
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Investigating the behaviour of IoT devices undergoing a
deauthentication attack and its countermeasures

Author:
Gabriël Krouwel
s1021541

First supervisor/assessor:
dr. M.G.C. Acar

Second assessor:
dr. ir. E. Poll

May 11, 2023

Abstract

The 802.11 family of standards has been the standard for WiFi security
for many decades. However, these standards contain a fundamental flaw
that management frames are not authenticated, which we use to execute
so-called deauthentication and evil twin attacks. We aim to contribute to
the knowledge of attack vectors on some wireless devices, specifically two
wireless cameras and two wireless video doorbells. In doing so, we try to
find and combine possible countermeasures against these attacks. We in-
vestigated the behaviour of these devices during a deauthentication attack
combined with an evil twin attack and found that all these devices are sus-
ceptible to the attacks. Moreover, we found that we can cause a complete
service disruption on these devices, either by sending a continuous stream
of deauthentication packets or by setting up an evil twin. We then show
that an upgrade in protocol, for example, to the 802.11w standard, is the
main solution for these attacks. Nevertheless, for a short-term solution, we
can combine countermeasures for detecting these attacks, like detecting an
irregular number of packets, to become aware of such an attack. The draw-
back of this approach is that, although efficient, it does not prevent these
attacks and must be dealt with after detection.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 MAC Frames . 4
2.2 Device Setup . 7

2.2.1 Authentication and Association 7
2.2.2 WPA2 Security . 10

3 Deauthentication and Evil Twin Attacks 13
3.1 Deauthentication Attacks . 13
3.2 Deauthentication Attack Setup 15
3.3 Network Layout . 16

3.3.1 Attack Mitigation . 17
3.4 MAC Addresses . 18
3.5 Evil Twin Attack . 20

4 Results 22
4.1 IP Cameras . 22
4.2 Video Doorbells . 24
4.3 Discussion . 25

4.3.1 Ethics . 27

5 Related Work and Countermeasures 28
5.1 Related Attacks . 28
5.2 Prevention Countermeasures 29
5.3 Detection Countermeasures 30
5.4 Response Countermeasures 31

6 Conclusions 32

A Appendix 37
A.1 Deauthentication Packet . 37
A.2 Installing Drivers . 37
A.3 Connecting Evil Twin to Access Point 38

1

Chapter 1

Introduction

WiFi allows Internet of Things (IoT) devices to establish a wireless connec-
tion between them and access points, which is based on the 802.11 family
of standards. There are, however, a few fundamental issues with these stan-
dards that can be used to disrupt these devices. For example, some hotels
have been fined [1] for using one such flaw to get customers to, instead of
connecting to their own network, be forced to connect to the network of the
hotel, which is usually a paid service.

In this thesis, we look into these so-called deauthentication attacks,
where we disconnect a client from a local network by repeatedly sending
specific packets to both the client and the router. In the previous para-
graph, we identified a scenario in which these deauthentication attacks can
be used. However, deauthentication attacks are the basis of many more such
attacks [2] [3].

In fact, in practice, we find that these attacks work on any internet-
connected device, as they simply terminate any outgoing internet connection
on said device. Deauthentication attacks are thus attacks on availability.
This proves to be especially useful on IoT devices that can only serve their
purpose with a working connection, for example, wireless cameras and wire-
less doorbells. In a hypothetical situation, we could, for example, disable all
wireless cameras on a single network by executing a deauthentication attack
simultaneously on all of these devices. We study the exact consequences of
performing such an attack on a few specific devices, namely two wireless
cameras and two wireless doorbells.

2

As we show in this thesis, there are currently no countermeasures imple-
mented against this type of attack if the firmware on the access point has
not been upgraded to the 802.11w standard. Moreover, very few tools are
required for a deauthentication attack, and these tools are freely available.
In order to set up the attack, all we need is the MAC address of the device
we want to disconnect and the MAC address of the access point. All of these
can be obtained by an adversary through said access point, for example, by
a simple MAC-address scan of the network, which we will explain later. We
can find these addresses without being connected to the access point, as we
can simply scan the frames by being in relative proximity.

When a device wants to disconnect from the network, it sends a deau-
thentication packet to the router. In this attack, we build these packets to
disconnect a client from the network. So, to find proper countermeasures,
we cannot simply get rid of these deauthentication packets. We look into
a few solutions, most importantly the protected management frames intro-
duced in 802.11w. Nevertheless, this thesis is still very relevant, as 802.11w
is rarely used for the security of a network.

Although deauthentication attacks are widely researched, we attack spe-
cific IoT devices and look at their behaviour during and after such an attack.
Moreover, we combine these attacks with evil twin attacks to block any ser-
vices the device provides. We do not come up with any new specific coun-
termeasures; however, we do discuss and combine existing countermeasures
to prevent these specific attacks. Our two research questions are thus:

• What is the behaviour of IoT cameras and video doorbells when un-
dergoing a deauthentication attack, and does it change when combined
with an evil twin attack?

• What countermeasures can be used to prevent or detect a deauthen-
tication attack, and does it work when combined with an evil twin
attack on these devices?

We start this thesis by explaining the necessary preliminaries in Chapter
2 in order to understand our attacks. In Chapter 3, we explain how each
attack works in technical details and find the required parameters for our
attack. Then, in Chapter 4, we show and discuss the results of our attacks.
Finally, we discuss some related work and countermeasures for this attack
in Chapter 5.

3

Chapter 2

Preliminaries

2.1 MAC Frames

We start with some preliminaries to be able to understand the setup of
our attack, which we discuss in Chapter 3. We are investigating a network
within, for example, a household or company, where clients communicate
with an access point over the link layer. We are only interested in the
frames sent over this connection, so we do not look into, for example, out-
going packets from an access point to another access point outside of the
network. These frames are called MAC frames, and they are built up of
three parts. A MAC frame consists of a header, a frame body, and a frame
check sequence, or FCS for short. The header contains information about
the frame itself, which includes the type and sub-type of the frame, whereas
the body contains the data that is sent in the frame. Finally, the FCS is
calculated over the frame header and body, which can then be used to ver-
ify that the frame was received correctly. For this thesis, we are mainly
interested in the frame header, but we explain all components of the MAC
frame for completeness as we build these MAC frames for our attack. All
the notions in this chapter are based on the 802.11 family of standards [4].
The header is structured as follows:

2 bytes 2 bytes 6 bytes 6 bytes

Frame Control Duration/ID Address 1 Address 2

6 bytes 2 bytes 6 bytes

Address 3 Sequence Control Address 4

Figure 2.1: The header of a MAC frame.

4

It is important to note that Address 4 is not present in every type of
MAC frame; this is fully dependent on the 16 bits in the Frame Control.
The Frame Control has the following structure:

2 bits 2 bits 4 bits 1 bit 1 bit 1 bit

Protocol Version Type Sub-type To DS From DS More Frag

1 bit 1 bit 1 bit 1 bit 1 bit

Retry Power Mgmt More Data WEP Order

Figure 2.2: Frame Control of a MAC frame.

• Protocol Version. This field specifies what the current Protocol
Version is. For the network we attack, this is fixed to be 00.

• Type. The Type indicates the type of MAC frame, with the possibil-
ities being a management frame (00), a control frame (01), and a data
frame (10). For this thesis, we are only interested in the management
frames.

• Sub-type. Just like the Type field, this field specifies the Sub-type
of the MAC frame. Note that each type of MAC frame has specific
sub-type meanings, so we only discuss the meaning of sub-types for
the management frame.

0000 Association Request

0001 Association Response

0010 Re-association Request

0011 Re-association Response

0100 Probe Request

0110-0111 Reserved

1000 Beacon

1001 ATIM

1010 Disassociation

1011 Authentication

1100 Deauthentication

1101 Action

1110-1111 Reserved

Figure 2.3: Definition of the bits in the sub-type field.

5

For our attack, only Deauthentication (1100) is needed to perform the
attack; however, some of the other frames are required for setting up
connections in the local network.

• To DS and From DS. These two bits define the meaning of the
address fields and whether the fourth address is present. These values
are represented in the following table:

x Address 1 Address 2 Address 3 Address 4

00 DA SA BSSID x

01 DA BSSID SA x

10 BSSID SA DA x

11 RA TA DA SA

Table 2.1: Definition of address field based on DS bits.

In this table, DA stands for Destination Address, SA for Source Ad-
dress, TA for Transmitting Station Address and finally RA for Receiv-
ing Station Address. The Basic Service Set Identifier (BSSID) is the
MAC address of the access point in this case. For the deauthentication
frames, we will only use the 00 entry in the table.

• More Fragments. This bit indicates whether there are other frag-
ments associated with this frame. For our scenario, this is never the
case, so we set it to 0.

• Retry. If this bit is set, then the current frame is a retransmission.
Once again, this is never the case for our attack, hence we set it to 0.

• Power Management. When set, this field will change the mode of
a station to power-saving mode; otherwise, it will stay active. We will
set this to 0, but it is not important for this attack.

• More Data. Similar to more fragments, this bit indicates whether
the sender sends more data than just the current frame. This bit is
also set to 0.

• WEP. This field indicates that the standard 802.11 security is used,
which is set to 0 for our packets as we are sending them over WPA2
instead of WEP.

• Order. Finally, the last field indicates whether the frames must be
processed in a strict order. We will only send independent packets
multiple times, so this bit is set to 0.

6

The remaining fields are defined as follows:

• Duration/ID. In control frames, this field contains an association
identity. Nevertheless, we are only working with management frames,
so this field always contains the duration value of the frame.

• Address fields. Recall that we will only use the 00 entry of the
DS-table. This means that the first address, DA, is the destination
address, being either the MAC address of the access point or the de-
vice. The second address, SA, is respectively the MAC address of the
device or access point. Finally, the third address is simply the MAC
address of the access point.

• Sequence Control. This field consists of a 4-bit Fragment Number
and a 12-bit Sequence Number. The first number simply preserves the
order of the fragments within a transmission, whereas the latter tracks
the number of transmissions.

Now that we have explained all the fields in the header of the MAC
frame, we have two other parts of the frame: the Frame Body and the
Frame Check Sequence.

• Frame Body. This field contains the data sent with the frame, which
is of variable length. We will only be setting the reason code for the
deauthentication frame in this field, which is fixed for every fragment
and thus a fixed field in our fragments.

• Frame Check Sequence. The FCS field contains a 32-bit code to
ensure that no errors occur during transmission. We will not explain
the formula for calculating this code, as it will be fully automated;
however, more information can be found in [4].

2.2 Device Setup

2.2.1 Authentication and Association

Since we are working with wireless IoT devices, we will now explain our
network layout for these devices. Consider a scenario where the IoT device,
in this case either a camera or a video doorbell, has not been setup to
work with an existing network. This network is simply an access point, for
example, a router, connected to some devices and serving as a gateway to
the internet.

7

Figure 2.4: The standard setup for a network.

Note that all connected devices (in essence, the ”other devices” in the
diagram) are in so-called states three or four, whereas the IoT device is in
state one, which is defined in Figure 2.5.

Figure 2.5: The relation between the states.

8

As soon as a device is in state three, it is able to send data to the access
point. However, if the access point has any security measures enabled, like
WPA2, the device is required to switch to state four before being able to
send data. The protocol used by a device to get from state one to state
three is shown in Figure 2.6.

Figure 2.6: The protocol for state 1 to state 3.

• Probe Request. The device sends a probe request with information
about the supported data rates of the device to FF:FF:FF:FF:FF:FF
on the link layer. All access points within a certain distance of the
device will respond to this request.

• Probe Response. The access point sends back a probe response, in-
cluding the SSID, compatible data rates, and, if applicable, additional
requirements for 802.11 security.

• Authentication 1. The device sends an authentication frame to the
access point with a specific sequence code (SC).

9

• Authentication 2. The access point opens the authentication and
sends back an authentication frame with the sequence code SC+1. If
the access point does not receive an authentication frame from the
device, it will send a deauthentication frame to the device instead.
This does, however, allow any device to be authenticated at multiple
access points.

• Association Request. The device is now in state two, and it will
thus determine which AP it wants to associate with. It then sends
an association request, which contains the 802.11 capabilities, to the
access point.

• Association Response. If the capabilities match, the access point
will send an association response, which has a corresponding associ-
ation ID within the access point for the device. Once again, if the
access point does not receive an association frame, it will send a dis-
association frame instead. This ensures that any single device cannot
be associated with multiple access points at the same time.

After receiving this last frame, the device is in state three, and the
protocol is finished. Data can now be exchanged between the access point
and the device, unless extra 802.11 security is required.

Note that after sending a deauthentication management frame to the
device, it gets kicked back to state one. If we were to send a disassociation
management frame to the device, it would go back to state two instead.
These disassociation frames can be used in what are known as disassociation
attacks [5].

2.2.2 WPA2 Security

We will now discuss the details of the WPA2 protocol, which is part of the
802.11i standard [6], as this is required for a device to switch from state
three to state four. A device in state three will send any frames to the
access point in plaintext, so this extra layer of protection was introduced to
protect the confidentiality and integrity of the data in any frame. However,
this protection was not applied to the management frames, thereby meaning
these frames are still being sent in plaintext, which allows us to spoof these
frames. First, we need some definitions of the keys used in the WPA2
protocol:

• Pairwise Master Key. The Pairwise Master Key (PMK) is the pre-
shared secret for the device and the access point. This is, for example,
the password required when connecting to any private network.

• Group Master Key. The Group Master Key (GMK) is a key that
only the access point knows and is used to generate the other required
keys in the protocol.

10

• Pairwise Transient Key. The Pairwise Transient Key (PTK) is
the encryption key for all the unicast traffic between a device and the
access point, being unique for each device in state three with respect
to that access point. The PTK is calculated as follows: PTK = PRF
(PMK + ANonce + SNonce + MAC(AP) + MAC(SA)), where PRF
is simply a pseudo-random function. Note that ANonce and SNonce
are just random numbers, generated respectively by the access point
and the device.

• Group Temporal Key. The Group Temporal Key (GTK) is the
encryption key for all broadcast and multicast traffic between multiple
devices and the access point, which is unique to the access point. The
access point generates this key independently of the devices.

Figure 2.7 shows the WPA2 protocol with the discussed definitions.

Figure 2.7: The handshake for the WPA2 protocol.

11

• Message 1: ANonce. The access point sends the ANonce to the
device, which now has all the information required to generate the
PTK. This is because the client knows the MAC address of the access
point because the device is associated with it.

• Message 2: SNonce and MIC. The device then sends the SNonce
to the access point, along with a Message Integrity Check (MIC), which
is added to ensure that no message is modified or corrupted during the
transmission. With the SNonce, the access point can now calculate the
PTK as well, since it knows the MAC address of the device through
the association process.

• Message 3: GTK and MIC. The access point generates the GTK
from the GMK, which it encrypts using the PTK. It then sends the
pair of encrypted GTK and MIC back to the device, once again to
ensure that the encrypted GTK was not modified or corrupted.

• Message 4: ACK. Lastly, the device simply sends an acknowledge-
ment to the access point that all keys have been installed.

After receiving the fourth message, the access point will open the virtual
control port for the device, which was previously closed, blocking all traffic
coming into the access point. Finally, encrypted data can be sent between
the access point and the device. The details of the WPA2 protocol will
become especially important in the countermeasures section.

12

Chapter 3

Deauthentication and Evil
Twin Attacks

3.1 Deauthentication Attacks

Now that we have explained the necessary preliminaries, we can focus on
the actual deauthentication attacks. A deauthentication attack is a type of
denial-of-service attack that disconnects a device from the access point it is
connected to. Using our earlier defined definitions, it is the act of putting an
authenticated and associated (and potentially 802.1X authenticated) device
in state three or four back to unauthenticated and disassociated, which is
the first state. In that sense, this attack is quite similar to a disassociation
attack, which kicks the device back to the second state instead [5]. Subse-
quently, a deauthentication attack can be used on this device to kick it back
to the first state. Recall that a device in the first state is unable to send
data to the access point, meaning that it is unable to communicate with any
other device over the LAN using this access point until it is back in states
three or four.

Under normal circumstances, when a device wants to disconnect from
an access point, it sends a deauthentication packet to the access point it is
connected to with a specified reason code in the field body. Several such
reason codes exist, but they do not matter for our attack, as we only use
reason code 1, which means that the reason is unspecified [4]. Moreover,
deauthentication frames are notifications, meaning that the access point
will acknowledge the frame and accordingly disconnect the device from the
access point, regardless of the reason code. If, instead, the access point
wants to disconnect the client from itself, it sends a deauthentication frame
with a specific reason code to the device. As this is once again a notification,
the device will acknowledge this disconnection. However, the device will try
to reconnect to the access point, as we can also see from our packet captures
in the next chapter.

13

As we have mentioned, deauthentication frames are sent over the LAN
without using encryption or authentication, meaning they are sent in plain-
text. This allows any adversary to read, change, and, most importantly,
create these packets and send them over the LAN. An adversary is therefore
able to create such a frame with an arbitrary source and destination MAC
address, which allows one to spoof any of these MAC addresses. An ad-
versary can now execute a successful deauthentication attack by doing the
following:

(1) The adversary creates deauthentication frames with the source address
as the MAC address of the device to be attacked. The destination
address is set to the MAC address of the access point, which is also the
BSSID. Upon receiving these frames, the access point acknowledges the
frames as deauthentication frames sent from the device and henceforth
disconnects the device from the access point.

(2) The adversary also creates deauthentication frames with the source ad-
dress as the MAC address of the access point, which is also the BSSID.
The destination address is then set to the MAC address of the device
we want to attack. Once again, the device acknowledges the frames
and it thus registers as being disconnected from the access point. Note
that the device is not actually disconnected from the access point, as
the access point has not sent or received any deauthentication frames.

For a deauthentication attack to be efficient, both types of deauthentication
frames must be sent. Suppose that the adversary only sends frames of type
(1), the device does not know it is disconnected from the access point and
hence keeps sending data to the access point. It thus tries to reconnect
instantly, making it less efficient. Suppose instead that the adversary only
sends frames of type (2), then the device tries to reconnect to the access
point as mentioned earlier. However, as the device is already authenticated
and associated with the access point, it is immediately able to send data to
the access point.

An adversary is also able to mount a deauthentication attack on the
whole network instead of just a single device. The adversary can create
packets of type (2), where the destination address is FF:FF:FF:FF:FF:FF
instead of the devices’ MAC address. This means that the deauthentication
packets are broadcast to all devices on the network; hence, it should dis-
connect all devices from the network. However, as we only want to attack
specific devices and do not want to cause any disruption to other devices,
we do not broadcast deauthentication frames.

14

Although a deauthentication attack is an attack on availability, it is
also the basis for a few other attacks, of which one of the most prominent
is cracking 802.1X authentication. When a device is kicked back to the
first state, it will try to re-authenticate and re-associate with the access
point it was connected to before the deauthentication attack. It will also
perform a re-authentication for 802.1X security, which means that the 4-way
handshake, as discussed in Section 2.2.2, will be done again. An adversary
is then able to capture this handshake, which can be used for subsequent
attacks on the LAN. In fact, if the LAN uses WEP, the captured 4-way
handshake is enough to break the encryption on all frames sent over the
LAN within a few minutes [3]. For WPA and WPA2, we can use a list of
known passwords to break the encryption using the captured handshake [7],
if the password is on our list of known passwords.

Another attack that can be used in combination with the deauthentica-
tion attack is the so-called Evil Twin attack. When a device gets discon-
nected from an access point because of a deauthentication packet, it will
try to reconnect to the access point. However, an adversary could, in the
meantime, setup a rogue access point with the same details as the original
access point. The devices could now automatically connect to this rogue
access point instead [8], which the adversary can use to, for example, drop
or reroute packets being sent through this access point.

3.2 Deauthentication Attack Setup

We shall now delve into the details of how to perform a deauthentication
attack. It is very important to note that a deauthentication attack is only
effective on a device if it is in state two or three (or state four if required)
with respect to the access point. Note that we can execute such attacks from
outside the network [9], which allows this attack to work on any network.

An adversary should be able to analyse networks so that it can retrieve
MAC addresses from them. We explain some tools that can be used to
retrieve them, but a network layout is unique for every situation, thus re-
quiring some understanding of network structure. Moreover, an adversary
must be able to install and use these or similar tools to pull off the attacks.
Finally, an adversary has to be able to analyse packets over a network, as
we can determine the results of our attack and the behaviour of the devices
from these packets.

We are attacking IoT cameras and video doorbells. An adversary that
wants unauthorised access to a site can use this attack to disable these
devices. This could allow such an adversary to perform malicious actions
without being recorded, like, for example, stealing items from an otherwise
monitored location.

15

For a deauthentication attack, we need an adapter that is able to both
sniff and inject packets on a network. We are using the ALFA AWUS036ACH
adapter [10], which supports dual-band operation over both 2.4 GHz and
5 GHz frequencies. None of the currently available adapters can sniff and
inject over both frequencies at the same time because an adapter can only
be associated with a single access point at the same time, whereas the two
frequencies correspond to two different access points. The instructions for
installing this adapter can be found in Appendix A.2.

Apart from the adapter, we also need a tool associated with it to sniff
and inject packets onto a network. There are several tools available for this,
such as ScaPy [11], but we are using aircrack-ng [12]. Aircrack-ng is a suite
of tools for network security that, as we have already seen, can be used to
crack WEP, WPA1, and WPA2-PSK, but it can also be used to sniff packets
and inject deauthentication packets onto a network. Aircrack-ng is already
installed on Kali Linux, but it can be installed using the command:
sudo apt install aircrack-ng.
The command: sudo airmon-ng start wlan0, now sets the adapter to
monitor mode, allowing it to sniff and inject packets. Using aircrack-ng, we
can now launch a deauthentication attack with just a single command:
sudo aireplay-ng --deauth 0 -c [MAC of device] -a

[MAC of access point] [interface]

Although the interface names can be found using the command iwconfig,
the MAC addresses have to be retrieved using other methods, which can be
done using other tools from the aircrack-ng suite. As finding these MAC
addresses is completely dependent on the layout of the LAN, we first explain
the layout we are using.

Summarising all the steps, we must first set our adapter to monitor
mode, which allows it to sniff and inject packets. Then, we must retrieve
the MAC addresses of the devices and the access point we want to attack.
Finally, we can use the aireplay-ng command to launch our attack. We
will now describe retrieving the MAC addresses, which we do separately as
it is specific to the network layout.

3.3 Network Layout

As we have discussed, for our attack to work, we need an adversary that
is close enough to the access point to read the frames sent from it. Hence,
when combining this with our network, we get the layout in Figure 3.1. We
use this specific network as it is the only private network available to us for
testing. We avoided testing this attack on other networks for ethical reasons
(see Section 4.3.1).

16

Figure 3.1: Network layout for our attack.

The router is a dual-band FRITZ!Box 7590 router, which supports both
2.4 GHz and 5 GHz frequencies. There is also a repeater, which is basically
a WiFi extender, connected to the router. This, however, also means that
the IoT device is able to connect to either the router or the repeater if it
is in range of both, which complicates the situation, as will be explained in
the next subsection. We also have an adversary with an Alfa adapter on the
network, able to sniff and inject packets on it.

In this layout, the IoT camera is connected to the router, albeit not
directly. The camera uses the access point of the repeater to send data to
the router, which is acting as an intermediary. The repeater simply allows
an extended connection provided by the router; however, a device is still
able to connect directly to the router instead.

3.3.1 Attack Mitigation

Suppose that a device is connected to a repeater. If we tear down this
connection using a deauthentication attack, the device can automatically
switch to a direct connection with a router instead. If we then execute
a deauthentication attack on this connection, it can switch back to the
repeater. To solve this issue, we must use a deauthentication attack on both
of these connections at the same time. That way, the device cannot connect
to the router at all.

17

The problem from the last paragraph can actually be generalised to
broader situations: having more repeaters means that the adversary must
deauthenticate more connections for the device to become disconnected.
Moreover, if the device supports both 2.4 GHz and 5 GHz frequencies and
so does the access point, the device can automatically switch between these
two frequencies if either of them is down [13]. Although the devices attacked
in this thesis are not capable of supporting both 2.4 GHz and 5 GHz, this
problem could be solved using the previously described solution: use a deau-
thentication attack on both the 2.4 GHz and 5 GHz frequencies at the same
time.

In summary, we need to find the MAC addresses of the router, the re-
peater, and the device. Using these MAC addresses, we can launch two
deauthentication attacks on both the router and repeater to disconnect the
device. Sometimes, the device’s MAC address is on the label on the device;
nevertheless, we assume this is not the case and thus find the MAC addresses
using the aircrack-ng suite.

3.4 MAC Addresses

Recall that we have already set the adapter to monitor mode in the previous
section, so we can use the following command to find all access points in
proximity, along with their corresponding MAC address:
sudo airodump-ng wlan0.
For our setup, this gives the following output:

Figure 3.2: Output of the airodump-ng command.

From these results, we can gather that the MAC addresses of the router
and the repeater are either XX:33 or XX:06 (we mask the MAC addresses),
as our devices are only able to communicate over the 2.4 GHz frequency.
Using the signal strength (the second column), we find that the former is
the MAC address of the router, whereas the latter is the MAC address of
the repeater. Nevertheless, since we have to use a deauthentication attack
on both access points, whether either MAC address is the router or repeater
does not matter. Finally, we have to retrieve the MAC address of each
individual device, which we have to do separately for each device. The
devices we attack can be found in Table 3.1.

18

IoT devices

Eufy Indoor 2K Camera

Monvelli Indoor IP Camera

LG Wireless Video Doorbell

Nikkei BELL4 Smart Video Doorbell

Table 3.1: The IoT devices used in this study.

The first device we attack is the Eufy Indoor 2K Camera. This device
only supports 2.4 GHz, so we are able to find the MAC address of this device
by sniffing the packets over the access point with MAC address XX:33. To
sniff these packets, we can use this command:
sudo airodump-ng wlan0 --bssid [BSSID of access point]

This gives us the following result:

Figure 3.3: Output of the airodump-ng command on the router.

We can see several MAC addresses as a result of this command. In
order to find the right MAC address, we can use a MAC address lookup,
like Maclookup [14]. We then find that the MAC address XX:5F belongs to
Smart Innovation LLC, which is the vendor of the Eufy camera [15].

The second device we attack is a Monvelli Indoor IP Camera, which
once again only supports 2.4 GHz. Using the same command, we get these
results:

Figure 3.4: Output of the airodump-ng command on the router.

19

Although we could find the MAC address by looking at the unique MAC
addresses compared to the results of the previous paragraph, a simple MAC
address lookup tells us that XX:C6 is the MAC address of the camera.

The third device is a LG Wireless Video Doorbell, which only supports
2.4 GHz. The command and a similar MAC lookup tells us that the MAC
address of this video doorbell is XX:3C.

The final device is a Nikkei BELL4 Smart Video Doorbell, which also
only supports 2.4 GHz. The MAC address of this device is XX:26.

3.5 Evil Twin Attack

Before we move on to the results of our deauthentication attack, we study
evil twin attacks, which allows us to get more insight into our results. We
found some interesting results with an evil twin combined with the deau-
thentication attack, hence, we are including it here.

The purpose of an evil twin attack is to get any target to connect to a
rogue access point, or specifically, an evil twin access point, instead of the
original access point it was connected to. An adversary does so by creating
an access point with the same details as the original access point and then
trying to get a device to automatically connect to it. Suppose a device gets
temporarily disconnected from the access point, which can be done via a
deauthentication attack; it will reconnect to the access point with the same
details. However, as there are two such access points, the device will connect
to the access point closest in proximity [8]. The adversary can thus make
sure that the evil twin is closest in proximity, such that the device connects
to the evil twin.

An evil twin attack can be completely executed using the Airgeddon bash
script [16]. We are, however, unable to use this tool in this thesis. This is
because Airgeddon launches a deauthentication attack with the destination
address set to FF:FF:FF:FF:FF:FF, or broadcasting the message to every
device on the network. As we only want to attack a single device, we will
manually set up the evil twin access point using airbase-ng. This twin
access point simply needs to match the MAC address and the channel of
the real access point, but to arouse less suspicion, it should also match the
Extended Service Set Identifier (ESSID). This is a unique identifier assigned
to a wireless network, which in natural language is just the network name.

For setting up an evil twin access point, we can use the command:
sudo airbase-ng -a [MAC address of access point] -e

[ESSID of access point] -c [Channel of access point] wlan0

20

This command will create an access point with the same MAC address,
the same ESSID, and the same channel as the access point. If we also want
to send these packets to the original access point, in essence, to become a
man in the middle, we can set up bridges between our evil twin and the
real access point. The commands for this can be found in Appendix A.3. If
we set up these bridges, our evil twin serves as a man in the middle for the
connection between the device and the real access point. Instead, we are
also able to reroute the packets to a completely different access point.

If we are able to get the devices to connect to our fake network, we
successfully hijack the connection and can thus read (however, the data
packets are still encrypted), change, and drop any packets the device sends.
In this scenario, we have our setup shown in Figure 3.5, where AP stands
for access point.

Figure 3.5: The network layout with an evil twin.

In summary, we thus use the Alfa adapter to launch a deauthentication
attack on the connections between the camera and the router/repeater (the
red lines). Then, we try to set up a connection between the device and
our evil twin (the red dotted lines). This way, the adversary is in complete
control of all inbound and outbound communication from the device.

21

Chapter 4

Results

Now that we have acquired the target device’s MAC addresses, we use the
following command to mount a deauthentication attack:
sudo aireplay-ng --deauth 0 -c [MAC of device] -a

[MAC of access point] [interface]

We run this deauthentication attack three times on each individual device
to make sure that the behaviour is not random. We ensure that the device
is connected to the network and actively streaming footage over the network
through the dedicated app before each separate attack.

We analyse our results using Wireshark [17], which can display all frames
that our adapter has sniffed from the network. We investigate these frames
to determine the behaviour of the devices. We want to find packets being
sent between the access point and the device after the final deauthentica-
tion packets are sent. Any data packets being sent mean that the device is
successfully uploading footage again. Moreover, if we capture certain man-
agement frames, like the association and authentication frames, we know
that the device tries to get back to state three with respect to that access
point, which is the authenticated and associated state.

4.1 IP Cameras

Eufy Indoor 2K Camera. We found that the footage was not transmitted
anymore almost instantly after initiating the deauthentication attack on this
camera. The device tries to reconnect a few times at the start, as seen in
Figure 4.1. However, after several failed attempts at reconnecting, the device
will either not try to reconnect and in fact require a complete reset before
it is able to reconnect, or it will reconnect after an extended period of time,
well over ten minutes. The results after reset are shown in Figure 4.2. We
have added in the packet numbers (column 1) and timing (column 2) of
the packets to show it does not reconnect automatically, even after several
minutes.

22

Figure 4.1: Reconnection attempts from the Eufy Camera.
The marked packets are frames sent by the camera trying to reconnect.

Figure 4.2: behaviour of the Eufy Camera after a manual reset.
The marked frames are data being sent by the camera.

Monvelli Indoor IP Camera. Even though this camera was also
immediately unable to send any more data to the access point, the device
did continuously try to reconnect to the access point every time. We can
see this from the fact that this camera was also able to reconnect almost
instantly without having to reset the camera; the results can be found in
Figure 4.3. We can see that the camera only starts sending data a few
seconds after the last deauthentication packet.

Figure 4.3: Reconnection of the Monvelli Camera.
The marked frames are the data being sent by the camera.

23

We also found that both cameras almost immediately connected to the
evil twin after a deauthentication attack, even with just a single deauthen-
tication packet sent to the devices. Moreover, we found that as long as this
evil twin is online, the camera will not reconnect to a different access point,
even though the camera is not able to send data when connected to the evil
twin.

4.2 Video Doorbells

Similarly to both cameras, both video doorbells weren’t able to send any
more data to the access point due to the deauthentication attack.
LG Wireless Video Doorbell. This doorbell only tries to reconnect very
sporadically and even requires a reset to reconnect, as can be seen in Figure
4.4.
Nikkei BELL4 Smart Video Doorbell. In contrast to the other doorbell,
this one reconnects almost immediately, as can be seen in Figure 4.5.

Figure 4.4: Reconnection of the LG Video Doorbell.
The marked frames include both the authentication and association

frames, as well as the 802.1X authentication frames.

24

Figure 4.5: Reconnection of the Nikkei Video Doorbell.
The marked frames include both the authentication and association

frames, as well as some of the 802.1X authentication frames.

The evil twin attack on these video doorbells also gives similar results to
the cameras; the doorbells connect to the evil twin during the attack, even
after a single deauthentication packet. Again, the doorbells stay disrupted
and unable to connect to the real access point until the evil twin goes down.

4.3 Discussion

We can summarise our findings, what attacks the devices are susceptible to,
and the behaviour of these devices in the following table:

Device
brand name

Deauth-
entication
attack

Evil twin
attack

Automatic
reconnect

Captured
reconnect

Single
packet for
evil twin
attack

Eufy Yes Yes No No Yes

Monvelli Yes Yes Yes No Yes

LifeGoods Yes Yes Yes Yes Yes

Nikkei Yes Yes No Yes Yes

Table 4.1: Summary of our results.

25

We note that only two out of the four devices tried automatically re-
connecting to the network. We think this is based on designer preference:
whether it is preferable to automatically reconnect or to only try to re-
connect sporadically (or not at all). The latter could be implemented by
limiting the number of reconnection attempts or having a set time between
reconnection attempts. Using a set time between reconnection attempts
would be preferred, as this causes minimal overhead. However, the device
will still try to reconnect, and this method thus minimises the time we can
disrupt a device. Using the former method, although it ensures that the
device reconnects immediately, does cause unnecessary overhead.

An important result we can gather is that deauthentication attacks send
a constant stream of frames over the network, which allows these attacks to
be detected. However, combining it with an evil twin attack means that no
more packets are being sent over the network, thus showing no sign of an
attack happening. We are therefore unable to capture any traffic coming
from the device in this scenario. This allows us to completely block the
services that the device provides without any activity on the network that
could indicate an attack, especially since sending a single deauthentication
packet is enough for this to work. Using a micro-SD card with either of these
cameras will nonetheless save the footage, and after reconnecting to the real
access point, we are able to view this data on the cloud storage medium.

Another interesting result is that with either video doorbell, while re-
connecting, we were able to capture both the authentication & association
protocols, as well as the 4-way handshake. As we have discussed in Chapter
3, the 4-way handshake could be used to break the encryption on the data
packets over the connection between these devices and the access point.

On the other hand, we found that only using a deauthentication attack
on the connection between the router and the devices and not between the
repeater and the devices (or vice versa) was not successful in disrupting the
devices. Wireshark shows no interesting packets are sent over the LAN in
this instance, as we had predicted in our setup. Hence, we have not included
this in our results.

Although we were able to connect all of the devices to our evil twin, this
was also because our evil twin was in closer proximity to the devices than
the actual access point. Using signal boosters would allow us to be further
away from the devices, as the devices select the access point based on signal
strength. This would mitigate the issues with being physically close to the
devices

Future work should try to remove all extenders from the network, or
if this is not possible, make sure that devices can only connect to a single
access point. Multiple access points cause unnecessary overhead, but the
attacks still have the exact same setup; we just had to execute them twice
each time.

26

Moreover, finding an adapter that supports monitor mode and works
with Kali Linux is not trivial. Most adapters do not work out of the box
and thus require a workaround to be able to be set to monitor mode. We
first did this attack with a TL-WN722N version 2, but found that even after
performing the necessary fixes, it was still quite inconsistent at launching
these attacks.

4.3.1 Ethics

We executed all the attacks we discussed on a private network with explicit
consent from the owner of the network. Moreover, we own all the devices
attacked and made sure to only attack these devices. In doing so, we were
able to execute the attacks without causing any damage and with minimal
disruptions. We have not tested these attacks on any other networks or
devices.

Both the deauthentication and the evil twin attacks are widely studied,
as we will also show in the next chapter. We thus do not make use of any
new vulnerabilities. In addition to this, because the vulnerability is caused
by a flaw in 802.11 and not by the device, and the flaw is well-known, we
have not disclosed our findings to the device vendors.

27

Chapter 5

Related Work and
Countermeasures

5.1 Related Attacks

We now discuss some related attacks. Shrivastava et al. [18] describe an
access point service blocking attack that uses a similar type of denial-of-
service attack and an evil twin to stop the access point from authenticating
with devices. They mention that the detection of such an attack is difficult,
especially if one combines it with a deauthentication attack. We have con-
tributed to this by actually showing that this combination is indeed able to
completely disrupt individual devices.

Tigner et al. [9] investigate deauthentication attacks on online learning
environments like Zoom or Google Meet. They find that launching a deau-
thentication attack against the host’s router successfully removes the host
from said environment while the adversary is not present on the network.
Although this could be fixed by using a wired connection, they suggest that
a similar attack could be used on wireless IoT devices. We are expanding on
this by performing this attack and describing the exact behaviour of such
devices during an attack.

Deauthentication and evil twin attacks are widely researched areas and
the combination of them has been used before to attack specific devices
[19] [20]. Moreover, a lot of attacks based on deauthentication have been
executed on several individual devices, like attacks on rogue UAVs [21],
attacks on Bluetooth [22] and attacks on smart farming infrastructure [23].
Although the underlying attacks are similar, we investigate the behaviour
on other devices instead.

28

Dalal et al. [24] investigate possible attack vectors against WPA3, of
which one is also a deauthentication attack. The protected management
frames are only introduced during the 802.1X authentication, so any device
in state three will still process unauthenticated management frames, allowing
us to perform our attack. Moreover, they show some attacks for downgrading
WPA3 to WPA2, which highlights the relevance of these deauthentication
attacks.

Now that we have identified similar attacks, we must explain counter-
measures against them. We can split these countermeasures into three cat-
egories. First, we have preventive countermeasures, which try to stop the
execution of a deauthentication attack on a network. Then we have the de-
tection countermeasures, which focus on detecting a deauthentication attack
and solving the problem accordingly. Finally, we have the response coun-
termeasures, which are solutions for devices undergoing a deauthentication
attack. Although there are several countermeasures for detecting evil twin
attacks [25] [26], we are only interested in the specific case where a device
connects to the evil twin as a result of a deauthentication attack.

5.2 Prevention Countermeasures

Prevention-based countermeasures require changes in the underlying proto-
col, as these measures must change the way deauthentication packets are
handled. We discuss a few of these countermeasures below.

The 802.11w standard [27], which, for example, is included in WPA3,
adds authentication to certain management frames, the so-called protected
management frames. This prevents an adversary from creating and sending,
for example, deauthentication frames, completely voiding both of the attacks
we discussed in this thesis. The main issue with this solution is that it
requires both a protocol change and firmware upgrades. Devices or access
points that do not support this standard would thus be unable to support
protected management frames.

Bellardo et al. [28] propose delaying the processing of management frame
requests. This is based on the idea that if a device wants to disconnect from
an access point, it does not send any more data packets. However, with,
for example, a deauthentication attack, the device keeps trying to send data
packets, which thus indicates a deauthentication attack is happening. By
delaying the processing of these management frames, the deauthentication
frames can be ignored if other data frames are received. Once again, this
solution requires protocol changes and firmware upgrades.

29

We can see that these preventive countermeasures are a good solution
against both of our attacks; however, these measures can only be imple-
mented in the long run. Moreover, specifically for the first countermeasure,
the so-called Dragonblood [29] attacks use an exploit on the dragonfly hand-
shake to downgrade WPA3 to WPA2, which does not require 802.11w to
function as opposed to WPA3. This would allow us to once again execute
our attacks, and hence we require different countermeasures for short-term
prevention.

5.3 Detection Countermeasures

Detection-based countermeasures, in contrast to preventive measures, do
not require changes in the protocol, nor do they require firmware upgrades.
A detection system can be implemented on any network and only requires
the hardware it is implemented on to process it. We discuss a few such
countermeasures.

Agarwal et al. [30] propose a machine learning-based detection system
for detecting deauthentication attacks. This approach opposes the static
threshold-based detection system, where after receiving a certain number of
deauthentication frames, the system detects the attack. However, with a
static threshold, this value could be misjudged and result in a lot of false
positives and negatives. Instead, this detection system is trained using model
data gathered from a network, which had a detection rate of 96%.

Aslam et al. [31] propose a method based on sequence numbers. Frames
sent after each other should have related sequence numbers. So, if deauthen-
tication frames are sent with the wrong sequence number, we can assume
that these frames were created by an adversary. This method is based on
the fact that timing the correct sequence as an adversary is quite difficult,
especially if the number of frames sent is high.

Although these detection-based countermeasures have a high probability
of detecting and accordingly dealing with deauthentication attacks, they
are not able to counter the evil twin attack used in this thesis. These
countermeasures cannot detect deauthentication attacks instantly, so the
device is still temporarily disconnected from the access point. Even with
the sequence number-based detection, an adversary could correctly predict
the next sequence number, especially if these sequence numbers are based
on a sequential system, by monitoring the packets sent over the LAN [31].
For pseudo-random numbers, this guess would depend on the bit length of
the sequence number. However, a single successful deauthentication frame
still results in the device connecting to the evil twin, meaning that the evil
twin would have full control over the frames sent by the device.

30

Shrivastava et al. [18] propose a detection method for evil twins based
on client-side detection. When trying to reconnect to an access point after a
deauthentication attack with an evil twin on the network, the device receives
two messages with an ANonce and a replay counter, as described in the
802.1X security section. With these messages, the device can determine the
presence of an evil twin using their EvilScout system. This solution would
allow us to detect an evil twin on the network and thus prevent the attack
discussed above.

5.4 Response Countermeasures

As mentioned in Chapter 3, deauthentication packets are notifications, and
we are thus unable to directly stop an ongoing deauthentication attack.
Instead, we want the device to keep working even without a connection.
The only solution for the cameras is saving the footage, which can be done
using a micro-SD card, as we have discussed in Section 4.3. This is, however,
not possible for most video doorbells, as there is no option for local storage
on them.

As we have found in the detection-based countermeasures section, it can
be quite difficult to differentiate an evil twin from a real access point. Even
if we are able to identify that an evil twin is present on the network, we
still need to locate and turn off this evil twin. Bhatia et al. [32] propose
a method using four antennas to locate both the access point and the evil
twin. Using hyperbolic position bounding, they show that the location of
an evil twin can be found with a confidence level of 95% in an area of 1/9th
of the size of the original grid.

31

Chapter 6

Conclusions

In this thesis, we found that instead of using just a deauthentication attack,
combining it with an evil twin attack is surprisingly effective for completely
disrupting the service on a few IoT devices. In Chapter 4, we have shown
that all of the devices we used are susceptible to deauthentication attacks,
and some devices even require manual interference to work again after such
an attack. If we instead allow the devices to connect to our evil twin, the
devices will stay connected to the evil twin as long as it is up, meaning that
we would have a complete service disruption on these devices.

In chapter 5, we found that it is even more difficult to stop deauthen-
tication in combination with the evil twin attack. The best solution is to
upgrade to the 802.11w standard, which includes protected management
frames. This completely mitigates both attacks discussed in this thesis. A
problem, however, is that this upgrade is unrealistic in the short term, as
it requires all devices and access points to be updated. So, if this upgrade
is not possible, using a combination of detection countermeasures for both
deauthentication attacks and evil twin attacks can make us aware of their
presence, but completely stopping these attacks will cause a lot of issues
without the preventive measures.

We have also shown that mounting these attacks can be done by anyone
with some network attack experience, so future work on preventing these at-
tacks is crucial to stopping them. Although the 802.11w standard introduces
protection against these attacks, future work has to be done on the effec-
tiveness of these countermeasures. Moreover, we have discussed an attack
that can downgrade WPA3 to WPA2, which allows us to launch a deau-
thentication attack similar to the attacks we have discussed. More research
has to be put in place to completely prevent these attacks.

32

Bibliography

[1] Katia Hetter. Marriott fined $600,000 by FCC for blocking guests’
Wi-Fi, 2004. CNN, https://edition.cnn.com/2014/10/03/travel/
marriott-fcc-wi-fi-fine/index.html.

[2] Jose Maria Briones, Mario Alejandro Coronel, and Patricia Chavez-
Burbano. Case of study: Identity theft in a university wlan evil twin
and cloned authentication web interface. In 2013 World Congress on
Computer and Information Technology (WCCIT), pages 1–4, 2013.

[3] S Vinjosh Reddy, K Sai Ramani, K Rijutha, Sk Mohammad Ali, and
CH. Pradeep Reddy. Wireless hacking - a WiFi hack by cracking WEP.
In 2010 2nd International Conference on Education Technology and
Computer, volume 1, pages V1–189–V1–193, 2010.

[4] IEEE Standard for Information Technology–Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area
Networks–Specific Requirements - Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifications - Redline.
IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-2016) - Redline,
pages 1–7524, 2021.

[5] Baber Aslam, M Hasan Islam, and Shoab A. Khan. 802.11 disasso-
ciation dos attack and its solutions: A survey. In 2006 Proceedings of
the First Mobile Computing and Wireless Communication International
Conference, pages 221–226, 2006.

[6] IEEE Standard for information technology-Telecommunications and
information exchange between systems-Local and metropolitan area
networks-Specific requirements-Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications: Amendment
6: Medium Access Control (MAC) Security Enhancements. IEEE Std
802.11i-2004, pages 1–190, 2004.

[7] Chia-Mei Chen and Tien-Ho Chang. The Cryptanalysis of WPA &
WPA2 in the Rule-Based Brute Force Attack, an Advanced and Ef-
ficient Method. In 2015 10th Asia Joint Conference on Information
Security, pages 37–41, 2015.

33

[8] Yimin Song, Chao Yang, and Guofei Gu. Who is peeping at your
passwords at starbucks? — to catch an evil twin access point. In
2010 IEEE/IFIP International Conference on Dependable Systems &
Networks (DSN), pages 323–332, 2010.

[9] Matthew Tigner and Hayden Wimmer. Disruption and Protection of
Online Synchronous Learning Environments via 802.11 Manipulation.
In 2021 IEEE International IOT, Electronics and Mechatronics Con-
ference (IEMTRONICS), pages 1–6, 2021.

[10] Alfa, 2022. Alfa AWUS036ACH, https://www.alfa.com.tw/

products/awus036ach?variant=36473965871176.

[11] ScaPy, 2023. ScaPy, version 2.5.0, https://scapy.net/.

[12] Aircrack-ng, 2022. Aircrack-ng, version 1.7, https://www.

aircrack-ng.org/.

[13] Bastian Könings, Florian Schaub, Frank Kargl, and Stefan Dietzel.
Channel switch and quiet attack: New dos attacks exploiting the 802.11
standard. In 2009 IEEE 34th Conference on Local Computer Networks,
pages 14–21, 2009.

[14] Maclookup, 2023. Maclookup, version 16.12.0, https://maclookup.
app//.

[15] Md Mainuddin, Zhenhai Duan, and Yingfei Dong. Network traffic char-
acteristics of iot devices in smart homes. In 2021 International Con-
ference on Computer Communications and Networks (ICCCN), pages
1–11, 2021.

[16] Airgeddon, 2022. Airgeddon, version 11.10, https://github.com/

v1s1t0r1sh3r3/airgeddon.

[17] WireShark, 2023. WireShark, version 4.0.3, https://www.wireshark.
org/.

[18] Pragati Shrivastava, Mohd Saalim Jamal, and Kotaro Kataoka.
EvilScout: Detection and Mitigation of Evil Twin Attack in SDN En-
abled WiFi. IEEE Transactions on Network and Service Management,
17(1):89–102, 2020.

[19] Jose Armando Pratama, Ahmad Almaarif, and Avon Budiono. Vul-
nerability analysis of wireless lan networks using issaf wlan security
assessment methodology: A case study of restaurant in east jakarta. In
2021 4th International Conference of Computer and Informatics Engi-
neering (IC2IE), pages 435–440, 2021.

34

[20] Sibi Chakkaravarthy Sethuraman, Vaidehi Vijayakumar, and Steven
Walczak. Cyber attacks on healthcare devices using unmanned aerial
vehicles. J. Med. Syst., 44(1), dec 2019.

[21] KN Kadripathi, L Yethinder Ragav, KN Shubha, and P Hareena
Chowdary. De-Authentication Attacks on Rogue UAVs. In 2020 3rd
International Conference on Intelligent Sustainable Systems (ICISS),
pages 1178–1182, 2020.

[22] Karim Lounis. Cut it: Deauthentication attack on bluetooth. In 2021
14th International Conference on Security of Information and Networks
(SIN), volume 1, pages 1–8, 2021.

[23] Sina Sontowski, Maanak Gupta, Sai Sree Laya Chukkapalli, Mahmoud
Abdelsalam, Sudip Mittal, Anupam Joshi, and Ravi Sandhu. Cyber
attacks on smart farming infrastructure. In 2020 IEEE 6th Inter-
national Conference on Collaboration and Internet Computing (CIC),
pages 135–143, 2020.

[24] Neil Dalal, Nadeem Akhtar, Anubhav Gupta, Nikhil Karamchandani,
Gaurav S. Kasbekar, and Jatin Parekh. A Wireless Intrusion Detection
System for 802.11 WPA3 Networks. In 2022 14th International Confer-
ence on COMmunication Systems & NETworkS (COMSNETS), pages
384–392, 2022.

[25] Songrit Kitisriworapan, Aphirak Jansang, and Anan Phonphoem. Evil-
Twin Detection on Client-side. In 2019 16th International Conference
on Electrical Engineering/Electronics, Computer, Telecommunications
and Information Technology (ECTI-CON), pages 697–700, 2019.

[26] Md. Asaduzzaman, Mohammad Shahjahan Majib, and Md. Mahbubur
Rahman. Wi-Fi Frame Classification and Feature Selection Analysis
in Detecting Evil Twin Attack. In 2020 IEEE Region 10 Symposium
(TENSYMP), pages 1704–1707, 2020.

[27] IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area
networks - Specific requirements. Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifications Amend-
ment 4: Protected Management Frames. IEEE Std 802.11w-2009
(Amendment to IEEE Std 802.11-2007 as amended by IEEE Std
802.11k-2008, IEEE Std 802.11r-2008, and IEEE Std 802.11y-2008),
pages 1–111, 2009.

[28] John Bellardo and Stefan Savage. 802.11 Denial-of-Service Attacks:
Real Vulnerabilities and Practical Solutions. In Proceedings of the 12th

35

Conference on USENIX Security Symposium - Volume 12, SSYM’03,
page 2, 2003.

[29] Mathy Vanhoef and Eyal Ronen. Dragonblood: Analyzing the Dragon-
fly Handshake of WPA3 and EAP-pwd. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 517–533, 2020.

[30] Mayank Agarwal, Santosh Biswas, and Sukumar Nandi. Detection of
De-Authentication DoS Attacks in Wi-Fi Networks: A Machine Learn-
ing Approach. In 2015 IEEE International Conference on Systems,
Man, and Cybernetics, pages 246–251, 2015.

[31] Baber Aslam, M Hasan Islam, and Shoab A. Khan. Pseudo Randomized
Sequence Number Based Solution to 802.11 Disassociation Denial of
Service Attack. In 2006 Proceedings of the First Mobile Computing
and Wireless Communication International Conference, pages 215–220,
2006.

[32] Payal Bhatia, Christine Laurendeau, and Michel Barbeau. Solution to
the wireless evil-twin transmitter attack. In 2010 Fifth International
Conference on Risks and Security of Internet and Systems (CRiSIS),
pages 1–7, 2010.

36

Appendix A

Appendix

A.1 Deauthentication Packet

In Figure A.1, we can see the exact structure of the header of a deauthenti-
cation frame. As we can see, all flags and values are exactly the same as in
Chapter 2.

Figure A.1: A deauthentication frame sent over the LAN

A.2 Installing Drivers

We will be using Kali Linux 2022.4 to perform the deauthentication attack.
The ALFA adapter does not work out of the box with Kali, so we need to
use the following commands in order to use our adapter:

• sudo apt-get update

sudo apt-get upgrade

sudo reboot

These commands are used to update and upgrade Kali to the newest
version.

37

• sudo apt install realtek-rtl88xxau-dkms

This command installs the driver onto the adapter; however, these
drivers do not work with Kali, so we need some extra steps.

• sudo apt install dkms

git clone https://github.com/aircrack-ng/rtl8812au

These commands install the updated drivers that are compatible with
Kali.

• cd rtl8812au/

sudo make

sudo make install

These final commands install the correct drivers for the adapter.

After unplugging and re-plugging, the adapter should be visible using either
the command lsusb or iwconfig, which in our case is under wlan0.

A.3 Connecting Evil Twin to Access Point

These commands can be used to set up bridges between the evil twin and
an access point.

• brctl addbr [Name of fake network]

This command creates an instance of an Ethernet bridge.

• brclt addif [Name of fake network] [Network interface]

brclt addif [Name of fake network] [Evil Twin interface]

These commands will add the required bridges from our evil twin in-
terface to the actual network through our evil twin.

• ifconfig [Evil Twin Interface] 0.0.0.0 up

ifconfig [Name of fake network] up

The final two commands will set up the network, allowing all the traffic
through the evil twin access point to go to the original access point.

38

