
Bachelor’s Thesis Computing Science

Fuzzing JSON API Clients

Harm Roukema
s1029070

June 29, 2023

First supervisor/assessor:
Dr. Ir. Erik Poll

Second assessor:
Dr. David Rupprecht

Abstract

In this thesis, we show how to test a JSON API client for bugs using
fuzzing. JSON APIs are commonly confused with REST APIs, which have
to satisfy more constraints. JSON APIs are already regularly fuzzed on the
server side. However, the client side is often overlooked. By programming
a small vulnerable client of a JSON API and testing it using our self-made
BasicFuzzer, we show that it is possible to test JSON API clients for bugs.
We create an expanded OpenAPIFuzzer with OpenAPI parsing capabilities
and attempt to use it to parse the OpenAPI specification of a 5G network
function, but ultimately do not succeed. We successfully fuzz the Radboud
Osiris web app with our OsirisFuzzer, but do not find any bugs. Finally,
we present ProxyFuzzer, a mitmproxy add-on that fuzzes responses from a
JSON API, while acting as a proxy between the JSON API client and server.
We show that ProxyFuzzer can also fuzz the Radboud Osiris web app.

Contents

1 Introduction 3

2 Background 6
2.1 REST APIs . 6

2.1.1 JSON API vs. REST API 7
2.1.2 OpenAPI . 9

2.2 Fuzzing . 10
2.2.1 Fuzzing JSON API clients vs. servers 12

3 Fuzzing JSON API clients 14
3.1 Fuzzer requirements . 14
3.2 Picking a fuzzer or fuzzing framework 15
3.3 Vulnerable client . 17
3.4 BasicFuzzer : Fuzzing the vulnerable client 19

3.4.1 Results . 19
3.5 OpenAPIFuzzer : Adding OpenAPI parsing 21
3.6 Attempt at 5G Fuzzing . 23
3.7 OsirisFuzzer : Fuzzing the Radboud Osiris web app 24

3.7.1 Results . 27
3.7.2 Other attempts . 29
3.7.3 Radboud Osiris Android app attempt 30

3.8 ProxyFuzzer . 30
3.8.1 Other attempts . 32

4 Related Work 35

5 Future Work 39

6 Conclusions 41
6.1 Conclusions . 41
6.2 Evaluation of choices . 42

6.2.1 Fuzzer requirements choices 42
6.2.2 Implementation choices 43
6.2.3 Case study choices . 44

1

A Code of the vulnerable client 49
A.1 OpenAPI specification . 49
A.2 Python code . 53

B Code of the fuzzers 55
B.1 BasicFuzzer . 55
B.2 OpenAPIFuzzer . 57
B.3 OsirisFuzzer . 61

B.3.1 Burp Suite extension 63
B.4 ProxyFuzzer . 65

B.4.1 Flask fuzzer . 67

2

Chapter 1

Introduction

Imagine a webshop with a warehouse. The warehouse contains a server that
keeps track of the inventory, which the webshop can query for information.
A possible scenario is that a costumer visits the webshop to check the avail-
ability of an item. The webshop now queries the warehouse server for this
availability, which the warehouse server returns. To facilitate this commu-
nication, the warehouse server could implement an HTTP-based API, and
use JSON as its data format. This is what we call a JSON API. JSON APIs
are widely used in the web and software industry. For example, (RESTful)
JSON APIs form the main communication channels between network func-
tions in 5G mobile technology. For more information on JSON APIs, and
their relation to RESTful APIs, see Section 2.1.1.

How can we verify the security of this JSON API? One possibility is
to test the API for bugs using a fuzzer, an automatic software testing tool.
This fuzzer could generate unexpected requests to the warehouse server, and
see if it could cause it to crash. Dozens of fuzzers exist that could test the
warehouse server in this scenario, we look at some of them in Chapter 4.
One popular fuzzer is RESTler [9]. RESTler can extract a grammar from
an OpenAPI specification of a JSON API, and fuzz according to that gram-
mar. Nevertheless, we are omitting an equally important participant in the
communication: the webshop.

The webshop, the client of the JSON API of the warehouse server, is
not tested for bugs by fuzzers like RESTler. In fact, there do not exist
fuzzers that are specifically designed to fuzz clients of JSON APIs. This
is a potential security flaw: what happens when a malicious actor hijacks
or impersonates the warehouse server? Could this actor cause the webshop
to crash or malfunction, like in Figure 1.1? Fuzzing could provide us with
answers to these questions.

3

Figure 1.1: Example communication between the webshop and the warehouse
or a malicious actor.

The goal of this research is to be able to fuzz an arbitrary JSON API client
for bugs. One of the main motivations of this research is to eventually
test the security of 5G network functions, so fuzzing one is a stretch goal.
This research aims to fill the knowledge gap on JSON API client fuzzing
by providing means to do so. Therefore, the research question is: How can
we test for bugs in a JSON API client using fuzzing?. There will be no
distinction made between security and non-security related bugs.

In this thesis, we create our own toy example of a JSON API client.
This client contains some bugs in the handling of responses of the JSON
API server. The main goal is to find these bugs in the client, using a fuzzer.
This main goal is reached by executing the following steps:

1. Create a vulnerable client of a JSON API, programmed in Python
(Section 3.3). This allows us full control over this JSON API client,
which we think will be practical.

2. Pick an appropriate fuzzer, that can detect if the client is still running
correctly (Section 3.2). There are numerous options to choose from,
some more practical than other, so it is important that we carefully
consider them.

3. Find vulnerabilities in the vulnerable client using our self-made Ba-
sicFuzzer (Section 3.4).

When this main goal is reached, the research question will be answered, as
it will be shown how to fuzz a JSON API client.

4

After reaching this goal, we have a few stretch goals:

1. Fuzz a 5G network function with OpenAPIFuzzer (Section 3.5 & 3.6),
a fuzzer that uses an OpenAPI specification.

2. Fuzz the real-world Radboud Osiris web app with OsirisFuzzer (Sec-
tion 3.7) and with ProxyFuzzer (Section 3.8), a fuzzer that acts as a
proxy to fuzz responses from the JSON API server.

Reaching these stretch goals shows how real-world JSON APIs can be fuzzed,
and thus paints a more complete picture of JSON API client fuzzing.

This thesis is structured in the following way. Chapter 2 provides back-
ground information for anyone less familiar with certain topics of this thesis,
or for anyone that wishes to brush up their knowledge. In Chapter 3, the
bulk of the research takes place: we show how we created different fuzzers
for JSON API clients and attempt to use these fuzzers to test a self-made
vulnerable client, a 5G network function, and the Radboud Osiris web app.
Chapter 4 discusses existing JSON API fuzzers, while Chapter 5 mentions
potential future work for following research. Finally, we end the thesis with
our conclusions in Chapter 6.

5

Chapter 2

Background

This chapter is meant to educate readers on foundational concepts that are
frequently used in this thesis. We start by explaining what REST APIs
are and what components they consist of in Section 2.1. We discuss the
difference between JSON APIs and REST APIs in Section 2.1.1, and the
role of OpenAPI specifications is also covered in Section 2.1.2. Next up, in
Section 2.2, we talk about what fuzzers are and which parts are essential to
their function. We also discuss the differences between fuzzing a JSON API
client and server in Section 2.2.1.

2.1 REST APIs

A REST API (or RESTful API) is an application programming interface
(API) that conforms to the architectural style of REST, short for represen-
tational state transfer. In this style, there exist a client and a server. This is
an example of an architectural constraint: the client and the server should
be able to function independently. REST defines several more architectural
constraints [11]:

• The communication is stateless; no stored context on the server is
needed to process requests.

• Responses to requests are implicitly or explicitly labeled as cachable
or non-cachable.

• There exists a uniform interface between the client and the server.

• The system is layered; a client can not tell whether it is talking directly
to a server or an intermediary.

• Optionally, servers can extend client functionality by providing exe-
cutable code to the client.

6

HTTP Method Meaning

GET Retrieve a current representation of the target resource

POST Process the supplied payload according to the resource

PUT Replace all representations of a target resource

with the provided representation

DELETE Delete all representations of a resource

OPTIONS Describe communication options for the resource

Table 2.1: An overview of the most common HTTP methods and their mean-
ing within a REST API [10].

The uniform interface of a REST API can be understood by its four con-
straints:

• Identification of resources: resources are identified by, for example,
URIs.

• Manipulation of resources: a client has enough information to modify
a resource if it has permission to do so.

• Self-descriptive messages.

• Hypermedia as the engine of application state (abbreviated to HA-
TEOAS), where a server provides links to other resources to the client
depending on the state. This allows a REST API client to discover
other resources on the server.

Most commonly, the client and server communicate via the HTTP protocol.
Distinct HTTP methods provide different functionality for interacting with
resources, such as creating, reading, updating and deleting (also known as
CRUD) them, see Table 2.1. Resources can have multiple representations
(data formats), such as most commonly JSON, JavaScript Object Notation,
or XML, Extensible Markup Language.

REST is generally used as a guideline for implementing APIs on the
Internet, but also in other parts of the software industry. For example, the
communication between different network functions of 5G is done via REST
APIs [22].

2.1.1 JSON API vs. REST API

The terms ”JSON API” and ”REST API” are often confused [15] [12].
This is also the case for some self-proclaimed REST API fuzzers we cover
in Chapter 4. When we refer to a JSON API in this thesis, we are talking
about an API over HTTP that uses JSON as its data format in requests and

7

responses1. As mentioned above, a REST API has a lot more architectural
and interface constraints, like HATEOAS, while not limited to only JSON
as its data format.

Figure 2.1: A Venn diagram that shows the relation between a JSON API
and a REST API.

The relation between a JSON API and a REST API is illustrated in
Figure 2.1. The example of the JSON API given below belongs in the blue
section, as it does not adhere to some REST constraints like HATEOAS.
A REST API that uses XML as its data format would belong in the red
section. The APIs of 5G network functions are RESTful and use JSON, so
they belong in the intersection.

A client or server JSON API fuzzer would also be able to fuzz a client
or server REST API that uses JSON, and vice versa, because they use the
same data format, while the extra constraints of a REST API are not used
in the fuzzing process. A REST API server fuzzer could however potentially
use the HATEOAS property of the REST API to discover new endpoints to
fuzz, which is not generally possible for JSON APIs.

Example of a JSON API As an example of a JSON API, let us re-
consider the example of the webshop communicating with a warehouse via
a JSON API. In this case, the webshop is the client, while the warehouse
is the server. Say that the webshop wants to see if certain shoes are still
available and what their price is. The webshop can now make an HTTP
GET request to the /item/1 endpoint of the warehouse, see Figure 2.2.

1Not to be confused with an API that adheres to the JSON:API specification, see
https://jsonapi.org/format/

8

https://jsonapi.org/format/

This requests information about the item with ID 1, which is the ID of the
shoes. The warehouse now responds with status code 200 (meaning the re-
quest was successful) and with information about the shoes in JSON format.
This includes the price and the availability of the shoes and concludes the
communication.

Figure 2.2: Example of a GET request with a response in a JSON API.

2.1.2 OpenAPI

The most widely adopted industry standard for describing JSON APIs is
OpenAPI [3]. An OpenAPI description document is a YAML or JSON
file that describes a JSON API according to the OpenAPI specification,
formerly known as Swagger specification. By formally describing a JSON
API, one can use automated tools to process its description, which allows

9

for functionality like mocking, the act of automatically creating a fake API
server with example responses.
A typical OpenAPI specification contains the following fields [5]:

• openapi: contains the version of the OpenAPI Specification the doc-
ument is using.

• info: provides information about the API, like its author, title, and
description.

• paths: contains all endpoints of the API. Every endpoint contains all
available HTTP methods for that endpoint, which includes possible
parameters and responses to the requests.

• components: custom structures that can be reused throughout the
document, to avoid duplication.

For an example of an OpenAPI specification, see Appendix A.1.

2.2 Fuzzing

Fuzzing is the act of randomly generating input and feeding it into a program
in hope to uncover bugs or vulnerabilities [28], flaws in a system that could be
exploited to violate the system’s security policy [23]. The term fuzzing was
coined by Miller, who crafted a programming exercise for his students which
led them to create the first fuzzers [21]. It is currently the most popular
vulnerability discovery technique [17]. Compared to other techniques like
static code analysis, fuzzing is relatively easy to do, has a high accuracy, and
does not require extensive knowledge of the target application, also known
as the system under test (SUT) [20].
The traditional fuzzing process can be dissected into several stages [17], as
shown in Figure 2.3:

1. A test case, random program input, is generated. This test case should
fit the requirements of the input format of the program, while still
being broken enough to likely result in a crash. There are multiple
methods to generate test cases, which we will discuss below. Test
cases can be any form of input to the SUT, like files, text, or network
packets.

2. The test case is fed to the SUT as input and the targeted program is
executed.

3. The state of the SUT is monitored for exceptions or crashes.

4. Exceptions or crashes that have occurred are analyzed or categorized.

10

Figure 2.3: A flowchart of the traditional fuzzing process.

These stages are repeated for as many test cases as desired, until one hopes
that most of the bugs are found.

The manner in which the test cases are generated is of great importance
for the success of the fuzzing. Test cases in fuzzing are generally generated
using one of two methods: generation-based or mutation-based [17]. In
generation-based fuzzing, a generator creates test cases with knowledge
of the inputs’ data format. This has the advantage of making sure that
the test case adheres to the data format, however, it requires knowledge of
the data format, which is not always provided. Grammar-based fuzzing
is a form of generation-based fuzzing, where a specification of legal inputs
via a so-called grammar forms the basis of generated input [28]. The other
method of test case generation is mutation-based fuzzing, where test cases
are generated by modifying parts of provided inputs in a mutation process. A
mutator randomly modifies bytes of the seed inputs with random or special
values. This method is less efficient than generation-based fuzzing if the
inputs are modified randomly, as inputs are less likely to adhere to a data
format, thus, to determine the location and value to modify is the main
challenge of mutation-based fuzzing.

Another less common test case generation method is search-based
fuzzing [28]. When we have an idea of what inputs we are looking for,
we can search for them. Instead of inputs randomly, we can use domain-
knowledge to create a heuristic, and use it to search for inputs. This method
requires knowledge of the type of inputs we want to find.

Apart from distinguishing between generation-based, mutation-based
and search-based fuzzers, there is another, separate way to distinguish be-
tween fuzzers. We can also distinguish between three different types of

11

fuzzers: blackbox, whitebox and greybox fuzzers [13]. Blackbox fuzzers
randomly generate input for a program without knowledge of its inter-
nal function. Whitebox fuzzers systematically explore different execution
paths in a program. This generally gives better code coverage than blackbox
fuzzers [29], and thus, whitebox fuzzers are generally better at finding bugs
than blackbox fuzzers. However, whitebox fuzzers are far more difficult to
implement. Greybox fuzzers are blackbox fuzzers extended with whitebox
fuzzing techniques. An example of a greybox fuzzer is American Fuzzy Lop
(AFL) [27]. AFL is not a blackbox fuzzer because it leverages some program
analysis, but it also is not a whitebox fuzzer because it does not build on
program analysis entirely. More specifically, AFL utilizes coverage-guided
feedback, which is a method that monitors which parts of the program are
executed by each test case, and uses this information to direct new test
cases.

But what kind of bugs do fuzzers find? One possible type of bug is
a buffer overflow, in which the maximum length for the input gets ex-
ceeded [28]. Fuzzers can find these types of bugs by giving longer input
than expected to the SUT. Other bugs can for example be caused by miss-
ing error checks or rogue numbers. To summarize: a large variety of bugs
can be found using fuzzing.

For information on fuzzers for JSON API servers, see Chapter 4. Surpris-
ingly, all JSON API fuzzers are only able to fuzz JSON API servers. They
only fuzz requests to the server, not the responses to the client. This is the
main motivation of this thesis to focus on JSON API client fuzzing. We can
speculate that this is caused by less interest in the security of JSON API
clients and some difficulties that come with fuzzing of JSON API clients,
which we will discuss next.

2.2.1 Fuzzing JSON API clients vs. servers

Due to the design of JSON API clients and servers, fuzzing them differs in
two main ways:

1. Crash detection: when fuzzing a JSON API server, the server will
generally respond to the fuzzed request. This response can contain in-
formation about whether we have found a bug. For example, when the
server returns a 500 Internal Server Error, this could be an indication.
Also, when the server does not send a response, this could also be
informative, as it could indicate that the server has crashed or hangs.
JSON API clients do generally not respond to fuzzed responses, so it is
challenging to detect bugs, errors, or crashes in the JSON API client.

2. Automation: JSON API servers are generally listening for requests
at any time, so a fuzzer can easily send multiple requests in succession.

12

JSON API clients are generally only listening for responses after they
have sent a request themselves first. This makes it harder to automate
the fuzzing process. Ideally, we want to be able to prompt the JSON
API client to make a request during the fuzzing process.

13

Chapter 3

Fuzzing JSON API clients

This chapter contains the bulk of the research done in this thesis. It aims
to answer the research question, How can we test for bugs in a JSON API
client using fuzzing?, in multiple steps. We start in Section 3.1 with formu-
lating our requirements for the fuzzer. We then choose to use Flask with
PyJFuzz according to these requirements in Section 3.2. Next up, we pro-
gram a vulnerable JSON API client in Section 3.3, which we then use to
test our self-made BasicFuzzer on in Section 3.4. After we have succeeded
in fuzzing a self-made vulnerable client, we first expand our fuzzer to create
OpenAPIFuzzer in Section 3.5 before trying to fuzz real-world applications,
namely a 5G network function in Section 3.6 and the Radboud Osiris web
app using our OsirisFuzzer in 3.7. We finally present ProxyFuzzer, a mitm-
proxy add-on that acts as a proxy, and show that it can also fuzz the Osiris
web app in Section 3.8.

3.1 Fuzzer requirements

Before we start to investigate possible fuzzers to use, it is important to work
out the requirements of the fuzzer. This will help with making a calculated
choice of the fuzzer.
Our main requirements are as follows:

• The fuzzer needs to be able to act as an HTTP server. This will allow
the client to connect to the fuzzer.

• The fuzzer needs to be able to fuzz JSON objects. This will be the
format in which the fuzzer will return data.

We also have some optional requirements:

• The fuzzer should be able to check if the client has crashed, for example
by checking if the TCP connection is still active.

14

• The fuzzer should to be able to fuzz the HTTP header, including
parameters like the response code and the content length.

• The fuzzer should be able to prompt the client to make a request
repeatedly. This allows the fuzzer to fuzz multiple responses instead
of just one response. Otherwise, the client has to be prompted to make
a request manually by a user, for example.

• The fuzzer should be able to be generated from just an OpenAPI
specification.

When creating these requirements, we made the following choices:

• To minimize complexity, the fuzzing will be done over HTTP instead
of HTTPS. TLS support would be nice in practice, but is not a key
part of a JSON API, which allows us to leave it out.

• Although one of the optional requirements is the ability to fuzz the
HTTP header, this will not be the focus of the fuzzing. Most of the
application logic of JSON API clients will depend on the data being
returned by the server, not HTTP headers.

3.2 Picking a fuzzer or fuzzing framework

There exist a lot of different fuzzers that could be valid candidates for JSON
API client fuzzing. There also exist fuzzing frameworks: these are program-
ming libraries that allow us to easily create fuzzers from them, which also
makes them possible candidates. In this section, we will shortly talk about
the most obvious and promising possibilities, before finally picking a fuzzer
or fuzzing framework to use.

• JSON API server fuzzers: Some of our JSON API server fuzzers
discussed in Chapter 4, like RESTler, can generate a grammar from
just an OpenAPI specification, which would be a nice feature for JSON
API client fuzzing. However, these fuzzers are unable to act as an
HTTP server or to fuzz a JSON API client, which is one of our main
requirements. In other words, we are unable to pick one of these
fuzzer, without fundamentally changing the inner workings by hand.
Therefore, picking a JSON API server fuzzer is probably not the best
approach.

• Kitty: Kitty [4] is a fuzzing framework written in Python and inspired
by the Sulley and Peach fuzzers. Kitty is not a fuzzer in itself: it is
a fuzzing framework to program your own fuzzers, which means that
using it requires more work than ready-made fuzzers. But because of

15

this freedom in implementation and extensibility, it fits all our require-
ments. It is not a fuzzing framework made specifically for JSON APIs,
but it allows users to create fuzzers for a variety of protocols, like TCP.
It also includes a client fuzzing tutorial in its documentation [2], which
is quite handy. It does not support JSON fuzzing, however, we can
extend its functionality with a JSON fuzzing library. One disadvan-
tage of Kitty is that it has not been in active development since 2018,
but this does not necessarily have to be an issue.

• BooFuzz: BooFuzz1 is a fork and successor of the Sulley fuzzing
framework that focuses on extensibility. It allows a user to create
grammar-based blackbox fuzzers. One benefit of using BooFuzz would
be that it includes an example where an TLS client is fuzzed. This
example could be used to create an HTTP client fuzzer. However,
it does not include any JSON specific fuzzers, which means that we
would have to implement our own JSON fuzzer or use an existing
JSON fuzzer within BooFuzz.

• Flask with a JSON fuzzer: Flask2 is a Python web framework
that allows programmers to easily setup web servers in Python with
advanced functionality like URL routing and templating. We can com-
bine a Flask web server with a JSON fuzzer to easily create a JSON
API fuzzer. One of the main benefits of this approach is its simplicity,
as one could argue that using a fuzzing framework like Kitty or Boo-
Fuzz is unnecessarily complex, while a simple web server combined
with a JSON fuzzing library is sufficient for client side JSON API
fuzzing. It also allows for great control over the technical setup.

We decided on going for Flask with a JSON fuzzer. We chose this for its
simplicity: combining a JSON fuzzer with another fuzzing framework is not
needed, and thus overly complex. There exists no ready-made fuzzer for
JSON API clients, so using a JSON fuzzer combined with a web server is
the closest alternative.

There exist a few JSON fuzzers that we can use with Flask:

• PyJFuzz3: PyJFuzz is JSON fuzzing library in Python. According
to its developers, PyJFuzz provides ready-to-use Python classes and
functions that allow you to fuzz JSON inputs. The fuzzer is mutation-
based and blackbox. It is able to produce payloads for different vul-
nerability types, like SQL injection or XSS. Moreover, it can not just
fuzz the JSON key and value fields, but also the JSON structure. It

1https://github.com/jtpereyda/boofuzz
2https://flask.palletsprojects.com/en/2.2.x/
3https://github.com/mseclab/PyJFuzz

16

https://github.com/jtpereyda/boofuzz
https://flask.palletsprojects.com/en/2.2.x/
https://github.com/mseclab/PyJFuzz

is the most popular JSON fuzzer we found, with over 350 stars on
GitHub.

• Snodge4: Snodge is a library written in Kotlin that can randomly
mutate JSON, but also XML, text and binary data. It does not fuzz
the JSON structure, but it can fuzz key and value fields.

• Templated JSON Fuzzer5: This is an implementation of a tem-
plated (or grammar-based) fuzzing engine for JSON in Python. It is
not a very popular JSON fuzzer, but its inner workings are very well
documented. It does not fuzz the JSON structure, only key and value
fields.

• JSON::Fuzz::Generator6: This JSON fuzzer is written in Ruby.
Just like Snodge and Templated JSON Fuzzer, it only fuzzes key and
value fields, not the JSON structure.

We decided that we wanted to use a JSON fuzzer written in Python, so
that we can easily combine it with a Flask program. We ended up going for
PyJFuzz, because it is the most popular JSON fuzzer, it implements XSS
payloads, which can be interesting when fuzzing a web app, and it allows us
to also fuzz the JSON structure.

After using Flask with PyJFuzz in the rest of our research, we found
out that PyJFuzz comes with its own web server7, which could mean that
using Flask for the web server is unnecessary. However, we could not get
this web server to work. Using Flask also allows us better control over the
web server, so we do not regret using it.

3.3 Vulnerable client

We create a vulnerable JSON API client to test our fuzzer on, because this
keeps the technical setup simpler and easier to control than if we start with
fuzzing an existing real-world JSON API client.

We start by designing an OpenAPI8 specification of our imaginary JSON
API, see Appendix A.1. We have chosen to use OpenAPI to design the sim-
ple JSON API because it allows us to easily mock the server in SwaggerHub9.
Moreover, it provides a nice overview of the API structure and could allow
possible fuzzers to gain a better understanding of the API. The JSON API

4https://github.com/npryce/snodge
5https://github.com/arbitraryrw/templated-json-fuzzer
6https://github.com/deme0607/json-fuzz-generator
7https://github.com/mseclab/PyJFuzz#built-in-tool
8For more information about OpenAPI specifications, see Section 2.1.2
9A tool for working creating OpenAPI specifications, https://swagger.io/tools/

swaggerhub/

17

https://github.com/npryce/snodge
https://github.com/arbitraryrw/templated-json-fuzzer
https://github.com/deme0607/json-fuzz-generator
https://github.com/mseclab/PyJFuzz#built-in-tool
https://swagger.io/tools/swaggerhub/
https://swagger.io/tools/swaggerhub/

is based on our webshop example from Chapter 1 and a very stripped down
version of the Pet Store example from Swagger10.

The item schema of the OpenAPI specification is the main schema. It
includes most data types (like integer, float, boolean, etc.), as different data
types could be interesting for a fuzzer.

Figure 3.1: An overview of the control flow of the vulnerable JSON API
client.

See Figure 3.1 for an overview of the control flow of the vulnerable
client. The Python code of the vulnerable client, see Appendix A.2, uses
the requests library, which allows us to easily make HTTP requests to the
fuzzer. Because a possible way to do the alive-check of the SUT is to check if
the TCP connection is still active, we make sure that the requests are made
by the same Session object. This keeps the TCP connection open between
requests instead of closing it immediately afterward.

The vulnerable client sends two types of requests to the /item endpoint:
a GET and a POST request. The main idea is that these requests will be
repeatedly sent in a loop.

The test get(id) function sends an HTTP GET request to /item/{id}
using the created Session object. It then tries to parse the JSON with the
json.loads() function. This is the first bug in the vulnerable client: the
client will crash if the JSON returned by the fuzzer is not valid. Next up,
the code rounds the price of the requested item. This is the second bug in
the client: the data type of price is not verified and could for example be a
string, which would cause a crash.

The test post() function sends an HTTP POST request to /item con-
taining an example item in the request body. It then checks whether the
response code was equal to 200, which means everything went as expected.
If the response code is not equal to 200, the client exits. This is the third
bug in the vulnerable client: it does not properly handle different response
codes.
To summarize, the vulnerable client contains three bugs:

1. It parses JSON without verifying the JSON is of sound structure.

10https://petstore.swagger.io/

18

https://petstore.swagger.io/

2. It rounds the price without checking whether the price is actually a
float type.

3. It errors when the response code of the POST request is unequal to
200.

3.4 BasicFuzzer : Fuzzing the vulnerable client

Before we can start with fuzzing the vulnerable client, we have to program
the fuzzer in Python using Flask and PyJFuzz. We will call this fuzzer
”BasicFuzzer”, to avoid confusion when we expand on it later. We choose
to only fuzz the GET request of the vulnerable client, because we do not
prioritize HTTP header fuzzing, as described in Section 3.1. We give an
overview of the control flow of BasicFuzzer in Figure 3.2. For the code of
BasicFuzzer, see Appendix B.

Figure 3.2: An overview of the control flow of BasicFuzzer.

Whenever a JSON API client sends a GET request to the /item/1 end-
point, the get item(item id) function will be called with an item id of
1. BasicFuzzer will then use a dictionary that represents our item, as de-
fined in our OpenAPI specification in Appendix A.1, and pass it to the
PyJFuzz library. We flip a coin to determine in which way we fuzz: in the
first case, we configure PyJFuzz to also fuzz the JSON structure with the
strong fuzz parameter. This is useful for fuzzing the JSON parser of the
vulnerable client. In the second case, we fuzz parameters while maintaining
the JSON structure. We set the fuzzing techniques of PyJFuzz to only the
number 13, which is a random character attack. Other attacks like an SQL
injection payload are also possible, but unnecessary for our purposes.

3.4.1 Results

We ran BasicFuzzer 50 times on the vulnerable client. The results are
shown in Table 3.1. We see that BasicFuzzer is consistently able to find the

19

Iterations 50

Average time (s) 0.111

Average number of responses 2.32

Times JSON bug found 41

Times rounding bug found 9

JSON parsing bug percentage 82%

Table 3.1: Summarized results of fuzzing the vulnerable client with Basic-
Fuzzer

first two bugs: the strong fuzz parameter of PyJFuzz allows us to break
the parsing of json.loads() in the vulnerable client in Figure 3.3, while
fuzzing the data type of the price of an item breaks the rounding function
in Figure 3.4. The vulnerable client crashed after 2.32 responses on average.
The highest amount of responses it took to crash the vulnerable client was
10, while 1 response was the most common. When the vulnerable client
crashed, it was most often caused by the JSON parsing bug: 82% of the
time. The vulnerable client crashed on average after 0.111 seconds, which
we measured with the time Linux shell command.

Figure 3.3: json.loads() crashes the vulnerable client, as it fails to parse
the fuzzed JSON structure.

Figure 3.4: The fuzzed price was changed to a string, which makes the round
function crash the vulnerable client.

20

BasicFuzzer in its current state still has some limitations:

• It can not detect a crash of the client, it only returns fuzzed responses.

• It can not ask the client to make a request. The fuzzing process is
completely dependent on whether the client initiates it.

• It has to be tailored to the client. It would be more flexible if the basic
fuzzer could generate responses based on for example an OpenAPI
specification.

3.5 OpenAPIFuzzer : Adding OpenAPI parsing

Now that we have made our BasicFuzzer, we would like to expand it by
resolving some of its limitations. Adding the ability to parse an OpenAPI
specification seemed most interesting to us, as this would allow us to auto-
matically tailor the fuzzer to a specific JSON API with an OpenAPI spec-
ification, which saves a lot of time and effort. Moreover, this functionality
could also be used in combination with an OpenAPI specification gener-
ator like mitmproxy2swagger11 to fuzz JSON APIs without an OpenAPI
specification. We will call the resulting fuzzer ”OpenAPIFuzzer”.
There appear to be two possible options to add OpenAPI parsing:

• It is possible to generate a JSON example with the Java Swagger
Inflector library and pass this to PyJFuzz12. This could be easier than
the second option, but it does require the use of Java.

• Manually parse and generate examples with the openapi3-parser

Python library13. We thought that this would be better practice than
combining our Python fuzzer with Java code, but it could be more
difficult to implement.

We picked the second option because we figured that only using Python is
the better practice in the long run, and we expected that the programming
task was doable. We were able to successfully implement this idea. An
overview of the control flow of OpenAPIFuzzer is shown in Figure 3.5. For
the code of OpenAPIFuzzer, see Appendix B.2.

OpenAPIFuzzer parses a given OpenAPI specification, and finds out to
which endpoints requests are made by the client. It also generates example
JSON payloads that will be given to PyJFuzz, which will create fuzzed
JSON based on these payloads. OpenAPIFuzzer uses two main functions

11https://github.com/alufers/mitmproxy2swagger
12https://stackoverflow.com/questions/41408768/how-to-generate-json-

examples-from-openapi-swagger-model-definition
13https://pypi.org/project/openapi3-parser/

21

https://github.com/alufers/mitmproxy2swagger
https://stackoverflow.com/questions/41408768/how-to-generate-json-examples-from-openapi-swagger-model-definition
https://stackoverflow.com/questions/41408768/how-to-generate-json-examples-from-openapi-swagger-model-definition
https://pypi.org/project/openapi3-parser/

Figure 3.5: An overview of the control flow of OpenAPIFuzzer.

to parse the OpenAPI specification, which are sometimes called recursively:
parseSchemaToJson() and parsePropToJson().

After parsing the OpenAPI specification, the URLs of the endpoints are
transformed into regular expression friendly form by the function processUrls().
This function removes the first ’/’ of the URL and replaces words in curly
brackets with a regular expression match. For example, the URL ’/item/{itemId}’
is changed to ’item/.*’.

We define a Flask route that matches all possible paths and desired
HTTP methods. In the function fuzz(), we loop over the URLs and the
methods collected from the OpenAPI specification. If we find a match, we
respond with fuzzed JSON generated from the corresponding example JSON
taken from the OpenAPI specification.

We can now run OpenAPIFuzzer on the OpenAPI specification in Ap-
pendix A.1 of the imaginary webshop JSON API. When we also run our
vulnerable client, OpenAPIFuzzer is able to find bugs, as shown in Figure
3.6. We will not discuss results extensively as in Section 3.4.1, because
BasicFuzzer and OpenAPIFuzzer have very similar results.

22

Figure 3.6: OpenAPIFuzzer successfully parses the OpenAPI specification of
the webshop and uses it to fuzz the vulnerable client.

3.6 Attempt at 5G Fuzzing

One of the main sources of inspiration for this thesis was the communica-
tion between 5G network functions. Communication between 5G network
functions is done via RESTful JSON APIs [22], which makes these net-
work functions a great target for one of our fuzzers. Moreover, all network
functions have a publicly available OpenAPI specification, which fits our
OpenAPIFuzzer perfectly.

We started out by trying to run OpenAPIFuzzer on the network function
NFManagement’s OpenAPI specification14. This gave us multiple errors.
After resolving these errors and even patching the openapi3-parser library
to include more information about the errors, we ran into an error that we
could not resolve.

We found out that the ’anyOf’ keyword is not properly supported by the
openapi3-parser library used in OpenAPIFuzzer at the time of writing. In
fact, there exists a GitHub issue for this exact problem15. We thought about
replacing all ’anyOf’ cases by their first subschema. However, there are a
lot of anyOf statements, so this idea is infeasible. Doing this would also
oversimplify the OpenAPI specification and make it less representative for
the actual API, which means that our OpenAPIFuzzer would not completely
test the API.

14https://github.com/jdegre/5GC_APIs/blob/Rel-18/TS29510_Nnrf_

NFManagement.yaml
15https://github.com/manchenkoff/openapi3-parser/issues/5. This issue has re-

cently been resolved, see Chapter 5.

23

https://github.com/jdegre/5GC_APIs/blob/Rel-18/TS29510_Nnrf_NFManagement.yaml
https://github.com/jdegre/5GC_APIs/blob/Rel-18/TS29510_Nnrf_NFManagement.yaml
https://github.com/manchenkoff/openapi3-parser/issues/5

Figure 3.7: One of the errors given by the openapi3-parser library.

This is where we were unable to make any further progress. One of the
ideas we had was to avoid the (apparently unfinished) openapi3-parser

library and use a more generic YAML parser, but this will not work because
of the referencing to schemas that is frequently done in OpenAPI specifi-
cations: we would have to implement referencing to other files, which we
consider to be an infeasible task.

3.7 OsirisFuzzer : Fuzzing the Radboud Osiris web
app

We would now like to test one of our fuzzers in a realistic scenario, on a
real-world application. After some thought, we decided that the Osiris web
app16 could be a good target, as it is related to the Radboud University, and
as it uses a JSON API. It is also a security-critical application, as it contains,
among other things, grades and course registrations of students. We also
learned about the Open Education API17, which is a publicly available Ope-
nAPI specification for applications in the education sector, and we hoped
that the Osiris web app used this API, so that we would have an OpenAPI
specification ready to use for our OpenAPIFuzzer. This, however, did not
turn out to be the case. In the web app, we focus on the results page18, as
we identified that this paged used the Osiris JSON API in a straightforward
manner. If we succeed in fuzzing this web app, we can in theory fuzz every

16https://ru.osiris-student.nl
17https://openonderwijsapi.nl/
18https://ru.osiris-student.nl/#/resultaten

24

https://ru.osiris-student.nl
https://openonderwijsapi.nl/
https://ru.osiris-student.nl/#/resultaten

other web app that uses a JSON API similarly.

Figure 3.8: An overview of the control flow of OsirisFuzzer.

As Osiris does not have an OpenAPI specification, we can not use our
OpenAPIFuzzer from Section 3.5. Therefore, we had to tailor our basic
fuzzer to make it work for the Osiris web app. We call the resulting fuzzer
”OsirisFuzzer”. We give an overview of the control flow in Figure 3.8, and
its code can be found in Appendix B.3. This fuzzer is essentially the same
as BasicFuzzer, except for two small adjustments:

• OsirisFuzzer does not include ”strong fuzzing”: the fuzzing of the
JSON structure. We decided to exclude this, as this did not give us
interesting results in practice.

• The configured PyJFuzz techniques also include options 0 and 4. These
techniques include XSS payloads, which seemed interesting for us to
include while fuzzing a web app.

• We run Flask with ssl context=’adhoc’, which allows us to fuzz web
apps that use TLS.

One issue that remains is that we have to make the Osiris web app connect to
our OsirisFuzzer instead of the actual JSON API. We were able to identify
multiple possible methods:

1. A proxy can be used to only redirect specific requests to https://

ru.osiris-student.nl to our OsirisFuzzer that match a path of a
JSON API endpoint, as illustrated in Figure 3.9.

2. A proxy can redirect all requests to https://ru.osiris-student.nl

to our OsirisFuzzer, but this fuzzer requests other data, like CSS files
and anything else that we do not want to fuzz, from the server itself,
as illustrated in Figure 3.10.

3. We can run a modified copy of the Osiris web app that replaces specific
API requests with requests to OsirisFuzzer, as illustrated in Figure
3.11.

We decided that the third method is the easiest and most practical, as it
does not require setting up a proxy, and we figured that modifying a copy of

25

https://ru.osiris-student.nl
https://ru.osiris-student.nl
https://ru.osiris-student.nl

the Osiris web app is a relatively easy task. This did not turn out to be the
case. In the end, method 1 is the only setup we were able to get working.
For the attempts at the other methods, see Section 3.7.2.

Figure 3.9: Method 1: Proxy redirects specific requests to OsirisFuzzer.

Figure 3.10: Method 2: OsirisFuzzer requests non-fuzzed content from the
server.

For method 1, we were not able to find an easy way to configure a proxy
like Burp Suite19 to only redirect requests to our OsirisFuzzer that matched
a certain URL pattern. We decided to look into creating our own Burp Suite
extension to be able to do exactly this, because Burp Suite is the proxy we
are most familiar with.

After writing the Burp Suite extension20, see Appendix B.3.1, we were
able to successfully fuzz the Osiris web app. The extension matches requests
that come from https://ru.osiris-student.nl. For these requests, it
checks if the URL starts with a target path. In our case, we are fuzzing the
results page of Osiris, which has a path of /student/osiris/student/resultaten.
If the URL starts with this path, we change the host and port of the request
to that of our OsirisFuzzer, to forward it to this fuzzer.

The extension also replaces the HTTP version to HTTP/1.1, as Flask does
not seem to support newer HTTP versions. This is a quick and easy solution

19https://portswigger.net/burp
20Our extension was based on an example given by PortSwigger: https:

//github.com/PortSwigger/example-traffic-redirector/blob/master/python/

TrafficRedirector.py

26

https://ru.osiris-student.nl
https://portswigger.net/burp
https://github.com/PortSwigger/example-traffic-redirector/blob/master/python/TrafficRedirector.py
https://github.com/PortSwigger/example-traffic-redirector/blob/master/python/TrafficRedirector.py
https://github.com/PortSwigger/example-traffic-redirector/blob/master/python/TrafficRedirector.py

Figure 3.11: Method 3: Modified web app sends specific requests to Osiris-
Fuzzer.

to this problem, as long as the target web app does not use functionality of
the newer HTTP versions. To provide support for newer HTTP versions,
we recommend rewriting OsirisFuzzer in another Python framework like
Quart21 which does support these newer HTTP versions.

OsirisFuzzer still has some limitations:

• Automation: to fuzz the web app, we need to refresh the page for
each test case. Ideally, OsirisFuzzer would refresh the page automati-
cally. This can be done with software like Puppeteer22 or Selenium23.

• Crash detection: OsirisFuzzer can not detect a crash in the web
app, we have to identify a crash ourselves. If we can specify what con-
stitutes a crash, this could also possibly be automated with Puppeteer,
Selenium or a similar application.

3.7.1 Results

We ran 50 test cases of OsirisFuzzer within 8.5 minutes using the setup
shown in Figure 3.12, which is 10.2 seconds per test case on average. Ap-
proximately a half of the time was used to save responses in Burp Suite,
which we wanted to use for tracking crash-causing payloads. It is worth not-
ing that this time per test case can be significantly reduced by automating
the refreshing of the browser and saving the fuzzed responses automatically.
Also, each test case fuzzes 25 independent JSON objects represented on the
web app as independent list items, so we actually fuzzed 50 · 25 = 1250 list

21https://quart.palletsprojects.com/en/latest/
22https://pptr.dev/
23https://www.selenium.dev/

27

https://quart.palletsprojects.com/en/latest/
https://pptr.dev/
https://www.selenium.dev/

Figure 3.12: Fuzzing the Osiris web app. On the left you can see our Osiris-
Fuzzer and Burp Suite running, on the right the Osiris web app with fuzzed
results.

Test cases Time (s) Iterations per second Bugs/crashes found

50 510 10.2 0

Table 3.2: Summarized results of fuzzing the Osiris web app

items. During the fuzzing, no crashes, errors, or bugs were found in the web
app or in the browser console.

While fuzzing the Osiris web app, it gave us an error pop-up every fifth
iteration, see Figure 3.13. We first thought that we found a bug, but seeing
that we got an error exactly every fifth iteration, we were very skeptical.
After some investigation, we found that the error was caused by Burp Suite
in a different response than the response we fuzzed. Our guess is that this
is caused by a bug in Burp Suite or by some form of DoS protection from
Osiris.

Even though we were unable to find a bug or cause a crash, we have
still created a setup in which it is possible to fuzz any web app that uses
a JSON API. This is thus a useful proof-of-concept. It is also reassuring
security-wise that we were not able to find bugs in the Osiris website.

28

Figure 3.13: The error from Osiris and the Burp Suite error from a non-fuzzed
response.

3.7.2 Other attempts

As mentioned before, we figured that method 3, modifying the web app to
send specific requests to OsirisFuzzer, as illustrated in Figure 3.11, would
be the easiest, as it does not require setting up a proxy. With this method,
we would replace any mention to the endpoint we want to fuzz, with the
URL of our OsirisFuzzer. This turned out to be a lot more challenging than
we thought. Making a local copy of the web app did not work: it gave
just a blank screen when opened. We also tried modifying the JavaScript
of the web app in Firefox24, which contained the requests to the JSON API
that we wanted to replace with requests to OsirisFuzzer. However, this also
broke the web app for unknown reasons.

We decided to take a look at method 2 next, in which all requests get for-
warded to OsirisFuzzer, which requests other, non-fuzzed data like CSS files
from the https://ru.osiris-student.nl server, as illustrated in Figure
3.10. We programmed OsirisFuzzer to send a request to the Osiris website
with the same headers and cookies for content that we didn’t want to fuzz.
Unfortunately, this also did not work in the end, and the web app would

24This is a relatively new feature in Firefox, see https://www.mozilla.org/en-US/

firefox/113.0/releasenotes/

29

https://ru.osiris-student.nl
https://www.mozilla.org/en-US/firefox/113.0/releasenotes/
https://www.mozilla.org/en-US/firefox/113.0/releasenotes/

not finish loading for unknown reasons.

3.7.3 Radboud Osiris Android app attempt

Our initial plan was to fuzz the Radboud Osiris Android app instead of the
web app, but later on we decided to focus on the web app, as this allowed for
an easier technical setup. We did however attempt to configure the Android
app to use the Burp Suite proxy.

We emulated the Android operating system and installed the Radboud
Osiris app on this emulated device. Sadly, we quickly ran into an issue: the
app makes use of certificate pinning [25]. With this technique, the app is
embedded with the public certificate of the Osiris server, which is used to
encrypt all the HTTP traffic. This makes it challenging to intercept this
traffic or to impersonate the Osiris server, which is required for using our
OsirisFuzzer. We decided to stop here and to focus on the web app. This
does not have a problem with certificate pinning, as it is not implemented
in the Osiris web app, as HTTP Public Key Pinning is obsolete [25]. We
did come up with some possible methods to bypass certificate pinning in the
Android app:

1. Replacing the certificate in the bytecode of the app with our own
certificate.

2. Removing the certificate check in the bytecode of the app altogether.

3. Decompiling the app and replacing or removing the certificate in the
decompiled code.

Looking into fuzzing Android apps could be interesting future work, see
Chapter 5.

3.8 ProxyFuzzer

One crucial part for each of our JSON API client fuzzers so far has been how
we get the JSON example payload for PyJFuzz to fuzz. BasicFuzzer from
Section 3.4 used a sample JSON schema from the item object that we hard
coded in BasicFuzzer. OpenAPIFuzzer from Section 3.5 used an OpenAPI
specification to generate example JSON data for PyJFuzz. OsirisFuzzer
from Section 3.7 also contained a hard coded JSON example for PyJFuzz,
just like BasicFuzzer.

What would happen if we fetch this JSON example for PyJFuzz from
the JSON API server itself? We could forward a request to the JSON
API server, intercept its response, pass it to PyJFuzz and send the fuzzed
response to the JSON API client, as shown in Figure 3.14. If we succeed
in doing this, we create a JSON API client fuzzer that in theory works on

30

every JSON API client, without the need for an OpenAPI specification or
for hard coding a JSON example for PyJFuzz. This is the main idea behind
our ProxyFuzzer, which we will discuss in this section. We believe that
ProxyFuzzer is the best fit for most use cases, as it in theory works on any
JSON API client that can use mitmproxy, and does not require an OpenAPI
specification.

Figure 3.14: ProxyFuzzer would act as a proxy between the client and the
server.

It is important to note that ProxyFuzzer is not suited for fuzzing re-
sponses of requests that are considered destructive. One could for example
want to fuzz the JSON response from a request to a /account/delete end-
point. Even though the response of this request could be interesting to fuzz,
ProxyFuzzer would forward this request to the actual JSON API server,
which would delete your account. If you want to fuzz the response of this
/account/delete endpoint, OpenAPIFuzzer or a tailored fuzzer like Osiris-
Fuzzer would suit this better.

We can avoid using a Flask web server by writing an extension for a
proxy, which reduces complexity. We tried writing an extension for Burp
Suite, because this is the proxy we are most familiar with, but we did not
get this to work, see Section 3.8.1. We ended up writing an add-on for
mitmproxy25, another HTTP(S) proxy. We chose for mitmproxy because it
is written in Python, and we had worked with it before. For an overview of
the control flow, see Figure 3.15. The code of ProxyFuzzer can be found in
Appendix B.4.
The add-on first defines four new options:

1. fuzzhost: the host from which the responses will be fuzzed.

2. fuzzpaths: a comma-separated list of paths for which the responses
will be fuzzed.

3. fuzztechniques: a comma-separated list of PyJFuzz fuzzing tech-
niques to use. For example, 13 is a random character attack, while 0
and 4 contains XSS payloads.

4. strongfuzz: a boolean for the strong fuzz parameter of PyJFuzz,
which allows for fuzzing the JSON structure.

25https://mitmproxy.org/

31

Figure 3.15: An overview of the control flow of ProxyFuzzer.

These options can be set in the command line, for example: mitmproxy -s

proxy-fuzzer.py --set fuzzhost=radboudinstituteof.pwning.nl, or in
the mitmproxy configuration file. The default values are set for fuzzing the
results page of the Osiris web app.

The response function contains the actual fuzzing code, it gets called
when mitmproxy is processing an HTTP(S) response. When the host of
the corresponding request matches the fuzzhost option, and the path of
the request starts with one of the fuzzpaths, we fuzz the response with
PyJFuzz. We use the strong fuzz parameter for PyJFuzz if the strongfuzz
option is set, and the fuzzing techniques from the fuzztechniques option.

When we run our ProxyFuzzer on the results page of Osiris web app, we
get similar results as in Section 3.7.1, as shown in Figure 3.16. Because of
the similarity to OsirisFuzzer, we will not discuss the results extensively.

The same limitations in automation and crash detection as for Osiris-
Fuzzer still exist, see Section 3.7. ProxyFuzzer could also be improved
by adding support for regular expressions in the options fuzzhost and
fuzzpaths. This would allow for better control over the matching hosts
and URLs, as you could for example use wildcards.

3.8.1 Other attempts

Before we made our mitmproxy add-on ProxyFuzzer, we tried to create it in
Flask and Burp Suite first.

We first made a Flask fuzzer that used our Burp Suite extension from
Section 3.7 and the Python requests library to fetch responses from the

32

Figure 3.16: Fuzzing the Osiris web app. On the left you can see mitmproxy
running with ProxyFuzzer, on the right the Osiris web app with fuzzed results.

JSON API server, as described in a Stack Overflow answer from user Evan26.
This worked pretty easily, but still required the use of the Burp Suite ex-
tension. The resulting code, which is similar to the code of our final Prox-
yFuzzer, can be found in Appendix B.4.1. We prefer ProxyFuzzer over this
solution, as it does not require the use of the Burp Suite extension.

We tried working around the Burp Suite extension, but ran into issues
with lack of HTTP2 support by Flask. We used Quart27 to add HTTP2 sup-
port, but ran into problems with TLS, because Quart does not support the
ssl context=’adhoc’ parameter that we use in Flask. Another issue we ran
into was that Osiris kept redirecting us to https://engine.surfconext.nl
off of our Flask fuzzer for authentication purposes. When we tried to detect
redirects in HTTP traffic by looking for the Location header, we did not
find any. We guess that Osiris uses JavaScript redirects instead of HTTP
redirects. We could search for these redirects in the source code and try to
replace them, but we figured that there should be an easier method.

Before using mitmproxy, we tried writing an extension for Burp Suite,
because we were more familiar with this proxy. However, we were unable
to get the PyJFuzz library working within Burp Suite. Burp Suite uses a
different PATH variable for locating Python modules, but even when we

26https://stackoverflow.com/a/36601467
27https://quart.palletsprojects.com/en/latest/

33

https://engine.surfconext.nl
https://stackoverflow.com/a/36601467
https://quart.palletsprojects.com/en/latest/

changed this to the exact same PATH variable of our other fuzzers, there
were errors when loading PyJFuzz, which we were unable to understand and
resolve.

34

Chapter 4

Related Work

This chapter discusses existing research on JSON API fuzzing.

An extensive search online gives no results on REST or JSON API client
fuzzing specifically. This is a sign that this thesis fills a knowledge gap in this
area. There does exist quite a lot of literature on REST API server fuzzing,
which is also applicable to JSON API servers, as explained in Section 2.1.1.
This will be the main focus of this chapter.

There exist numerous REST API server fuzzers, too many to all mention
in this thesis. We will take a look at five of them, in arbitrary order. We
chose to look at RESTler and EvoMaster because of their popularity: their
corresponding papers have over a hundred citations. Pythia and foREST
both claim to outperform at least one of these popular fuzzers, so we discuss
them as well. Finally, CATS was mentioned by our supervisor, and is one
of the few fuzzers with OpenAPI parsing capabilities. For a comprehensive
overview of these five fuzzers and their main features, see Table 4.1.

1. RESTler [9] is an open-source grammar-based blackbox REST API
server fuzzer that can generate a grammar from an OpenAPI speci-
fication and fuzz accordingly, see Figure 4.1. The main feature that
distinguishes RESTler from other REST API server fuzzers is that it is
the first stateful REST API server fuzzer. In RESTler, each test case
is defined as a sequence of requests and responses. It generates tests
in two main ways: by inferring producer-consumer dependencies, that
some request should be executed after another certain request, and by
analyzing dynamic feedback from responses to for example avoid un-
necessary request sequences in the future. Another feature of RESTler
is its bug classification: it uses so-called buckets to avoid duplicates
by merging bugs that end in the same sequence of requests, while also
saving replay logs that can be used to reproduce the bug. RESTler
has been successfully used to find numerous bugs in GitLab, Microsoft
Azure and Office 365.

35

Fuzzer Year Open-source Basis Type OpenAPI Comment

RESTler 2018 ✓ Grammar-based Blackbox ✓ First stateful REST API fuzzer

CATS 2020 ✓ Grammar-based Blackbox ✓ Multiple independent fuzzers

EvoMaster 2018 ✓ Search-based Whitebox ✓ Generates JUnit tests

Pythia 2020 X Grammar-based Greybox X Coverage-guided feedback

foREST 2022 X Tree-based Blackbox ✓ Novel tree-based approach

Table 4.1: An overview of the discussed REST API server fuzzers and their
main features.

Figure 4.1: Diagram of RESTler’s architecture1. With ”Swagger Spec”, the
OpenAPI specification is meant. The ”RESTler Test Engine” is the actual
fuzzer.

2. CATS2 is an open-source grammar-based blackbox REST API server
fuzzer. Short for Contract Auto-generated Tests for Swagger, it is
similar to RESTler in the sense that it can fuzz a REST API based
on its OpenAPI specification. CATS consists of multiple independent
fuzzers that test for specific scenarios. CATS will run this scenario
and match the result with its expectations.

3. EvoMaster [7] is an open-source search-based whitebox REST and
GraphQL API server fuzzer. Just like RESTler and CATS, EvoMas-
ter can fuzz a REST API based on its OpenAPI specification. One
of its main features is that EvoMaster is able to do whitebox fuzzing
(as well as blackbox fuzzing), which distinguishes it from other, com-
monly blackbox REST API server fuzzers like the ones we mention in
this chapter. EvoMaster can automatically generate JUnit tests while
fuzzing for bugs at the same time. To generate these tests, it uses
evolutionary algorithms, an artificial intelligence technique, in partic-
ular the MIO algorithm [6]. This makes it a search-based REST API
server fuzzer. Moreover, EvoMaster has been successfully applied to
find multiple bugs in open-source projects. RESTler and EvoMas-

1Taken from https://raw.githubusercontent.com/microsoft/restler-

fuzzer/main/docs/user-guide/RESTler-arch.png
2https://endava.github.io/cats/

36

https://raw.githubusercontent.com/microsoft/restler-fuzzer/main/docs/user-guide/RESTler-arch.png
https://raw.githubusercontent.com/microsoft/restler-fuzzer/main/docs/user-guide/RESTler-arch.png
https://endava.github.io/cats/

ter, among others3, have been compared against each other [29]. The
results concluded that EvoMaster has a better average line coverage
overall.

4. Pythia [8] is a grammar-based greybox REST API server fuzzer that
uses coverage-guided feedback and a learning-based mutation strategy
for stateful fuzzing. It does not use an OpenAPI specification, but
requires seed inputs to generate its test cases. The coverage-guided
feedback helps with prioritizing test cases that are more likely to find
bugs, while the learning-based mutation strategy allows Pythia to gen-
erate grammatically valid test cases. Atlidakis et al. claim that Pythia
is able to outperform RESTler in terms of code coverage and new bugs
found. Pythia has been successfully used to find numerous bugs, but
is not publicly available or open-source.

5. foREST [18] is a tree-based blackbox REST API server fuzzer. Ac-
cording to their own research, existing REST API fuzzers are generally
based on classic API-dependency graphs. However, these dependencies
are inefficient for REST services because of the explosion of dependen-
cies among APIs. To improve on this, foREST uses a novel tree-based
approach, which largely improves the efficiency of the fuzzing. Lin
and al. claim that foREST is able to reach better code coverage than
EvoMaster and RESTler by using this approach, however, no compar-
ison with Pythia or CATS has been made. foREST generates this API
tree according to an OpenAPI specification. By using foREST, mul-
tiple previously unknown bugs have been discovered. Unfortunately,
foREST is not publicly available or open-source.

It is worth mentioning that, although these fuzzers describe themselves as
REST API (server) fuzzers, some of them could be better described as JSON
API fuzzers, as the APIs they fuzz do not adhere to the definition of a REST
API [12]:

1. RESTler does not support other resource representations than JSON4,
so it can only fuzz JSON APIs.

2. CATS also does not support other resource representations than JSON.
In fact, it contains a specific fuzzer that verifies that an API endpoint
does not accept XML as its Content-Type5. It argues that endpoints
should avoid the XML Content-Type6.

3bBOXRT [16], RestCT [26], RESTest [19], RestTestGen [24] & Schemathesis [14]
4https://github.com/microsoft/restler-fuzzer/issues/335
5https://endava.github.io/cats/docs/fuzzers/linters/xml-content-type
6https://github.com/Endava/cats/blob/85947d0e316b46e926c371638ca644d6dbdb703c/

src/main/java/com/endava/cats/fuzzer/contract/XmlContentTypeContractInfoFuzzer.

java#L24

37

https://github.com/microsoft/restler-fuzzer/issues/335
https://endava.github.io/cats/docs/fuzzers/linters/xml-content-type
https://github.com/Endava/cats/blob/85947d0e316b46e926c371638ca644d6dbdb703c/src/main/java/com/endava/cats/fuzzer/contract/XmlContentTypeContractInfoFuzzer.java#L24
https://github.com/Endava/cats/blob/85947d0e316b46e926c371638ca644d6dbdb703c/src/main/java/com/endava/cats/fuzzer/contract/XmlContentTypeContractInfoFuzzer.java#L24
https://github.com/Endava/cats/blob/85947d0e316b46e926c371638ca644d6dbdb703c/src/main/java/com/endava/cats/fuzzer/contract/XmlContentTypeContractInfoFuzzer.java#L24

3. EvoMaster is not just limited to JSON APIs, but can also fuzz
GraphQL APIs and supports different resource representations like
XML and YAML7. Because of this support for other resource repre-
sentations, we view it as an actual REST API fuzzer, but it is certainly
not limited to only REST APIs.

4. Pythia generates test cases based on seed input [8], which allows it
to generate test cases in any resource representation. This allows it to
fuzz any REST API, and thus makes it a real REST API fuzzer.

5. foREST generates test cases based on an OpenAPI specification, but
does not put limitations on its Content-Type [18]. This allows foREST
to fuzz any resource representation and thus any REST API, as long
as an OpenAPI specification is provided.

7https://github.com/EMResearch/EvoMaster/blob/master/docs/blackbox.md

38

https://github.com/EMResearch/EvoMaster/blob/master/docs/blackbox.md

Chapter 5

Future Work

Our JSON API client fuzzers, BasicFuzzer from Section 3.4, OpenAPIFuzzer
from Section 3.5, OsirisFuzzer from Section 3.7, and ProxyFuzzer from Sec-
tion 3.8, could still be improved in a number of ways:

• One could add HTTP response code and header fuzzing to these
fuzzers. This would allow the fuzzers to test for bugs in JSON API
clients that use these HTTP fields, like our vulnerable client from Sec-
tion 3.3.

• Testing for non-crashing bugs in JSON API clients might also be pos-
sible, although we are not sure how this could be done.

• Looking into a different JSON fuzzer from PyJFuzz could also improve
the fuzzers. PyJFuzz worked fine for our purposes, but we do not
know if there exist useful payloads it can not create. It is possible
that a different JSON fuzzer, like Snodge as mentioned in Section 3.2,
could create other payloads that result in finding more bugs. It is also
possible to create an entirely new JSON fuzzer from scratch.

• In the case that the JSON API client is a web app, like the Osiris web
app, one could use software like Selenium or Puppeteer to make the
JSON API client automatically send requests to the fuzzer, or to add
crash detection, as described in Section 3.7.

• ProxyFuzzer from Section 3.8 could be improved by adding support
for regular expressions in the options fuzzhost and fuzzpaths, which
would increase control by for example adding support for wildcards.

We made an attempt at fuzzing a 5G network function in Section 3.6. At
the time, our OpenAPIFuzzer did not work because the openapi3-parser

library it used did not support the ’anyOf’ keyword. This issue has recently
been fixed1. It would be interesting to see if our OpenAPIFuzzer would now

1https://github.com/manchenkoff/openapi3-parser/issues/5

39

https://github.com/manchenkoff/openapi3-parser/issues/5

be able to successfully parse an OpenAPI specification of a network function.
We can also try to fuzz a 5G network function with our ProxyFuzzer, which
we created later in our research.

It would also be interesting to see if different JSON API clients could
be fuzzed, like other parts of the Osiris web app, other web apps, Android
apps and desktop applications. Our ProxyFuzzer should theoretically work
on web app JSON API clients, so it would be interesting to see if we could
find bugs in these other web apps. Even though we were unable to get the
technical setup for Android apps working in our research, it may very well
still be possible using one of the potential solutions we provided in Section
3.7.3: by replacing or removing the certificate in the bytecode, or replacing
it after decompiling the app. We did not look at desktop applications during
this research, but these can also be JSON API clients. Especially fuzzing a
JSON client that is written in C or C++ would be interesting, as programs
in these languages are more prone to vulnerabilities like buffer overflows,
because they allow accessing and overwriting data in any part of memory
and do not check the bounds of an array [1].

40

Chapter 6

Conclusions

In this chapter, we present all our conclusions in Section 6.1. We also discuss
the choices we made and reflect on them in Section 6.2.

6.1 Conclusions

We concluded that there exist no fuzzers for JSON API clients yet, as op-
posed to JSON API servers, and there exists no literature about them.
Existing REST API fuzzers1 like RESTler [9] are only able to fuzz JSON
API servers, not clients. We speculate that this is caused by less interest
in the security of JSON API clients and some difficulties that come with
fuzzing of JSON API clients in Section 2.2. Fuzzing JSON API clients is
namely fundamentally different from fuzzing JSON API server, as there is
no straight-forward way to detect crashes or to automate the fuzzing pro-
cess when fuzzing JSON API clients, see Section 2.2.1. JSON APIs are also
fundamentally different from REST APIs [12], because REST APIs can use
different resource representations from JSON and have to conform to more
constraints, like HATEOAS, see Section 2.1.1.

We have successfully answered the research question, How can we test
for bugs in a JSON API client using fuzzing?, in the following steps:

1. We created BasicFuzzer, a JSON API client fuzzer that consist of a
Flask2 web server that returns fuzzed JSON output created by the
PyJFuzz library3 in Section 3.4.

2. We made a vulnerable client in Section 3.3 and put three types of
bugs in this vulnerable client: a JSON parse without validating the
structure, a float round without verifying the datatype, and a planted

1For more information about existing REST API server fuzzers, see Chapter 4
2https://flask.palletsprojects.com/en/2.2.x/
3https://github.com/mseclab/PyJFuzz

41

https://flask.palletsprojects.com/en/2.2.x/
https://github.com/mseclab/PyJFuzz

error for a response code other than 200. We found the first two of
these bugs using our BasicFuzzer in Section 3.4.

3. We created OpenAPIFuzzer that can fuzz a JSON API client when
provided with its OpenAPI specification in Section 3.5. We were un-
able to use OpenAPIFuzzer to fuzz 5G network functions in Section
3.6, because of limitations of the openapi3-parser Python library.

4. We were able to fuzz the results page of the Osiris web app with
OsirisFuzzer by using the Burp Suite4 proxy with a custom self-made
extension, see Section 3.7. We did not find any bugs, which is reassur-
ing security-wise.

5. We created ProxyFuzzer, an add-on script for mitmproxy, that can acts
as a proxy and fuzz responses sent to the JSON API client. This in
theory allows us to fuzz any JSON API client that can use mitmproxy.

BasicFuzzer OpenAPIFuzzer OsirisFuzzer ProxyFuzzer

Specific to single API ✓ X ✓ X

Requires OpenAPI specification X ✓ X X

TLS support X X ✓ ✓

Fuzzes JSON structure ✓ ✓ X ✓

Random character mutations ✓ ✓ ✓ ✓

XSS payloads X X ✓ ✓

Table 6.1: A comparison between our four self-made fuzzers.

For a comparison between our four fuzzers, BasicFuzzer, OpenAPIFuzzer,
OsirisFuzzer, and ProxyFuzzer, see Table 6.1. We believe that ProxyFuzzer
is the best fit for most use cases, as it in theory works on any JSON API client
that can use mitmproxy, and does not require an OpenAPI specification.

We tried fuzzing the Radboud Osiris Android app, but we ran into prob-
lems due to certificate pinning in Section 3.7.3.

6.2 Evaluation of choices

6.2.1 Fuzzer requirements choices

When choosing requirements for our fuzzer, see Section 3.1, we made the
following choices:

• To minimize complexity, the fuzzing will be done over HTTP instead
of HTTPS. TLS support would be nice in practice, but is not a key
part of a JSON API, which allows us to leave it out.

4https://portswigger.net/burp

42

https://portswigger.net/burp

• Although one of the requirements is the ability to fuzz the HTTP
header, we choose to omit this. Most of the application logic of JSON
API clients will depend on the data being returned by the server, not
HTTP headers.

Overall, these choices turned out to be fine. Fuzzing over only HTTP sim-
plified things in the beginning, but eventually we were able to extend func-
tionality to HTTPS quite easily in Section 3.7, as the Osiris web app does
not use certificate pinning.

6.2.2 Implementation choices

We made the following choices regarding the implementation of our fuzzers:

• We chose to use OpenAPI to specify the JSON API, as 5G uses Ope-
nAPI to specify its API, and fuzzing 5G was one of our stretch goals.

• We chose Python to program our vulnerable client and fuzzer, as
Python is the programming language most familiar to us.

• We chose to use Flask with PyJFuzz for our fuzzer implementation,
because JSON API client fuzzers do not exist and using a JSON
fuzzing library like PyJFuzz is the closest alternative. Moreover, using
a fuzzing framework would be overly complex, as discussed in more
detail in Section 3.2. We chose PyJFuzz over other JSON fuzzers, be-
cause of its popularity, its XSS payloads, and its capability to fuzz the
JSON structure.

• We chose to use the openapi3-parser Python library5 for parsing
OpenAPI specifications to generate JSON examples for PyJFuzz, be-
cause this seemed like a doable programming task. Also, we thought
that it was better practice to only use Python, rather than combining
it with Java code, which was the alternative we found in Section 3.5.

• We chose to use Burp Suite as our proxy in Section 3.7, because this
was the proxy most familiar to us.

• We used mitmproxy for our ProxyFuzzer in Section 3.8, because it is
written in Python, we had used it in the past before, and Burp Suite
did not work.

Working with Python and OpenAPI turned out to be pleasant, OpenAPI
allowed us to easily mock the JSON API server. Using Flask with PyJFuzz
turned out to be a very flexible approach, as we could easily expand or
tailor our fuzzer. PyJFuzz does come with its own web server, but we

5https://pypi.org/project/openapi3-parser/

43

https://pypi.org/project/openapi3-parser/

did not get this to work, and with Flask we had better control over the
setup. It is possible that using a different JSON fuzzing library would have
been able to find bugs in the Osiris web app, see Section 3.7, but this is
merely speculation. We are also content with our choices for Burp Suite
and mitmproxy, as these allowed us to create OsirisFuzzer and ProxyFuzzer
respectively.

Using the openapi3-parser Python library did not turn out to be a
great choice. We were able to create our OpenAPIFuzzer that could parse
OpenAPI specifications in Section 3.5, but it did not support the use of the
’anyOf’ keyword at the time6. It is possible that using a different OpenAPI
parsing library would have allowed us to parse specifications with the ’anyOf’
keyword, or that using the Java Swagger Inflector library as described in
Section 3.5 would have allowed this.

6.2.3 Case study choices

We chose to first fuzz a self-made vulnerable client in Section 3.3, because
this would keep the technical setup simpler and easier to control. This
turned out to be a great choice: it was nice to have full control over the
setup, and extending the fuzzer to fuzz other JSON API clients was just a
small task. We were able to find the first two bugs of our vulnerable client
with our BasicFuzzer using different payloads, so we consider these bugs
to be well-chosen. We did not attempt to find the third bug, an HTTP
response code parsing bug, as we decided not to fuzz the HTTP header and
response codes. In hindsight, we could have also omitted this bug in our
vulnerable client.

We chose to fuzz the Osiris web app in Section 3.7, because it is an
application related to the Radboud University that uses a JSON API, and
is security-critical, as it contains, among other things, grades and course
registrations of students. Also, fuzzing a web app was easier than fuzzing
for example an Android app, as we did not have to worry about certificate
pinning as described in Section 3.7.3. Fuzzing a web app was definitely
easier than fuzzing an Android app, but fuzzing the Osiris web app turned
out to be quite challenging.

When trying to make the Osiris web app connect to our OsirisFuzzer in
Section 3.7, we identified three possible methods:

1. A proxy could be used to only redirect requests to OsirisFuzzer that
match a path of a JSON API endpoint.

2. A proxy could redirect requests toOsirisFuzzer, but our fuzzer requests
other data that we do not want to fuzz from the server itself.

6This issue has been fixed: https://github.com/manchenkoff/openapi3-parser/

issues/5. Seeing if this resolves our issues is interesting future work, see Chapter 5.

44

https://github.com/manchenkoff/openapi3-parser/issues/5
https://github.com/manchenkoff/openapi3-parser/issues/5

3. We could run a modified copy of the web app that replaces API re-
quests with requests to OsirisFuzzer.

We first tried to make methods 2 and 3 work. These did not turn out to
work, for unknown reasons. In hindsight, it would have been more efficient
if we started with method 1 first, but we do not know how we could have
been able to tell this, as we were unable to tell that methods 2 and 3 would
not work.

45

Bibliography

[1] Buffer overflows. https://www.owasp.org/index.php/

Buffer_Overflows, archived 2016-08-29 at the Wayback Ma-
chine: https://web.archive.org/web/20160829122543/https:

//www.owasp.org/index.php/Buffer_Overflows.

[2] Client fuzzing tutorial - Kitty 0.7.1 documentation. https://kitty.

readthedocs.io/en/latest/tutorials/client_fuzzing.html.

[3] Getting started - OpenAPI documentation. https://oai.github.io/
Documentation/start-here.html.

[4] Introduction - Kitty 0.7.1 documentation. https://kitty.

readthedocs.io/en/latest/base_introduction.html.

[5] Structure of an OpenAPI document - OpenAPI documentation. https:
//oai.github.io/Documentation/specification-structure.html.

[6] Andrea Arcuri. Many independent objective (mio) algorithm for test
suite generation. In Search Based Software Engineering: 9th Interna-
tional Symposium, SSBSE 2017, Paderborn, Germany, September 9-11,
2017, Proceedings 9, pages 3–17. Springer, 2017. DOI: 10.1007/978-3-
319-66299-2 1.

[7] Andrea Arcuri. Evomaster: Evolutionary multi-context automated sys-
tem test generation. In 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation (ICST), pages 394–397.
IEEE, 2018. DOI: 10.1109/ICST.2018.00046.

[8] Vaggelis Atlidakis, Roxana Geambasu, Patrice Godefroid, Marina Pol-
ishchuk, and Baishakhi Ray. Pythia: Grammar-based fuzzing of REST
APIs with coverage-guided feedback and learning-based mutations.
CoRR, abs/2005.11498, 2020. DOI: 10.48550/arXiv.2005.11498.

[9] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk.
RESTler: Stateful REST API fuzzing. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE), pages 748–758.
IEEE, 2019. DOI: 10.1109/ICSE.2019.00083.

46

https://www.owasp.org/index.php/Buffer_Overflows
https://www.owasp.org/index.php/Buffer_Overflows
https://web.archive.org/web/20160829122543/https://www.owasp.org/index.php/Buffer_Overflows
https://web.archive.org/web/20160829122543/https://www.owasp.org/index.php/Buffer_Overflows
https://kitty.readthedocs.io/en/latest/tutorials/client_fuzzing.html
https://kitty.readthedocs.io/en/latest/tutorials/client_fuzzing.html
https://oai.github.io/Documentation/start-here.html
https://oai.github.io/Documentation/start-here.html
https://kitty.readthedocs.io/en/latest/base_introduction.html
https://kitty.readthedocs.io/en/latest/base_introduction.html
https://oai.github.io/Documentation/specification-structure.html
https://oai.github.io/Documentation/specification-structure.html
https://doi.org/10.1007/978-3-319-66299-2_1
https://doi.org/10.1007/978-3-319-66299-2_1
https://doi.org/10.1109/ICST.2018.00046
https://doi.org/10.48550/arXiv.2005.11498
https://doi.org/10.1109/ICSE.2019.00083

[10] R. Fielding and J. Reschke. Hypertext transfer protocol (http/1.1):
Semantics and content. RFC 7231, RFC Editor, June 2014. https:

//www.rfc-editor.org/rfc/rfc7231#section-4.

[11] Roy Thomas Fielding. Chapter 5: Representational State Transfer
(REST). PhD thesis, University of California, 2000. https://www.ics.
uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

[12] Roy Thomas Fielding. REST APIs must be hypertext-driven, Oct
2008. https://roy.gbiv.com/untangled/2008/rest-apis-must-

be-hypertext-driven.

[13] Patrice Godefroid. Fuzzing: Hack, art, and science, volume 63. ACM
New York, NY, USA, 2020. DOI: 10.1145/3363824.

[14] Zac Hatfield-Dodds and Dmitry Dygalo. Deriving semantics-aware
fuzzers from web API schemas. In Proceedings of the ACM/IEEE 44th
International Conference on Software Engineering: Companion Pro-
ceedings, pages 345–346, 2022. DOI: 10.1145/3510454.3528637.

[15] htmx. How did rest come to mean the opposite of rest?,
Jul 2022. https://htmx.org/essays/how-did-rest-come-to-mean-
the-opposite-of-rest/.

[16] Nuno Laranjeiro, João Agnelo, and Jorge Bernardino. A black box tool
for robustness testing of REST services, volume 9. IEEE, 2021. DOI:
10.1109/ACCESS.2021.3056505.

[17] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. In
Cybersecurity, volume 1, pages 1–13. SpringerOpen, 2018. DOI:
10.1186/s42400-018-0002-y.

[18] Jiaxian Lin, Tianyu Li, Yang Chen, Guangsheng Wei, Jiadong Lin,
Sen Zhang, and Hui Xu. foREST: A tree-based approach for
fuzzing RESTful APIs. arXiv preprint arXiv:2203.02906, 2022. DOI:
10.48550/arXiv.2203.02906.

[19] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés.
RESTest: Black-box constraint-based testing of RESTful web APIs.
In Service-Oriented Computing: 18th International Conference, ICSOC
2020, Dubai, United Arab Emirates, December 14–17, 2020, Proceedings
18, pages 459–475. Springer, 2020. DOI: 10.1007/978-3-030-65310-1 33.

[20] Richard McNally, Ken Yiu, Duncan Grove, and Damien Gerhardy.
Fuzzing: the state of the art. DEFENCE SCIENCE AND TECHNOL-
OGY ORGANISATION EDINBURGH (AUSTRALIA), 2012. Techni-
cal report. https://apps.dtic.mil/sti/citations/ADA558209.

47

https://www.rfc-editor.org/rfc/rfc7231#section-4
https://www.rfc-editor.org/rfc/rfc7231#section-4
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://doi.org/10.1145/3363824
https://doi.org/10.1145/3510454.3528637
https://htmx.org/essays/how-did-rest-come-to-mean-the-opposite-of-rest/
https://htmx.org/essays/how-did-rest-come-to-mean-the-opposite-of-rest/
https://doi.org/10.1109/ACCESS.2021.3056505
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.48550/arXiv.2203.02906
https://doi.org/10.1007/978-3-030-65310-1_33
https://apps.dtic.mil/sti/citations/ADA558209

[21] Barton P Miller, Lars Fredriksen, and Bryan So. An empirical study of
the reliability of UNIX utilities, volume 33. ACM New York, NY, USA,
1990.

[22] Lionel Morand. OpenAPIs for the service-based architec-
ture. https://www.3gpp.org/technologies/openapis-for-the-

service-based-architecture, 2022.

[23] R. Shirey. Internet security glossary. RFC 2828, RFC Editor, May
2000. https://www.rfc-editor.org/rfc/rfc2828#section-3.

[24] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. Resttest-
gen: Automated black-box testing of RESTful APIs. In 2020
IEEE 13th International Conference on Software Testing, Valida-
tion and Verification (ICST), pages 142–152. IEEE, 2020. DOI:
10.1109/ICST46399.2020.00024.

[25] Jeffery Walton, John Steven, Jim Manico, Kevin Wall, and Ricardo
Iramar. Certificate and public key pinning. https://owasp.org/www-
community/controls/Certificate_and_Public_Key_Pinning.

[26] Huayao Wu, Lixin Xu, Xintao Niu, and Changhai Nie. Combina-
torial testing of RESTful APIs. In Proceedings of the 44th Interna-
tional Conference on Software Engineering, pages 426–437, 2022. DOI:
10.1145/3510003.3510151.

[27] Michal Zalewski. American fuzzy lop. URL: http://lcamtuf.

coredump.cx/afl.

[28] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and
Christian Holler. The Fuzzing Book. CISPA Helmholtz Center for
Information Security, 2022. Retrieved 2022-08-06.

[29] Man Zhang and Andrea Arcuri. Open problems in fuzzing RESTful
APIs: A comparison of tools. arXiv preprint arXiv:2205.05325, 2022.
DOI: 10.48550/arXiv.2205.05325.

48

https://www.3gpp.org/technologies/openapis-for-the-service-based-architecture
https://www.3gpp.org/technologies/openapis-for-the-service-based-architecture
https://www.rfc-editor.org/rfc/rfc2828#section-3
https://doi.org/10.1109/ICST46399.2020.00024
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://doi.org/10.1145/3510003.3510151
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://doi.org/10.48550/arXiv.2205.05325

Appendix A

Code of the vulnerable client

This appendix includes an OpenAPI specification of our REST API in A.1
and the Python code of the vulnerable client in A.2. The OpenAPI speci-
fication is used as a description of our API and allows us to mock a server
for testing purposes. For more information about OpenAPI, see Section 2.1.
The vulnerable client is an example application that contains three planted
bugs. For more information about the vulnerable client, see Section 3.3.

A.1 OpenAPI specification

openapi: 3.0.0

info:

description: |

This is a sample warehouse server. You can find

out more about Swagger at

http://swagger.io or on

[irc.freenode.net, #swagger](http://swagger.io/irc/).

version: "1.0.0"

title: Webshop

servers:

Added by API Auto Mocking Plugin

- description: SwaggerHub API Auto Mocking

url: https://virtserver.swaggerhub.com/HARMROUKEMA/Webshop/1.0.0

tags:

- name: item

description: Everything about your items

paths:

/item:

post:

tags:

- item

49

summary: Add a new item to the webshop

operationId: addItem

responses:

'200':

description: successful operation

content:

application/json:

schema:

$ref: '#/components/schemas/ApiResponse'

'405':

description: Invalid input

requestBody:

$ref: '#/components/requestBodies/Item'

'/item/{itemId}':

get:

tags:

- item

summary: Find item by ID

description: Returns a single item

operationId: getitemById

parameters:

- name: itemId

in: path

description: ID of item to return

required: true

schema:

type: integer

format: int64

responses:

'200':

description: successful operation

content:

application/json:

schema:

$ref: '#/components/schemas/item'

'400':

description: Invalid ID supplied

'404':

description: item not found

delete:

tags:

- item

summary: Deletes a item

operationId: deleteitem

50

parameters:

- name: itemId

in: path

description: item id to delete

required: true

schema:

type: integer

format: int64

responses:

'400':

description: Invalid ID supplied

'404':

description: item not found

components:

schemas:

Category:

type: object

properties:

id:

type: integer

format: int64

name:

type: string

example: footwear

Tag:

type: object

properties:

id:

type: integer

format: int64

name:

type: string

example: new

item:

type: object

required:

- name

properties:

id:

type: integer

format: int64

category:

$ref: '#/components/schemas/Category'

name:

51

type: string

example: Nike AF1

price:

type: number

format: float

example: 119.99

tags:

type: array

items:

$ref: '#/components/schemas/Tag'

available:

type: boolean

comment:

type: string

nullable: true

dateAdded:

type: string

format: date-time

ApiResponse:

type: object

properties:

code:

type: integer

format: int32

type:

type: string

message:

type: string

nullable: true

requestBodies:

Item:

content:

application/json:

schema:

$ref: '#/components/schemas/item'

description: item object that needs to be added to the warehouse

required: true

52

A.2 Python code

import requests

import json

SERVER_IP = '127.0.0.1'

SERVER_PORT = 5000

URL = f'http://{SERVER_IP}:{SERVER_PORT}'

Overwrite URL to mocking server

URL = 'http://virtserver.swaggerhub.com/HARMROUKEMA/Webshop/1.0.0'

s = requests.Session()

def test_get(id):

GET /item/1

r = s.get(f"{URL}/item/{id}")

print(r.text)

BUG 1: json.loads() crashes in case of invalid json

item = json.loads(r.text)

BUG 2: no validation of data type before rounding

price = round(item['price'])

print(f"Price of item in euro: {price}")

def test_post():

POST /item

item = {

"id": 0,

"category": {

"id": 0,

"name": "footwear"

},

"name": "Nike AF1",

"price": 119.99,

"tags": [

{

"id": 0,

"name": "new"

}

],

"available": True,

"comment": "string",

"dateAdded": "2022-10-19T14:52:10.872Z"

}

53

r = s.post(URL + '/item', json=item)

BUG 3: Crash when the status code is not 200:

if r.status_code != 200:

print("ERROR: unexpected status code returned")

exit()

for i in range(50):

test_get(1)

54

Appendix B

Code of the fuzzers

This appendix contains the code of the JSON API client fuzzers, written
in the Python Flask framework or as a mitmproxy add-on, using the JSON
fuzzer PyJFuzz. For code explanation, see Section 3.4 for explanation of
BasicFuzzer, Section 3.5 for OpenAPIFuzzer, Section 3.7 for OsirisFuzzer
and Section 3.8 for ProxyFuzzer.

B.1 BasicFuzzer

This section includes the Python code of the first fuzzer we created, the
BasicFuzzer discussed in Section 3.4.

from flask import Flask

from argparse import Namespace

from pyjfuzz.lib import *

import random

app = Flask(__name__)

@app.get('/item/<int:item_id>')

def get_item(item_id):

Example item for PyJFuzz

item = {

"id": item_id,

"category": {

"id": 0,

"name": "footwear"

},

"name": "Nike AF1",

"price": 119.99,

"tags": [

55

{

"id": 0,

"name": "new"

}

],

"available": True,

"comment": "string",

"dateAdded": "2022-10-19T14:52:10.872Z"

}

We fuzz the JSON structure half of the time

if random.randint(0,1):

config = PJFConfiguration(Namespace(json=item,

nologo=True, level=6, strong_fuzz=True))↪→

else:

config = PJFConfiguration(Namespace(json=item,

nologo=True, level=6))↪→

config.techniques = [13]

fuzzer = PJFFactory(config)

print(f"Returning fuzzed JSON:")

print(fuzzer.fuzzed)

print()

return fuzzer.fuzzed

if __name__ == '__main__':

app.run()

56

B.2 OpenAPIFuzzer

Here we include the Python code of the OpenAPIFuzzer, discussed in Section
3.5.

from openapi_parser import parse

from flask import Flask

from flask import abort, request

from argparse import Namespace

from pyjfuzz.lib import *

import random

import json

import re

app = Flask(__name__)

filename = '../webshop.yaml'

print(f"Parsing {filename}...")

content = parse(filename)

urls = []

methods = []

jsons = []

def quote(s):

return '"' + s + '"'

def parseSchemaToJson(schema):

if schema.type.name == 'OBJECT':

return '{' + ', '.join([parsePropToJson(prop) for prop

in schema.properties]) + '}'↪→

elif schema.type.name == 'ARRAY':

return '[' + parseSchemaToJson(schema.items) + ']'

elif schema.type.name == 'INTEGER':

return (str(schema.example) if schema.example else

'0')↪→

elif schema.type.name == 'STRING':

return (quote(schema.example) if schema.example else

'"string"')↪→

elif schema.type.name == 'NUMBER':

if schema.example:

return str(schema.example)

57

if schema.format.name == 'FLOAT' or schema.format.name

== 'DOUBLE':↪→

return '3.7'

else:

return '0'

elif schema.type.name == 'BOOLEAN':

return (str(schema.example) if schema.example else

'true')↪→

def parsePropToJson(prop):

if prop.schema.type.name == 'OBJECT':

return quote(prop.name) + ': ' + '{' + ',

'.join([parsePropToJson(prop) for prop in

prop.schema.properties]) + '}'

↪→

↪→

elif prop.schema.type.name == 'ARRAY':

return quote(prop.name) + ': ' + '[' +

parseSchemaToJson(prop.schema.items) + ']'↪→

elif prop.schema.type.name == 'INTEGER':

return quote(prop.name) + ': ' +

(str(prop.schema.example) if prop.schema.example

else '0')

↪→

↪→

elif prop.schema.type.name == 'STRING':

return quote(prop.name) + ': ' +

(quote(prop.schema.example) if prop.schema.example

else '"string"')

↪→

↪→

elif prop.schema.type.name == 'NUMBER':

if prop.schema.example:

return quote(prop.name) + ': ' +

str(prop.schema.example)↪→

if prop.schema.format.name == 'FLOAT' or

prop.schema.format.name == 'DOUBLE':↪→

return quote(prop.name) + ': ' + '3.7'

else:

return quote(prop.name) + ': ' + '0'

elif prop.schema.type.name == 'BOOLEAN':

return quote(prop.name) + ': ' +

(str(pop.schema.example) if prop.schema.example

else 'true')

↪→

↪→

def processUrls(urls):

res = []

for url in urls:

url = url[1:]

url = re.sub('{.*}', '.*', url)

58

res.append(url)

return res

Loop over the parsed OpenAPI specification and parse the

schemas to JSON↪→

for path in content.paths:

for operation in path.operations:

for response in operation.responses:

if response.content:

for content in response.content:

if content.type.name == 'JSON':

urls.append(path.url)

methods.append(operation.method.name)

jsons.append(parseSchemaToJson(content.schema))↪→

print(f"Successfully parsed {filename}")

urls = processUrls(urls)

print(f"URLs: {urls}")

print(f"JSONs: {jsons}")

@app.route('/<path:path>', methods = ['GET', 'POST', 'PUT',

'DELETE', 'OPTIONS'])↪→

def fuzz(path):

for i in range(len(urls)):

We fuzz if we match a URL and the corresponding HTTP

method↪→

if re.search(urls[i], path) and request.method ==

methods[i]:↪→

payload = json.loads(jsons[i])

We fuzz the JSON structure half of the time

if random.randint(0,1):

config =

PJFConfiguration(Namespace(json=payload,

nologo=True, level=6, strong_fuzz=True))

↪→

↪→

else:

config =

PJFConfiguration(Namespace(json=payload,

nologo=True, level=6))

↪→

↪→

config.techniques = [13]

fuzzer = PJFFactory(config)

59

print(f"{request.method} request at {path} -

returning fuzzed JSON:")↪→

print(fuzzer.fuzzed)

print()

return fuzzer.fuzzed

abort(404)

if __name__ == '__main__':

app.run()

60

B.3 OsirisFuzzer

This is the code of OsirisFuzzer, discussed in Section 3.7. Some parts of the
example response have been anonymized for privacy reasons, or removed for
brevity.

from flask import Flask

from argparse import Namespace

from pyjfuzz.lib import *

app = Flask(__name__)

@app.get('/student/osiris/student/resultaten')

def get_resultaten():

Example response for PyJFuzz

resp = {"items": [{"id_resultaat":"scto:1",

"studentnummer":"1", "cursus":"NWI-WB098",

"collegejaar":2022, "blok":"KW2",

"periode_omschrijving":"Period 2",

"startdatum_blok":"2022-11-06T23:00:00Z",

"cursus_korte_naam":"Random Graphs",

"toets_omschrijving":"Exam", "weging":"1",

"resultaat":"10", "resultaat_omschrijving":"10",

"score":"", "score_omschrijving":"", "voldoende":"J",

"status":"", "toetsdatum":"2023-01-12T23:00:00Z",

"docent":"", "onderwerp":"",

"mutatiedatum":"2023-01-30T20:22:59Z",

"id_cursus":"curs:152879",

"id_geldend_resultaat":"sgre:1",

"id_beoordelingsformulier":"null",

"id_cursus_toetsins":"null",

"id_toets_toetsins":"null", "soort_resultaat":"toets",

"nieuw":"N", "bonustoets":"N"}], "hasMore":True,

"limit":25, "offset":0, "count":25}

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

config = PJFConfiguration(Namespace(json=resp,

nologo=True, level=6))↪→

We also include XSS techniques 0 and 4

config.techniques = [0, 4, 13]

fuzzer = PJFFactory(config)

print(f"Returning fuzzed JSON:")

print(fuzzer.fuzzed)

print()

61

return fuzzer.fuzzed

if __name__ == '__main__':

app.run(ssl_context='adhoc')

62

B.3.1 Burp Suite extension

This subsection contains the code of the Burp Suite extension we wrote to
forward certain requests to our OsirisFuzzer, see Section 3.7.

from burp import IBurpExtender

from burp import IHttpListener

from java.io import PrintWriter

from java.lang import RuntimeException

HOST_FROM = "ru.osiris-student.nl"

HOST_TO = "127.0.0.1"

PORT_TO = 5000

matching_URLs = [

'/student/osiris/student/resultaten'

]

class BurpExtender(IBurpExtender, IHttpListener):

#

implement IBurpExtender

#

def registerExtenderCallbacks(self, callbacks):

obtain an extension helpers object and set callbacks

self._helpers = callbacks.getHelpers()

self.callbacks = callbacks

set our extension name

callbacks.setExtensionName("Replace host for matching

URL")↪→

register ourselves as an HTTP listener

callbacks.registerHttpListener(self)

#

implement IHttpListener

#

def processHttpMessage(self, toolFlag, messageIsRequest,

messageInfo):↪→

only process requests

if not messageIsRequest:

return

63

obtain our output stream

stdout = PrintWriter(self.callbacks.getStdout(), True)

get the HTTP service for the request

httpService = messageInfo.getHttpService()

if the host is HOST_FROM, change it to HOST_TO

if (HOST_FROM == httpService.getHost()):

get the request of the HTTP server

request =

self._helpers.bytesToString(messageInfo.getRequest())↪→

first_line = request.split('\n')[0].split(' ')

URL = first_line[1]

check if the path of the URL matches one of the

matching_URLs↪→

for match in matching_URLs:

if URL[:len(match)] == match:

change HTTP version to 1.1 to not

confuse Flask↪→

first_line[2] = 'HTTP/1.1'

first_line = ' '.join(first_line)

new_request =

self._helpers.stringToBytes('\n'.join([first_line]

+ request.split('\n')[1:]))

↪→

↪→

messageInfo.setRequest(new_request)

change the host and port of the request

messageInfo.setHttpService(

self._helpers.buildHttpService(

HOST_TO, PORT_TO,

httpService.getProtocol()))

↪→

↪→

↪→

64

B.4 ProxyFuzzer

This section contains the Python code of ProxyFuzzer, an add-on script for
mitmproxy. For an explanation of this code, see Section 3.8.

from argparse import Namespace

from pyjfuzz.lib import *

import random

import json

from mitmproxy import ctx, exceptions

class FuzzClient:

def load(self, loader):

loader.add_option(

name = "fuzzhost",

typespec = str,

default = "ru.osiris-student.nl",

help = "Set the host from which the responses will

be fuzzed",↪→

)

loader.add_option(

name = "fuzzurls",

typespec = str,

default = "/student/osiris/student/resultaten",

help = "Comma-separated list of URLs from which

the responses will be fuzzed"↪→

)

loader.add_option(

name = "fuzztechniques",

typespec = str,

default = "0,4,13",

help = "Comma-separated list of PyJFuzz fuzzing

techniques to use",↪→

)

loader.add_option(

name = "strongfuzz",

typespec = bool,

default = False,

help = "Use the strong_fuzz parameter of PyJFuzz

half of the time, which includes fuzzing the

JSON structure"

↪→

↪→

)

def response(self, flow):

65

request = flow.request

response = flow.response

if request.host == ctx.options.fuzzhost:

for match in ctx.options.fuzzurls.split(','):

if request.path[:len(match)] == match:

ctx.log.info(f"Found matching URL:

{request.host}{request.path}")↪→

try:

payload =

json.loads(response.content.decode())↪→

except:

ctx.log.error(f"Error while parsing

JSON")↪→

return

if ctx.options.strongfuzz and

random.randint(0,1):↪→

ctx.log.info(f"Fuzzing the JSON

structure")↪→

config =

PJFConfiguration(Namespace(json=payload,

nologo=True, level=6,

strong_fuzz=True))

↪→

↪→

↪→

else:

ctx.log.info(f"Not fuzzing the JSON

structure")↪→

config =

PJFConfiguration(Namespace(json=payload,

nologo=True, level=6))

↪→

↪→

fuzztechniqueserror =

exceptions.OptionsError("Option

'fuzztechniques' needs to be a

comma-separated list of integers

between 0 and 14.")

↪→

↪→

↪→

↪→

try:

config.techniques = list(map(int,

ctx.options.fuzztechniques.split(',')))↪→

for technique in config.techniques:

if technique < 0 or technique >

13:↪→

raise fuzztechniqueserror

except:

66

raise fuzztechniqueserror

fuzzer = PJFFactory(config)

ctx.log.info(f"Returning fuzzed

JSON:\n{fuzzer.fuzzed}")↪→

response.content = fuzzer.fuzzed.encode()

addons = [FuzzClient()]

B.4.1 Flask fuzzer

This is the Python code of an alternative Flask proxy fuzzer from Section
3.8.1, that requires the use of the Burp Suite extension from Appendix B.3.1.

from flask import Flask

from flask import abort, request

from argparse import Namespace

from pyjfuzz.lib import *

import random

import json

import re

import requests

app = Flask(__name__)

@app.route('/', defaults={'path': ''})

@app.route('/<path:path>', methods = ['GET', 'POST', 'PUT',

'DELETE', 'OPTIONS'])↪→

def fuzz(path):

print(f"{request.method} request at {path} - forwarding

request to server...")↪→

r = requests.request(

method = request.method,

url = request.url,

headers = {k:v for k,v in request.headers if

k.lower() != 'host'}, # exclude 'host' header↪→

data = request.get_data(),

cookies = request.cookies,

allow_redirects = False,

)

if r.text:

try:

payload = json.loads(r.text)

67

except ValueError:

print("ERROR: Response contains invalid JSON")

abort(400)

else:

print(f"ERROR: No response: {r.status_code}")

abort(404)

if random.randint(0,1):

config = PJFConfiguration(Namespace(json=payload,

nologo=True, level=6, strong_fuzz=True))↪→

else:

config = PJFConfiguration(Namespace(json=payload,

nologo=True, level=6))↪→

config.techniques = [0, 4, 13]

fuzzer = PJFFactory(config)

print(f"Returning fuzzed JSON:")

print(fuzzer.fuzzed)

print()

return fuzzer.fuzzed

if __name__ == '__main__':

app.run(ssl_context='adhoc')

68

	Introduction
	Background
	REST APIs
	JSON API vs. REST API
	OpenAPI

	Fuzzing
	Fuzzing JSON API clients vs. servers

	Fuzzing JSON API clients
	Fuzzer requirements
	Picking a fuzzer or fuzzing framework
	Vulnerable client
	BasicFuzzer: Fuzzing the vulnerable client
	Results

	OpenAPIFuzzer: Adding OpenAPI parsing
	Attempt at 5G Fuzzing
	OsirisFuzzer: Fuzzing the Radboud Osiris web app
	Results
	Other attempts
	Radboud Osiris Android app attempt

	ProxyFuzzer
	Other attempts

	Related Work
	Future Work
	Conclusions
	Conclusions
	Evaluation of choices
	Fuzzer requirements choices
	Implementation choices
	Case study choices

	Code of the vulnerable client
	OpenAPI specification
	Python code

	Code of the fuzzers
	BasicFuzzer
	OpenAPIFuzzer
	OsirisFuzzer
	Burp Suite extension

	ProxyFuzzer
	Flask fuzzer

