
different amount of time, which can be directly observable in the power
traces. This method however requires the cryptographic implementation to
be relatively unprotected and the attacker to have a deep understanding of
the device’s operations and the implemented algorithm.
Another example of non-profiled attack is Differential Power Analysis(DPA).
DPA is more sophisticated than SPA and does not requires specific knowl-
edge about the sequence of executed operations in the algorithm. Instead,
DPA involves analysing multiple power traces to find statistical patterns.
The attacker chooses an intermediate variable and divide the traces into 2
groups based on this sensitive variable (e.g in AES the sensitive variable
used is usually the last significant bit in sbox(input ⊕ key)). The attacker
uses a distinguisher to find statistical difference between the 2 groups in
order to reveal the key.
A specific variant of DPA that is widely used for SCA evaluation is Corre-
lation Power Analysis (CPA)[8], which differs in the method used to distin-

9

guish key hypotheses. In a CPA attack, the attacker considers a sensitive
intermediate variable that is computed for each possible key. The attacker
then computes the predicted power consumption for each trace correspond-
ing to each different intermediate value (and therefore, each different key).
The predicted power consumption is then compared to the actual power
consumption using the Pearson correlation coefficient. If the attack is suc-
cessful, a high correlation will be observed for the correct key hypothesis,
thereby revealing the key.”

2.1.2 Profiled Side-Channel analysis

As previously mentioned, Profiled Side-Channel Analysis is based on the
assumption that the attacker has access to one or more devices that are
identical or functionally equivalent to the target device. This allows the at-
tacker to ”profile” the device behaviour under known conditions(like known
plaintext and key) and use this information to infer secret information from
the target device.
One of the most effective profiled side-channel analysis method is the above
mentioned TAs.[10]
In this method the Profiling Phase consist on collecting a large number
of power traces from the profiling device while it performs cryptographic
operations with known keys. The aim is to buld a model or ”template” of
the device’s leakage channel (like power consumption) for each possible key.
An important part of this phase is the choice of the leakage model (described
in section 2.1.4), as the leakage model is used to describe the relationship
between the leakage channel and the processed data.
The result of the profiling phase is a set of templates - one for each possible
secret key - which represent the device’s leakage channel expected values.
The second Phase is the Matching phase, and it consists of comparing the
measurements of the leakage channel from the target device, which is pro-
cessing an unknown key, to the templates created during the profiling phase.
The attacker then infers the key by selecting the template that most closely
aligns with the observed trace, assessed using measures like Euclidean Dis-
tance or likelihood ratio.
Given the nature of profiled side-channel analysis, machine learning[33] has
been found particularly useful because it can uncover hidden correlations
in complex data and capture subtle patterns in side-channel leakages[19].
Unlike traditional techniques, machine learning algorithms, especially those
based on deep learning, do not require explicit feature extraction or strict
statistical assumptions. They can learn complex, non-linear relationships
directly from raw data and generalize them to unseen cases, an essential
property for effective side-channel analysis.
Profiling a device for side-channel attacks essentially involves understanding
the relationship between variations in physical properties (like power con-

10

sumption or electromagnetic emissions) and secret information processed
by the device. This is a pattern recognition problem at its core, which is
precisely where machine learning algorithms excel.
Like in Template Attack, the Machine Learning based side-channel analysis
approach also requires 2 phases, a profiling phase and a prediction phase:
During the profiling phase, a large number of power traces are collected
from a device while it performs cryptographic operations with known keys.
This data forms the training dataset, with the power traces serving as in-
put features and the associated keys (or some function of them) serving as
output labels. Subsequently, a machine learning model is trained on this
dataset. The specific model can range from simpler methods such as De-
cision Trees, to more complex architectures like Support Vector Machine
or Deep Learning models. These models are capable of learning intricate,
non-linear relationships directly from the raw data. Particularly with deep
learning models, the significant advantage is the capacity for automatic fea-
ture extraction, which alleviates the need for manual, pre-defined feature
engineering.
During the prediction phase the trained model is deployed to predict the
secret key based on new, unseen power traces from the target device. The
model’s learned associations between specific patterns in the power traces
and specific keys come into play here, enabling it to infer the secret key. The
accuracy and reliability of these predictions heavily depend on the quality
of the training data and the model’s capacity to generalize from the training
data to new, unseen power traces.

2.1.3 Side-channel analysis: the steps before the attack

In this thesis the focus is on side -hannel analysis based on the power con-
sumption of the hardware implementation of the cryptographic algorithm.
Power analysis-based side-channel attacks are grounded in the practical mea-
surement and analysis of a device’s power consumption. The process typi-
cally involves a series of distinct stages:

1. Setting Up the Measurement Environment: The first step in perform-
ing power analysis involves preparing the physical setup for measuring
power consumption. This usually requires specialized equipment such
as an oscilloscope to capture the power traces, a probing device, and
often a resistor inserted in the power supply line of the target device
for voltage drop-based measurements. The accuracy and precision of
the equipment can significantly influence the quality of the captured
power traces.

2. Capturing Power Traces: Once the setup is ready, the target device
is made to perform the cryptographic operation while the power con-
sumption is measured. This process results in a series of power traces,

11

each representing the power consumption of the device over time dur-
ing a single operation. It’s worth noting that a single trace can contain
thousands to millions of sample points, depending on the duration of
the cryptographic operation and the sampling rate of the oscilloscope.

3. Preprocessing the Data: The raw power traces captured from the de-
vice often require preprocessing before they can be used for analysis.
This preprocessing can include denoising to eliminate the effects of en-
vironmental noise, alignment to correct for any synchronization issues
between different traces, and normalization to account for variations
in the absolute power levels. Another important aspect of the pre-
processing phase is the selection of points-of-interest from the power
traces. Given that a single power trace can contain a large number of
sample points, it’s often impractical and unnecessary to use the en-
tire trace for analysis. Instead, points-of-interest (often regions where
the power consumption significantly varies) are identified and used for
subsequent analysis. The method of selecting these points can signif-
icantly impact the success of the power analysis attack, common se-
lection methods used in side-channel analysis are Difference of Means,
Distance of means and Signal to Noise Ratio.

4. Building the Dataset: The final step is the compilation of these power
traces into a dataset suitable for analysis. Each trace in the dataset
corresponds to a single execution of the cryptographic operation, and
the set of all traces represents the power consumption patterns across
multiple operations. If a supervised learning method such as Template
Attacks is being used, the dataset would also include the associated
secret keys or intermediate values for each trace.

2.1.4 Leakage Models

In side-channel analysis, a leakage model is a critical component that links
the observed side-channel information (e.g., power consumption or electro-
magnetic radiation) to the intermediate values of the cryptographic opera-
tion being performed. The leakage model thus forms a fundamental bridge
between the physical world observations and the mathematical properties
of the cryptographic algorithm, allowing for an attacker to make informed
deductions about secret data.
The basic premise behind leakage models is that the side-channel emissions
of a device are not random, but depend on the device’s internal state and
operations. In the case of a cryptographic device, these operations are in-
fluenced by the data being processed and the secret key. The leakage model
aims to describe this relationship, essentially serving as a predictor of side-
channel emissions based on the known intermediate values of the crypto-
graphic algorithm.

12

Leakage models can take various forms, but the most commonly used models
in power analysis attacks are the Hamming weight model, the Hamming
distance model and the identity leakage model.

Hamming Weight Model

This model posits that the power consumed by a device is proportional to
the Hamming weight (the number of ’1’ bits) of the data being processed.
For example, if a device is processing an 8-bit value, the power consumed
when processing the value 11110000 (four ’1’ bits, hence a Hamming weight
of 4) would be roughly twice the power consumed when processing the value
00000101 (two ’1’ bits, Hamming weight of 2).
In software implementations values are frequently loaded into and out of
registers using the microcontroller bus. Typically the bus is precharged
at all bits being zeros or one and therefore the power consumption of the
operation is often proportional to the number of 1 bits that are being moved
into a register. Since this leakage model is concerned with the numbers of
1’s in a binary representation, this leakage model is often used for software
implementations as software systems store and manipulate data in registers.

Hamming Distance Model

The Hamming distance model suggests that the power consumed by a device
during a transition between two states is proportional to the Hamming dis-
tance (the number of differing bits) between those states. For instance, if a
register is transitioning from the value 10110011 to the value 11001100, the
Hamming distance is 4, which is expected to cause a relatively high power
consumption compared to a transition with a lower Hamming distance.
Most of the chips in the markets nowadays are build using CMOS (Com-
plementary metal-oxide semiconductor)transistors[31]. CMOS transistors
work by using 2 complementary transistors together: a p-transistor and
a n-transistor. The arrangement ensures that, at any given time, there’s
a path from the output to either the power supply (through the PMOS
when it’s conducting) or to ground (through the NMOS when it’s conduct-
ing), but never both simultaneously. This characteristic helps to minimize
power consumption during static operation, since current isn’t continuously
flowing from power to ground, but makes power consumption dynamic and
dependent on the switching activity of the transistors. This design therefore
generate dynamic power consumption that is dependent on the switch of
these CMOS transistors from state 0 to 1 and vice-versa.
Because of this property, the number of bit changes in a value after an oper-
ation is often proportional to the power consumption, making the Hamming
Distance Leakage Model suitable for finding a relation between bits and
power consumption in hardware implementations.

13

Identity Leakage Model

This model assumes a direct relationship between the observed side-channel
leakage and the secret intermediate values during cryptographic operations.
Under the ID model, the observed leakage is assumed to be the identity of
the intermediate value. This suggests that the leakage directly reveals the
intermediate value, without any noise or distortion.
Mathematically, this can be expressed as:

L = V

Here, L denotes the observed leakage and V represents the secret interme-
diate value.
In the context of the Advanced Encryption Standard (AES), for instance,
the intermediate value could be the result of the SubBytes operation (the
application of the S-box) in the first round, which can be expressed as V =
Sbox(key + input).
This would result in 256 possible classes (corresponding to the 256 possible
values of an 8-bit output), each representing a distinct intermediate value.

2.1.5 Countermeasures

Side-channel countermeasures are strategies implemented to impede attack-
ers from extracting secret data through side-channel analysis. Various tech-
niques are utilized, including:

• Masking: Masking techniques add random values, or ”masks,” to se-
cret data during computation. This process obscures correlations be-
tween observable characteristics and the secret data, making it difficult
for an attacker to extract valuable information. The range of mask-
ing techniques includes Boolean masking, Arithmetic masking, and
complex methods such as secret sharing.

• Hiding: Hiding techniques aim to minimize the information leakage
during computation. This could involve using constant-time algo-
rithms, which don’t depend on the input data, or physically isolat-
ing sensitive components to reduce their electromagnetic emissions or
power consumption variations. The goal is to minimize variations in
observable characteristics that could otherwise be exploited by an at-
tacker.

• Noise Addition: Another technique involves the addition of noise to
side-channel measurements. This technique confuses an attacker’s at-
tempts to correlate measurements with secret data. Noise can be in-
jected into the power supply or introduced through other background
processes.

14

• Shuffling: Shuffling techniques randomize the order of operations within
a cryptographic algorithm. By doing this, it becomes difficult for an
attacker to correlate specific operations with side-channel observations,
thereby protecting the secrecy of the data. [49]

2.1.6 Side-Channel Analysis metrics

Precision, recall, and accuracy are binary metrics, which consider only
whether a prediction is correct or not. This approach fails to capture the
full picture in side-channel analysis, where not only the correctness but also
the confidence of the prediction matters.[42]
In a side-channel attack, an adversary’s goal isn’t necessarily to get the
right key on the first guess, but rather to significantly narrow down the
possibilities. Therefore, these binary metrics do not provide insight into
how close or far the attacker is from the correct key if the first guess isn’t
correct.
Precision, which measures the fraction of correct positive predictions among
all positive predictions, doesn’t provide any insight into how many relevant
items (i.e., the correct keys) are missed, which is a critical consideration in
side-channel analysis.
Accuracy, which is the ratio of correct predictions over the total predictions,
similarly falls short as it doesn’t provide information about how much the
potential key space has been narrowed down.
All these binary metrics can be misleading in the context of side-channel
analysis. Thus, in the context of side-channel analysis, precision and ac-
curacy may not be adequate metrics for evaluating the effectiveness of the
attack. More nuanced metrics, such as guessing entropy and success rate,
are typically more informative as they consider both the confidence and the
correctness of the predictions, providing a more comprehensive picture of
the attack’s effectiveness.

Guessing Entropy(GE) Guessing entropy[48] is a metric that gives a
measure of the average number of guesses an attacker would need to find
the correct key. It takes into account both the correctness and the confi-
dence of predictions. Specifically, for each trace, the possible keys are ranked
according to their likelihood, and the number of guesses before the correct
key is reached is noted. The guessing entropy is then the average of these
numbers over all the traces. More specifically, Guessing entropy is the aver-
age number of guesses required to correctly guess the key. Mathematically,
if we denote by P (k) the probability of key k being the correct key, and
R(k) the rank of key k (i.e., its position in the sorted list of keys, starting
from the most likely), then the guessing entropy GE is computed as:

GE =
∑

k∈Keys

P (k) ∗ (R(k))

15

The lower the guessing entropy, the fewer attempts are needed, on average,
to find the correct key, indicating a more effective attack.

Success Rate (SR) Success rate is another commonly used metric in
side-channel analysis. It measures the proportion of traces for which the
correct key was ranked first (i.e., R(k) = 0). If we denote by I the indicator
function that is 1 if its argument is true and 0 otherwise, and by N the total
number of traces, then the success rate SR is computed as:

SR = (1/N) ∗
∑

k∈Keys

P (k) ∗ I[R(k) = 0]

both GE and SR presume that you have a way to compute or estimate the
probabilities P(k) and the ranks R(k) for each key. In practice, this usually
involves using your side-channel attack to compute a score for each key (for
example, the correlation coefficient in a Correlation Power Analysis attack),
and then sorting the keys according to these scores. Therefore, is important
to know that calculating exact probabilities and ranks can be computation-
ally intensive, especially for large key spaces. In practice, approximations or
sampling methods are often used to compute these metrics more efficiently.

2.2 Deep Learning

2.2.1 Definition

Deep Learning is a subfield of supervised machine learning that focuses on
algorithms inspired by the structure and function of the brain called artificial
neural networks.
In contrast to traditional machine learning algorithms, which are often engi-
neered to solve specific tasks, deep learning algorithms learn from raw data
in a more automatic fashion. This is primarily achieved by using neural
networks with several layers - hence the term ”deep” learning.
These layers of artificial neurons, or ”nodes”, have the capability to learn
complex representations of the input data. These layers are cascaded, with
each layer learning to transform its input data into a more abstract and
composite representation.
An important advantage of deep learning lies in its capacity to handle enor-
mous amounts of unstructured data. While traditional machine learning
models often necessitate manual feature engineering, deep learning models
can learn such features directly from the data, making them particularly
effective for complex tasks such as image recognition, natural language pro-
cessing, speech recognition and side-channel analysis.

16

2.2.2 deep learning challenges

However, deep learning is not without its challenges. One prominent limi-
tation is its dependence on large volumes of labeled data to achieve optimal
performance. Additionally, due to their complex structures, deep learning
models are often referred to as ”black boxes” due to the inherent difficulty
in interpreting and understanding the reasoning behind their decisions or
predictions. Moreover, these models are computationally intensive, which
might limit their accessibility in certain contexts.
One particular challenge in training deep learning models is the phenomenon
known as double descent[35]. This refers to the counter-intuitive behavior
where the test error decreases, increases, and then decreases again as we
increase model complexity or the number of parameters, diverging from the
conventional U-shaped behavior witnessed in traditional bias-variance trade
off. Understanding and appropriately handling double descent is critical in
developing effective deep learning models.

2.3 Deep feedforward networks

Deep feedforward networks, also often referred to as multilayer perceptrons
(MLPs)[17], are the most traditional deep learning models. The goal of a
feedforward network is to approximate some function f . For instance, for a
classifier, y = f(x) maps an input x to a label y.
A feedforward network defines a mapping y = f(x; θ) and learns the value of
the parameters θ that result in the best function approximation. These net-
works are called feedforward because information flows through the function
being evaluated from the input x, through the intermediate computations
used to define f , and finally to the output y. There are no feedback connec-
tions in which outputs of the model are fed back into itself.

2.3.1 Forward Propagation

In a deep feedforward network, each layer is composed of multiple neurons or
nodes. These neurons take in inputs, apply a weighted sum with a bias term,
and pass the result through an activation function to produce an output.
This output is then passed on as input to the neurons in the next layer.
The neurons in a given layer operate in parallel but are independent of each
other; each has its own set of weights and a bias term, and each produces
its own output.
Let’s take a single neuron xi in a hidden layer l for simplicity, with inputs
represented as a vector xl−1, weights as a vector wl

i, and bias as a scalar bli.
The output (or activation value) of this single neuron xi at layer l is com-
puted by the activation function of the weighted sum of all his inputs at

17

layer l − 1 plus the bias term, or more formally in vector notation:

xli = σ(wl
i · xl−1 + bli) (2.1)

This activation function σ is typically a nonlinear function such as the soft-
max function or the rectified linear unit (ReLU) function. The choice of
activation function can depend on the specific requirements of the model
and the type of data it’s working with. The softmax function is typically
used in the output layer of a neural network for multi-class classification
problems. The reason is twofold: it squashes the outputs for each class to
be between 0 and 1, and ensures these values sum up to 1, effectively form-
ing a probability distribution. This allows for an intuitive interpretation
of the model’s predictions as probabilities of each class, making softmax
particularly well-suited to tasks where multiple categories are involved.
For a layer of neurons, this process is done for each neuron independently,
with the outputs collected into an output vector.
This output vector then serves as the input to the neurons in the next
layer, and this process of applying a weighted sum with bias and then an
activation function repeats. In this way, data is propagated forward through
the network from the input layer to the output layer.

2.3.2 Backpropagation

Following the feedforward operation in a neural network, where inputs are
processed layer by layer until an output is produced, the next stage is back-
propagation.
Backpropagation is an algorithm used to adjust the parameters (weights and
biases) of a neural network to improve its predictions. The name ”backprop-
agation” stems from the way the algorithm sends information about the error
”backwards” through the network from the output layer towards the input
layer, propagating the error to each of the weights and biases.
Firstly, the network makes a prediction during the forward pass. Following
this, a loss function is used to measure the difference between this prediction
and the actual output, producing an error value. The loss function essen-
tially quantifies how ’wrong’ the network’s prediction is, and this forms the
basis for adjustments.
To minimize the error, the backpropagation algorithm calculates the gradi-
ent of the loss function with respect to each weight and bias in the network.
The gradient is a mathematical concept, representing the direction and rate
of fastest increase of a function. In this context, it shows how much a small
change in a weight or bias will impact the loss function’s value. By consider-
ing this, the algorithm figure out how to adjust each parameter to decrease
the error, thus improving the network’s prediction.
However, it’s not just about adjusting the weights and biases. The adjust-
ments have to be proportional to each weight and bias’s contribution to

18

the overall error. By computing the derivative of the loss function with re-
spect to each weight and bias, the algorithm can identify how much each
parameter contributed to the error. The derivatives guide the necessary
adjustments, so the parameters that contributed more significantly to the
error will be adjusted more.
After this process is performed across all the layers, the weights and biases
are updated to their new values. The network then goes through another
round of forward propagation and backpropagation, continuously learning
and updating its parameters until the output error is minimized. In this
way, backpropagation enables the network to learn from its mistakes and to
make better predictions over time

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specific type of neural network
that have demonstrated exceptional effectiveness for tasks involving image
and signal processing. They stand as a cornerstone of deep learning, espe-
cially in the realm of image classification and object detection tasks. The
inspiration for CNNs comes from the structure and function of the vertebrate
visual nervous system[15, 28], with their design intended to automatically
and adaptively learn spatial hierarchies of features directly from data.
A significant aspect of CNNs’ architecture is its design to take advantage
of the 2D structure of an input image (or other 2D input such as a speech
signal). This is achieved with the use of a unique kind of layer: the convo-
lutional layer.
Convolutional layers form the primary building blocks of CNNs. Each layer
in a CNN processes the input data using a series of small, square filters (also
known as kernels), which move across the input, performing a dot product
operation at each position, and creating a feature map. This operation is
called convolution. The kernels act as feature extractor, each learning to
identify a different pattern in the input data. The patterns can range from
simple edges to complex shapes or textures, and they emerge automatically
during the training process.
In a Convolutional Neural Network (CNN) model, we typically have two
main components: the Convolutional component composed of convolutional
blocks, and the Fully Connected component, essentially a Multilayer Percep-
tron (MLP). The primary function of the Convolutional part is to extract
significant features from the input data, while the Fully Connected segment
takes over the responsibility of learning how to correctly classify the pro-
cessed input based on the extracted features.
This ability of CNNs to detect local patterns, irrespective of their position in
the input data, is known as translation invariance. This means that once a
useful feature has been learnt, the CNN can recognize it no matter where it

19

appears in the input. This property contributes significantly to the success
of CNNs in various tasks.

2.4.1 Kernels

Kernels, also known as filters, are used by Convolutional Neural Networks
to extract features from input data. These kernels slide over the input data,
conducting dot product at each place (the convolution), and the results are
aggregated to generate a feature map. Thus, the kernel size affects the area
of the input over which the networks searches for a single value in the output
feature map. The kernel slide is defined by the stride value. The value of the
stride influences how far the kernel move at each phase of the convolution
process. A stride with value one moves the kernel of one value at the time,
while a stride with value n moves of n values with the kernel each time
it computes a new value for the feature map. Another important part of
the feature extraction process implemented by these kernels is the padding:
before executing the convolution, additional values are added around the
input values. This process aids in controlling the output size and preserving
the input’s boundary information. Valid padding means no padding is
applied, while same padding means padding at the input boundaries enough
values such that the output, assuming stride of 1, has the same dimension
of the input.

2.4.2 Downsampling

When applying the convolution operation, depending on the size of the ker-
nel, on the stride value and on the padding, the dimension of the output
changes. Thus, downsampling can happen and in the worst case the dimen-
sion of the output will be negative, which usually results in a not trainable
model. To avoid this, the padding, stride and kernel size must be properly
chosen.
The formula to compute the dimension of the output is:

Dout =
Dinp −K + 2P

S
+ 1 (2.2)

Where Dout and Din are the dimension of output and input respectively,
K is the kernel size, P is the padding on the border (so for example with
padding set to same P = 1, with padding set to valid P = 0), finally S is
the stride value.

2.4.3 Pooling Layer

Pooling layers serve an essential function in Convolutional Neural Networks
(CNNs) by progressively reducing the spatial size (i.e., width and height
dimensions) of the input volume. This operation reduces the amount of

20

parameters and computation in the network, thereby controlling overfitting
and reducing computational load. There are 2 main types of pooling oper-
ations, the most common of which are Max Pooling and Average Pooling:

• Max Pooling: This operation calculates the maximum value in each
patch of the input matrix within a certain window. Max pooling helps
to preserve the most active features while reducing the spatial dimen-
sions.

• Average Pooling: This operation calculates the average value for each
patch on the input.

These operations are typically performed with a stride larger than one to
reduce the size of the output and are often used after convolutional lay-
ers. The window size and stride determine how much the input volume is
downsampled, again here the values must be chosen such that the model
does not end up with a negative dimension. It’s worth noting that pooling
layers have no learnable parameters, they only perform a fixed operation on
the input. These layers greatly help in achieving translation invariance in
CNN models, where the network can recognize a feature independently on
his position in the data. One potential drawback of pooling operations is
the loss of information.

2.4.4 Batch Normalization Layer

Batch Normalization is a deep learning technique that aim to stabilize the
learning process by standardizing the inputs to each batch. It aims to solve
the problem of internal covariate shift, which occurs when the distribution of
each layer’s inputs changes during training. It accomplishes this by adding
a Batch Normalization layer that normalize the previous activation layer’s
output, subtracting the batch mean, and dividing by the batch standard de-
viation. In practice, Batch Normalization aids in regularization, potentially
reducing the need for additional techniques such as Dropout.

2.5 Convolutional Neural Networks and Side-Channel
Analysis

Side-channel analysis often involves extracting useful information from noisy,
high-dimensional data, a process that CNNs are exceptionally well-equipped
to handle. The capacity of CNNs to automatically and adaptively learn
spatial hierarchies of features from data aligns with the requirements of
side-channel analysis. The learnt features are more representative and dis-
criminative, enabling them to effectively identify and classify patterns in
side-channel data.

21

The property of translation invariance of CNNs proves particularly valuable
in the context of side-channel analysis. This property ensures that once a
useful feature, such as a certain leakage pattern, has been learnt, the CNN
can recognize this pattern regardless of its position in the side-channel trace,
making CNNs effective tools to work effectively with raw, unprocessed data.
This is particularly beneficial in side-channel analysis, where preprocessing
steps such as trace alignment can be challenging and time-consuming. Due
to the translational invariance property of CNNs, they can handle misaligned
traces directly, eliminating the need for a separate alignment step.
Another important notion is that Convolutional Neural Networks are pri-
marily designed to process data that has a grid-like topology (for example
with images, they can be viewed as 2 dimensional grid of pixels or 3 di-
mensional using RGB). In the context of SCA, traces can be interpreted as
1-dimensional grids (i.e., sequences) of data points (or features). Each data
point being a power consumption measurement at a particular point in time.

2.6 Hyperparameter optimization

Hyperparameter optimization(HO), also known as hyperparameter tuning,
is a critical step in the development of ML algorithms. It entails determining
an optimal collection of hyperparameters - the parameters not learned during
the training phase - that minimizes or maximizes a preset fit function and
so improves the model’s performance.
Learning rate, number of layers in a neural network, number of hidden units
in each layer, type of activation functions, and many more parameters are
examples of hyperparameters. When we initially apply a model, the ideal
values for these hyperparameters are often not obvious, and they might be
highly problem-dependent.
Common methods for optimizing hyperparameters, also known as Sampling
Algorithms, are:

• Grid Search: The simplest strategy, in which we establish a subset of
the hyperparameter space and methodically attempt all combinations
within the defined grid.

• Random Search: Unlike grid search, random search draws hyperpa-
rameter values at random from a given space. When the number of
hyperparameters is considerable, this method may be more efficient
than grid search.

• Bayesian Optimization: This method creates a posterior distribution
of functions that best describes the function to be optimized and then
uses it to select the most promising hyperparameters to evaluate in
the true function.

22

The process of optimizing hyperparameters can be time-consuming and com-
putationally expensive. It is, nonetheless, critical for developing strong and
accurate ML models.

2.6.1 Exploration-Exploitation trade off

The Exploration-Exploitation trade off is a fundamental concept in HO and,
more broadly, in various domains such as reinforcement learning and decision
theory. It represents the dilemma faced when deciding whether to utilize
existing knowledge (exploitation) or acquire new knowledge (exploration).

• Exploration: This involves searching across a broad range of poten-
tial solutions or parameters in order to discover previously unknown
but potentially optimal solutions. In the context of hyperparameter
optimization, exploration could mean trying out radically different or
completely random sets of hyperparameters to see if they might yield
better performance.

• Exploitation: This is about refining the current best-known solution
or focusing the search around the currently best-known set of hyper-
parameters.

Balancing the trade-off between exploration and exploitation is crucial in
hyperparameter optimization. Too much exploration without enough ex-
ploitation can result in spending too much time evaluating poor solutions.
Conversely, too much exploitation with insufficient exploration can cause
premature convergence to sub-optimal solutions, as it may overlook better
solutions lying in unexplored regions of the search space.

2.6.2 Pruning strategies in Hyperparameter Optimization

Pruning strategies in hyperparameter optimization focus on eliminating
non-promising hyperparameter configuration as early as possible during the
tuning process, thereby saving computational resources. These techniques
are particularly crucial for tuning complex machine learning architectures,
where the computational cost can be quite high. By eliminating poorly
performing configurations early on, pruning strategies allow the hyperpa-
rameter search to focus on more promising areas of the search space thus
saving both computational resources and time[51]. Different pruning strate-
gies exists [22, 30, 29, 2], These strategies primarily rely on assessing the
model’s performance at specific intervals during training. Importantly, this
performance is not evaluated in isolation, but rather compared to the inter-
mediate performance metrics of other models which were or are being evalu-
ated within the same hyperparameter optimization process. These strategies
frequently involve a trade-off between exploration and exploitation. Pruning

23

strategies were initially viewed as hyperparameter optimization strategies in
and of themselves, when applied to grid search or random search, but it has
been demonstrated how these strategies can actually enhance Optimization
algorithms such as Bayesian Optimization.[50, 51]
While pruning strategies offer clear benefits in terms of computational effi-
ciency, they do present certain risks. One notable concern is the possibility
of prematurely dismissing hyperparameter configuartions that may appear
suboptimal in the early stages of training but could potentially yield su-
perior performance if further trained. The inherent risk derives from the
greedy nature of these strategies, which prioritize hyperparameters that de-
liver immediate improvements to the objective function. This issue can
augment with the double descent phenomena[35], resulting in incorrectly
pruning configurations that could be optimal with more training.
Because these Pruning Strategies are effectively a form of early stopping
based on previous models, and to avoid confusion with other well-known
deep learning pruning techniques [34], in this research they will be referred
to as an Early Stopper mechanism rather than pruning strategies.

2.6.3 Tree-structured Parzen Estimator

The Tree-structured Parzen Estimator (TPE)[5] is an algorithm for hyper-
parameter optimization that has demonstrated its superiority over tradi-
tional methods such as grid or random search. As a Sequential Model-Based
Optimization (SMBO) approach, TPE constructs a model of the objective
function with the goal of suggesting more promising hyperparameters for
evaluation.
TPE models two probability distributions: P (x|y) and P (y), where x rep-
resents the hyperparameters, and y is the corresponding objective function.
Through this modelling, TPE assigns greater weight to regions of the hy-
perparameter space it deems promising.
The operational procedure of TPE consists of the following steps:

1. TPE starts its process by randomly selecting n hyperparameters con-
figurations from the search space and evaluating the objective function
for them.

2. These hyperparameters are then fitted into two distinct distributions:
one for those that yielded better outcomes of the objective function
(termed ”good” values), and another for the remainder of the hyper-
parameters (termed ”bad” values).

3. In subsequent iterations, TPE samples more from regions having a
high ratio of good to bad hyperparameter values. This ratio is typically
determined by a parameter, γ, which is a quantile threshold separating

24

the good and bad hyperparameters based on their objective function
outcomes.

Through this process, TPE continuously adapts its focus towards the promis-
ing areas of the hyperparameter space, while diminishing attention on areas
known to yield inferior results.
A significant advantage of TPE is its capability to handle both continu-
ous and discrete hyperparameters, inclusive of conditional hyperparameters.
This capability allows TPE to navigate complex search spaces effectively.

2.7 Early Stopping

Early stopping is a regularization strategy used during deep learning model
training to prevent overfitting. It consist of ending the training process be-
fore the model begins to overfit. The dataset is often separated into three
sections to accomplish this: training, validation, and testing. The model’s
performance on the validation set is evaluated at regular intervals or after
each epoch. When performance on the validation set begins to decline or
stop improving, even if performance on the training set is still improving,
training is terminated. As a result, the model is ’stopped early’ to avoid
overfitting the training data. The model’s state when it performed the best
on the validation set is saved and regarded the training outcome. This state
is then utilized to evaluate the testing set in order to forecast the model’s per-
formance on previously unseen data. Aside from reducing overfitting, early
stopping contributes significantly to accelerating hyperparameter optimiza-
tion. Early stopping can considerably minimize the computing resources
(time and hardware) necessary for hyperparameter optimization since it can
cease the training process earlier if a model is unlikely to improve. This
improves the efficiency of the process of determining ideal hyperparameters,
especially when dealing with complex models and large datasets.
However, while early stopping is an effective technique for preventing over-
fitting and saving computational resources, it’s important to note its inter-
action with phenomena such as the previously mentioned double descent.
In certain scenarios, the model’s performance on the validation set might
temporarily worsen before improving again. If early stopping is applied, the
training process might halt prematurely during this phase, potentially pre-
venting the model from reaching an improved performance stage that lies
beyond the apparent peak, resulting in a sub-optimal solution.

2.8 Optuna

Optuna is a flexible and user-friendly, open-source software library designed
for optimizing hyperparameters in various types of machine learning algorithms.[2]

25

The Optuna framework offers a structured approach for defining and op-
timizing hyperparameters, making it suitable for a wide range of machine
learning models and frameworks. It provides a unified interface for handling
both continuous and categorical hyperparameters.
Optuna’s Sampling Algorithms include both traditional strategies like grid
search and random search, as well as more sophisticated methods, like Tree-
structured Parzen estimator[5], which is used in this study.
One of the distinguishing features of Optuna is its support for automated
early stop mechanisms, both based on the learning patience and on the inter-
mediate values of the previous models during the training. These strategies
allow Optuna to halt unpromising models early on, saving valuable compu-
tational resources. Optuna’s early stopping strategies leverage an iterative
approach, evaluating the potential of each model based on its performance
at various stages during the training process and on the performance at var-
ious stages of previous models. This iterative assessment allows Optuna to
dynamically allocate resources, focusing more on promising models.
Optuna also includes other key features that contribute to its utility and
effectiveness. These include:

• Easy Parallelization: Optuna is designed to support distributed hy-
perparameter search across multiple processing units, speeding up the
HO process.

• Custom Objective Function and Metrics: One of the reasons for using
Optuna in this research is its flexibility to integrate custom objective
functions for the hyperparameter optimization process. This is ben-
eficial in scenarios where standard metrics may not fully capture the
optimization goal. In addition to common metrics like accuracy or
F1 score, users can also define and integrate custom metrics based on
Guessing Entropy and Mutual Information. This allows a more nu-
anced control over the optimization process, catering to the specific
needs of a project.

• Integration with Machine Learning Libraries: Optuna is designed to
be compatible with a wide range of popular machine learning libraries,
such as PyTorch, keras, TensorFlow, and scikit-learn, simplifying the
process of integrating hyperparameter optimization into existing ma-
chine learning workflows.

• Visualization: Optuna provides capabilities for visualizing optimiza-
tion results, making it easier to track the optimization process and
understand the distribution and effects of different hyperparameters

26

2.9 Ascad Dataset

The ASCAD dataset was introduced in [4] and is now a prominent bench-
mark in the field of Side-Channel Analysis that is widely used for assessing
the effectiveness of SCA countermeasures and comparing different attack
methodologies.
The dataset provides a large set of measured traces collected from an 8-bit
ATMEGA8515 Microchip, performing AES-128 encryption algotihm. The
traces of the subset are cut to only measure the part of the encryption related
to the first round of the AES. The version one of the dataset, which is the
one utilized in this study, is split into 2 different datasets:

• ASCAD Fixed Key(ASCADf): This dataset is obtained with a unique
key used for all the encryptions. This reflects the secnario where the
device secret key remains the same over multiple encryptions. The
fixed key database is particularly suitable for profiling attacks, where
an attacker has access to a device with an identical, fixed key to profile
and create a model before attacking the device. This dataset contains
60000 traces, 50000 used for profiling and 10000 for validating and
testing.

• ASCAD Random Key (ASCADr): In this dataset, a different key is
used for each AES encryption. This simulates a scenario where the
device secret key changes frequently between encryptions. This dataset
contains 300000 traces, 200000 for profiling and 100000 for validating
and testing

27

Chapter 3

Related Work

In [4] the authors provides an in-depth exploration of deep learning appli-
cations for side-channel attacks. Key findings include the effectiveness of
CNNs in handling desynchronization in data, suggesting a preference for
these models in side-channel analysis despite the complexity in training.
To enhance reproducibility and further research, the paper introduces the
ASCAD database, which includes measurements from an AES implementa-
tion secured against first-order side-channel attacks. This database is now
a benchmark for SCA research.
In [23] the authors propose a new training method for CNNs, adapted from
models used in the audio domain[36], which achieves high performance across
several considered SCA datasets. The paper demonstrates that adding arti-
ficial noise to the input traces can significantly improve the performance of
the convolutional neural network. It argues that this noise addition equates
to a regularization term in the objective function, thus enhancing the model
robustness against countermeasures and preventing overfitting. This prac-
tice, which was uncommon in side-channel analysis, showed strong efficacy
in breaking cryptographic implementations protected with countermeasures.
The authors also highlight that it may be impossible to develop a single neu-
ral network that will show superior performance over all SCA scenarios due
the diversity of leakage patterns that the model needs to learn for different
datasets. They therefore suggest that a suite of classifiers tuned for the
specific problem might be the most viable solution.
Zaid et al.[54] explores the efficiency and interpretability of CNNs in SCA.
CNNs demonstrate significant performance advantages over template at-
tacks, but their performance heavily relies on the selection of hyperpa-
rameters. To better understand and optimize these parameters, visualiza-
tion techniques such as Weight Visualization, Gradient Visualization, and
Heatmaps are introduced. They propose a methodology for building effi-
cient CNN architectures even under desynchronization, demonstrating supe-
rior performance and significantly reduced complexity compared to previous

28

state-of-the-art CNN models. The paper also argue that increasing the filter
size reduces the effectiveness of the network and slow down training time.
On the other hand, they argue smaller filter size concentrates the informa-
tion better since with a small size you will have more weight associated with
the information extracted by the filters.
Wouters et al.[52] reviews the most recently discussed work of Zaid et al
in [54]. The authors of the review manage to reduce the complexity of
the CNNs proposed in [54] by an average of 52% while maintaining similar
performance. The authors argue that increasing the filter size can actually
improve the performance of the network. This is contrary to what is argued
in [54] where larger filters supposedly led to reduced network confidence.
The review also emphasize the importance of pre-processing side-channel
traces, and shows that with proper pre-processing the first convolutional
block proposed in [54] to extract features can be omitted, which contributes
to reducing the complexity of the models.
The paper [38] presents a novel methodology for optimizing the training
process in deep learning-based side-channel analysis. It introduces a metric
based on the concept of mutual information, which examines how informa-
tion is propagated through the neural network’s hidden layers. The authors
validate this approach through extensive experimentation on three masked
AES implementations, and the results suggest that the proposed metric
offers great performance in determining the optimal training epoch, thus
avoiding overfitting. Additionally, it significantly reduces computational
overhead, as it doesn’t require computation for all key hypotheses like the
traditional key ranking metric.
Building upon the approach outlined in [38], the authors of [41] also presents
a methodology that enhances the hyperparameter tuning process by ad-
dressing the challenge of choosing the optimal epoch at which the networks
performs best suggesting the utilization of guessing entropy (GE) as a bet-
ter metric to determine the best epoch. However, the challenge lies in the
computational and temporal costs associated with the calculation of GE for
every training epoch. To resolve this, the authors propose a new approach
called Fast Guessing Entropy (FGE). FGE significantly reduces the number
of validation traces required for the calculation of GE during training, thus
making the process faster and more efficient. The results highlight that this
method doesn’t impact the performance of the trained models but enables
the hyperparameter tuning process to be much more rapid, allowing for more
detailed tuning and improved model selection.
In [40], the authors introduce AISY, an open-source framework designed to
streamline deep learning based side-channel analysis. The key intent of the
authors is to address reproducibility issues in SCA research. The platform
offers a range of user friendly features that aim to make deep learning side-
channel analysis research easier and more standardized. Unfortunately, the
project is currently not being updated but it represents a good start for the

29

side-channel analysis community to find some common frameworks that can
be expanded to facilitate the research in this field.
Rijsdijk et al.[45] propose an innovative approach to hyperparameter tuning
for deep learning-based Side-Channel Analysis using reinforcement learn-
ing. They leverage a popular reinforcement learning paradigm known as
Q-Learning to automate the search for effective Convolutional Neural Net-
works (CNNs). Results indicate that their approach can effectively discover
performant CNNs, paving the way for the automated search of optimal hy-
perparameters in deep learning models.
The authors of [53] also suggest an automated method for modifying the
hyperparameters of deep learning models used in side-channel analysis, how-
ever instead of employing reinforcement learning, the framework they de-
velop, called autoSCA, employs Bayesian optimization. This framework also
supports metrics that are more suitable for SCA such as Guessing Entropy.
Their experimentation demonstrates that Bayesian optimization performs
well in a variety of settings. They also point out that neural networks gen-
erated by random search can perform well, indicating that the available
datasets are very easy to break. This is the first paper to use Baesyan opti-
mization to hyperparameter optimization in the context of SCA, providing
a stable method for building high-performing neural networks for SCA with-
out prior knowledge of the datasets to be attacked. They also point out that,
while reinforcement learning can also produce suitable hyperparameters for
a successful side channel [45], the search process takes longer.

30

Chapter 4

Our approach &
methodologies

4.1 Study Settings

The experiments utilize both the ASCADf and the ASCADr datasets.
For both we use the label obtained by using the Identity Leakage Model.
For the computational aspect, all the deep learning models were trained on
a NVIDIA GeForce GTX 1080 Ti Graphics Processing Unit (GPU).
The implementation of the experiment was conducted using Python. The
TensorFlow[1] and Keras[11] libraries served as the foundation for construct-
ing and training the deep learning models, while Optuna[2] was employed for
the optimization of hyperparameters. For the purpose of visualizing results
and monitoring the progress of our experiments, we used matplotlib[20], Ten-
sorBoard, and Optuna’s built-in visualization features. These tools allowed
us to effectively track, analyze, and present the outcomes of our research in
a clear and intuitive manner.
The codebase was built upon an existing framework developed by Léo Weiss-
bart, Member of the Digital Security Group at Radboud University, ensuring
a robust foundation for the experimental setup.

4.2 Methodologies

In this research, we leveraged the power of Optuna to perform hyperparam-
eter optimization (HO) experiments on two Side-Channel Analysis (SCA)
datasets: ASCADr and ASCADf[4], with the identity leakage model.
The Optuna experiments are executed each for 100 models. In these ex-
periments, the HO process is guided using a customized objective function
based on GE. Detailed procedures of this optimization method can be found
in the subsection 4.3.1.

31

A specific search space for the HO was defined, which allowed us to sys-
tematically explore various combinations of hyperparameters. The details
of this design are discussed in the subsection 4.3.2.
We combined the capabilities of Optuna[2] and Keras[11] to dynamically
construct Convolutional Neural Network (CNN) models, the structure and
parameters of which were determined by the Tree-structured Parzen Esti-
mator (TPE) Sampling Algorithm used in the HO process. This approach
to creating CNN models is further elaborated in the subsection 4.3.3
To enhance the efficiency of our experiments and explore the potential ben-
efits of Optuna’s early stop strategies in the realm of SCA, we conducted
four tests for each dataset. Each test utilized the Median-Early-Stopping
and Patience-Early-Stopping techniques with varying degrees of intensity,
adjusted by manipulating the warm-up values. For ASCADf, an additional
experiment was conducted without employing any early stopping method,
providing a benchmark against which to assess the impact of these resource-
saving techniques. Comprehensive information about these strategies is pro-
vided in the subsection 4.3.4.
Finally, we assessed the experiments by selecting the best models from each
and comparing their performance metrics. We compared the different mod-
els using GE. This comprehensive evaluation methodology is further ex-
plained in the subsection 4.3.5.

4.2.1 Hyperparameter Optimization Process

Optuna was selected as the primary tool for conducting a series of HO exper-
iments. The Tree-structured Parzen Estimator (TPE) Sampling Algorithm,
a Bayesian optimization algorithm provided by Optuna, was employed for
the hyperparameter configuration selection.
An important component of the approach was the use of the averaged GE
as the objective function to guide the HO process:

GEaverage =
GE(1) + GE(2) + ...GE(n)

n
(4.1)

Where n is the the size of the subset of traces taken from the validation set
to estimate the key rank, which correspond to the number of used traces
to compute the GE during the training. Utilizing the averaged GE as a
metric during the HO process is helpful in comparing the efficiency between
different models, since this metric gives an estimation of both the amount
of traces needed to reach a low GE, and the amount of attempts needed for
guessing the correct value.
Optuna ultimately utilized this number as an objective value to guide the
Hyperparameter selection of the future models based on TPE Algorithm.

32

4.2.2 Hyper parameter search space

Table 4.1 shows the hyperparameters and their respective ranges that have
been explored during the hyperparameter optimization. These ranges re-
sulted in 59040000 different combinations (or 225.81518938561). For the num-
ber of epochs, we used 200 for ASCADf, 300 for ASCADr, but since early
stopping strategies were applied, most of the models stopped the training
process before this value.

Hyperparameter Range Step

batch size [100, ..., 1000] 100

learning rate [1e-5] (Fixed) None

activation function [relu, selu] None

filters [2, ...,64] ×2

num conv layers [2, ..., 5] 1

kernel size [2,3,5,7,11,17] (for each conv layer) None

num fc layers [1, 2, 3] 1

size fc layers [64, ..., 512] (for each fc layer) 64

epochs 200 or 300 (fixed) None

strides 1 (fixed) None

Table 4.1: Hyperparameter space explored in the optimization process

The code in appendix 6.1 shows how we use the Optuna model class to search
the hyperparameters space of table 4.1 during the optimization process. A
different hyperparameter is optimized in each line. The model suggest tech-
niques are used to recommend values for each hyperparameter within a given
range or set of alternatives, while adhering to the optimization algorithm’s
guidelines, in this case TPE. This process is repeated for each model (or
model), after which the hyperparameter probabilities are changed using the
TPE algorithm, providing the recommend methods with new probabilities
for each value to be picked based on the prior models.

4.2.3 The creation of CNN models

Figure 4.1 give an overview of the general architecture of the dynamically
built models. We feed the input to a series of convolutional blocks (2 to
5, as indicated by table 4.1), after the convolutions are applied, a flatten
layer is used to reduce the multidimensional input to a single dimension, as
commonly required in the transition from the convolution layer to the full
connected layer. After the dense layer operations, the output is finally feed
to a softmax output layer with number of units equal to the number of output

33

classes, such that the output corresponds to the probability distribution over
the possible classes. Each Convolutional block consist of a Convolutional

Figure 4.1: General overview of how the convolutional neural networks are
built based on the search space of table 4.1

Figure 4.2: First 2 Convolutional blocks from architecture design in 4.1

Layer and an Average pooling layer with size 2, meaning it takes 2 values
from the filters and map them to the average of them. Furthermore, every
2 convolutional layer there is also a batch normalization layer between the
convolutional and the pooling layer. A graphic representation of the design
of the Convolutional Blocks is given in Figure 4.2. The python code used to
generate these models is given in 6.2.
The choice to vary the kernel sizes within convolutional layers and the num-
ber of units within fully connected layers in the same model allows us to
cover a wider variety of architectural possibilities. By offering a range of

34

values for the kernel sizes and number of units, the optimization process
can explore different model structures and find the ones that are the most
suitable for the given problem. This approach enhances our model’s adapt-
ability and increases the chance of discovering architectures that perform
well on the specific dataset.

4.2.4 Early stopping

In this subsection we go into the details on how we decided to implement the
cost effectiveness of our framework. Two different early stopping strategies
have been used in this study to guide the hyperparameter search towards
promising configurations and save computational resources:Early stopping
based on patience and Early stopping based on previous models intermediate
values

• Median-Early-Stopper The Optuna median pruner is utilised in
this research, which we refer to as an Median Early Stopper. This
mechanism stops unpromising models at the early stages of the train-
ing, essentially acting as a form of early stopping. Specifically, the
early stopper employed in this research was the median variant. This
Early Stopper observes the objective intermediate results at each epoch
- in our case, the Averaged Guessing Entropy of queation 4.1 on the
validation set. It stops the model at a certain epoch if the model’s in-
termediate result is worse than the median of the intermediate values
of the previous models at the same epoch. This mechanism enables
us to terminate models that are unlikely to outperform the best-so-
far model, focusing more computational resources on other potentially
more promising configurations.

Different warm-up values for the Early Stopper have been experi-
mented with in this study, specifically 30, 50, 75, and 100. The warm-
up period defines the number of initial epochs of a model where early
stopping does not occur. This is beneficial because it allows models to
establish some foundation learning before being considered for early
stopping. Different warm-up values were used to analyze the impact
of early-stage learning stability on the overall performance of the hy-
perparameter optimization.

The Median Early Stopper was chosen for its simplicity and ease of
understanding, making it an appropriate choice for the first introduc-
tion of early stopping strategies in side-channel analysis. Nonethe-
less, it’s worth noting that the Median Early Stopper is relatively
basic, and there exist more advanced early stopping strategies such as
hyperband[30]. We encourage future work in this domain to investigate
these more sophisticated techniques to further enhance hyperparame-
ter optimization in the context of side-channel analysis.

35

• Patience-Early-Stopper: In conjunction with Median Early Stop-
per, Early stop based on the patience of the model learning process
has also been implemented. More specifically, during a model training
phase, if no improvement of the objective function is observed for a pa-
tience number of epochs, the training is stopped. This approach offers
an additional level of control over resource allocation during train-
ing. It enables for the termination of individual models that appear to
have converged to a value and that further training does not appear
to enhance, even if the achieved performance is not promising.

In this experiments, the patience value for early stopping was set to
50, as we use anyway a relatively small number of epochs to train (200-
300). This means that if the Fast Guessing Entropy did not improve
for 50 epochs, the training of that specific model was terminated. This
choice further encouraged the optimization process to quickly discard
models that looked unpromising.

4.2.5 The evaluation of the models

As previously explained, by utilizing the customizable objective function fa-
cility provided by Optuna, we could directly embed the averaged GE into
the Sampling Algorithm for hyperparameter optimization process. This in-
tegration not only helped to assess the performance of the models but also
served as an intermediate metric for each training epoch.
The averaged GE given by equation 4.1 was calculated during the model’s
training for each epoch. This value was then used by both the early stopping
mechanisms to decide whether to continue the training of a specific model
or to stop it, thereby ensuring resources were allocated more effectively.
More specifically the calculation of the Averaged GE was computed as fol-
lows:

• Subset Selection: For each epoch, a random subset of 600 traces was
selected from the relatively small validation set (2000 traces) to main-
tain computational efficiency while still providing a robust estimation
of the model’s performance. This approach is in accordance with the
findings presented in [41]

• Guessing Entropy Computation: Key rank for each trace in the subset
was calculated. This measures the difficulty of guessing the correct
secret key. The individual guessing entropies were accumulated as per
the conventional process in guessing entropy computations.

• Average Guessing Entropy: The sum of guessing entropies was divided
by the total number of traces in the subset, resulting in an average
guessing entropy. This provided an estimation of the effort (number
of traces) the model required to find the correct subkey, as a low value

36

would correspond to only a few traces before reaching probability of
0 whereas a high value would correspond to a high amount of traces
required to reach zero, if reached at all.

At the end of the experiment, the model that reached the lowest averaged GE
was selected as best model for that experiment. Figure 4.4 shows the best
models for ASCADr, where each models is from a different experiment using
a different warm up values. Figure 4.3 shows the ASCADf best models for
the experiments with warm up 30, 50, 75, 100 and no early stop respectively.

4.3 Results

This section of our research delves into the results from our analysis of the
two distinct datasets: ASCADf and ASCADr. We focus primarily on the
Optuna hyper parameter optimization experiments conducted at various
warm-up values for the Median Early Stopper , methodically studying their
impact on resource use, measured in number of epochs, and the performance
of the best model. This examination allows us to determine the effects of
early stopping on the best models’ outcomes for each unique experiment.

4.3.1 Experiments for ASCADf

Warm-up Median-Early-Stopper Patience-Early-Stopper Sum

30 49.085 2.68 51.765

50 36.825 7.34 44.165

75 9.975 24.82 34.795

100 4.79 33.27 38.06

Table 4.2: Summary of warm-up values and effects early stop on number of
epochs for ASCADf

Table 4.2 encapsulates the impact of various warm-up periods on resource
utilization during hyperparameter optimization processes. The values rep-
resented in the table correspond to the percentages of epochs spared due
to the implementation of the 2 different early stopping strategies, and their
combined effect.
Specifically, the Median Early Stopper column denotes the percentage of
epochs saved because of the application of this strategy, the Patience Early
Stopper column represents the percentage of saved epochs attributed to
early stopping based on patience. Lastly, the Sum column aggregates these
savings, providing an overall view of the resource conservation.
The total savings (represented by the Sum column), which combines the
impacts of both the different early stopping strategies, doesn’t exhibit a

37

(a) Best model for ASCADf with
warm up set to 30

(b) Best model for ASCADf with
warm up set to 50

(c) Best model for ASCADf with
warm up set to 75

(d) Best model for ASCADf with
warm up set to 100

(e) Best model for ASCADf with no
early stopping

Figure 4.3: Comparisons of best models for ASCADf with different warm
up settings and no early stopping.

38

direct relationship with the warm-up period. This follows from the fact that
a lighter Early stop based on previous models lead to more space for the
Early stop mechanism based on training patience to act.
From the data collected in Table 4.2 and corresponding performance drawn
from Figure 4.3, we can analyze the relations between the warm-up steps
applied to the training and the performance outcomes of the optimal model
in the HO process.
The setting with a minimal warm-up phase of 30 steps realizes significant
resource savings, with nearly half of the epochs conserved. Notably, the
model’s performance under this condition doesn’t compromise drastically
as it recovers the key with approximately 200 traces, like the rest of the
configurations. This suggests that even an aggressive early stop schedule
can still result in optimal model performance.
Extending the warm-up phase to 50 steps results in a slight decrease in epoch
savings. However, the performance of the model remains robust, requiring
around 200 traces for key recovery, which aligns with the performance ex-
hibited by other configurations.
Interestingly, brings about a similar performance to the other settings, re-
quiring around 200 traces for key recovery. Despite less pronounced resource
savings from early stopping, the configuration with a warm-up phase of 75
steps improves over other configurations by achieving this with less than 200
traces.
Increasing the warm-up phase to 100 steps, or even having no early stop at
all, maintains a consistent performance level, necessitating around 200 traces
for key recovery. This finding reinforces the premise that strategic early stop
doesn’t compromise finding optimal configurations, but it might instead
ensures efficient resource allocation and exploration-exploitation balance.

Attempt Traces to reach GE = 0

[4] 1476

[54] 191

[45] 202

[53] 257

this study < 200

Table 4.3: Comparison with other papers of number of traces required to
reach a GE of 0 for ASCADf, ID leakage Model

4.3.2 Experiments for ASCADr

Table 4.4 summarizes the effects of different warm-up values on the 2 early
stopping strategies for the ASCADr dataset.

39

Warm-up Median-Early-Stopper Patience-Early-Stopper Sum

30 33.3 14.44 44.74

50 35.63 18.09 53.72

75 24.0 38.12 62.12

100 0.0 39.11 39.11

Table 4.4: Summary of warm-up values and effects of early stop on number
of epochs for ASCADr

When the warm-up value is set to 30, the Median Early Stopper contributes
to 33.30% saving in epochs, while Patience Early Stopping approximately
14.44%, reaching the total reduction of epochs to approximately 44.74%.
Surprisingly, this figure is slightly lower than the reduction seen for some of
the higher warm up values (50 and 74), even though a lower warm up value
would usually mean more aggressive early stopping.
This counterintuitive result can be attributable to the fact that during this
particular experiment, effective configurations were relatively quickly iden-
tified, and experiment showed consistent improvements as the models were
executed. Considering the Median Early stop mechanism, this scenario nat-
urally led to a decrease and delay of early stopping compared to other sce-
narios.
Although a lower warm up value generally implies more aggressive early
stopping, it is essential to consider the dynamics of the optimization process
and the quality of the configurations with the order in which they are found.
At a warm-up value of 50, Median Early Stopper models saved about 35.63%
of the total epochs that could have been run, and the early stop saved
approximately 18.09% of the epochs. The combined effect led to a reduction
of around 53.72% in the number of epochs.
Increasing the warm-up value to 75, the impact of the Median Early Stopper
savings decreases to 24.0%, but the effect of early stopping increases to
38.12%, leading to a total reduction of approximately 62.12%.
At a warm-up value of 100, the Median Early Stopper has no effect (0.0%
reduction), while the impact of early stopping slightly increases to 39.11%,
Leading to the overall reduction in epochs to 39.11%.
It’s important to explain that the elevated percentage of pruned epochs in
the ASCADr experiments, compared to those in the ASCADf experiments, is
primarily attributable to the baseline number of epochs set for each dataset.
In the ASCADr experiments, the default number of epochs, was set to 300.
In contrast, for the ASCADf experiments, this number was lower at 200.
This discrepancy means that, since the warm-up and early stopping val-
ues are kept constant across both sets of experiments, the resource-saving
techniques, have a larger pool of epochs from which to cut in the ASCADr

40

experiments. As a result, these techniques appear to prune a higher percent-
age of epochs in the ASCADr experiments compared to the ASCADf ones.
This difference, however, is simply a reflection of the different default epoch
settings for the two datasets, rather than indicating any inherent differences
in the effectiveness of the early stopping strategies.

41

Figure 4.4: Guessing entropy for the ASCADr experiments using warm up
value of 50, 75 and 100

Analyzing the outcomes of the best models’ Guessing Entropy (GE) from
various experiments of the ASCADr dataset, depicted in Figure 4.4, reveals
comparable results across the board for different warm-up values, specifically
30, 50, 75, and 100. Interestingly, the model from the Optuna experiment
with a warm-up value of 30 exhibited slightly superior performance, reaching
a GE of 0 with less than 200 traces. Meanwhile, the best models from
experiments with warm-up values of 50, 75, and 100 also demonstrated
commendable performance, requiring between 205 and 220 traces to achieve
a GE of 0.
Once more, despite the amounts of computational resources saved across
the different warm-up values, all experiments resulted in well performing
models. These results suggest that the role of early stopping strategies can
be effective in the HO process and can help to focus the process on more
promising configurations and lead to better results.

Attempt Traces to reach GE = 0

[39] 105

[45] 490

[53] 1568

this study < 200

Table 4.5: Comparison with other papers of number of traces required to
reach a GE of 0 for ASCADr, ID leakage Model

42

Chapter 5

Conclusions

Regardless of the warm-up values, all the experiments resulted in models
that consistently exhibited robust performance, achieving a GE of 0 with
approximately 200 traces on average across both datasets. This pattern un-
derscores the potential effectiveness of Optuna’s early stopping mechanisms
during hyperparameter optimization (HO) in Side-Channel Analysis (SCA).
These mechanisms can effectively modify the dynamics of the exploration-
exploitation trade-off in HO, directing the process more efficiently towards
promising regions of the hyperparameter space.
Models with a warm-up value of 30 demonstrated a slight edge in perfor-
mance, achieving a GE of 0 with less than 200 traces for ASCADr and about
200 traces for ASCADf. This observation suggests that aggressive Early Stop
strategies, characterized by a lower warm-up value, can still yield optimal
models. This approach could expedite the optimization process by directing
it towards promising configurations earlier.
However, these observations should be interpreted with caution. Numerous
factors could influence the observed effects, such as the number of trials
in the Optuna studies, the relatively simple nature of the models, and the
vastness of the search space. In addition, the models used in SCA are
relatively simple, which could contribute to their resilience against common
challenges in machine learning such as overfitting. Given the less complex
nature of the datasets, it’s possible that a wide array of configurations could
result in high-quality models.
One noteworthy aspect of these findings is the facilitation offered by the
Optuna framework, which comes with state-of-the-art HO, such as the Tree-
structured Parzen Estimator (TPE), used in this study. The usage of this
robust, well-maintained, open-source framework simplified the overall work-
flow. Optuna’s adaptability demonstrates that ’reinventing the wheel’ with
bespoke frameworks for SCA may not be necessary. Utilizing established
ML frameworks, which can be readily adapted to the specific needs of SCA,
can save time and streamline research, further promoting progress in this

43

field.
In conclusion, these findings lend support to the application of early stopping
strategies in HO studies within the context of SCA and underscore the value
of leveraging existing ML frameworks like Optuna. The findings also un-
derscore the potential benefits of integrating such open-source frameworks,
given their robust, ready-to-use, and well-tested features.

5.1 Future work

Given the exploratory nature of this study, with several new elements inte-
grated into CNN-based SCA within the project’s constraints, it lays down a
groundwork for future explorations. The following are potential directions
for future work seeking to further expand on this research::

• One significant avenue for future research lies in the exploration and
investigation of a wider variety of early stopping strategies. The scope
of the present study was limited to a few values for the warm-up and
a singular fixed value for the patience parameter in the early stopping
mechanism. To better comprehend the dynamics and interactions of
these parameters, a more granular and comprehensive investigation
could prove to be beneficial. Identifying the optimal balance and spe-
cific values for these parameters could significantly enhance the effi-
ciency and performance of the hyperparameter optimization process.
Furthermore, a comparative analysis between studies employing only
one of the early stopping strategies and those utilizing both could yield
relevant insights. Such research could reveal how these strategies in-
dividually and collectively influence the performance and resource uti-
lization of the hyperparameter optimization.

• A second area for future research would be to delve deeper into vari-
ous Early Stopping strategies. The current study was restricted to the
application of the basic median Early Stopper. However, more sophis-
ticated and diverse Early stopping techniques exist and could be inves-
tigated. For instance, percentile Early Stop with differing parameters
could be evaluated to uncover their potential benefits and drawbacks.
More advanced Early Stopping strategies, such as Hyperband[30], should
also be examined.

• Thirdly, the exploration of other state-of-the-art hyperparameter op-
timization algorithms, which are already integrated within Optuna,
presents an exciting direction for future work. In particular, the appli-
cation of multi-objective hyperparameter optimization algorithms like
MOTPE(Multi Objective Tree Parzen Estimator)[37], NSGA-II[12],
and NSGA-III[13, 21] could be incredibly valuable in the context of
Side-Channel Analysis (SCA). These advanced algorithms allow the

44

simultaneous consideration of multiple SCA metrics to guide the hy-
perparameter optimization process. It would be interesting to see if
using MI and FGE at the same time could bring to a better Hyperpa-
rameter Optimization process

45

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. Optuna: A next-generation hyperparameter op-
timization framework. In Proceedings of the 25th ACM SIGKDD in-
ternational conference on knowledge discovery & data mining, pages
2623–2631, 2019.

[3] Mohammad Abdullah Al Faruque, Sujit Rokka Chhetri, Arquimedes
Canedo, and Jiang Wan. Acoustic side-channel attacks on additive
manufacturing systems. In 2016 ACM/IEEE 7th International Confer-
ence on Cyber-Physical Systems (ICCPS), pages 1–10, 2016.

[4] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and
Cécile Dumas. Deep learning for side-channel analysis and introduction
to ASCAD database. Journal of Cryptographic Engineering, 10(2):163–
188, 2020.

[5] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Al-
gorithms for hyper-parameter optimization. Advances in neural infor-
mation processing systems, 24, 2011.

[6] Shivam Bhasin, Anupam Chattopadhyay, Annelie Heuser, Dirmanto
Jap, Stjepan Picek, and Ritu Ranjan. Mind the portability: A warriors
guide through realistic profiled side-channel analysis. In NDSS 2020-
Network and Distributed System Security Symposium, pages 1–14, 2020.

46

[7] Eli Biham and Adi Shamir. Differential fault analysis of secret key
cryptosystems. In Advances in Cryptology—CRYPTO’97: 17th Annual
International Cryptology Conference Santa Barbara, California, USA
August 17–21, 1997 Proceedings 17, pages 513–525. Springer, 1997.

[8] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In Cryptographic Hardware and Embed-
ded Systems-CHES 2004: 6th International Workshop Cambridge, MA,
USA, August 11-13, 2004. Proceedings 6, pages 16–29. Springer, 2004.

[9] Martin Brisfors and Sebastian Forsmark. DLSCA: a tool for deep learn-
ing side channel analysis. Cryptology ePrint Archive, 2019.

[10] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks.
In Cryptographic Hardware and Embedded Systems-CHES 2002: 4th In-
ternational Workshop Redwood Shores, CA, USA, August 13–15, 2002
Revised Papers 4, pages 13–28. Springer, 2003.

[11] François Chollet et al. Keras. https://keras.io, 2015.

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and eli-
tist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

[13] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective
optimization algorithm using reference-point-based nondominated sort-
ing approach, part i: Solving problems with box constraints. IEEE
Transactions on Evolutionary Computation, 18(4):577–601, 2014.

[14] Julie Ferrigno and M Hlaváč. When AES blinks: introducing optical
side channel. IET Information Security, 2(3):94–98, 2008.

[15] Kunihiko Fukushima. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position. Biological cybernetics, 36(4):193–202, 1980.

[16] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electro-
magnetic analysis: Concrete results. In Cryptographic Hardware and
Embedded Systems—CHES 2001: Third International Workshop Paris,
France, May 14–16, 2001 Proceedings 3, pages 251–261. Springer, 2001.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[18] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Applications of
machine learning techniques in side-channel attacks: a survey. Journal
of Cryptographic Engineering, 10:135–162, 2020.

47

https://keras.io
http://www.deeplearningbook.org

[19] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Ver-
bauwhede, and Joos Vandewalle. Machine learning in side-channel
analysis: a first study. Journal of Cryptographic Engineering, 1(4):293,
2011.

[20] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007.

[21] Himanshu Jain and Kalyanmoy Deb. An evolutionary many-objective
optimization algorithm using reference-point based nondominated sort-
ing approach, Part II: Handling constraints and extending to an adap-
tive approach. IEEE Transactions on Evolutionary Computation,
18(4):602–622, 2014.

[22] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identi-
fication and hyperparameter optimization. In Artificial intelligence and
statistics, pages 240–248. PMLR, 2016.

[23] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan
Hanjalic. Make some noise. unleashing the power of convolutional neu-
ral networks for profiled side-channel analysis. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 148–179, 2019.

[24] Taehun Kim and Youngjoo Shin. Thermalbleed: A practical thermal
side-channel attack. IEEE Access, 10:25718–25731, 2022.

[25] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computa-
tion, 48(177):203–209, 1987.

[26] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In Advances in Cryptology—CRYPTO’99: 19th Annual Interna-
tional Cryptology Conference Santa Barbara, California, USA, August
15–19, 1999 Proceedings 19, pages 388–397. Springer, 1999.

[27] Paul C Kocher. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Advances in Cryptol-
ogy—CRYPTO’96: 16th Annual International Cryptology Conference
Santa Barbara, California, USA August 18–22, 1996 Proceedings 16,
pages 104–113. Springer, 1996.

[28] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[29] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina,
Jonathan Ben-Tzur, Moritz Hardt, Benjamin Recht, and Ameet Tal-
walkar. A system for massively parallel hyperparameter tuning. Pro-
ceedings of Machine Learning and Systems, 2:230–246, 2020.

48

[30] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. Hyperband: A novel bandit-based approach to hyper-
parameter optimization. The Journal of Machine Learning Research,
18(1):6765–6816, 2017.

[31] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analy-
sis attacks: Revealing the secrets of smart cards, volume 31. Springer
Science & Business Media, 2008.

[32] Victor S Miller. Use of elliptic curves in cryptography. In Conference on
the theory and application of cryptographic techniques, pages 417–426.
Springer, 1985.

[33] Tom Michael Mitchell et al. Machine learning, volume 1. McGraw-hill
New York, 2007.

[34] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan
Kautz. Pruning convolutional neural networks for resource efficient
inference. arXiv preprint arXiv:1611.06440, 2016.

[35] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz
Barak, and Ilya Sutskever. Deep double descent: Where bigger models
and more data hurt. Journal of Statistical Mechanics: Theory and
Experiment, 2021(12):124003, 2021.

[36] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and
Koray Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499, 2016.

[37] Yoshihiko Ozaki, Yuki Tanigaki, Shuhei Watanabe, and Masaki Onishi.
Multiobjective tree-structured parzen estimator for computationally ex-
pensive optimization problems. In Proceedings of the 2020 Genetic
and Evolutionary Computation Conference, GECCO ’20, page 533–541,
New York, NY, USA, 2020. Association for Computing Machinery.

[38] Guilherme Perin, Ileana Buhan, and Stjepan Picek. Learning when
to stop: a mutual information approach to fight overfitting in profiled
side-channel analysis. Cryptology ePrint Archive, 2020.

[39] Guilherme Perin, Lukasz Chmielewski, and Stjepan Picek. Strength in
numbers: Improving generalization with ensembles in machine learning-
based profiled side-channel analysis. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pages 337–364, 2020.

[40] Guilherme Perin, Lichao Wu, and Stjepan Picek. AISY-deep learning-
based framework for side-channel analysis. Cryptology ePrint Archive,
2021.

49

[41] Guilherme Perin, Lichao Wu, and Stjepan Picek. The need for speed:
A fast guessing entropy calculation for deep learning-based SCA. Al-
gorithms, 16(3):127, 2023.

[42] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and
Francesco Regazzoni. The curse of class imbalance and conflicting met-
rics with machine learning for side-channel evaluations. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2019(1):1–29,
2019.

[43] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla
Batina. Sok: Deep learning-based physical side-channel analysis. ACM
Computing Surveys, 55(11):1–35, 2023.

[44] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis
(EMA): Measures and counter-measures for smart cards. In Smart Card
Programming and Security: International Conference on Research in
Smart Cards, E-smart 2001 Cannes, France, September 19–21, 2001
Proceedings, pages 200–210. Springer, 2001.

[45] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Re-
inforcement learning for hyperparameter tuning in deep learning-based
side-channel analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 677–707, 2021.

[46] Ronald L Rivest. Cryptography and machine learning. In Advances in
Cryptology—ASIACRYPT’91: International Conference on the The-
ory and Application of Cryptology Fujiyosida, Japan, November 1991
Proceedings 2, pages 427–439. Springer, 1993.

[47] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communi-
cations of the ACM, 21(2):120–126, 1978.

[48] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified
framework for the analysis of side-channel key recovery attacks. In Ad-
vances in Cryptology-EUROCRYPT 2009: 28th Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques, Cologne, Germany, April 26-30, 2009. Proceedings 28, pages
443–461. Springer, 2009.

[49] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and
François-Xavier Standaert. Shuffling against side-channel attacks: A
comprehensive study with cautionary note. In Advances in Cryptology–
ASIACRYPT 2012: 18th International Conference on the Theory and
Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings 18, pages 740–757. Springer, 2012.

50

[50] Jiazhuo Wang, Jason Xu, and Xuejun Wang. Combination of hyper-
band and bayesian optimization for hyperparameter optimization in
deep learning. arXiv preprint arXiv:1801.01596, 2018.

[51] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Hyper-
parameter search space pruning–a new component for sequential model-
based hyperparameter optimization. In Machine Learning and Knowl-
edge Discovery in Databases: European Conference, ECML PKDD
2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part II 15,
pages 104–119. Springer, 2015.

[52] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel.
Revisiting a methodology for efficient CNN architectures in profiling
attacks. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 147–168, 2020.

[53] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Au-
tomated hyperparameter tuning for deep learning-based side-channel
analysis. IEEE Transactions on Emerging Topics in Computing, 2022.

[54] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient cnn architectures in profiling attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages
1–36, 2020.

51

Chapter 6

Appendix

6.1 Selecting Hyperparameters From the Search
Space

6.1.1 retrieve hyperparameters

Listing 6.1: Code that uses the Optuna trial class to retrieve values for the
hyperparameters to build new configurations in the hyperparameter opti-
mization process

num epochs = 300
ba t ch s i z e = t r i a l . s u g g e s t i n t (” ba t ch s i z e ” ,

low=100 ,
high=1000 ,
s tep=100 ,
l og=False)

l e a r n i n g r a t e = 1e−5
a c t i v a t i o n f un c t i o n = t r i a l . s u g g e s t c a t e g o r i c a l (

” a c t i v a t i o n f un c t i o n ” ,
[” r e l u ” , ” s e l u ”])

f i l t e r s = t r i a l . s u g g e s t c a t e g o r i c a l (
” f i l t e r s ” ,
[2 , 4 , 8 , 1 6 , 3 2 , 6 4])

num conv layers = t r i a l . s u g g e s t i n t (
” num conv layers ” ,
low=2,
high=5,
s tep=1,
l og=False)

k e r n e l s i z e =[t r i a l . s u g g e s t c a t e g o r i c a l (f ” k e r n e l s i z e { i +1}” ,
[2 , 3 , 5 , 7 , 1 1 , 1 7]) for i in range (num conv layers)]

num fc l aye r s = t r i a l . s u g g e s t i n t (” num fc l aye r s ” , low=1, high
=3, s tep=1, l og=False)

52

s i z e f c l a y e r s = [t r i a l . s u g g e s t i n t (f ” f c l a y e r { i +1}” , low=64,
high=512 , s tep=64) for i in range (num fc l aye r s)]

In each convolutional layer, the hyperparameter that defines the kernel size
is chosen individually. The same holds for the fully connected layers, where
the number of units is also suggested individually for each fully connected
layer.

53

6.1.2 create CNN models

Listing 6.2: this function take the given hyper parameters from Optuna Trial
class to dynamically build CNN architectures with those hyperparameters

def c r ea t e convne t (s e l f ,
t r a c e l eng th ,
n output ,
a c t i v a t i o n=’ r e l u ’ ,
k e r n e l s i z e =3,
f i l t e r s =8,
num conv layers=3,
num fc l aye r s =2,
s i z e f c l a y e r s =512 ,
s t r i d e s =1,
l e a r n i n g r a t e=1e−05,
l o s s f u n c=’ c a t e g o r i c a l c r o s s e n t r o p y ’) :

Define the input shape
input shape = (t r a c e l eng th , 1)

Create the model
model = Sequent i a l ()

Add convo l u t i ona l l a y e r s
for i in range (num conv layers) :

i f i == 0 :
model . add (Conv1D(f i l t e r s=f i l t e r s ,

k e r n e l s i z e=k e r n e l s i z e [i] ,
k e r n e l i n i t i a l i z e r=’ he uni form ’ ,
a c t i v a t i o n=ac t i va t i on ,
padding=’ same ’ ,
input shape=input shape))

else :
i f i % 2 == 1 :

model . add (BatchNormalizat ion ())
model . add (Conv1D(f i l t e r s=f i l t e r s ,

k e r n e l s i z e=k e r n e l s i z e [i] ,
k e r n e l i n i t i a l i z e r=’ he uni form ’ ,
a c t i v a t i o n=ac t i va t i on ,
s t r i d e s=s t r i d e s))

model . add (AveragePooling1D (p o o l s i z e =2, s t r i d e s=s t r i d e s)
)

Fla t t en the output
model . add (Flat ten ())

Add f u l l y connected l a y e r s
for i in range (num fc l aye r s) :

model . add (Dense (un i t s=s i z e f c l a y e r s [i] ,
k e r n e l i n i t i a l i z e r=’ he uni form ’ , a c t i v a t i o n=
ac t i v a t i o n))

Add an output l a y e r

54

model . add (Dense (un i t s=n output , a c t i v a t i o n=’ softmax ’))

Compile the model
model . compile (l o s s=l o s s f un c , opt imize r=Adam(l e a r n i n g r a t e) ,

met r i c s =[’ accuracy ’])

return model

6.2 Optuna studies for ASCADf

Figure 6.1: Optuna study for Ascadf with warm up set to 30

Figure 6.2: Optuna study for Ascadf with warm up set to 50

55

Figure 6.3: Optuna study for Ascadf with warm up set to 75

Figure 6.4: Optuna study for Ascadf with warm up set to 100

Figure 6.5: Optuna study for Ascadf without early stop

56

6.3 Optuna studies for ASCADr

Figure 6.6: Optuna study for ASCADr with warm up set to 30

Figure 6.7: Optuna study for ASCADr with warm up set to 50

Figure 6.8: Optuna study for ASCADr with warm up set to 75

57

Figure 6.9: Optuna study for ASCADr with warm up set to 100

58

	Introduction
	The background of the problem
	The problem
	The solution
	The contribution and the outline

	Preliminaries
	Side-Channel Analysis
	Non-profiled Side-Channel Analysis
	Profiled Side-Channel analysis
	Side-channel analysis: the steps before the attack
	Leakage Models
	Countermeasures
	Side-Channel Analysis metrics

	Deep Learning
	Definition
	deep learning challenges

	Deep feedforward networks
	Forward Propagation
	Backpropagation

	Convolutional Neural Networks
	Kernels
	Downsampling
	Pooling Layer
	Batch Normalization Layer

	Convolutional Neural Networks and Side-Channel Analysis
	Hyperparameter optimization
	Exploration-Exploitation trade off
	Pruning strategies in Hyperparameter Optimization
	Tree-structured Parzen Estimator

	Early Stopping
	Optuna
	Ascad Dataset

	Related Work
	Our approach & methodologies
	Study Settings
	Methodologies
	Hyperparameter Optimization Process
	Hyper parameter search space
	The creation of CNN models
	Early stopping
	The evaluation of the models

	Results
	Experiments for ASCADf
	Experiments for ASCADr

	Conclusions
	Future work

	Appendix
	Selecting Hyperparameters From the Search Space
	retrieve hyperparameters
	create CNN models

	Optuna studies for ASCADf
	Optuna studies for ASCADr

