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Abstract

The reading level of children in the Netherlands is decreasing. Onderwijs in
Beeld is trying to turn this around and wants to make reading more enjoyable
for children under the motto: ”The right book for every student”. In order
to achieve this, a book recommendation system is needed. This thesis shows
how Onderwijs in Beeld collected the necessary information about the books,
the underlying techniques behind current recommendation systems and how
the collected information is utilized in the final implementation of the recom-
mendation system. The thesis concludes with a few recommendations from the
implemented book recommendation system and an outlook into the future on
how the recommendation system can be further enhanced in followup work.
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1 Introduction and research question

Every 3 years, the scholastic performance such as reading level is measured and
compared among countries [1]. The results are concerning, especially for the
Netherlands:

Figure 1: Reading level results from PISA
Source: https://www.pisa-nederland.nl/resultaten2018/#sect leesvaardigheid

As can be observed, the reading level among Dutch students is decreasing
rapidly. The two main reasons for this are[2]:

1. Students are not reading books that fit their reading level, personality or
interests.

2. Teachers have a limited view on the reading level and progress of their
students and have little involvement in the process.

In order to turn this around, Stijn Dautzenberg and Tom Buunk founded
Onderwijs in Beeld with one goal: improve the reading pleasure of 100 000
students at the elementary schools before 2025. Together they made an ap-
plication with a wide range of features. The most important feature, also the
most relevant for this thesis, is that Onderwijs in Beeld has hundreds of thou-
sands of books in their database with information like author, recommended
age, description, genre etc. Utilizing the book information from their database,
the app provides schools with the capability to scan their libraries to create
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a digital copy, which results in a clear inventory of the books available in the
school. This enables children to borrow books so teachers can observe which
student is currently reading which book, as well as previously read books. When
students borrow books using the application, they can enter the progress that
they made resulting in digital logs that can be monitored by teachers to gain
deeper insights of their students reading activities.

Once this part of the application was functioning properly, Onderwijs in
Beeld proceeded to the subsequent phase: ”The perfect book for every stu-
dent”, which is the focus of the thesis. Hence, the main research question:

”How to develop a book recommendation system in order to ensure that the
system provides users with recommendations of their level and interests?”

Since this is a broad question that lacks a concise answer, the main question
is divided into the following subquestions:

1. What methods are available to acquire information about books?

2. What are the underlying techniques behind current recommendation sys-
tems?

3. How can the collected information be utilized for the implementation of
the recommendation system?

The first part of this thesis will revolve around how Onderwijs in Beeld
managed to obtain the data about the books in their database and how it stays
up-to-date. It also provides a more in-depth explanation about the reasons and
methods behind the collection of this information as well as the most relevant
information for choosing a certain book.

The second part explains different techniques that are often used for recom-
mendation systems alongside some examples. It also analyzes the workings of
the ANNOY algorithm, which is one of the algorithms often utilized in recom-
mendation systems and is also the algorithm implemented in the final version
of the recommendation system in the Onderwijs in Beeld app.

The final part demonstrates how the collected information is prepared to
make it usable in the recommendation system alongside the final implemen-
tation itself. In addition, it also discusses future work possibilities that can
further enhance the system, but would require data from users in order to be
an improvement.
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2 Data collection

Before a book recommendation system can be developed, it is important to pos-
sess high quality and quantity data about books. The primary meta-data for a
book is its title and an image of the book cover, since these things must be dis-
played in the app. However, in order to develop a book recommendation system
a significantly larger amount of data is required, especially since Onderwijs in
Beeld is specialised in primary schools. In primary schools, children have just
started reading, which results in the reading level of a book being critical infor-
mation. After all, books for children in group 8 should not be recommended to
children in group 3 because they just learned how to read and probably would
not understand many words. In order to acquire all this data, a lot of different
methods were utilized, of which the most important one is Titelbank.

2.1 Titelbank

Titelbank is a database that contains all titles of Dutch books published from
1970 [3]. On the site of Titelbank [4], a large quantity of data is available. One
can for example check if the title one wishes to name their book already exists,
which authors authored which books, the books ISBN (International Standard
Book Number), which is a unique identifier for books and is typically written
as ISBN-13 due to its 13-digit format, and various other variables.

The Titelbank also makes it possible to request a file that contains all the
information they keep about the books in their database. Onderwijs in Beeld
also requested such a file as the foundation of their own database. The requested
file contained information of approximately 300,000 books and for most of these
books an image of the cover and a PDF file of the first few pages were also
included:

Figure 2: Layout of the Titelbank file
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The file that is highlighted contains all the necessary information about the
books in an ONIX file, which is a file in standardised XML format for book
metadata:

Figure 3: ONIX file

The interpretation of all tags can be found online1. All information about
one book is between the < Product > tags and the data available for most
books are:

1. ISBN-13

2. Title of the book

3. Authors, illustrators etc.

4. Language

5. Publisher

6. Published date

7. Price

This ONIX file is then parsed and the data is stored in the Onderwijs in Beeld
database. This data is a great initial step, but there are always new books being
published so the database requires continues updates. The Titelbank provides
this possibility using an FTP server.

1https://ns.editeur.org/onix/en
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2.2 FTP connection

An FTP server, file transfer protocol server, is a way to transfer files between
computers over a network [5]. The Titelbank has its own FTP server where a
new file with updates is is published daily. Utilizing the ftplib library in python
[6], Onderwijs in Beeld thus updates its database as follows:

1 import ftplib

2
3 ftp = ftplib.FTP()

4 ftp.connect(host , port)

5 ftp.login(username , password)

6 files = ftp.nlst()

7 for file in files:

8 # Do something with the files

9
10 ftp.quit()
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2.3 Not enough data

Having done all of the above, a large amount of crucial information about the
books is still missing. As already mentioned before, children that just started
reading should not be recommended books for advanced readers. Also, since
Onderwijs in Beeld is specialised in primary schools, children should not be
recommended adult books that contain horrifying or violent content. As a
result, variables like AVI, which is used for measuring the reading skill level
of students discussed in subsection 2.5, and age are important variables that
should be available for most books. Another important variable to look at
are keywords. If a student prefers reading books about cars, the system should
recommend other books about cars. This requires a way to link certain keywords
to books, which is discussed in section 2.4. The type of the book is yet another
important variable. In primary schools, there is a wide selection of books that
are for the teacher to read to the class or books that contain mainly pictures
and almost no text. There are also books that contain only information and
that have no story. Therefore, it is necessary that all of these different book
types are taken into consideration when recommending books.

In order to obtain all these extra variables, scrapers were used. They are
implemented in python using the requests [7] and BeautifulSoup [8] libraries:

1 import requests

2 from bs4 import BeautifulSoup

3
4 try:

5 page = requests.get(url , timeout =10)

6 except requests.exceptions.ReadTimeout:

7 print("Timeout reached")

8
9 soup = BeautifulSoup(page.content , ’lxml’)

The required information on the page can then be located using the find all()
method, which takes as argument the name of the tag one wishes to find. The
data from Titelbank combined with that from the scrapers results in a database
containing all the necessary information for the recommendation system.
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2.4 Keywords

In order to match books with the same topics, a way to link keywords to books
is required. The objective is to match books about football with other books
about football. In addition, it is important to consider that children who read
books about football would rather read a book about another sport than a book
about art. To obtain the desired result, two trees were constructed.

The first data structure, tag word dict, is a dictionary that contains key-
words as tags and as value another dictionary with terms as keys and as values
the relevance that this word contributes to the keyword. These relevances were
initialised with random values and adjusted by trial and error after the final
implementation in order to achieve the best results.

1 TAG_KEYWORD_DICT = {

2 "hockey": {

3 " hockey": 1.4

4 },

5 "basketbal": {

6 "basketbal": 1.4

7 },

8 "ski ën": {

9 " ski ": 1.3,

10 "ski ën": 1.3

11 },

12 "golf": {

13 " golf ": 1.3,

14 " golfen ": 1.3,

15 "golfbaan": 1.1

16 }

17 }

Listing 1: Keywords tree:

Note that certain terms have spaces in front of them and others not. This
is important, because some keywords would otherwise be triggered while they
should not. Looking at the keyword “skiën”, Dutch for skiing, it can be seen
that this keyword is triggered by the terms “ ski ” and “skiën”. If the first term
would be “ski” instead of “ ski ” and the description of a book would be: “The
hacker has insane computer skills and tries to hack the government”, the word
“ski” would be triggered and the book gets assigned the keyword “skiën” which
is not what this book is about. This approach of utilizing terms rather than
words alone also allows to trigger certain keywords based on multiple words.
The keyword “AI” for example should be triggered by either “ AI ” or “artificial
intelligence”, but not by “artificial” or “intelligence” alone.
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The second data structure, tag map interests, is a dictionary to take into
account that a single keyword can trigger other keywords. “skiiing” can for
example trigger both sport and holiday and sport can trigger hobbies again. The
result is a tree where each keyword can have multiple sub-trees and keywords
that trigger this keyword. whenever a certain keyword is triggered, all keywords
higher up in the tree also get triggered with the relevance being multiplied by
0.5 each step higher up in the tree.

1 TAG_MAP_INTERESTS = {

2 ’hobbies ’: {

3 ’sport’: {

4 ’teamsport ’: {

5 ’voetbal ’: 1.5,

6 ’hockey ’: 1.5,

7 ’basketbal ’: 1.5

8 },

9 ’wintersport ’: {

10 ’ski ën’: 1.5

11 },

12 ’solo -sport’: {

13 ’darten ’: 1.1,

14 ’schaken ’: 1.1,

15 ’golf’: 1.3

16 }

17 }

18 }

19 }

Listing 2: Keywords tree:

To associate these keywords with books, the description of the book is uti-
lized. To ensure that the term “ golf ” is correctly triggered if it is next to punc-
tuation marks, certain punctuation marks like point, comma, question mark and
exclamation mark are replaced with a space. For all keywords in tag word dict
and for all trigger words per keyword the following algorithm is applied:

• Count the number of occurrences of the trigger word.

• For each occurrence, add the associated relevance found in tag word dict
to the total relevance sum per keyword.

• If this sum is greater than 0, save the keyword and its associated total
relevance estimate to a dictionary.

The result is a dictionary with keywords as keys and a relevance score es-
timate as value. A recursive function is called on this dictionary to walk the
tag map interests tree that keeps track of the total accumulated relevance per
keyword. If a tag is encountered that occurs in the dictionary, its relevance is
multiplied by the relevance in the tree and also added to all of the keywords in
the tree above by multiplying with 0.5 each step higher up in the tree. This is
done, because the keywords higher up in the tree can be triggered by hundreds
of other keywords which leads to a very high relevance estimate for the keywords
higher up. If all relevances are normalised at the end, the relevances of specific
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keywords would be very low and only the top keywords would have a decent
relevancy estimation. It also accounts for the fact that the keywords that were
specifically triggered should be more relevant then indirectly triggered words.
A book about football should get a high relevance for keywords “football” and
“sport” and less relevance for “hobbies”.

The code for the recursive function is given below:

1 def recursive_func(tree):

2
3 if isinstance(tree , dict):

4 relevance_sum = 0

5 for tag , tree_sub in tree.items():

6 relevance = 0

7
8 if isinstance(tree_sub , float):

9 if tag in tag_dict:

10 relevance = tag_dict[tag] * tree_sub

11 else:

12 # Check if context contains sub tags

13 relevance = recursive_func(tree_sub)

14
15 if relevance > 0:

16 tag_dict[tag] = relevance

17 relevance_sum += relevance

18
19 return relevance_sum / 2

20
21 tag_dict = {}

22 for tag_obj in tag_list_custom:

23 tag_dict[tag_obj[’tag’]] = tag_obj[’relevance ’]

24
25 recursive_func(config.TAG_MAP_INTERESTS)

Consider for example the following book description:
“He plays hockey with a hockey stick, but also plays golf sometimes.”

Looping over all terms in the tag word dict, there are two terms that get
triggered:

• ” hockey” is triggered twice, so the relevance of ” hockey” is 2 · 1.4 = 2.8

• ” golf ” is triggered once, so the relevance of ” golf ” is 1.3

The result is the following dictionary:

1 trigger_dict = {

2 " hockey": 2.8,

3 " golf ": 1.3

4 }

After obtaining this dictionary, the tag map interests tree is walked. The
first keyword is “hobbies” and its value is another dictionary. Since the value
is another dictionary, the function is called again recursively, this time only on
this smaller dictionary. Now, the first keyword encountered is “sport”, which
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is a dictionary so the function is called recursively again. Next is the keyword
“teamsport” which also has a dictionary so another recursive call. The next
keyword encountered is “voetbal”, which has a relevance instead of a dictionary.
However, since this keyword is not in trigger dict, nothing happens. In the next
iteration, “hockey” is encountered. This tag does occur in trigger dict, so its
value (2.8) is multiplied with the value of “hockey” in the tag map interests tree
(1.5) and the tag with this new relevance is added to a new dictionary:

1 tag_dict_final = {

2 "hockey": 4.2

3 }

The next keyword is “basketbal”. Since this tag also does not occur in trig-
ger dict, nothing is done. Since this was the last keyword in the “teamsport”
dictionary, the third recursive function call terminates, keeps half of the accu-
mulated relevance of 4.2 (2.1) and adds the keyword to the dictionary:

1 tag_dict_final = {

2 "hockey": 4.2,

3 "teamsport": 2.1

4 }

The next keyword is “solo-sport” which is a tree again so another recursive call
is done. Only at the keyword “ golf ” the keyword is triggered and added to the
dictionary with relevance 1.3 · 1.3:

1 tag_dict_final = {

2 "hockey": 4.2,

3 "teamsport": 2.1,

4 " golf ": 1.69

5 }

When the keyword “ golf ” is reached, the third recursive call is terminated
again. Half of 1.69 (0.845) is kept and the tag is added to the dictionary:

1 tag_dict_final = {

2 "hockey": 4.2,

3 "teamsport": 2.1,

4 " golf ": 1.69,

5 "solo -sport": 0.845

6 }

Because “solo-sport” was the last key in the “sport” dictionary, the second
recursive call is also terminated and half of the accumulated value (1.4725),
2.1 from teamsport and 0.845 from solo-sport, is kept again and added to the
dictionary:

1 tag_dict_final = {

2 "hockey": 4.2,

3 "teamsport": 2.1,

4 " golf ": 1.69,

5 "solo -sport": 0.845 ,

6 "sport": 1.4725

7 }

Since none of the other keywords are triggered anymore, half of the accumulated
value (1.4725/2) is returned and the keyword is added to the dictionary:

14



1 tag_dict_final = {

2 "hockey": 4.2,

3 "teamsport": 2.1,

4 " golf ": 1.69,

5 "solo -sport": 0.845 ,

6 "sport": 1.4725 ,

7 "hobbies": 0.73625

8 }

Finally, all values are normalised. Looking at the dictionary, 4.2 is the
highest relevance so all values are divided by 4.2 which leads to the final result
of:

1 tag_dict_final = {

2 "hockey": 1,

3 "teamsport": 0.5,

4 " golf ": 0.40238 ,

5 "solo -sport": 0.20119 ,

6 "sport": 0.350595 ,

7 "hobbies": 0.17530

8 }
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2.5 AVI

The AVI score is a score that describes the difficulty of books. In Dutch, AVI
stands for Analyse van Individualiseringsvormen, which translates to Analyses
Of Individualization Forms. Most books in lower schools have the AVI score
displayed on the cover, so children are able to choose books of their reading skill
level. To obtain the AVI score of a book, the following table is utilized[9]:

Table 1: CILT

AVI-niveau CILT-waarde
Start < 54.9
M3 54.9− 56.9
E3 56.9− 58.9
M4 58.9− 61.9
E4 61.9− 63.9
M5 63.9− 65.9
E5 65.9− 67.9
M6 67.9− 69.9
E6 69.9− 71.9
M7 71.9− 73.9
E7 73.9− 74.9
Plus > 74.9

As can be seen, the AVI score depends on the CILT-waarde. In Dutch, CILT
stands for Cito Index voor de LeesTechniek, which translates to Cito Index for
the Reading Technique. This score is calculated using the following formula [9]:

CILT-waarde = 150− (114.49 + 0.28 · frequentwords− 12.33 · wordsize)

Here, the variable frequentwords is the percentage of words that occur in
the list of 1000 most used words in the Dutch language and wordsize is the
average length of the words.

Unfortunately, the precise list that Cito utilizes could not be found. To
compensate for this, an online-sourced list [10] was utilized instead. The sole
modification implemented was to remove all words that contain the character
‘ ’, and change the $ character into a e sign.
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2.6 CLIB-niveau

Cito also utilizes a measurement called CLIB-niveau, which determines how
easy a text is to comprehend. CLIB stands for Cito LeesIndex Begrip, which is
Dutch for Cito Reading Index Comprehension. To obtain the CLIB-niveau, the
following table is utilized [9]:

Table 2: CLIB

CLIB-niveau CLIB-waarde
Start ≤ −12
3 −12 < CLIB ≤ 7
4 7 < CLIB ≤ 20
5 20 < CLIB ≤ 35
6 35 < CLIB ≤ 48
7 48 < CLIB ≤ 61
8 61 < CLIB ≤ 74

Plus CLIB > 74

The CLIB-waarde is calculated using the following formula [9]:

CLIB-waarde = 46− 6.603 · wordsize
+ 0.474 · frequentwords
− 0.365 · type/tokenratio
+ 1.425 · sentencesize

Here, the variables wordsize and frequentwords are the same as in the
CILT-waade calculation, type/tokenratio is the percentage of unique words with
respect to the total amount of words in a text and sentencesize is the average
amount of words in a sentence.
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2.7 PDF-parser

As mentioned before, the scrapers are trying to determine the AVI score of a
book. However, the AVI score is not always present, especially for books that
are also targeting adults. Finding the CILT- and CLIB-waarde could help with
making sure more books have this data available. However, to calculate these
scores, the entire book is required in order to determine:

1. Percentage of frequent words

2. Average length of the words

3. Amount of unique words

4. Total amount of words

5. Average amount of words per sentence

Luckily, there is a solution. As can be observed in figure 2, the Titelbank file
also contains PDF files. These PDF files usually contain the first few pages of
the book, which contains a lot of useful data. To obtain useful data from these
files, a PDF parser is utilized to extract the text from the PDF document.

Pdfminer [11] is a python library that can be used for parsing PDF files.
The following code opens the PDF, iterates over its pages as well as the objects
within the page [12]:

1 from pdfminer.pdfdocument import PDFDocument

2 from pdfminer.pdfpage import PDFPage

3 from pdfminer.pdfparser import PDFParser

4 from pdfminer.pdfinterp import PDFResourceManager ,

PDFPageInterpreter

5 from pdfminer.converter import PDFPageAggregator

6 from pdfminer.layout import LAParams , LTTextBox , LTTextLine ,

LTFigure

7
8 fp = open(’example.pdf’, ’rb’)

9 parser = PDFParser(fp)

10 doc = PDFDocument(parser)

11
12 rsrcmgr = PDFResourceManager ()

13 laparams = LAParams ()

14 device = PDFPageAggregator(rsrcmgr , laparams=laparams)

15 interpreter = PDFPageInterpreter(rsrcmgr , device)

16 for page in PDFPage.create_pages(doc):

17 interpreter.process_page(page)

18 layout = device.get_result ()

19 for obj in layout._objs:

20 # Do something with the object

18



To get a more comprehensive understanding of the code above, it is impor-
tant to know the structure of objects that occur in a PDF, which is shown in
the image below:

Figure 4: Layout of objects inside a pdf file
Source https://euske.github.io/pdfminer/layout.png

Looking back at the code, it is observed that it iterates over all the pages
in the PDF, and for each page another loop is execute for each object in the
page. As shown in the image above, these objects can be one of the following:
LTTextBox, LTFigure, LTLine, LTRect and LTImage.

Since there are children that enjoy reading books with lots of images, it
might be useful to calculate the image per page ratio for the books in order to
recommend books with lots of pictures to these children. The following code
was implemented to obtain the desired result:

1 if isinstance(obj , LTImage):

2 images_count +=1

To determine the unique and total amount of words, the words in the PDF
need to be counted. As can be observed in figure 4, words occur in LTTextBox
objects. Each LTTextBox object contains multiple LTTextLine objects and each
LTTextLine object represents a line of words in the PDF. The code provided
below accomplishes the intended purpose:

1 if isinstance(obj , LTTextBox):

2 for ob in obj:

3 if isinstance(ob, LTTextLine):

4 words = ob.get_text ().lower ().strip().split(’ ’)

5 word_count += len(words)
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To obtain the percentage of frequent words, another loop is utilized to loop
over all words in the line. Then, for each word it checks if it occurs in the list of
most frequent words and updates the counter accordingly as displayed below:

1 words = ob.get_text ().lower ().strip().split(’ ’)

2 for word in words:

3 if word in frequent_words:

4 frequent_word_count +=1

Although this would seem to work properly, in practise it does not. This
is due to the fact that parsers are always tricky and need extra code for edge
cases. In this case, the code does not account for the fact that there are a
lot of punctuation marks in a sentence. If the word ‘house’ is one of the most
frequently used words and there is a sentence in the PDF like:“Arjen walks
towards the house.”, the split function will extract “house.” as word and checks
if it occurs in the frequent word list, which it does not! To avoid this, all
punctuation marks need to be eliminated which is accomplished by the code
below:

1 to_be_replaced = {’.’: ’’, ’-’: ’’, ’,’: ’’, ’:’: ’’, ’‘’: ’’, "’":

’’, ’"’: ’’, ’?’: ’’, ’!’: ’’, ’\n’: ’’, ’_’: ’’}

2 words = ob.get_text ().lower ().strip().split(’ ’)

3 for key , value in to_be_replaced.items():

4 words = [i.replace(key , value) for i in words]

Another variable that is extracted from the PDF is the font size. This is
due to the fact that easier books tend to have a bigger font size than books for
advanced readers. To obtain the font size, the code iterates over the objects in
the LTTextLine object. These objects are of type LTChar of which both size as
well as the name of the font are obtainable. All of this data is then stored in
a dictionary, where the key is the concatenation of the font name and the font
size and the value a dictionary that contains the amount of characters in this
font, the amount of letters in this font as well as the amount of words in this
font. This code is displayed below:

1 for character in ob:

2 if isinstance(character , LTChar):

3 font_size=round(character.size ,2)

4 font_name=character.fontname

5 key = f’{font_size}_-_{font_name}’

6 if key in fonts_dict and character.get_text () != ’ ’ and

character.get_text () not in to_be_replaced:

7 fonts_dict[key][’letter_count ’]+=1

8 fonts_dict[key][’char_count ’]+=1

9 elif key in fonts_dict and (character.get_text () == ’ ’ or

character.get_text () in to_be_replaced):

10 fonts_dict[key][’char_count ’]+=1

11 elif key not in fonts_dict:

12 fonts_dict[key] = {}

13 fonts_dict[key][’letter_count ’] = 1 if character.

get_text () != ’ ’ and character.get_text () not in

to_be_replaced else 0

14 fonts_dict[key][’char_count ’] = 1

15 fonts_dict[key][’word_amount ’] = 0
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The sentence count is yet another variable that needs to be obtained in order
to calculate the CILT and CLIB scores. This can easily be done by increasing the
sentence count by one each time one of the following characters is encountered:
‘.’, ‘!’ or ‘?’. However, this does not account for the fact that there are lots of
abbreviations used that contain the character ‘.’. Since a list of all abbreviations
was not found, the code only considers abbreviations that occur in the list with
the most used ones [13].

The final issue that need to be addressed is hyphenation. Consider the fol-
lowing sentence:

Djoerd did an amazing discovery and is excited to tell the news to his uni-
versity department.

As can be seen, this sentence is covering two lines. This causes trouble for
the following line in the code: “object.get text().lower().strip().split(’ ’)”. When
this line is executed and the punctuation marks are removed, the last word of
the line will be “uni” and the first word of the next line will be “versity”. Not
only will this lead to a miscount in the most frequent words, it will also mess
up the total word count and hence also other variables that are dependent on
the total word count.

A straightforward approach to handle this situation is to first concatenate all
lines from all the pages. Then, in order to obtain the sentence count, the NLTK
[14] package is utilized. This package contains the “sent tokenize()” function
which takes a string as input and returns a list of strings as output by applying
various heuristics and rules to identify the boundaries between sentences. Since
each string in the list now corresponds to a sentence, the sentence count can
easily be calculated.

Another benefit of this approach is that the hyphened word at the end of
the line is now seen as one word with hyphen, meaning that one of the sentences
after the tokenize function contains the string “uni-versity”. If the function:“
.lower().strip().split(’ ’) ” is applied after the punctuation marks are removed
per sentence, the result contains a list that contains only words without punc-
tuation marks including hyphens and the word ’university’ is correctly found:

[“Djoerd”, “did”, “an”, “amazing”, “discovery”, “and”, “is”, “excited”,
“to”, “tell”, “the”, “news”, “to”, “his”, “university”, “department”]

The total amount of words as well as the percentage of frequent words are
now easily obtainable as displayed in the code below:
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1 import nltk

2
3 # Download the Dutch sentence model

4 nltk.download(’punkt’)

5 nltk.download(’dutch’)

6 pdf_text = ""

7
8 ...... # Some code before to iterate over all objects in the page

9 if isinstance(obj , LTTextBox):

10 for line in obj:

11 if isinstance(line , LTTextLine):

12 pdf_text +=line.get_text ()

13 ... # Some other code for the font size

14
15 sentences = nltk.sent_tokenize(pdf_text , language=’dutch’)

16 sentence_count = len(sentences)

17 words = pdf_text.lower ().strip().split(’ ’)

18 for word in words:

19 if word not in abbreviations:

20 for key , value in to_be_replaced.items():

21 word = word.replace(key , value)

22 word_count = len(words)

23 total_lenth = 0

24 unique_words = set()

25 for word in words:

26 if word in frequent_word_list:

27 frequent_word_count +=1

28 total_lenth +=len(word)

29 unique_words.add(word)

30 percentage_frequent_words = (frequent_word_count/word_count)*100

31 percentage_unique_words = (len(unique_words)/word_count)*100

32 average_word_length = total_lenth/word_count

33 words_per_sentence = word_count/sentence_count

All the necessary information to calculate AVI and CLIB-niveau, as well as
information about images per page and font size are now extracted from the
PDF and can be utilized by the recommendation system.
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3 Recommendation Algorithm

There are many ways to recommend content to users. The most popular one is to
recommend content based on popularity such as most minutes watched/listened,
most liked/shared etc. Even though this is a strategy that can be applied
universally, the recommendations are the same for everyone instead of being
personalised for a specific user.

This is why companies like YouTube and Netflix utilize machine learning
models in order to give their users the best personalised recommendations possi-
ble [15]. These machine learning models involve two major filtering components:
content-based filtering and collaborative filtering which are discussed below.

3.1 Content-based filtering

Content-based filtering, often called item-item collaborative filtering or classi-
fication based filtering, is a filter technique that makes decisions based on a
correlation between products [15]. If a user finished reading a certain book,
he will most likely want to read a book similar to the one he just read next.
In Content-based filtering, similarities can be determined between the content
the user consumed and all other content available. The algorithm then returns
the content that is most similar to the one the user consumed. To clarify, an
example is given below:

Table 3: Content-based filtering example

Book A Book B Book C Book D Book E
Sci-fi ✔ ✔

Fantasy ✔

Action ✔ ✔ ✔

Horror ✔ ✔

Thriller ✔

Romance ✔

Author A ✔ ✔

Author B ✔

Author C ✔ ✔

As can be observed above, book A was written by author A and has genre
sci-fi, fantasy and action. Suppose a user read this book and is looking for a
good recommendation. It can be observed that books B and E are most-likely
terrible recommendations considering the fact that none of the characteristics
are the same. Books C and D on the other hand are more similar to book A.
Book C because part of the genres overlap and it’s written by the same author
and book D because the genres are almost identical. So looking at the data, it
is predicted that the user will like books C and D.
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3.2 Collaborative filtering

Collaborative filtering, often called user-user collaborative filtering, is a filter
technique based on the assumption that users with similar taste will probably
like products that are consumed by the other [15]. If a user finished a book
and talks to someone who also read that book, they can ask each other for a
good recommendation because they have similar taste. While this similar taste
is only based on reading the same book once, they might still prefer totally
different things. However, when having multiple users with similar taste, this
gets narrowed down:

Table 4: Collaborative filtering example

Book A Book B Book C Book D Book E
User 1 ✔ ✔ ✔ X X
User 2 ✔ X ✔ X ✔

User 3 X X X ✔ ✔

User 4 X X ✔ ✔ ✔

User 5 ✔ ? ? ? ?

✔read X not read ? suggestions we want to determine

It is observed that users 1,2 and 5 all read book A. If these are considered
users with similar taste, the following table can be generated:

Book A Book B Book C Book D Book E
User 1 ✔ ✔ ✔ X X
User 2 ✔ X ✔ X ✔

Count 1 2 0 1
User 5 ✔ ? ? ? ?

✔read X not read ? probably a good suggestion
? probably a bad suggestion ? neither good nor bad

Looking at the table, it can be seen that book C is probably a good sug-
gestion for user 5. It also shows that the more data is available, the better
the recommendations will be. Suppose there was no information about user 2,
then only user 1 was considered as similar and books B and C would have been
recommended even though book B is generally read less often than book C and
book E wouldn’t even be considered even though it is read more often than the
other books.
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3.3 ANNOY

The aforementioned filtering methods both require the system to determine the
best match. While finding the best match in the examples seemed easy, finding
them in a larger data set with more dimensions and more data points is a lot
more difficult. In order to solve this, ANNOY can be used.

ANNOY, Approximate Nearest Neighbors Oh Yeah, is an algorithm based on
random projections and trees. It was developed by Erik Bernhardsson in 2015
who worked at Spotify at the time [16]. What makes this algorithm useful, is
the fact that it does not try to calculate the exact nearest neighbours. It rather,
as the name suggests, finds the approximately closest neighbours which results
in a huge complexity reduction.

This complexity reduction comes from the fact that a tree is constructed
from the data in which searching for the nearest neighbour can be done in
logarithmic time. This is explained in more detail below:

As can be seen, there are 14 data points in two dimensional space. The first
thing that is done is to take two random points, in this case A and N, and
connect them with a line:
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Next, a new line is drawn perpendicular to the one from A to N that crosses
in the middle:

The line between points A and N is removed which results in two different
regions. At the same time, a tree structure is generated where (A,N) means
that the data was split between points A and N:
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The algorithm continues splitting each area as done above and terminates when
the area contains less than a predetermined number of points, 3 in this example.

Regions R1 and R2 contain 3 or less data points so splitting in these areas is
terminated.

All regions now contain 3 or less data points and dividing data points into
regions is terminated. In order to determine the nearest neighbour of a point,
the algorithm looks at the region that the point is in and only calculates the
distance between the points in this region. So if one intends to determine the
closest neighbour of M, the following is done:
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1. Is M left or right of the line between points A and N?
Right, so proceed to the right in the tree.

2. Is M left or right of the line between points J and H?
Left, so proceed to the left in the tree.

3. Is M left or right of the line between points J and N?
Right, so proceed to the right in the tree.

4. End of the tree is reached since there are no more splits in this branch. The
closest neighbour is now determined by calculating the distances between
M and all other points in this region. Since N is the only other point in
this region, it is also the nearest neighbour of M.

Because the regions are randomly generated, it could happen that the tree
that was generated does not represent every region equally well. Looking back
at the example above, it can be seen that C is closest to H. It can also be seen
that this point is not considered because it is in a different region and hence the
algorithm returns I as nearest neighbour. It is desired to minimise these errors
as much as possible, which is solved by generating a forest of multiple trees
instead of just a single tree. The forest contains multiple trees, each with its
own splits. After the forest is generated, the nearest neighbours from all trees
are compared and the best one is returned. In most ANNOY implementations
today, additional heuristics are used to improve the algorithm even further.
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3.4 Different metric options

In the example above, the euclidean distance was utilized as a measure to deter-
mine the nearest neighbours of the data points. However, other metric options
that ANNOY supports can be considered in order to acquire the best results.
These different metric options are listed below [17][18]:

1. Euclidean distance, which is the straight-line distance between 2 points.
It is calculated as follows:

√∑n
i=1(pi − qi)2

2. Manhattan distance, which is the distance between two points measured
along the axes at right angles. It is calculated as follows:

∑n
i=1 |pi − qi|

Visual representation:

Figure 5: Euclidean and Manhattan distances
Link https://www.researchgate.net/publication/333430988

3. Angular distance, which measures the angle between two vectors. It is

calculated as follows: arccos
(

⟨p,q⟩
∥p∥·∥q∥

)
4. Dot product distance, which measures the cosine of the angle between two

vectors. It is calculated as follows: 1− ⟨p,q⟩
∥p∥·∥q∥

Visual representation:
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Figure 6: Cosine-similarity
Link: https://storage.googleapis.com/lds-media/images/cosine-similarity-

vectors.original.jpg

As can be observed above, the more similar the vectors are, the smaller
the angle and the more the cosine of the angle approaches 1. Because the
distance should be the smallest for similar vectors, 1 minus the result is
utilized instead in order to obtain a good distance representation for the
dot product distance. With angular distance this is not necessary because
the distance measure is the angle itself, which is already 0 for similar
vectors and becomes larger the more the vectors differ.

5. Hamming distance, which is the number of substitutions needed to turn
the first item into the second item.

It is calculated as follows:
∑n

i=1[pi ̸= qi]

Visual representation:

Figure 7: Hamming distance
Link: www.impuls-imaging.com/wp-content/uploads/2013/07/Hamming.png

As can be seen above, the number of substitutions can also be obtained by
applying the XOR operation if the representation of the items is a binary
number.
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3.5 Curse of dimensionality

Having now witnessed the different metric options that ANNOY supports, the
best one needs to be chosen. In order to do so, the following example is utilized
with vectors v1 = [1, 4], v2 = [8, 8] and v3 = [3, 1]:

Figure 8: Angular vs Euclidean vs Manhattan vs Dot product distance
See Appendix C for the code used to generate this

The Hamming distance is not shown, but it is 2 for all vectors because all
vectors have different x and y coordinates. It is observed that the euclidean
distance between v1 and v3 is smaller than the euclidean distance between v1
and v2. This is also the case with the Manhattan distance. However, looking at
the angle between v1 and v3, it can be observed that it is larger than the angle
between v1 and v2. The dot product distance shows this even better, since the
dot product distance between v1 and v3 is almost triple the size of v1 and v2.
So is v1 considered most similar to v2 or v3?

Although all discussed options are good measurements, there is an impor-
tant factor to take into account. As already mentioned before, there are cases
where certain distance metrics are not a good measure for distance. These cases
occur in high dimensional space. In high dimensional space, data becomes more
sparse[19]. This increased sparseness leads to an increase in the minimum dis-
tance between two points in the data set. In other words, for every dimension
added to the data, the minimum distance increases up to a point where there
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is almost no difference between the minimum and maximum distance anymore
[20]. This phenomenon is known as the curse of dimensionality.

To see why this happens, let us start simple with a few data points in 1
dimensional space:

Figure 9: Random points in 1D space
See Appendix B.1 for the code used to generate this

The image above was created by generating 100 random points in 1 dimen-
sional space. All points near the edges, points within 10% of the edge, are
coloured red. As we would expect, 20 points fall within 10% of the edges, which
is equivalent to 20% of the points.

The same is done for 2 dimensional space:

Figure 10: Random points in 2D space
See Appendix B.2 for the code used to generate this

In order to keep the sparseness the same, 1000 random points are now gen-
erated instead of 100. As can be seen, there are now 370 points within 10% of
the edges, which is almost twice as many!
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Looking at 3 dimensional space, the number is still increasing:

Figure 11: Random points in 3D space
See Appendix B.3 for the code used to generate this

This image was generated using 1000 random points, because with the same
sparseness as in the previous 2 images, the image would have been an almost
solid red block and no blue points would be visible because they would all be
behind the red points. As can be seen, there are now 493 points near the edges.
That’s almost 50% of the total amount of data points!

Upon further examination of data with more dimensions, the number of
points near the edges keeps increasing [19]:

Number of Dimensions Percentage of data within 10% of the edges
4 60
5 68
6 74
7 80
8 82
9 87

So what is the underlying reason behind this phenomenon?
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3.6 Limit/inside ratio

Looking at this from a different perspective, a mathematical pattern appears
that clarifies this behaviour. Instead of looking at the points near the edges,
only the points exactly at the edge are considered:

Figure 12: Limit/inside ratio in 1D space
See Appendix D.1 for the code used to generate this

As can be observed there are only 2 points at the limit (point at 0 and point
at L) and all other points are on the inside. All points in between are inside
these limits, hence the name limit/inside ratio. In general, for a 1 dimensional
space of length L, there are 2 points at the limit: 0 and L and all other points
lay somewhere in between where they have L different options. In other words,
the limit/inside ratio for 1 dimension = 2/L.

For 2 dimensions something similar is observed:

Figure 13: Limit/inside ratio in 2D space
See Appendix D.2 for the code used to generate this
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The limit is now 4L, because there are 4 sides of length L, and the inside is
L2. This results in a limit/inside ratio of 4L

L2 = 4/L [19].

To ensure the continuity of this pattern, an analysis of the third dimension
is needed:

Figure 14: Limit/inside ratio in 3D space
See Appendix D.3 for the code used to generate this

The cube has 6 faces as the limit, each with a size of L by L meaning the
limit is 6L2. The inside of the cube is L3 which results in a limit/inside ratio

of 6L2

L3 = 6/L[19].

The mathematical pattern is now visible, for every dimension added the lim-
it/inside ratio increases in accordance with the following formula:

ratio = 2D
L

Where D is the amount of dimensions and L the size of the dimensions.
Looking at the formula it follows that the data is more likely to be near the

limits of the space in higher dimensions.
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3.7 Calculations

Having gained insight on the curse of dimensionality, it becomes evident that
not every distance measurement is suited for estimating similarities in higher
dimensional space. However, since a measurement to see which points are closest
to each other is still required, a measurement option that is still affected by a
small changes in high dimensional vectors is required. Using the different options
as discussed in section 3.4, distance calculations were made and compared with
the following two vectors in 512 dimensional space:
v1 = [0, 1, 0, 1, 0, 1, 0, 1, . . . , 0, 1]
v2 = [0, 0, 1, 1, 0, 0, 1, 1, . . . , 1, 1]
v1 is a vector that alternates between zero and one, v2 is a vector that alternates
between two zeros and two ones. Calculations for the distance between these
vectors using different methods are provided below, as well as the new distance
if one vector changes one 0 to a 1 and the percentage change.

3.7.1 Euclidean√√√√ 512∑
i=1

(pi − qi)2 =
√
0 + 1 + 1 + 0 + 0 + 1 + 1 + 0 + · · ·+ 0 + 1 + 1 + 0 =

√
256 = 16

If v1 now changes the first 0 into a 1, the distance would be
√
257, which is an

increase of
√
257−16
16 · 100% ≈ 0.2%

3.7.2 Manhattan distance
n∑

i=1

|pi − qi| = 0 + 1 + 1 + 0 + 0 + 1 + 1 + 0 + · · ·+ 0 + 1 + 1 + 0 = 256

If v1 now changes the first 0 into a 1, the distance would be 257, which is an
increase of 257−256

256 · 100% ≈ 0.4%

3.7.3 Angular distance

arccos

(
⟨p, q⟩

∥p∥ · ∥q∥

)
= arccos

(
0 · 0 + 1 · 0 + 0 · 1 + 1 · 1 + . . . 0 · 0 + 1 · 0 + 0 · 1 + 1 · 1√

02 + 12 + 02 + 12 + · · ·+ 02 + 12 ·
√
02 + 02 + 12 + 12 + · · ·+ 12 + 12

)
= arccos

(
128√

256 ·
√
256

)
= arccos

(
128

256

)
= arccos

(
1

2

)
= 60°

If v1 now changes the first 0 into a 1, the angle would be arccos
(

128√
257·

√
256

)
=

60.6°, which is an increase of 60.6−60
60 · 100% = 1%
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3.7.4 Dot product distance

1− ⟨p, q⟩
∥p∥ · ∥q∥

= 1− 0 · 0 + 1 · 0 + 0 · 1 + 1 · 1 + . . . 0 · 0 + 1 · 0 + 0 · 1 + 1 · 1√
02 + 12 + 02 + 12 + · · ·+ 02 + 12 ·

√
02 + 02 + 12 + 12 + · · ·+ 12 + 12

= 1− 128√
256 ·

√
256

= 1− 128

256

= 1− 1

2

=
1

2

If v1 now changes the first 0 into a 1, the angle would be 1− 128√
257·

√
256

≈ 0.50097,

which is an increase of 0.50097−0.5
0.5 · 100% ≈ 0.2%

3.7.5 Hamming distance

n∑
i=1

[pi ̸= qi] = 0 + 1 + 1 + 0 + 0 + 1 + 1 + 0 + · · ·+ 0 + 1 + 1 + 0 = 256

If v1 now changes the first 0 into a 1, the distance would be 257, which is an
increase of 257−256

256 · 100% ≈ 0.4%

3.7.6 Conclusion

From the calculations above, it becomes evident that the curse of dimensionality
is less impactful for the angular distance between vectors and more impactful
for the euclidean distance between vectors [21]. Since a metric option that is
least affected by the curse of dimensionality is required, angular distance is
the best option which is also the one used in the final implementation of the
recommendation system.
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4 Implementation

In the next section the acquired data about books is covered followed by a
section that describes how this data is preprocessed in order for it to be used in
the recommendation system. The last section will cover the implementation of
the recommendation system itself.

4.1 Database structure

The result of utilizing the aforementioned methods to gather data about books
from different sources is the following database model:

Variable Name Variable type

ISBN13 CHAR(13)
Page count SMALLINT unsigned
Book title VARCHAR(256)
Book type TINYINT unsigned

Book language TINYINT unsigned
Dyslexia BOOLEAN

Minimum age TINYINT unsigned
Maximum age TINYINT unsigned

AVI SMALLINT unsigned
Words per page DECIMAL(8, 4)

Words per sentence DECIMAL(8, 4)
Images per page DECIMAL(8, 4)
Primary font size DECIMAL(8, 4)
Average font size DECIMAL(8, 4)

Percentage frequent words DECIMAL(8, 4)
Type/token ratio DECIMAL(8, 4)

Average word length DECIMAL(8, 4)
Release date DATE
Keywords ARRAY

Table 5: Variables about books in database
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For book type, book language and AVI, python enumerations[22] are used:

1 from enum import Enum

2
3 class BookType(Enum):

4 LEESBOEK = 0

5 INFORMATIEF = 1

6 PRENTENBOEK = 2

7 STRIPBOEK = 3

8 DICHTBUNDEL = 4

9 VOORLEESBOEK = 5

10 ORIENTATIE_OP_LEZEN = 6

11 ZOEKBOEK = 7

12 AANWIJSBOEK = 8

13
14 class BookLanguage(Enum):

15 DUTCH = 0

16 ENGLISH = 1

17 GERMAN = 2

18 FRENCH = 3

19 SPANISH = 4

20 FRYSIAN = 5

21
22 class Avi(Enum):

23 START = 0

24 M3 = 1

25 E3 = 2

26 M4 = 3

27 E4 = 4

28 M5 = 5

29 E5 = 6

30 M6 = 7

31 E6 = 8

32 M7 = 9

33 E7 = 10

34 PLUS = 11

4.2 Data preparation

The ANNOY algorithm finds the approximately closest neighbours of data
points. The idea is that all books in the database are mapped to a data point in
some high dimensional space and letting ANNOY figure out the closest neigh-
bours. In order to accomplish this, a dimension is added for every variable in
the database, except for ISBN-13 and book title:

isbn13 = [Page count, Book type, Book language, Dyslexia, Minimum age,
Maximum age, AVI, Words per page, Words per sentence, Images per page,
Primary font size, Average font size, Percentage frequent words, Type/token
ratio, Average word length, Release date, keywords]
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For example, in the given situation where there is a German book with
ISBN-13 9781234567890 of 400 pages, minimum age of 12 with an average of
250 words per page, the following vector is generated:

9781234567890 = [400, 0, 2, 0, 12, 0, 0, 250, 0, 0, 0, 0, 0, 0, 0, 0, 0]

However, there exists a huge difference between the variables page count and
minimum age. This can be explained by the fact that these variables operate
on a different scale, so they are difficult to compare with one another. However,
both of these variables are important data for books so they have to be consid-
ered when recommending books. To solve this, the data is scaled in such a way
that all values are between 0 and 1 for all variables. The AVI level will always
be an integer between 0 and 11, so scaling that will be easy. Unfortunately, this
doesn’t work for page count. If the max page count is set to the book with the
most pages, there might be a book someday with more pages and the maximum
should be adjusted again. Another problem is the array of keywords. An array
can’t be compared to integers.

In order to deal with all of this, every variable is split into multiple dimen-
sions with 1 as maximum value and 0 as minimum value which can be seen in
appendix A. For age, the following code was utilized:

1 age_vector = 16 * [0]

2 if item[’min_age ’] is not None:

3 min_age = cap(15, item[’min_age ’])

4 if item[’max_age ’] is None:

5 age_vector[cap(15, min_age - 2)] = 0.25

6 age_vector[cap(15, min_age - 1)] = 0.5

7 age_vector[cap(15, min_age + 1)] = 0.5

8 age_vector[cap(15, min_age + 2)] = 0.5

9 age_vector[cap(15, min_age)] = 1

10 else:

11 max_age = cap(15, item[’max_age ’])

12 age_vector[cap(15, min_age - 2)] = 0.25

13 age_vector[cap(15, min_age - 1)] = 0.5

14 age_vector[cap(15, max_age + 1)] = 0.5

15 age_vector[cap(15, max_age + 2)] = 0.5

16 age_vector[min_age:max_age] = [1] * (max_age - min_age)

Since the keywords are already a list of values, the list can just be extended
by the list with the values for all the tags. The result is a dictionary with
the isbn13 numbers as keys and as value a data point in approximately 450
dimensional space, which can be used in ANNOY.
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4.3 Recommendation formula

While there is nothing wrong with supplying 450 dimensional points to ANNOY,
it is most likely a problem that of the 450 available dimensions, 400 are used by
the tags meaning books with a few similar tags will already match better with
each other independent of the age variable meaning someone that reads Dolfje
Weerwolfje could get the Twilight Saga recommended.

To guarantee that the keywords do not dominate the recommendations, the
recommendation is split into multiple categories using the following formula:

α1 · x1 + α2 · x2 + α3 · x3 + α4 · x4

Where αi is the weight attached to part i of the formula, x1 is the ANNOY
result of the tags, x2 is the ANNOY result of the age, x3 is the ANNOY result
of the avi score and x4 is the ANNOY result of remaining variables like page
count and pdf parser results like words per page, image count etc.

Having separated the different categories in this way, each category is as-
signed its own weight to determine how important each category is for the end
result. To ensure the end result is between 0 and 1, it’s important that Σ4

i=1αi

= 1. The only thing that needs to change to achieve this is split the generated
array in 4 parts, one per category.

The Annoy library is used as follows:

1 from annoy import AnnoyIndex

2
3 class GeneratorAnnoy:

4
5 def __init__(self , vector_dict: dict):

6 self.vector_dict = vector_dict

7 self.vector_list = list(self.vector_dict.values ())

8 self.vector_length = len(self.vector_list [0])

9
10 # Generate conversion tables

11 self.obj_id_to_index = {}

12 self.index_to_obj_id = {}

13 for index , obj_id in enumerate(list(self.vector_dict.keys()

)):

14 self.obj_id_to_index[obj_id] = index

15 self.index_to_obj_id[index] = obj_id

16
17 def build_forest(self):

18 # Init list of item vectors

19 self.annoy_index = AnnoyIndex(self.vector_length , ’angular ’)

20 for i, vector in enumerate(self.vector_list):

21 self.annoy_index.add_item(i, vector)

22
23 # Build forest of TREE_COUNT trees

24 self.annoy_index.build(config.TREE_COUNT)

25
26 def save_annoy_index(self):

27 """ Store forest in file """

28
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29 self.annoy_index.save(’test.ann’)

30
31 def compute_distances(self , obj_id: int , count: int):

32 """

33 Compute nearest neighbours given an obj_id.

34
35 :param int obj_id: the id of the object to which the

distances should be computed.

36
37 :return list indices: the indices of the nearest neighbours

.

38 :return list distances: the distances to the nearest

neighbours.

39 """

40
41 index = self.obj_id_to_index[obj_id]

42 result = self.

43
44 def compute_similarities(self , count: int):

45 similarities = {}

46 for obj_id in self.vector_dict.keys():

47 indices , distances = self.compute_distances(obj_id ,

count)

48
49 # Create similarities dict

50 # Template: dict[base_id ][ recommendation_id] = distance

51 similarities[obj_id] = {}

52 for i in range(count):

53 index = indices[i]

54 similarities[obj_id ][self.index_to_obj_id[index ]] =

distances[i]

55
56 return similarities

The GeneratorAnnoy class is then used as follows to calculate the closest
neighbours based on age:

1 def compute_similarities(vector_dict: dict , count: int):

2 count = count if count < len(vector_dict) else len(vector_dict)

3
4 generator = GeneratorAnnoy(vector_dict)

5 generator.build_forest ()

6 similarities = generator.compute_similarities(count)

7
8 return similarities

9
10 age_similarities = compute_similarities(

11 edition_to_age_vector_dict ,

12 config.CALCULATION_RECOMMENDATION_COUNT

13 )

The result is a dictionary with as keys the ISBN-13 number of the book
and as value a list of ISBN-13 numbers of recommendations in order. The
same thing is done for the other categories to obtain the closest neighbours for
every ISBN-13 per category. In order to apply the aforementioned formula, it is
important to keep in mind that all of the categories can have different ISBN-13
recommendations. In order to deal with this correctly, the following code is
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utilized:

1 recommendation_scores = {}

2 for id in keyword_recommendations.keys():

3 recommendation_scores[id] = {’score ’: 0, ’tags’: 0, ’age’: 0, ’

avi’: 0,’remainder ’: 0}

4 for id, score in keyword_recommendations.items():

5 recommendation_scores[id][’tags’] = 1-(score /2)

6 for id in age_recommendations.keys():

7 if id not in recommendation_scores:

8 recommendation_scores[id] = {’score ’: 0, ’tags’: 0, ’age’:

0, ’avi’: 0,’remainder ’: 0}

9 for id, score in age_recommendations.items():

10 recommendation_scores[id][’age’] = 1-(score /2)

11 for id in avi_recommendations.keys():

12 if id not in recommendation_scores:

13 recommendation_scores[id] = {’score ’: 0, ’tags’: 0, ’age’:

0, ’avi’: 0,’remainder ’: 0}

14 for id, score in avi_recommendations.items():

15 recommendation_scores[id][’avi’] = 1-(score /2)

16 for id in remainder_recommendations.keys():

17 if id not in recommendation_scores:

18 recommendation_scores[id] = {’score ’: 0, ’tags’: 0, ’age’:

0, ’avi’: 0,’remainder ’: 0}

19 for id, score in remainder_recommendations.items ():

20 recommendation_scores[id][’remainder ’] = 1-(score /2)

21
22 for id in recommendation_scores.keys():

23 recommendation_scores[id][’score’] = \

24 0.8* recommendation_scores[id][’tags’]+\

25 0.1* recommendation_scores[id][’age’]+\

26 0.05* recommendation_scores[id][’avi’]+\

27 0.05* recommendation_scores[id][’remainder ’]

The code above iterates over all recommendations per category and inserts
the score in the keyword recommendations dictionary under the specific cate-
gory. Because the Annoy library returns a score between 0 and 2, the score needs
to be divided by 2 to get a result between 0 and 1. Also, because more similar
vectors have a lower score, 1-(score/2) is applied in order to obtain the desired
result, namely similar vectors with no angle between them have a score of 1.
To obtain the final recommendation score, the score per category is taken and
multiplied by their respective weights. These weights were the result of much
testing and can still change over time. To give an example, when the weight for
the age category was too high, there were some books that were recommended
for almost every other book, which was most likely the case because they had a
large age range that made them match with most books.
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5 Results

After implementing the recommendation system in the app, the results were
promising:

Figure 15: Dolfje Weerwolfje recommendations in the app

As can be seen, the book about Dolfje Weerwolfje gets recommendations
about other books with werewolves, most of these are also Dolfje Weerwolfje.
Looking at the database, the scores that a recommendation gets in every cate-
gory can be obtained:

Figure 16: Scores saved in database for Dolfje Weerwolfje
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As can be seen, all of the recommended books match 100 percent on age.
This can be explained by the fact that age has a large weight within the recom-
mendation formula. After all, Twilight should not be recommended to children
of 8 years old. It can also be seen that there are sometimes multiple ISBN-
13 recommendations per sequence number. This happens because some books
get multiple editions meaning the books are almost identical except for a few
changes. In this case, the ISBN-13 numbers will be mapped to the same book in
the recommendation system. This also prevents that a different edition of the
same book gets recommended. At the moment of writing, AVI does not have a
large weight in the recommendation formula, because this data is unknown or
imprecise for most books. In section 6 a solution is discussed to improve the
quality of the AVI data for books.

Looking at the recommendations of Grijze Jager part 5, the recommenda-
tions are a bit more diverse:

Figure 17: Grijze Jager recommendations in the app

As can be seen, other Grijze Jager books get recommended. It can also be
seen that other fantasy books get recommended. However, when looking at the
scores in the database, the first recommended book has a significantly higher
score than the others:
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Figure 18: Scores saved in database for Grijze Jager

The age and AVI scores are also a bit low, which can be explained by the fact
that books like Grijze Jager and Harry Potter are not written specifically for
children on elementary schools and are also targeting an older audience. This
means that the recommendations are mainly based on the tags and remaining
variables which can also be seen in the figure.

However, to obtain proper results to see if the recommendation system actu-
ally improves the reading pleasure for students, the system needs to be utilized
for a few months before changes can be observed. At the moment of writing,
a lot of children start with a book but do not finish it, either because they do
not like the book or because it is too easy or difficult. If after a few months
of utilizing the recommendation system the number of children that actually
finish a book increases, only then would it be possible to state that the book
recommendation system is working properly.
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6 Future work

There is a lot of work that can and should be done in the future. Since scrapers
are utilized, it is important to update them constantly as sites tend to change
regularly. Also, because the recommendations are not perfect, possible improve-
ments include:

1. Adding more variables to the recommendations array.

2. Adding new words to the keyword tree.

3. Updating weights of keywords in the tree.

4. Increasing the number of books for which a PDF file of the first few pages
is known, which could be done by scraping them online or by going to
libraries and scanning the books manually.

5. Utilizing AI. Right now, the weights for categories and keywords are based
on trial and error. AI could probably determine optimal weights and hence
improve the recommendation system even further.

6. Improving the quality of the AVI and age data about books. At the mo-
ment, these are based on what can be found on the internet. By utilizing
the data known about students and the books they read, the data in the
database can be overwritten by user driven data from the application to
give a more accurate representation of the age and AVI level of the book.

7. Display the scores per category in the app to see why certain books are
recommended. Right now the scores are saved in the database, but not
made visible to the users. Displaying these scores can also enhance the
recommendation system, because if a book gets recommended that does
not closely resemble the other book, it is easier to identify where something
should be changed in the recommendation system.

However, the most important thing that should be done is creating a second
recommendation system that recommends books to users specifically. At the
moment, item-item recommendations are generated based from one book to
another. The idea of personal recommendations would be to generate a vector
based on read and quit books by the user. This personal reading vector could
then be used by ANNOY to find the best fitting books based on previously
read books. The personal recommendations can also change from item-item to
user-user recommendations. The generated personal reading vector is then not
compared to books, but to other users with similar taste in order to recommend
the best books based on previously read books. User-user recommendations
are generally much better since it is hard to map all aspects of a book to
precise data points as done in item-item recommendations. Unfortunately, more
user data is required in order to achieve this result. Therefore the item-item
recommendation system that has been built now is a solid foundation for future
work.
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7 Appendix

A Preprocessing data

Variable Name Index Value

Page count
0 1 if page count < 100
1 1 if 100 ≤ page count < 250
2 1 if page count ≥ 250

Book type
3 1 if Book type is 0 (reading book)
4 1 if Book type is 1 (informative book)
5 1 if Book type is 2 (picture book)
6 1 if Book type is 3 (comic book)
7 1 if Book type is 4 (poem collection)
8 1 if Book type is 5 (read aloud book, for

the teacher to read to the class)
9 1 if Book type is 6 (book on orientation

on reading)
10 1 if Book type is 7 (search book, student

needs to locate something in the book)
11 1 if Book type is 8 (pointing book, stu-

dent needs to point at things in the
book)

Book language
12 1 if Book language is 1 (Dutch)
13 1 if Book language is 1 (English)
14 1 if Book language is 2 (German)
15 1 if Book language is 3 (French)
16 1 if Book language is 4 (Spanish)
17 1 if Book language is 5 (Frysian)

Dyslexia 18 1 if book is a dyslexia version

AVI 19
0.1 if AVI -2 == 0
0.5 if AVI - 1 == 0
1 if AVI == 0
0.5 if AVI + 1 == 0
0.5 if AVI + 2 == 0

20 0.1 if AVI - 2 == 1
0.5 if AVI - 1 == 1
1 if AVI == 1
0.5 if AVI + 1 == 1
0.5 if AVI + 2 == 1

21 0.1 if AVI - 2 == 2
0.5 if AVI - 1 == 2
1 if AVI == 2
0.5 if AVI + 1 == 2
0.5 if AVI + 2 == 2
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22 0.1 if AVI - 2 == 3
0.5 if AVI - 1 == 3
1 if AVI == 3
0.5 if AVI + 1 == 3
0.5 if AVI + 2 == 3

23 0.1 if AVI - 2 == 4
0.5 if AVI - 1 == 4
1 if AVI == 4
0.5 if AVI + 1 == 4
0.5 if AVI + 2 == 4

24 0.1 if AVI - 2 == 5
0.5 if AVI - 1 == 5
1 if AVI == 5
0.5 if AVI + 1 == 5
0.5 if AVI + 2 == 5

25 0.1 if AVI - 2 == 6
0.5 if AVI - 1 == 6
1 if AVI == 1
0.5 if AVI + 1 == 6
0.5 if AVI + 2 == 6

26 0.1 if AVI - 2 == 7
0.5 if AVI - 1 == 7
1 if AVI == 1
0.5 if AVI + 1 == 7
0.5 if AVI + 2 == 7

27 0.1 if AVI - 2 == 8
0.5 if AVI - 1 == 8
1 if AVI == 8
0.5 if AVI + 1 == 8
0.5 if AVI + 2 == 8

28 0.1 if AVI - 2 == 9
0.5 if AVI - 1 == 9
1 if AVI == 9
0.5 if AVI + 1 == 9
0.5 if AVI + 2 == 9

29 0.1 if AVI - 2 == 10
0.5 if AVI - 1 == 10
1 if AVI == 10
0.5 if AVI + 1 == 10
0.5 if AVI + 2 == 10

30 0.1 if AVI - 2 == 11
0.5 if AVI - 1 == 11
1 if AVI == 11
0.5 if AVI + 1 == 11
0.5 if AVI + 2 == 11
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Words per page 31
1 if words per page < 50
0.25 if 50 ≤ words per page < 100

32 0.5 if words per page < 50
1 if 50 ≤ words per page < 100
0.5 if 100 ≤ words per page < 180

33 0.5 if 50 ≤ words per page < 100
1 if 100 ≤ words per page < 180
0.5 if 180 ≤ words per page < 300

34 0.5 if 100 ≤ words per page < 180
1 if 180 ≤ words per page < 300
0.5 if 300 ≤ words per page < 400

35 0.5 if 180 ≤ words per page < 300
1 if 300 ≤ words per page < 400
0.75 if words per page ≥ 400

36 0.5 if 300 ≤ words per page < 400
1 if words per page ≥ 400

Images per page
37 1 if images per page < 0.1
38 1 if 0.1 ≤ images per page < 0.67
39 1 if images per page > 0.67

Primary font size 40
if (primary font size - average font size)
> 1.5 then 1 if average font size ≤ 12
if (primary font size - average font size)
≤ 1.5 then 1 if primary font size ≤ 12

41 if (primary font size - average font size)
> 1.5 then 1 if primary font size > 12
if (primary font size - average font size)
≤ 1.5 then 1 if primary font size > 12

Percentage frequent words 42 The percentage/100
Type/token ratio 43 The type/token ratio divided by 100

Release date 44
1 if release date < 2000
0.5 if 2000 ≤ release date < 2005

45 0.5 if release date < 2000
1 if 2000 ≤ release date < 2005
0.5 if 2005 ≤ release date < 2010

46 0.5 if 2000 ≤ release date < 2005
1 if 2005 ≤ release date < 2010
0.5 if 2010 ≤ release date < 2015

47 0.5 if 2005 ≤ release date < 2010
1 if 2010 ≤ release date < 2015
0.5 if 2015 ≤ release date < 2020

48 0.5 if 2010 ≤ release date < 2015
1 if 2015 ≤ release date < 2020
0.5 if release date > 2020

49 0.5 if 2015 ≤ release date < 2020
1 if release date > 2020
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CILT-waarde 50
1 if CILT-waarde < 54.9
0.5 if 54.9 ≤ CILT-waarde < 56.9
0.25 if 56.9 ≤ CILT-waarde < 58.9

51 0.5 if CILT-waarde < 54.9
1 if 56.9 ≤ CILT-waarde < 58.9
0.5 if 58.9 ≤ CILT-waarde < 61.9
0.25 if 61.9 ≤ CILT-waarde < 63.9

52 0.1 if CILT-waarde < 54.9
0.5 if 54.9 ≤ CILT-waarde < 56.9
1 if 56.9 ≤ CILT-waarde < 58.9
0.5 if 58.9 ≤ CILT-waarde < 61.9
0.25 if 61.9 ≤ CILT-waarde < 63.9

53 0.1 if 54.9 ≤ CILT-waarde < 56.9
0.5 if 56.9 ≤ CILT-waarde < 58.9
1 if 58.9 ≤ CILT-waarde < 61.9
0.5 if 61.9 ≤ CILT-waarde < 63.9
0.25 if 63.9 ≤ CILT-waarde < 65.9

54 0.1 if 56.9 ≤ CILT-waarde < 58.9
0.5 if 58.9 ≤ CILT-waarde < 61.9
1 if 61.9 ≤ CILT-waarde < 63.9
0.5 if 63.9 ≤ CILT-waarde < 65.9
0.25 if 65.9 ≤ CILT-waarde < 67.9

55 0.1 if 58.9 ≤ CILT-waarde < 61.9
0.5 if 61.9 ≤ CILT-waarde < 63.9
1 if 63.9 ≤ CILT-waarde < 65.9
0.5 if 65.9 ≤ CILT-waarde < 67.9
0.25 if 67.9 ≤ CILT-waarde < 69.9

56 0.1 if 61.9 ≤ CILT-waarde < 63.9
0.5 if 63.9 ≤ CILT-waarde < 65.9
1 if 65.9 ≤ CILT-waarde < 67.9
0.5 if 67.9 ≤ CILT-waarde < 69.9
0.25 if 69.9 ≤ CILT-waarde < 71.9

57 0.1 if 63.9 ≤ CILT-waarde < 65.9
0.5 if 65.9 ≤ CILT-waarde < 67.9
1 if 67.9 ≤ CILT-waarde < 69.9
0.5 if 69.9 ≤ CILT-waarde < 71.9
0.25 if 71.9 ≤ CILT-waarde < 73.9

58 0.1 if 65.9 ≤ CILT-waarde < 67.9
0.5 if 67.9 ≤ CILT-waarde < 69.9
1 if 69.9 ≤ CILT-waarde < 71.9
0.5 if 71.9 ≤ CILT-waarde < 73.9
0.25 if 73.9 ≤ CILT-waarde < 74.9

59 0.1 if 67.9 ≤ CILT-waarde < 69.9
0.5 if 69.9 ≤ CILT-waarde < 71.9
1 if 71.9 ≤ CILT-waarde < 73.9
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0.5 if 73.9 ≤ CILT-waarde < 74.9
0.25 if CILT-waarde ≥ 74.9

60 0.1 if 69.9 ≤ CILT-waarde < 71.9
0.5 if 71.9 ≤ CILT-waarde < 73.9
1 if 73.9 ≤ CILT-waarde < 74.9
0.5 if CILT-waarde ≥ 74.9

61 0.1 if 71.9 ≤ CILT-waarde < 73.9
0.5 if 73.9 ≤ CILT-waarde < 74.9
1 if CILT-waarde ≥ 74.9

CLIB-waarde 62
1 if CLIB-waarde < -12
0.5 if -12 ≤ CLIB-waarde < 7
0.25 if 7 ≤ CLIB-waarde < 20

63 0.5 if CLIB-waarde < -12
1 if 7 ≤ CLIB-waarde < 20
0.5 if 20 ≤ CLIB-waarde < 35
0.25 if 35 ≤ CLIB-waarde < 48

64 0.1 if CLIB-waarde < -12
0.5 if -12 ≤ CLIB-waarde < 7
1 if 7 ≤ CLIB-waarde < 20
0.5 if 20 ≤ CLIB-waarde < 35
0.25 if 35 ≤ CLIB-waarde < 48

65 0.1 if -12 ≤ CLIB-waarde < 7
0.5 if 7 ≤ CLIB-waarde < 20
1 if 20 ≤ CLIB-waarde < 35
0.5 if 35 ≤ CLIB-waarde < 48
0.25 if 48 ≤ CLIB-waarde < 61

66 0.1 if 7 ≤ CLIB-waarde < 20
0.5 if 20 ≤ CLIB-waarde < 35
1 if 35 ≤ CLIB-waarde < 48
0.5 if 48 ≤ CLIB-waarde < 61
0.25 if 61 ≤ CLIB-waarde < 74

67 0.1 if 20 ≤ CLIB-waarde < 35
0.5 if 35 ≤ CLIB-waarde < 48
1 if 48 ≤ CLIB-waarde < 61
0.5 if 61 ≤ CLIB-waarde < 74
0.25 if 74 ≤ CLIB-waarde < 69.9

68 0.1 if 48 ≤ CLIB-waarde < 61
0.5 if 71.9 ≤ CLIB-waarde < 73.9
1 if 61 ≤ CLIB-waarde < 74
0.5 if CLIB-waarde ≥ 74

69 0.1 if 48 ≤ CLIB-waarde < 61
0.5 if 61 ≤ CLIB-waarde < 74
1 if CLIB-waarde ≥ 74
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B Code for generating random points in differ-
ent dimensions

B.1 Random points 1D

1 import random

2 import matplotlib.pyplot as plt

3
4 # Generate 100 random points in 1D space

5 points = [random.uniform(0, 1) for _ in range (100)]

6
7 # Count the number of points within 10% of the edges

8 count = sum(p <= 0.1 or p >= 0.9 for p in points)

9
10 # Get the points below 0.1 and above 0.9

11 below = [p for p in points if p < 0.1]

12 above = [p for p in points if p > 0.9]

13
14 # Plot the points

15 plt.scatter(points , [0]*100 , c=’b’)

16 plt.scatter ([0.1, 0.9], [0, 0], c=’r’)

17 plt.scatter(below , [0]* len(below), c=’r’)

18 plt.scatter(above , [0]* len(above), c=’r’)

19
20 # Add a title and show the plot

21 plt.title(f"Points within 10% of the edges: {count}")

22 plt.show()
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B.2 Random points 2D

1 import random

2 import matplotlib.pyplot as plt

3
4 # Generate 1000 random points in 2D space

5 points = [( random.uniform(0, 1), random.uniform(0, 1)) for _ in

range (1000)]

6
7 # Count the number of points within 10% of the edges

8 count = sum(min(p) <= 0.1 or min(p) >= 0.9 and max(p) <= 0.1 or max

(p) >= 0.9 for p in points)

9
10 # Get the points below 0.1 and above 0.9

11 below = [p for p in points if min(p) < 0.1 or max(p) < 0.1]

12 above = [p for p in points if min(p) > 0.9 or max(p) > 0.9]

13
14 # Plot the points

15 plt.scatter ([p[0] for p in points], [p[1] for p in points], c=’b’)

16 plt.scatter ([0.1, 0.9, 0.9, 0.1], [0.1, 0.1, 0.9, 0.9], c=’r’)

17 plt.scatter ([p[0] for p in below], [p[1] for p in below], c=’r’)

18 plt.scatter ([p[0] for p in above], [p[1] for p in above], c=’r’)

19
20 # Add a title and show the plot

21 plt.title(f"Points within 10% of the edges: {count}")

22 plt.show()
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B.3 Random points 3D

1 import random

2 import matplotlib.pyplot as plt

3
4 # Generate 1000 random points in 3D space

5 points = [( random.uniform(0, 1), random.uniform(0, 1), random.

uniform(0, 1)) for _ in range (1000)]

6
7 # Count the number of points within 10% of the edges

8 count = sum(1 for point in points if any(p <= 0.1 or p >= 0.9 for p

in point))

9
10 # Separate the points inside and outside the edges

11 edge_points = [point for point in points if any(p < 0.1 or p > 0.9

for p in point)]

12 area_points = [point for point in points if all (0.1 <= p <= 0.9 for

p in point)]

13
14 # Plot the points

15 fig = plt.figure ()

16 ax = fig.add_subplot (111, projection=’3d’)

17 ax.scatter ([p[0] for p in edge_points], [p[1] for p in edge_points

], [p[2] for p in edge_points], c=’r’)

18 ax.scatter ([p[0] for p in area_points], [p[1] for p in area_points

], [p[2] for p in area_points], c=’b’)

19
20 # Add edges to the plot

21 ax.plot ([0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9, 0.9],

22 [0.1, 0.1, 0.9, 0.9, 0.1, 0.1, 0.9, 0.9],

23 [0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9], c=’g’)

24
25 # Add a title and show the plot

26 plt.title(f"Points within 10% of the edges: {count}")

27 plt.show()
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C Euclidean vs Angular vs Manhattan vs Dot
product distance

1 import matplotlib.pyplot as plt

2 from matplotlib.patches import FancyArrowPatch , Arc , Circle , Patch

3 import numpy as np

4 import math

5
6 # Create a 2D plot

7 fig , ax = plt.subplots ()

8
9 # Define the vectors

10 v1 = np.array([1, 4])

11 v2 = np.array([8, 8])

12 v3 = np.array([3, 1])

13
14 # Plot the vectors

15 ax.arrow(0, 0, v1[0], v1[1], head_width =0.5, head_length =0.5, color

=’blue’)

16 ax.arrow(0, 0, v2[0], v2[1], head_width =0.5, head_length =0.5, color

=’blue’)

17 ax.arrow(0, 0, v3[0], v3[1], head_width =0.5, head_length =0.5, color

=’blue’)

18 ax.text(v1[0], v1[1]+0.8 , ’v1’, ha=’center ’, va=’center ’, color=’

blue’, fontsize =12)

19 ax.text(v2[0], v2[1]+0.8 , ’v2’, ha=’center ’, va=’center ’, color=’

blue’, fontsize =12)

20 ax.text(v3[0]+0.2 , v3[1]-0.6, ’v3’, ha=’center ’, va=’center ’, color

=’blue’, fontsize =12)

21
22 # Plot the line and display the euclidean distance

23 d = np.linalg.norm(v2 - v1)

24 ax.plot([v1[0], v2[0]], [v1[1], v2[1]], color=’red’)

25 ax.text(4, 6, f’{d:.2f}’, ha=’center ’, color=’red’)

26 d2 = np.linalg.norm(v3 - v1)

27 ax.plot([v1[0], v3[0]], [v1[1], v3[1]], color=’red’)

28 ax.text(v3[0]-0.3, v3[1]+1 , f’{d2:.2f}’, ha=’center ’, color=’red’)

29
30 # Plot the line and display the manhattan distance

31 ax.plot([v1[0], v2[0]], [v2[1], v2[1]], color=’purple ’)

32 ax.plot([v1[0], v1[0]], [v2[1], v1[1]], color=’purple ’)

33 ax.text (4.5, 8.2, f’{7}’, ha=’center ’, color=’purple ’)

34 ax.text (0.7, 6.5, f’{4}’, ha=’center ’, color=’purple ’)

35 ax.text(1, 8.2, ’4+7 = 11’, ha=’center ’, color=’purple ’)

36 ax.plot([v1[0], v3[0]], [v1[1], v1[1]], color=’purple ’)

37 ax.plot([v3[0], v3[0]], [v1[1], v3[1]], color=’purple ’)

38 ax.text (2.5, 4.2, f’{2}’, ha=’center ’, color=’purple ’)

39 ax.text (3.2, 2, f’{3}’, ha=’center ’, color=’purple ’)

40 ax.text (3.5, 4.2, ’2+3 = 5’, ha=’center ’, color=’purple ’)

41
42 # Calculate the angle between the vectors

43 cos_dis = 1 - np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm

(v2))

44 angle = np.arccos(np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.

norm(v2))) * 180 / np.pi

45 rad_angle = math.radians(angle)
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46 cos_dis2 = 1 - np.dot(v1, v3) / (np.linalg.norm(v1) * np.linalg.

norm(v3))

47 angle2 = np.arccos(np.dot(v1 , v3) / (np.linalg.norm(v1) * np.linalg

.norm(v3))) * 180 / np.pi

48 rad_angle2 = math.radians(angle2)

49
50 # Plot the arc and display the angle in degrees and radians and

cosine similarity

51 center = (0, 0)

52 arc = Arc(center , 5.5, 5.5, angle=0, theta1 =45, theta2=math.degrees

(math.atan (4/1)), color=’green’, linewidth =2)

53 arc2 = Arc(center , 5.4, 5.4, angle=0, theta1 =45, theta2=math.

degrees(math.atan (4/1)), color=’orange ’, linewidth =2)

54 arc3 = Arc(center , 2, 2, angle=0, theta1=math.degrees(math.atan

(1/3)), theta2=math.degrees(math.atan (4/1)), color=’green’,

linewidth =2)

55 arc4 = Arc(center , 1.9, 1.9, angle=0, theta1=math.degrees(math.atan

(1/3)), theta2=math.degrees(math.atan (4/1)), color=’orange ’,

linewidth =2)

56 ax.add_patch(arc)

57 ax.add_patch(arc2)

58 ax.add_patch(arc3)

59 ax.add_patch(arc4)

60 ax.text (0.3, 2.8, f’{cos_dis :.2f}’, ha=’center ’, va=’center ’, color

=’orange ’)

61 ax.text (1.7, 3.3, f’{rad_angle :.2f} rad’, ha=’center ’, va=’center ’,

color=’green’)

62 ax.text (1.5, 2.8, f’{angle :.2f}’, ha=’center ’, va=’center ’, color=’

green’)

63 ax.text (1.2, 1, f’{rad_angle2 :.2f} rad’, ha=’center ’, va=’center ’,

color=’green’)

64 ax.text (1.1, 1.5, f’{angle2 :.2f}’, ha=’center ’, va=’center ’, color=

’green’)

65 ax.text (1.5, 0.2, f’{cos_dis2 :.2f}’, ha=’center ’, va=’center ’,

color=’orange ’)

66
67 # Set the axis limits and labels

68 ax.set_xlim ([0, 10])

69 ax.set_ylim ([0, 10])

70 ax.set_xlabel(’X’)

71 ax.set_ylabel(’Y’)

72
73 # create a custom legend with the colors used in the plot

74 legend_elements = [Patch(facecolor=’blue’, edgecolor=’blue’, label=

’Vector ’),

75 Patch(facecolor=’green’, edgecolor=’green’,

label=’Angle’),

76 Patch(facecolor=’red’, edgecolor=’red’, label=’

Euclidean ’),

77 Patch(facecolor=’purple ’, edgecolor=’purple ’,

label=’Manhattan ’),

78 Patch(facecolor=’orange ’, edgecolor=’orange ’,

label=’Dot product ’)]

79 ax.legend(handles=legend_elements , loc=’lower right ’)

80
81 # Show the plot

82 plt.show()
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D Code for limit/inside ratio

D.1 1D

1 import matplotlib.pyplot as plt

2 import matplotlib.patches as patches

3
4 # Plot the points

5 L = 1

6 fig , ax = plt.subplots ()

7 ax.plot([0,1], [0,0], color=’blue’, linewidth =2)

8 ax.scatter(0, 0, color=’red’, linewidth =2)

9 ax.scatter(1, 0, color=’red’, linewidth =2)

10
11 # set the tick labels for the x and y-axis

12 x_ticks = [0, 0.25*L, 0.5*L, 0.75*L, L]

13 x_ticklabels = [’0’, ’0.25L’, ’0.5L’, ’0.75L’, ’L’]

14 ax.set_xticks(x_ticks)

15 ax.set_xticklabels(x_ticklabels)

16
17 y_ticks = [0, 0.25*L, 0.5*L, 0.75*L, L]

18 y_ticklabels = [’0’, ’0.25L’, ’0.5L’, ’0.75L’, ’L’]

19 ax.set_yticks(y_ticks)

20 ax.set_yticklabels(y_ticklabels)

21
22 # Add a title and show the plot

23 plt.title("Limit/inside ratio")

24 plt.show()
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D.2 2D

1 import matplotlib.pyplot as plt

2 import matplotlib.patches as patches

3
4 # Plot the points

5 L = 1

6 rect = patches.Rectangle ((0, 0), L, L, facecolor=’blue’, edgecolor

=’red’, linewidth =5)

7 fig , ax = plt.subplots ()

8 ax.add_patch(rect)

9
10 # set the tick labels for the x and y-axis

11 x_ticks = [0, 0.25*L, 0.5*L, 0.75*L, L]

12 x_ticklabels = [’0’, ’0.25L’, ’0.5L’, ’0.75L’, ’L’]

13 ax.set_xticks(x_ticks)

14 ax.set_xticklabels(x_ticklabels)

15
16 y_ticks = [0, 0.25*L, 0.5*L, 0.75*L, L]

17 y_ticklabels = [’0’, ’0.25L’, ’0.5L’, ’0.75L’, ’L’]

18 ax.set_yticks(y_ticks)

19 ax.set_yticklabels(y_ticklabels)

20
21 # Add a title and show the plot

22 plt.title("Limit/inside ratio")

23 plt.show()
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D.3 3D

1 import matplotlib.pyplot as plt

2 from mpl_toolkits.mplot3d.art3d import Poly3DCollection

3 import numpy as np

4
5 # Define cube vertices

6 L = 1

7 verts = np.array ([(0, 0, 0), (0, L, 0), (L, L, 0), (L, 0, 0),

8 (0, 0, L), (0, L, L), (L, L, L), (L, 0, L)])

9
10 # Define cube faces

11 faces = np.array ([(0,1,2,3), (0,4,5,1), (1,5,6,2),

12 (2,6,7,3), (3,7,4,0), (4,7,6,5)])

13
14 # Create plot and add cube

15 fig = plt.figure ()

16 ax = fig.add_subplot (111, projection=’3d’)

17 cube = Poly3DCollection(

18 [verts[faces[i]] for i in range(len(faces))],

19 edgecolors=’red’,

20 facecolors=’blue’,

21 linewidth =3)

22 ax.add_collection3d(cube)

23
24 # Set plot limits and labels

25 ax.set_xlim ([0, L])

26 ax.set_ylim ([0, L])

27 ax.set_zlim ([0, L])

28 ax.set_xlabel(’X’)

29 ax.set_ylabel(’Y’)

30 ax.set_zlabel(’Z’)

31
32 plt.title("Limit/inside ratio")

33
34 plt.show()
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