
Bachelor Thesis
Computing Science

Midnight Blue & Radboud University Nijmegen

Security analysis of a TETRA Base
Station air interface implementation

Author:
Jonathan Jagt

Company Supervisors:
Carlo Meijer - Midnight Blue

Wouter Bokslag - Midnight Blue

University Supervisor:
Erik Poll

Second reader:
David Rupprecht

January 19, 2023

Abstract

Terrestrial Trunked Radio (TETRA) is a radio system powering the commu-
nication for emergency services, public safety networks, train radios, and other
critical infrastructure. It is expected that this system ensures confidentiality, in-
tegrity and availability. As a public researcher, analyzing the security of TETRA
Base Stations is not straightforward since the firmware binaries are closed source
and obtaining hardware is difficult. In this thesis, we test the security of the
Air Interface of a TETRA Base Station by fuzzing the packet parsing code and
performing a brief security analysis by manually reverse engineering the firmware
binaries.

The fuzzing is done using custom tooling to modify the running firmware to
make a memory dump at the moment of parsing a packet. This memory dump
contains all the code of the firmware and operating system, all data used by the
firmware and operating system and the contents of the CPU registers. We wrote a
program to load the memory dump into the Unicorn emulator so we can emulate
the execution of the packet parsing. Using this technique, we can connect a fuzzer
to the Unicorn emulator to fuzz the packet parsing code of the Base Station. We
have not found any issues with regards to memory corruption in the packet parsing
code we fuzzed. We have concluded that it is unlikely that this code contains any
issues related to memory corruption, since the packet parsing code appears to be
automatically generated code based on the TETRA specification.

During manual reverse engineering the firmware, we have found that with
physical access to the Base Station it is possible to authenticate with a back-
door password to obtain high privileged shell access. Moreover, by entering the
.crashdumptest command, it is possible to crash the firmware and enter an in-
teractive debugger session. With the interactive debugger session, it is possible
to extract encryption keys from memory. This is against the design of the Base
Station: it should not be possible to extract encryption keys from the Base Station
this easily, because it compromises the confidentiality of the TETRA network.

1

Contents

Glossary 4

1 Introduction 7

2 Background 9
2.1 The TETRA protocol . 9

2.1.1 Use of cryptography in the TETRA protocol 10
2.1.2 Use of cryptography in the storage of the MBTS Base Station . 13

2.2 Setup of our MBTS Base Station . 14
2.3 Tinker, Fiddle and Cydia Substrate . 17
2.4 Ensuring system availability through watchdogs 18
2.5 Fuzzing & coverage guidance . 19
2.6 Choosing the emulation framework . 20

2.6.1 Rust harness with Unicorn for fuzzing with AFL++ 21
2.7 Compiling and decompiling . 22

3 Earlier research for the TETRA Base Station 24
3.1 PowerPC Binary Patching for Base Station Analysis 24
3.2 Firmware differences . 25
3.3 Fuzzing differences . 25

4 Research Decisions and Preparation 27
4.1 Decisions . 27

4.1.1 Comparing the firmware of our MBTS Base Station and the MTS2
Base Station . 27

4.1.2 Emulation & Fuzzing . 27
4.2 Feasibility study of fuzzing through Unicorn with AFL++ 28

4.2.1 Fuzzgoat . 28

5 Fuzzing the packet parsing code of the Base Station 29
5.1 Finding the target through reverse engineering 29

5.1.1 Procedure for finding functions 30
5.1.2 Analyzing the Base Radio (BR) through reverse engineering . . 30
5.1.3 Analyzing the Site Controller through reverse engineering . . . 31

5.2 Writing the memory dump module . 32
5.2.1 Dumping the CPU registers . 33
5.2.2 Dumping the memory regions 34
5.2.3 Defeating the watchdog . 34

5.3 Creating the memory dump . 35
5.4 Emulating the memory dump . 35

5.4.1 Patching the registers . 37
5.4.2 Patching the memory . 38

5.5 Fuzzing in the Unicorn emulator . 38
5.5.1 Preparing the fuzzing . 38
5.5.2 The three fuzzing targets . 39
5.5.3 Fuzzing U-LOCATION-UPDATE-DEMAND 40
5.5.4 Fuzzing U-SDS-DATA . 41
5.5.5 Fuzzing U-SDS-STATUS . 42

6 Manual Site Controller firmware analysis through reverse engineering 43
6.1 Backdoor password for engineer access 43

2

6.2 Extracting encryption keys using the debugger 44
6.2.1 Accessing the pROBE+ debugger 44
6.2.2 Finding the encryption keys in memory 44
6.2.3 Extracting the encryption keys from memory 45

7 Future Work 47
7.1 Fuzzing the Base Radio firmware . 47
7.2 Reverse engineering the Key Variable Loader protocol 47
7.3 Improving emulation of pSOSystem . 47
7.4 Discovering more targets in the Site Controller firmware 48
7.5 Fuzzing more target functions in the Site Controller firmware 48

8 Conclusions 49
8.1 The fuzzing results . 49

8.1.1 Automatically generated code 49
8.1.2 Limitations of fuzzing . 50

8.2 Insecure design of the Site Controller firmware compromises the encryp-
tion keys . 51

8.3 Reflecting on earlier research for the TETRA Base Station 52
8.4 Emulating the Site Controller of the MBTS Base Station in Unicorn . 52
8.5 The effectiveness of the fuzzing . 53
8.6 Timetable . 53

References 55

Appendices 57

A AFL++ outputs 57

3

Glossary

Air Interface The wireless communication link between two devices.

Authentication Centre A separate entity in the TETRA network which manages
the unique pre-shared Authentication Key between every Mobile Station and the
Authentication Centre. The Base Station is trusted by the Authentication Centre
and may carry out the encryption and authentication of a Mobile Station.

BR Base Radio: The Base Radio is a firmware binary of the Base Station which is
responsible for the low level functionalities of the TETRA specification.

BS Base Station.

CC Colour Code.

CC Call Control.

CCK Common Cipher Key: Cipher key that is generated by the infrastructure to
protect group addressed signalling and traffic [9].

CK Cipher Key: Value that is used to determine the transformation of plain text to
cipher text in a cryptographic algorithm [9].

CLI Command-line Interface.

CMCE Circuit Mode Control Entity.

CN Carrier Number.

Cydia Substrate A code modification platform used to replace and/or modify the
behavior of existing functions in the BS firmware (see Section 2.3).

DCK Derived Cipher Key: DCK is generated during authentication for use in protec-
tion of individually addressed signalling and traffic [9].

Downlink The radio path from the Base Station to the Mobile Station (sometimes
called the outbound path) [7].

ECK Encryption Cipher Key: Cipher key that is used as input to the encryption
algorithm. The Encryption Cipher Key is further explained in Section 2.1.1.

Fuzzing Fuzzing is an automated software testing technique used by security researchers
to find bugs in all kinds of software. Fuzzing is further explained in Section 2.5.

GCK Group Cipher Key: Cipher key known by the infrastructure and MS to protect
group addressed signalling and traffic. Not used directly at the air interface but
modified by CCK or SCK to give a Modified Group Cipher Key (MGCK) [9].

IPC Inter-Process Communication.

IV Initialization Value: Sequence of symbols that initializes the KSG inside the encryp-
tion unit [9].

4

K Authentication Key: Primary secret, the knowledge of which has to be demonstrated
for authentication [9]. The Authentication Key is a pre-shared secret between the
Mobile Station and the Authentication Centre. For example, this secret can be
pre-shared by a SIM card or this secret is embedded in the Mobile Station.

KEK Key Encryption Key: A Motorola specific key used to encrypt secrets for long-
time storage purposes on the Base Station.

Ki Infrastructure Key: The encryption key used to encrypt the Key Encryption Key.
The Infrastructure Key is also used for different purposes related to infrastructure
management.

KSG Key Stream Generator: Cryptographic algorithm which produces a stream of
binary digits which can be used for encipherment and decipherment. The initial
state of the KSG is determined by the initialization value [9].

KSO Session Key for OTAR: Derived from a user’s authentication key and a random
seed for OTAR. KSO is used to protect the transfer of the Static Cipher Key [9].

KSS Key Stream Segment: Key stream of arbitrary length [9].

KVL Key Variable Loader: A hardware device used to update the Infrastructure Key
stored in the MBTS Base Station.

LA Location Area id: Unique identifier within the infrastructure of a location area [9].

MBTS The name of the model of the Base Station [12] used in this research.

MGCK Modified Group Cipher Key: See Group Cipher Key.

MLE Mobile Link Entity.

MM Mobility Management.

MS Mobile Station: The device that connects to other Mobile Stations through the
Base Station. For example, this can be a device such as a walkie-talkie that uses
TETRA as the communication channel.

MTS2 The name of the model of the Base Station [15] used in the research of Müller
et al. at the TU Darmstadt [16].

OTAR Over The Air Re-keying: Method by which the Authentication Centre and Base
Station can transfer secret keys securely to Mobile Stations.

RSO Random Seed for Over The Air Re-keying.

RTOS Real-Time Operating System.

SC Site Controller: The Site Controller is a firmware binary of the Base Station which
is responsible for the high level functionalities of the TETRA specification.

SCCK Sealed Common Cipher Key: Encrypted Common Cipher Key.

SCK Static Cipher Key: Predetermined cipher key that may be used to provide confi-
dentiality in class 2 networks with a corresponding algorithm [9].

SCK-VN Static Cipher Key Version Number.

SDL Specification and Description Language.

5

SDS Short Data Service.

SKEK Sealed Key Encryption Key: encrypted Key Encryption Key.

SNDCP Subnetwork Dependent Convergence Protocol.

SSCK Sealed Static Cipher Key: Encrypted Static Cipher Key.

TETRA Terrestrial Trunked Radio.

Uplink The radio path from the Mobile Station to the Base Station (sometimes called
the inbound path) [7].

When this PDF is viewed digitally, it is possible to click in the text on words described
in the glossary to jump to the explanation in the glossary.

6

1 Introduction

First published in 1995, TETRA is a multi-function mobile radio standard used for
critical infrastructure in more than 120 countries [27]. Its purpose is to provide secure
and always available mobile-to-mobile voice and data communication possibilities [7].
The network can be used with a Mobile Station (MS) which can serve as a phone to call
and send text messages to/from. Since the TETRA network is completely independent
from other mobile networks, such as GSM, a cellular outage of a service provider will
not affect TETRA. This makes the technology suitable for critical infrastructure and
everyday services. Therefore, it is also important to verify that TETRA is indeed secure
and always available.

In this thesis, we perform two security analyses:

1. We fuzz the code responsible for parsing incoming packets from the Air Interface.

2. We perform a manual security analysis by reverse engineering the Site Controller
firmware.

For the former security analysis, we test the code responsible for parsing incoming pack-
ets from the Air Interface of one of the TETRA Base Stations. This Base Station runs
on a PowerPC architecture, which is commonly used for Real-Time Operating Systems
(RTOSs). We are going to test the air interface by fuzzing the packet parsing code in the
Site Controller firmware. Since the Base Station runs on a PowerPC architecture and
is powered by the pSOSystem RTOS, we cannot execute the Site Controller firmware
on an external device without emulation. Moreover, we want to fuzz the packet parsing
code with coverage guidance, so the fuzzer can find issues related to memory corruption
more effectively. Therefore, we use emulation to run the packet parsing code on an
external device by performing a memory dump at the moment of packet parsing in the
Site Controller firmware. Then we connect a fuzzer to the emulator to test the packet
parsing code (see also Section 4.1.2).

In short, the steps of the fuzzing research are:

1. We find the code in the firmware responsible for parsing the packets from the Air
Interface (Section 5.1).

2. We write a custom memory dump module which can be loaded by our instrumen-
tation (Section 5.2).

3. We hijack the control flow of the packet parsing in the event of an incoming packet
and dump all the memory of the Site Controller firmware (Section 5.3).

4. We load the memory dump in an emulator to run at the moment of packet parsing
(Section 5.4).

5. We connect a fuzzer to the emulator so we can fuzz the parser (Section 5.5).

For the latter security analysis, we reverse engineer parts of the Site Controller firmware
to assess the security of one of the TETRA Base Stations when an adversary has physical
access to the serial port of the Base Station, but does not modify the Site Controller
firmware and does not perform any hardware attacks. We first test the security of the
authentication mechanism when the adversary connects to the Site Controller firmware.
We identified an undocumented backdoor password that allows for high privileged shell
access. The Base Station is designed to keep the encryption keys secret, but due to
flaws in the design, it is possible to extract the encryption keys using the backdoor
password. With the encryption keys, the adversary can decrypt over-the-air traffic and
thus compromise the confidentiality and integrity of the TETRA network.

7

In Section 2.1 we discuss some background information about how the TETRA protocol
works. In Section 2.2 we discuss the Base Station setup. Our instrumentation, consti-
tuting of Tinker, Fiddle and Cydia Substrate, are explained in Section 2.3. Furthermore,
in Section 2.4 we explain some theory about watchdogs and explain how they impact
our research. We also explain some theory about fuzzing and emulation methods in
Section 2.6. The impact of compiler optimization on compiled code, and hence the de-
compilation output when reverse engineering the compiled code is discussed in Section
2.7. In Section 3 we explore the research that has already been done on TETRA Base
Station security, and describe the differences with the research of Section 5. Section 4
will explain the reasoning behind some of the decisions made prior to the research of
Section 5. Section 5 will go in depth about how we performed our fuzzing research and
what decisions we have made during our research. Section 6 will go in depth about how
we have performed the manual firmware analysis of the Site Controller firmware and
what we have found. What can be improved in this research, is discussed in the future
work in Section 7. Finally, Section 8 will discuss all the findings and conclusions, and
will reflect on decisions we made during our research.

This research was done as an internship at Midnight Blue. Midnight Blue provided
the tools (see Section 2.3), hardware and firmware required to analyze our MBTS Base
Station.

8

2 Background

In this chapter, we discuss the background information required for understanding the
research done in this thesis. In Section 2.1, we discuss the most important parts of the
TETRA protocol for our research. The setup of our testing environment of the BS is
discussed in Section 2.2. The purpose and functionalities of our instrumentation Tinker,
Fiddle and Cydia Substrate are explained in Section 2.3. Some background information
about watchdogs is provided in Section 2.4. We provide some information about fuzzing
and coverage guidance in Section 2.5. Section 2.6 explains why we have chosen for
our emulation and fuzzing setup. We finish this chapter by discussing the concept of
compiler optimization and the results on the decompiled output in Section 2.7.

2.1 The TETRA protocol

The TETRA protocol is a highly complex protocol. It has many functionalities and the
TETRA standard consists of thousands of pages [8]. For the fuzzing research in this
thesis, we are only interested in the data that is parsed by some packet parsing code.
Therefore, we limit ourself to only a small part of the standard that is relevant for the
packet parsing.

Figure 1: Overview of sublayer 3.1 and sublayer 3.2 of the TETRA protocol [8].

The TETRA protocol consists of multiple layers, each with sublayers. Layer 1 and layer
2 are related to the low level aspects of the protocol, like the (de)modulation, radio
transmission and reception, channel coding/multiplexing and more related to the radio
link. Layer 3 is related to the higher level of the protocol, such as packet interpretation,
routing and compression of the packet data. Layer 4 and further are out of scope for
this research.

The reference architecture of the start of layer 3 is shown in Figure 1. The communica-
tion between layer 2 and layer 3 is defined as TLA-SAP, TLB-SAP and TLC-SAP:

� TLA-SAP: responsible for signalling messages

� TLB-SAP: responsible for broadcasting system information

� TLC-SAP: responsible for layer management, status and configuration via data
base access

9

TLA-SAP, TLB-SAP and TLC-SAP are the communication channels between layer 2
and layer 3 and are used by the Mobile Link Entity (MLE). The MLE is used as an
abstraction by the Mobility Management (MM), Circuit Mode Control Entity (CMCE)
and Subnetwork Dependent Convergence Protocol (SNDCP). The MM is responsible
for several Mobile Station (MS) management functionalities, such as registration and
de-registration to the network. The CMCE is a network layer and does packet parsing
for the services built on top of CMCE, such as Call Control (CC) and Short Data Service
(SDS).

Each sublayer of the layer 3 protocol (as shown in Figure 1) reads and interprets its own
packet header. Therefore, it is likely that the packet parsing is done in several parts of
the protocol, such as the MLE, MM and CMCE. This is important to remember when
reverse engineering the firmwares of the Base Station (Section 5.1), because finding
references to TLA-SAP, TLB-SAP, TLC-SAP, MLE, MM and CMCE may indicate that
we are close to packet parsing code.

2.1.1 Use of cryptography in the TETRA protocol

The TETRA protocol may use encryption to protect data that is transported between
Mobile Stations (MSs), Base Stations (BSs) and the Authentication Centre. The au-
thentication of MSs and the exchange of encryption keys is managed by the BS and the
Authentication Centre. The BS is assumed to be trusted by the infrastructure and has
access to the keys used to encrypt and decrypt the transported data [9]. An overview of
the keys used in the TETRA protocol, the MBTS BS and their purposes is given in Table
1 on page 11. An overview of the available keys in the MS, BS and the Authentication
Centre is given in Figure 2.

Mobile Station (MS)

K

SCK, SSCK

K

DCK, GCK, MGCK
CCK, SCCK

Class 2 networks:

Class 3 networks:

Base Station (BS)

SCK, SSCK

Ki, KEK, SKEK

Ki, KEK, SKEK

DCK, GCK, MGCK,
CCK, SCCK

Authentication Centre

Ki, K

Ki, K

Figure 2: Overview of the availability of the keys listed in Table 1 for the Mobile Station,
Base Station and the Authentication Centre in class 2 networks and class 3 networks.

Since the TETRA standard is highly complex and therefore difficult to understand, we
first examine how the encryption is performed and then see which data is required to
perform the encryption. In the end, this will result in an overview of which encryption
keys are required to perform encryption and decryption.

In Figure 3, the final key derivation is shown to obtain a Key Stream Segment (KSS)
from the Key Stream Generator (KSG). The KSS is used to XOR the data to perform
encryption or decryption. The KSS is created from an Initialization Value (IV) and an
Encryption Cipher Key (ECK). The IV is derived from broadcast data from the BS.
The ECK is derived by running the proprietary TB5 algorithm over the Cipher Key
(CK), Carrier Number (CN), Location Area id (LA) and Colour Code (CC). The CN,

10

Name Category Purpose

Authentication Key (K) Authentication Primary secret, the knowledge of which
has to be demonstrated for authenti-
cation [9]. The Authentication Key is
a pre-shared secret between the Mobile
Station and the Authentication Centre.
For example, this secret can be pre-
shared by a SIM card or this secret is
embedded in the Mobile Station.

Static Cipher Key (SCK) Encryption Encryption key used in class 2 networks
to protect voice, data, and signalling se-
quences between the infrastructure and
an individual Mobile Station.

Sealed Static Cipher Key (SSCK) Encryption The encrypted Static Cipher Key.
Common Cipher Key (CCK) Encryption Encryption key used in class 3 net-

works to encrypt communication within
groups, such as voice data for a group
call.

Sealed Common Cipher Key (SCCK) Encryption The encrypted Common Cipher Key.
Derived Cipher Key (DCK) Encryption Encryption key used in class 3 networks

to encrypt one-to-one communication
between devices. This key is a session
key and is created during authentica-
tion of the Mobile Station to the Base
Station.

Group Cipher Key (GCK) Encryption (In class 3 networks a configurable) en-
cryption key for group communication
in class 2 networks and class 3 networks
used to create the Modified Group Ci-
pher Key.

Modified Group Cipher Key (MGCK) Encryption If a Group Cipher Key is configured
in class 3 networks, the Common Ci-
pher Key is used to derive the Modi-
fied Group Cipher Key. The Modified
Group Cipher Key is used for encryp-
tion of the transported data within the
group.

Infrastructure Key (Ki) Storage The encryption key used to encrypt the
Key Encryption Key. The Infrastruc-
ture Key is also used for different pur-
poses related to infrastructure manage-
ment.

Key Encryption Key (KEK) Storage Storage key used to encrypt encryption
keys to store the keys in memory of the
MBTS BS.

Sealed Key Encryption Key (SKEK) Storage The Key Encryption Key encrypted
with the Infrastructure Key.

Table 1: Overview of the keys used in the TETRA protocol and the MBTS BS. The
storage keys are used for encryption designed by Motorola and are not defined in the
TETRA standard.

11

Figure 3: The final key derivation to create a Key Stream Segment (KSS) for encryption
and decryption [9].

LA and CC are not secret values since they are known by the network. Which CK is
used, depends on the class and method used by the TETRA network.

The class of the TETRA protocol depends on the use-case of the devices:

1. Class 1 networks have no encryption

2. Class 2 networks support encryption with the Static Cipher Key (SCK)

3. Class 3 networks support encryption with the Derived Cipher Key (DCK) or Com-
mon Cipher Key (CCK)

Downlink traffic may be sent to a group instead of an individual MS. In such a case,
the SCK (class 2 networks) or CCK (class 3 networks) is used for encryption. A Group
Cipher Key (GCK) may be configured for a specific group, which enables derivation
of an Modified Group Cipher Key (MGCK) to be used instead, in order to achieve
confidentiality between groups. Since the addressing mode does generally not affect
parsing, group addressed traffic is outside of the scope of this research.

Figure 4: Distribution of SCK to a Mobile Station by an Authentication Centre [9].

The SCK used in class 2 networks is used to protect voice, data, and signalling sequences
between the infrastructure and an individual MS. The SCK is a fixed value and should
be known to the infrastructure and every MS [9]. In order to update the SCK, the SCK
will be sealed (encrypted) by the proprietary TA51 algorithm using the Static Cipher
Key Version Number (SCK-VN) and a Session Key for OTAR (KSO). The KSO is

12

derived from the K and a RSO, using the proprietary TA41 algorithm. To decrypt the
SCK, you need to run the proprietary TA52 algorithm with the SCK-VN, the Sealed
Static Cipher Key (SSCK) and the KSO. The distribution of the SCK is visualized in
Figure 4.

The CCK is encrypted and updated in a similar way as the SCK. However, the CCK
uses the proprietary TA31 algorithm to seal (encrypt) the CCK and the proprietary
TA32 algorithm to unseal (decrypt) the CCK. Moreover, the KSO is not used as an
input to the TA31 and TA32 algorithms, but instead the DCK is used.

The DCK is derived from the result of the authentication protocol. Therefore, the
DCK is different for every session between the MS and the BS. Since the authentication
protocol is long, complex and not relevant for this research, we will not go into detail of
this.

From this, we can conclude that the encryption of the TETRA protocol for one-to-one
data transportation mainly depends on:

� The KSG and TB5 algorithms, and the SCK for class 2 networks, using the KSO,
the TA51, TA52 and TA41 proprietary algorithms.

� The KSG and TB5 algorithms, and the DCK for class 3 networks, using the TA31
and TA32 proprietary algorithms.

The encryption of the TETRA protocol for group data transportation mainly depends
on:

� The KSG and TB5 algorithms, the SCK and an optional GCK for class 2 networks,
using the KSO, the TA51, TA52 and TA41 proprietary algorithms.

� The KSG and TB5 algorithms, the CCK and an optional GCK for class 3 networks,
using the TA31 and TA32 proprietary algorithms.

2.1.2 Use of cryptography in the storage of the MBTS Base Station

In Section 2.1.1 we have discussed the use of cryptography in the TETRA protocol
as described in the TETRA specification. However, for our MBTS Base Station (BS)
there are Motorola specific implementations for key storage. Key storage refers to the
long-term storage of encryption keys in the BS. The key storage is not defined in the
TETRA specification and therefore is vendor specific.

The Infrastructure Key (Ki) is an encryption key used to encrypt the Key Encryption
Key (KEK). The Ki is also used for encrypting traffic related to infrastructure man-
agement. Therefore, the Ki can be seen as a master key for the BS. The Ki can be
updated by using a Key Variable Loader (KVL) hardware device. The KVL uses an
undocumented protocol to update the Ki over the serial port of the MBTS BS.

The MBTS BS uses encryption for long-term storage of encryption keys such as the
Static Cipher Key (SCK) and Common Cipher Key (CCK) (see Section 2.1.1). These
encryption keys are encrypted using the KEK. The KEK is unique per BS.

When the MBTS BS has booted and needs access to the encryption keys, the following
is done:

1. The Ki is read.

2. The Sealed Key Encryption Key (SKEK) is decrypted using the Ki to obtain the
KEK.

13

3. The KEK is used to decrypt the stored SCK to obtain the SCK.

The storage method used for encryption keys is relevant when we perform the manual
firmware analysis to try to extract encryption keys from the BS as described in Section
6.

2.2 Setup of our MBTS Base Station

In this thesis, the Motorola MBTS BS [12] is used as the target used for testing and
developing the fuzzer and for performing the manual firmware analysis. The MBTS BS
can be seen in Figure 6 and Figure 7. Our MBTS BS runs on a PowerPC architecture
and is powered by the pSOSystem Real-Time Operating System (RTOS). There are
two (primary) firmwares used by our MBTS BS, each running on their own hardware
component:

1. The Base Radio (BR) firmware. The BR can be seen in Figure 8.

2. The Site Controller (SC) firmware. The SC can be seen in Figure 9.

A visualization of the setup of our MBTS BS with the RTOS, firmwares and the data
flow can be found in Figure 5.

Demodulation Decryption Defragmentation

Packet parsingPacket handling

pSOSystem

Base Station (BS)

Base Radio (BR)

Site Controller (SC)

...

Serial
Connection

Telnet
Connection

Over the air

Mobile Station
(MS)

pSOSystem

Serial
Connection

Figure 5: Setup of the Base Station, including the RTOS, the Base Radio and Site
Controller firmwares, and the data flow.

The BR firmware is the first firmware that is handling incoming traffic on the Air
Interface. The BR can be accessed through a serial connection for maintenance and
configuration purposes. The BR is responsible for demodulation of the signal, decryption
of the traffic and defragmentation of the packets. When the BR is done with the traffic,
it will send the traffic to the SC over an internal network. The SC is responsible for the
higher-level handling of the traffic. The SC can be accessed through a telnet connection
or the serial port for maintenance and configuration purposes. The SC will parse the
packet, interpret the packet and take actions accordingly. The SC will also create a
response and send it back to the BR, and the BR will send it over the air.

The BR firmware and the SC firmware of our MBTS BS run on the pSOSystem (pSOS)
RTOS. pSOS is a closed source RTOS and commonly used around the year 1980 until

14

Figure 6: The front of our MBTS BS.

Figure 7: Overview of the inside of our MBTS BS.

15

Figure 8: The Site Controller of our MBTS BS.

Figure 9: The Base Radio of our MBTS BS.

16

2000. Like many other RTOSs, pSOS supports multi-tasking, priority levels, predefined
latencies for execution and much more. pSOS uses ‘tasks’. ‘tasks’ can be seen as a
process on a regular operating system: for each job that needs to be done, there exists a
task which handles this job. A task receives input through Inter-Process Communication
(IPC), which are called ‘messages’. This IPC between tasks is handled by pSOS through
message queues. These queues can be filled by other tasks and are consumed by the
task corresponding to the queue. For example, the packet parsing is one task, while
the handling of the packet is another task. The packet parsing task communicates the
parsed packets through IPC to the packet handling task.

2.3 Tinker, Fiddle and Cydia Substrate

For the fuzzing research, we want to be able to execute arbitrary code in the Base Station
(BS) to perform a memory dump so we can research the packet parsing code. In order
to accomplish this, we are using the following:

1. Tinker: a firmware modification to the Site Controller (SC) firmware to provide
read/write/execute/malloc/free primitives through a CLI command, which is ac-
cessible over the telnet connection.

2. Fiddle: a module loading framework that makes it possible to load an ELF binary
into the firmware of the BS.

3. Cydia Substrate: a (function) hooking mechanism to redirect control flow to an-
other function.

Tinker, Fiddle and a modified version of Cydia Substrate were all created and provided
by Midnight Blue, the company where this research was carried out at. These tools are
required to be able to research the BS and will eventually be open sourced.

The BR firmware and the SC firmware of the BS are modified to include Tinker. The
SC firmware can be modified since no signature checks are done over the executed
binaries. A function that is accessible over the telnet connection is overwritten with
Tinker code. Therefore, Tinker is accessible as a shell command. Tinker provides
arbitrary read/write/execute/malloc/free primitives as a shell command. Tinker is used
by Fiddle to load ELF binaries into the firmware without requiring static firmware
modifications.

Fiddle is a module loading framework that makes it possible to load an ELF binary into
the firmware of the BS. Fiddle communicates over the telnet connection with Tinker.
Fiddle uses Tinker’s malloc to allocate sufficient memory in order to write the binary to
this allocated memory. The malloc implementation of Tinker will return the base address
of the allocated memory. Fiddle uses this base address to re-locate the ELF binary. This
means that the addresses within the ELF binary are modified to use the address given
by malloc as the base address of the binary. Therefore, the ELF binary will execute
correctly when written and executed on this allocated memory. After this ELF binary
modification, Fiddle will write the new ELF binary to the allocated memory. Fiddle will
then execute the initialization function of the ELF binary to start code execution. It is
also possible for Fiddle to unload the module by executing the de-initialization function
and then free the allocated memory.

The ELF binary that is loaded into the memory of the BS includes a modified version
of Cydia Substrate. Cydia Substrate is a code modification platform used in the jail-
breaking scenes about a decade ago [20]. Using Cydia Substrate, it is possible to inject
arbitrary code into other processes to change the behavior of the process by executing
the injected code. We are using a modified version of Cydia Substrate which supports

17

Site Controller (SC)
firmware

Tinker

memory dump
module Cydia Substrate

Fiddle

1. Tinker malloc

2. base address

3. Re-locate
ELF binary

4. Write ELF binary

5. Execute ELF binary
initialization function

Base Station (BS)
Communication

over telnet

ELF binary

Figure 10: The steps of loading the ELF binary into the SC using Tinker, Fiddle and
Cydia Substrate.

the PowerPC architecture, so it can be used on our MBTS BS for research purposes.
The modified version of Cydia Substrate is used to hook functions within the firmware
to redirect the control flow. This redirection of control flow is useful for creating the
memory dump module, since we want to execute the memory dump code instead of the
functions responsible for parsing the packet.

The steps of loading the ELF binary into the SC are visualized in Figure 10.

2.4 Ensuring system availability through watchdogs

As explained in Section 2.3, we are able to execute arbitrary code on our MBTS BS.
However, we are not completely unrestricted in what we can execute since the MBTS
BS is protected by a watchdog. Because of the watchdog, we are limited by an execution
time of around 30 seconds of our arbitrary code (see Section 5.2.3). In order to remove
this restriction provided by the watchdog, we first have to better understand what a
watchdog exactly is.

Watchdogs are a common method in Real-Time Operating Systems to ensure availability
of the devices [31]. The purpose of a watchdog is to check if the device or software is still
running and not caught in an infinite loop. A watchdog can be implemented in hardware,
in software or in both. There are different methods to accomplish this monitoring, but
for this thesis we focus on hardware watchdogs since that is also used our MBTS BS.

A hardware watchdog has two components: the hardware monitoring, and the software
watchdog ‘feeding’. Build into the hardware of our MBTS BS, there is a watchdog
component which checks the software running on the chips. It does this by checking the
incoming I/O communication on two ports and keeping track of a timer. The watchdog
expects that the software component will alternately send a specific constant to the two
ports. As long as the watchdog will receive the constant, it will reset the timer.

However, if the software is caught in an infinite loop and does not send the constant in
time to the watchdog, the timer of the watchdog expires. If the timer is expired (the
length of the timer is dependent on the configuration in the hardware), the watchdog
will reset the device. Some hardware watchdogs first signal to the Real-Time Operating
System (RTOS) that a reset is about to happen. This gives the RTOS the opportunity to
log debugging information before it is being reset, in order to help the developers discover
the root cause of the infinite loop. It is also possible that the hardware watchdog skips
this step and only performs the last step: resetting the device. The hardware watchdog

18

will trigger a full reboot of the device. This should temporarily resolve the issues caused
by the infinite loop and make the BS available again.

The hardware watchdog is accompanied with a software implementation. The programs
and RTOS that are running on the device should communicate to the watchdog that
they are not caught in an infinite loop. However, the programs and RTOS should also
do other jobs. This is why a RTOS is commonly implemented using tasks (Section 2.2).
The watchdog timer task is a lower priority task. This task is responsible for alternately
communicating the constant value to the port of the hardware watchdog. This is called
feeding the watchdog. As long as the value is send to the hardware watchdog, the device
will not be reset. If the device is idling, this task will be executed. However, if other
tasks are being executed, this task will not block the other tasks since it is a low priority
task.

Depending on the RTOS, it is possible to have deadlines for a task [2]. If the RTOS
supports deadlines, the watchdog feeding implementation can be aware that the task
should be executed at least once in a predefined interval. Without this, if the RTOS is
busy with other tasks for a long time, it may be possible that the watchdog task will
not be executed for too long. This would cause a reset of the device, even though it was
not caught in an infinite loop. With deadlines, the RTOS makes sure that the watchdog
feeding will happen at least once in a predefined interval which will prevent the reset of
the device. But it may not interrupt any other tasks, so the watchdog feeding task will
not interrupt a task that is caught in an infinite loop.

2.5 Fuzzing & coverage guidance

Fuzzing is an automated software testing technique used by security researchers to find
bugs in all kinds of software. A fuzzer generates ‘random’ inputs for a program based
on given valid inputs, known as a seed. If the program crashes with one of the ‘random’
inputs, for example by a failing assertion or memory corruption, a bug is found in the
program. A bug found by fuzzing does not always have to be exploitable and thus a
security issue.

The inputs are ‘random’ because this is not the only input generation method a fuzzer
uses. When a fuzzer is started, it may indeed start generating random inputs based
on the seed. However, coverage guidance is also a very important aspect for effectively
finding bugs by fuzzing.

Coverage guidance is used by a fuzzer to know if an input creates a new execution path.
Each input can be seen as an execution path through the code. When fuzzing, it is
important to know if a new input creates a new path, because a new path could contain
a bug. Moreover, different paths may result in different states of the program in which
new bugs can occur. Therefore, maximizing code coverage is desirable during fuzzing
for increasing the probability of discovering an execution path with a bug.

In this thesis, we use AFL++ as the fuzzer. The reason for this, is that it a very com-
monly used fuzzer used by security researchers with lots of features and support, and it is
actively maintained. In Section 2.6 we also show that we can achieve coverage guidance
by using AFL++ and Unicorn as the emulation framework. Using coverage guidance,
AFL++ can determine the effectiveness of a generated input. If a randomly generated
input results in a new path, then this path is marked as interesting for AFL++. AFL++
will then use this interesting input as a seed for generating new test cases. Using the
coverage guidance methodology, AFL++ is able to discover new bugs very effectively.

19

2.6 Choosing the emulation framework

In this thesis, the goal is to fuzz the packet parsing code of our MBTS BS. We perform
fuzzing through emulating the hardware and the pSOSystem kernel of our MBTS BS,
so we can run the packet parsing code on the emulator. With this emulation, we can
attach a fuzzer to the executed code and we can start fuzzing the packet parsing code
effectively with coverage guidance. In order to make this happen, we have to choose
which emulator and fuzzer we are going to use.

We have the following requirements for the emulator:

1. The emulator supports the PowerPC architecture.

2. The emulator can be used with a fuzzer for coverage guidance.

3. The emulator can load the memory dumps into the emulator (not just a cold boot
from an .elf file).

4. The emulator can be extended to create better support for the target we are going
to emulate such as through manual implementation of system calls.

One of the most well-known open source emulation software used in the Linux envi-
ronment, is QEMU [17]. QEMU is a hardware emulator1: it can emulate processors of
different architectures, such as the PowerPC architecture. However, it is not an obvious
candidate for our fuzzing research because it is not trivial to load arbitrary memory
dumps in QEMU. It is also not possible to (easily) interact with the emulated CPU in-
side QEMU, and modify register values for example. This is one of the reasons Unicorn
has been created.

Unicorn is a lightweight multi-platform, multi-architecture CPU emulation framework
[19] based on QEMU. With Unicorn, it is easy to modify the state of the memory
and CPU registers due to the features build on top of their fork of QEMU. Moreover,
hooking is fully supported in Unicorn, which means that you can easily change the
behavior or implementation of a function in the firmware. Since July 7th 2022, Unicorn
2.0 has been released which introduced support for the PowerPC architecture. This
makes it possible for Unicorn to be used in this research as an emulation framework.
Furthermore, Unicorn combined with a memory dump has proven to be useful for devices
that are difficult to fuzz, such as the packet radio receiver FSK Messaging Service [29,
30]. Unicorn also supports attaching AFL++ as a fuzzer to the emulated code using
UnicornAFL [24]. One downside of Unicorn is that Unicorn does not support system
calls (syscalls). Syscalls are not supported, since Unicorn does not emulate the kernel,
unlike QEMU. If the emulated code invokes a syscall, then it will not do anything unless
a custom implementation is provided using the hooking mechanism.

Another emulation framework is Qiling [18]. Qiling is an advanced binary emulation
framework extending Unicorn. It promises all the benefits of Unicorn, including sup-
port for the PowerPC architecture. Futhermore, it adds support for various syscalls,
debugging capabilities and fine-grained hooking levels. The API of Qiling is exposed
through Python bindings. Qiling itself is also implemented in Python. In our expe-
rience, this results in slow execution because of the overhead Python introduces [22].
Moreover, there are issues with Qiling’s behavior when debugging is enabled, differences
in the expected and actual behavior of specific syscalls, and the lack of documentation
[14]. For these reasons, we have decided to choose Unicorn as the emulator we are going
to use.

1QEMU can also be used for virtualization, but that is not relevant in this thesis.

20

PowerPC hardware

Site Controller (SC) firmware

memory dump
module Cydia Substrate

CPU registers

Memory regions

Syscall implementation pSOS kernel

Memory regions

Base Radio (BR) firmware

Syscall implementation pSOS kernel

Tinker

Figure 11: Setup of firmwares of the BS, including the modifications of the SC firmware.

Unicorn

Site Controller (SC) firmware

memory
dump module Cydia Substrate Syscall

implementation

Memory regions

CPU registers

Tinker

Figure 12: Setup of the SC firmware for emulation with Unicorn.

Unicorn exposes an API for different languages, such as Python, Java, Rust and C.
Since we would like a high-performance emulation and fuzzing framework, we decided
to go with the Rust bindings. We have chosen Rust since it is a high performance
and low-level language and unlike C, it provides strict compile-time checks to ensure
reliability. To improve the debugging capabilities of Unicorn, we will attach udbserver
to the Unicorn engine. Udbserver, the Unicorn Emulator Debug Server, exposes the
GDB Remote Serial Protocol for Unicorn, which allows one to connect to the emulator
with GDB [3]. This can be useful to inspect the memory regions and registers of the
firmware during execution, and to triage any bugs found during fuzzing.

An overview of what the setup is of the firmwares executed on the BS, can be found in
Figure 11. An overview of what is emulated by Unicorn and what is executed on top of
it, can be found in Figure 12.

2.6.1 Rust harness with Unicorn for fuzzing with AFL++

With the Rust bindings of Unicorn, we can write Rust code to load the memory dumps
into Unicorn and set the CPU registers for Unicorn. Moreover, Unicorn supports fuzzing
with AFL++. After we have performed all the initialization of Unicorn in the Rust code
and we are ready to start the emulation, we can execute the function afl fuzz to make
the program compatible with the command line tools of AFL++. The program is then

21

called the harness for AFL++. AFL++ is able to run the harness and perform IPC
with the harness to efficiently fuzz inside Unicorn.

2.7 Compiling and decompiling

In this section we discuss the effects of compiler optimization settings on the resulting
compiled code, and hence the decompilation output when reverse engineering the com-
piled code. This is important to know during reverse engineering when comparing code
in different firmwares, since code that is being compared may be equal but compiled
using a different optimization setting.

Compiling is the process of converting source code into assembly instructions. Decompil-
ing is the reversed process: converting assembly instructions back into source code. For
compiling source code, a compiler such as gcc can be used. gcc is capable of converting
source code written in C (and other languages) into assembly instructions.

When compiling source code using gcc without specifying any optimization options,
gcc’s goal is to reduce the cost of compilation and to make debugging produce the
expected results [25]. If an optimization option is specified, depending on which option
is specified, gcc will change the resulting assembly instructions to improve performance
and/or code size, with a penalty on compilation time. There are numerous optimization
options available in gcc, each with their own goal. All these optimization options are
bundled into four levels: -O0 (no optimization), -O1 (optimize), -O2 (optimize even
more), -O3 (optimize yet more). Depending on which level is chosen during compiling
the source code, the decompiled code may change drastically. This is best explained by
an example program written in C:

#include <stdio.h>

int generate number ()

{

for (size t i = 0; i < 2; i++)

{

printf("Computing ...\n");

}

return 42;

}

int main()

{

for (size t i = 0; i < 99999999; i++)

{

printf("Random number: %d", generate number ());

}

return 0;

}

For this example, we use Ghidra [1] as the decompiler to convert the assembly instruc-
tions back into source code.

When compiled with gcc without any optimization specified, the decompilation is:

undefined8 generate number(void)

22

{

ulong local 10;

for (local 10 = 0; local 10 < 2; local 10 = local 10 + 1)

{

puts("Computing ...");

}

return 0x2a;

}

undefined8 main(void)

{

undefined8 uVar1;

ulong local 10;

for (local 10 = 0; local 10 < 99999999; local 10 = local

10 + 1) {

uVar1 = generate number ();

printf("Random number: %d",(int)uVar1);

}

return 0;

}

When compiled with gcc with the -O3 optimization specified, the decompilation will be:

undefined8 main(void)

{

long lVar1;

lVar1 = 99999999;

do {

puts("Computing ...");

puts("Computing ...");

printf("Random number: %d",0x2a);

lVar1 = lVar1 + -1;

} while (lVar1 != 0);

return 0;

}

As seen in de the above decompilation outputs, the decompiled code differs significantly
when using the -O3 optimization compared to the decompiled code without any opti-
mizations specified. In the decompilation of the optimized binary, we see no function
call anymore to the generate number function. Instead, the whole function is inlined
in the main function and the for-loop of printing “Computing...” is optimized away.
Also, the for-loop in the main function is replaced with a do-while loop. Still both the
non-optimized binary and the optimized binary gives equal output.

From this example it is important to remember that even if the decompiled code may
be significantly different, it could be the case that they originate from the same source
code but compiled with different optimization settings. This becomes relevant when
comparing firmware of our MBTS BS with the firmware of the MTS2 BS, as described
in Section 3.2, since the firmwares are compiled using different optimization settings.

23

3 Earlier research for the TETRA Base Station

Security research on a TETRA Base Station (BS) is not completely new. At the TU
Darmstadt, there has also been research carried out on the TETRA BS by Müller et al.
[16]. In this chapter, we review the research by Müller et al. (Section 3.1). To highlight
that this research is not a mere repetition of their work, we make the differences of
firmware and fuzzing between the research of Müller et al. and this research explicit in
Section 3.2 and Section 3.3. In Section 8.3 in the Conclusion, we reflect on the usefulness
of the research of Müller et al. for our own research.

3.1 PowerPC Binary Patching for Base Station Analysis

The research done by Müller et al. is focussed on providing tools for analyzing the
firmware of a Base Station (BS). These tools include a memory dumper, function tracer,
flexible patching capabilities at runtime, and a custom fuzzer. The flexible patching
capabilities are made in a generic way so they can be reused for research on other
systems running the PowerPC architecture. Besides the patching tools, their research
is focused on the Base Radio (BR) firmware and the communication stack between the
BR firmware and the Site Controller (SC) firmware.

Prefix Purpose

__ zlib, symbol names match library [11]
__ libc, symbol names match library [5]
efs_ High-level file system functionality

ipcom_ IP communication
iplite_ IP communication
iptcp_ Transmission Control Protocol (TCP)
iptftp_ Trivial File Transfer Protocol (TFTP)
tftp_ Trivial File Transfer Protocol (TFTP)
snmp_ Probably Net-SNMP library.
scomm_ Site communication with UDP socket abstraction.
pthread_ OSE POSIX-compliant thread wrapper.
ose_ Generic OSE functions.
afm_ OSE Atomic File Manager (AFM).
fam_ OSE Flash Access Manager (FAM).

shell_ OSE Command Line Shell.
cmd_ Shell commands like ls or cat.
rtc_ OSE Real Time Clock (RTC).
pmd_ OSE Post Mortem Dump (PMD).
bs_ Probably basic system process and timer management.

core_ Core functionality.
sysconf_ Configuration access.

zz Functions that force the syscall interface.
xx Kernel-side implementation of functions like xxmutex_lock

Table 2: Symbol names in the firmware of the BR of the MTS2 BS and their purpose,
from the research by Müller et al. [16].

Since the research of Müller et al. focused on the firmware of the BR, they have also
published a detailed table of symbol prefixes and their purposes. This table of symbols
can be found in Table 2. Symbols are added by the compiler during compilation to make

24

it possible to dynamically link shared libraries. Symbols can also be used to identify
what happened where, when there is a crash. For example, the symbols in the firmware
include function names of every function in the firmware. This is useful information to
better understand the structure of the binaries, and where interesting code may be.

The research of Müller et al. concludes with Hyphuzz, a fuzzer that has been created
using the tools they developed in order to fuzz the MTS2 BS (see Section 3.3).

3.2 Firmware differences

The MTS2 Base Station (BS) hardware and firmwares used in the research of Müller et
al. is not the same as the hardware and firmwares used in our research. This has impact
on what is useful for this thesis from the research of Müller et al.

The hardware that was used in the research of Müller et al., is a DIMETRA Express
MTS2 BS [15]. This is different from the BS used in our research: the DIMETRA
Express MBTS BS. The MTS2 BS is the successor of the MBTS BS. The MTS2 BS is
powered by the Enea Operating System Embedded (OSE) [6] while our MBTS BS is
powered by pSOSystem (pSOS).

The firmwares used in the research of Müller et al. include symbols. These symbols are
also used by decompilation software to make the decompiled code more readable and
easier to understand. The function names also reveal a lot about the use and purpose of
the code in the function. This can be helpful in reverse engineering the Site Controller
(SC) firmware. The firmwares of our MBTS BS do not have symbols.

The firmwares of our MBTS BS also appears to be older than the firmwares of the MTS2
BS. We concluded this, since we noticed that the firmwares of the MTS2 BS is larger
in size than the firmwares of our MBTS BS. Parts of the SC firmware of the MTS2 BS
is also written in C++ while the SC firmware of our MBTS BS does not include any
C++ code. Moreover, strings containing a copyright date indicate that the MBTS BS
firmware has been created before the MTS2 BS firmware.

While reverse engineering and comparing the SC firmware of the MTS2 BS and our
MBTS BS, we noticed that the SC firmware of their MTS2 BS contains symbols related
to C++ functions. For example, there are symbols named AiProtocolConsumer::

handleUnpack, which uses C++ namespaces. This reveals that besides the use of C,
some code is also implemented in C++ which is called by the C code. Following the same
code paths in the SC firmware of our MBTS BS shows us different assembly instructions
and decompilation which are related to C code and not C++ code. This indicates that
some parts of the C code are re-written/re-implemented in C++ in the SC firmware of
their MTS2 BS.

Another difference is that the firmwares of our MBTS BS seems to be compiled using a
higher optimization setting compared to the firmwares of the MTS2 BS. This is indicated
by the high amount of inline functions in the MBTS BS firmware. As explained in Section
2.7, this results in different decompilation output which makes it in some cases more
difficult to compare the two firmwares.

3.3 Fuzzing differences

The research of Müller et al. focusses primarily on understanding and modifying the
firmware of their own Base Station (BS). They created their own custom PowerPC
binary patcher which makes it also possible to hook functions in the firmware at runtime.
So they created a platform similar to Fiddle and Cydia Substrate (see Section 2.3), but

25

with their own implementation and extra functionalities. While their tool suite has more
functionalities, such as call traces, and is more integrated in the underlying operating
system, we are mostly interested in the fuzzing part.

For the fuzzing, they have chosen to use the original hardware to run the modified
firmware on. This is because they concluded that it is not feasible to run the binary
in an emulator such as Unicorn, because of hardware dependencies of the firmware.
Therefore, their Hyphuzz fuzzer has to run on another device and interacts with the BS
through a UDP connection for executing the test cases. This means that they are only
able to observe crashes from the outside, and do not have detailed information about
why it crashes. 45% of their crashes contained a kernel error message, which is helpful
for triage and root cause analysis. But this also means that 55% of the crashes cannot
be triaged. Moreover, the state of the BS is not reset between test cases which can be
a source of instability for their test cases. Most importantly, they fuzz the scomm stack,
which is used for trusted backbone services. Being able to communicate with the scomm
stack already implies that the adversary has crossed an important trust boundary since
the adversary is able to reconfigure the BS.

26

4 Research Decisions and Preparation

4.1 Decisions

In this section we discuss some initial decisions we made when starting our fuzzing
research (Section 5). In Section 4.1.1 we discuss how we are going to use the MBTS BS
and MTS2 BS firmwares in our advantage. Section 4.1.2 clarifies the decision of making
a memory dump, and the benefits of it during fuzzing.

4.1.1 Comparing the firmware of our MBTS Base Station and the MTS2
Base Station

As discussed in Section 3.2, we have access to two firmware binaries:

1. The firmware binary of our MBTS BS (the device used in this research), which
does not include symbols.

2. The firmware binary of the MTS2 BS (the device used in the research of Müller
et al.), which does include symbols.

While we have to keep in mind that there are differences between the two firmwares, we
can also make use of the firmware of the MTS2 BS to better understand our MBTS BS
firmware. Because of the symbols in the MTS2 BS firmware, the MTS2 BS firmware
is easier to understand. Furthermore, since a large part of the code is shared between
the two firmwares, we think it is faster to first search for the packet parsing code in
the MTS2 BS firmware. Afterwards we can check our MBTS BS firmware to see if the
packet parsing code is also implemented there. Moreover, using pattern matching on
the decompiled code and looking for static strings within the code, we can identify the
functions in the MTS2 BS firmware in our MBTS BS firmware (see also Section 5.1.1).

4.1.2 Emulation & Fuzzing

As discussed in Section 3.3, Müller et al. makes use of the actual hardware during the
fuzzing of the Base Station (BS). In our research, we do not make use of the hardware
during the fuzzing phase. Instead we choose to run it in an emulator. The rationale
behind this choice is threefold. First, emulation allows for effective coverage guidance,
which will greatly increase the relevance of generated fuzzing cases. Second, emulation
helps verifying the execution path and debugging any issues found in the code because
we can freely inspect the memory regions and registers of the emulator at the moment
of crashing. Without emulation, it is difficult to inspect the internal state of our MBTS
BS. Lastly, emulation will increase execution speed since the hardware of our MBTS BS
is old and slow.

However, it is not possible to load the firmware of the BS directly into an emulator
(simulating a cold boot). This is because during boot, the BS firmware does hardware
initialization which cannot be easily simulated in an emulator due to hardware depen-
dencies. Instead, we create a memory dump of all memory regions and registers of the
BS at the moment of packet parsing on the actual hardware. This memory dump will
contain all the code of the firmware and operating system, and all data related to it.
Using this memory dump for the internal state of the emulator, we completely skip all
the hardware initialization which makes the emulation less hardware dependent.

27

4.2 Feasibility study of fuzzing through Unicorn with AFL++

Before deciding to use Unicorn as an emulation framework, we want to verify the fol-
lowing:

1. Unicorn supports loading in the memory dumps and CPU registers.

2. Unicorn supports running the PowerPC architecture of the memory dumps.

3. AFL++ properly supports Unicorn used in the fuzzing harness and the bindings
are stable.

4. The speed of fuzzing with AFL++ and a Rust-based Unicorn harness is sufficiently
high.

5. Debugging the memory dump through Unicorn with GDB is properly supported
and stable.

Therefore, we created a small demo using fuzzgoat to verify the decision of using Unicorn
as our emulation method.

4.2.1 Fuzzgoat

Fuzzgoat is a C program that has been deliberately backdoored with several memory
corruption bugs to test the efficacy of fuzzers and other analysis tools [21]. Fuzzgoat
already provides a setup for installing and using AFL++. However, we are not interested
in the usual AFL++ setup where we just execute the binary. Since we are going to
emulate a memory dump in Unicorn for the Base Station (BS), we will do the same for
fuzzgoat.

For the fuzzgoat demo, we created a setup to use Unicorn with Rust bindings with
AFL++ as the fuzzer. This setup includes setting the CPU registers, loading the mem-
ory dump and attaching AFL++ to Unicorn. This setup can be used as a boilerplate
for the emulation, since not a lot of code has to be changed in order to port it to a
different target.

Since the BS has a PowerPC architecture, we have compiled fuzzgoat to the PowerPC
architecture too. In order to make a memory dump, we run the PowerPC binary of
fuzzgoat with QEMU user emulation and attach a GDB debugger. Through GDB, we
break just before the parsing and we dump all available memory regions to a file and we
save the CPU registers as shown by GDB. Now the memory dump and CPU registers
can be loaded into Unicorn through the Rust code.

With this setup, we have fuzzed fuzzgoat and we were successfully able to find the
intended vulnerabilities in fuzzgoat. Moreover, AFL++ reported that the execution
speed was around 1000 executions per second. From this we can conclude that it is a
good approach for fuzzing the BS, since the method does discover vulnerabilities and
has good execution speeds.

In order to improve debugging capabilities of Unicorn, we have connected udbserver to
Unicorn [3]. Since we experienced segmentation faults with udbserver, we have created
a fork with a patch to fix the crashes [4].

28

5 Fuzzing the packet parsing code of the Base Sta-
tion

In order to fuzz the packet parsing code in the Site Controller (SC) firmware of the BS,
we first have to go through the following steps:

1. We have to find the functions that implement the packet parsing (Section 5.1).

2. We have to write a memory dump module to dump all memory when invoked
(Section 5.2).

3. We have to execute the memory dump module in the SC firmware (Section 5.3).

4. We have to load the memory dump into the Unicorn emulator (Section 5.4).

5. We have to extend Unicorn to deal with syscalls of the pSOS kernel (Section 5.4).

After we have done all the above steps, we can start fuzzing the packet parsing (Section
5.5). We have to do all the above steps since we want to fuzz the packet parsing through
Unicorn to have coverage guidance available (see also Section 4.1.2).

In Figure 13, the flow of creating a memory dump and running it in the Unicorn emulator
is summarized. Figure 13 visualizes the hooking in the BS, which redirects the execution
flow to the memory dump module, which is step (1), (2) and (3) together. It will produce
a memory dump which contains the CPU registers and the memory regions of the SC
firmware. This memory dump will be used for step (4) and (5) to fuzz the packet parsing
code on an external device using AFL++.

Mobile Station
(MS)

Packet over
the air

Base Station (BS)

Base Radio (BR)

Packet parsing

Memory dump module

Site Controller (SC)

Hook

CPU registers

Memory regions

Site Controller
(SC)

Dumps

UnicornCPU registers

Packet parsing
Continue Stop

Site Controller (SC)

Memory regions

Syscall

implementation

Fuzzing on external device

pSOS
kernel

Syscall

implementation

pSOS
kernel

Syscall

implementation

: own code
Legend

AFL++
Fuzzing

Figure 13: The flow of triggering and creating the memory dump on the BS, emulating
the packet parsing in Unicorn, and fuzzing the packet parsing with AFL++.

5.1 Finding the target through reverse engineering

In this section, we describe the method we used to find the ‘target function’. The target
function is the function implementing the packet parsing. We want to fuzz the logic in
this function, but first we have to locate the the function in the assembly of the firmware.

29

5.1.1 Procedure for finding functions

As explained in Section 4.1.1, we have our MBTS BS firmware without any symbols and
the MTS2 BS firmware with symbols. We use the following procedure to find functions
in our MBTS BS while using the symbols of the MTS2 BS firmware:

1. We first determine in the MTS2 BS firmware which function we want to find in
our MBTS BS. We call this function f .

2. We search for static strings in the decompiled code referenced by f , or the paren-
t/child functions of f .

3. If we have found a static string in the decompiled code, we search for this exact
same string in our MBTS BS firmware.

4. If we have found such a string in our MBTS BS firmware, we identify references
to this string. Such a reference comes either from f , or from a function closely
related to f .

5. If the found string was in a parent/child function of f , we have to try to follow
the reversed code path in the decompiled code of how we found that string. For
example, if the found string was in a child function of f , we have to traverse all
the parent functions of the function where we found the string. If the decompiled
code of one of the parent functions mostly matches with f , we have found f in
our MBTS BS firmware.

5.1.2 Analyzing the Base Radio (BR) through reverse engineering

Since we assumed that the Base Radio (BR) firmware would contain the logic for packet
parsing, we started with reverse engineering the BR firmware2. The BR firmware of our
MBTS BS is difficult to understand due to the lack of symbols, so we started with the
firmware of the MTS2 BS.

Some symbol prefixes are already documented in Table 2 as a result of the research done
by Müller et al., but there are more symbol prefixes in the firmware. Therefore, we use
some educated guesses to give other relevant prefixes (related to the Air Interface) a
useful name. The result is listed in the Table 3.

Prefix Purpose

dlai DownLink Air Interface
ulai UpLink Air Interface
aiei Air Interface Encryption Interface
ai Air Interface

Table 3: Description of the Air Interface-related symbols in the BR firmware.

Futhermore, we noticed that ld would mean “Late Decryption” if the function name
contains that string. We think this because of the strings in the aie ld task function.

According to the TETRA standard, the Uplink is the inbound data path, i.e. from the
Mobile Station to the BS [7]. This is also the path we want to research, since packet
parsing is performed on the incoming data.

Following the cross references from functions starting with ulai , brings us to the ula

main function. This is the Uplink’s main function, and it probably contains all the

2We later conclude that this assumption is wrong and we continued with the SC (see Section 5.1.3).

30

BR-related code for the Uplink. After inspecting all the assembly and called functions in
ula main, we concluded that almost no packet parsing is done in the BR firmware. The
BR firmware is mostly responsible for encrypting/decrypting the packets and passing
it to the Site Controller (SC) firmware. Therefore, the target for this research shifted
from the BR to the SC.

5.1.3 Analyzing the Site Controller through reverse engineering

For the Site Controller (SC), we used the same method as the Base Radio (BR): we first
reverse engineer the SC firmware of the MTS2 BS since it is easier to understand with
symbols. After we find something interesting, we compare it with the SC firmware of
our MBTS BS to see if the implementation is similar or different.

For the SC there was no symbol interpretation done by Müller et al. [16], since they
focused on the BR firmware. Therefore, we have to start from scratch and try to
understand the structure of the SC firmware. There are some function names reused
from the BR in the SC, however they are not relevant to the packet parsing logic. After
glancing over many strings in the SC and some educational guesses, we concluded that
functions containing the following names may have the following purposes:

Partial name Purpose

tsc Tetra Site Controller
Ai Air Interface

uplink Related to Uplink
aie Air Interface Encryption
Shm Site Health Monitoring
ss System Service
rrd Rom Data Handler
fm Fault Management (error handling)

SMTask State Manager task
alm Alarm Management
ic Info Cluster

CCMT Call Control Manager Type
SCFG Save Configuration
br Base Radio
aie Air Interface Encryption

Table 4: Description of the symbols in the SC firmware.

Using the symbols from Table 4, it is a bit easier to understand the SC firmware. Next,
we need to find the target function which is responsible for packet parsing.

The strategy of finding the target function is mostly searching for symbol names con-
taining the strings ‘ai’, ‘parse’, ‘packet’, ‘pack’, ‘unpack’, ‘tetra’, ‘uplink’, ‘handle’ and
‘process’. These strings may indicate that the function is (nearby code) related to packet
parsing code.

A candidate in the SC firmware was the ai unpack function. Following the call graph
upward from this ai unpack function brings us to the CallProcessing function, which
indicates that it has something to do with incoming data. We also crossed the function cr
handle msg tla tlc, which is related to TLA and TLC data (see Section 2.1). Looking
into the implementation of the ai unpack function, shows us that it is a starting point
of calling C++ related logic for AiProtocolConsumer::handleUnpack. However, we

31

first want to verify that this function actually exists in our MBTS BS firmware since all
this reverse engineering is done in the MTS2 BS firmware.

By finding strings defined in the decompiled code in nearby functions of ai unpack, we
managed to find one of the parent functions z0001002H1J handle tla ex data ind in
the MBTS BS SC firmware. However, it appears that the function ai unpack does not
exist in our MBTS BS, since the disassembly is different in our MBTS BS. This is not
very surprising since we did not find any C++ related code in our MBTS BS, so the code
path to the ai unpack function also does not exist in our MBTS BS. But the ai unpack

function has given us some new direction for where to look into to find packet parsing
logic.

One of the parent functions of z0001002H1J handle tla ex data ind is yPAD z0001002H

DataTransferEntityType. The disassembly of yPAD z0001002H DataTransferEntity

Type in the MTS2 BS shows us that some big memory object is allocated at the start,
and afterwards it will go into a huge switch-statement with about 90 cases. The case
in the switch-statement is determined by the first two bytes of the memory object. Ev-
ery case in the switch-statement will call a function, which will do something with the
allocated object and then change the first two bytes of the memory object to another
case-number in the switch-statement. This implementation feels very similar to a state
machine, where the memory object is the state and the switch-statement implements
the machine. Using this knowledge, we focused on finding more packet parsing related
code within this state machine.

Continuing the search for symbol names, we found the z0001002H1K unpack sdu func-
tion which appears to be responsible for parsing various types of packets using dif-
ferent parsers. This includes logic for parsing Circuit Mode Control Entity (CMCE)
(z0001002H1L handle CMCE), Mobile Link Entity (MLE) (z0001002H1M handle MLE)
and Mobility Management (MM) (z0001002H1N handle CAM). After discussing this
finding internally, we decided to focus on the packet parsing for the MM since these
parsing routines are nontrivial and can be reliably be triggered over-the-air using our
TETRA setup and our MS. We first try to find z0001002H1K unpack sdu in the MBTS
BS since z0001002H1K unpack sdu only has been found in the MTS2 BS. For this, we
use the method as described in Section 5.1.1. By using static strings in the decompiled
code of the child functions of z0001002H1K unpack sdu, we managed to find several
packet parsing functions in our MBTS BS. The packet parsing functions are listed in
Table 5.

In our MBTS BS, all of the above functions are a direct child function of yPAD z0001002H

DataTransferEntityType. This can be explained by the higher compiler optimization
used for our MBTS BS as explained in Section 2.7.

All of the functions mentioned in Table 5 may be good targets to fuzz, since they are
directly related to packet parsing of incoming data from the Air Interface. However, we
focus on three specific target functions since we can reliably trigger the corresponding
parsing routines of these three targets (further explained in Section 5.5.2). Using these
functions as the target, we can continue creating the memory dump of our MBTS BS
to start executing these functions in the emulator.

5.2 Writing the memory dump module

In order to dump the memory regions and registers of our MBTS BS, we need to have
a memory dump module compatible with Fiddle and the modified version of Cydia
Substrate (see Section 2.3). This memory dump module needs to do the following:

32

Symbol name of function

z0001002H1Q handle U INFO

z0001002H1P handle U SDS DATA

z0001002H1O handle U SDS STATUS

z0001002H1U handle U DEMAND

z0001002H20 handle U LOCATION UPDATE DEMAND

z0001002H1X handle U ITSI DETACH

z0001002H1W handle U DISABLE STATUS

z0001002H1S handle U DISCONNECT

z0001002H1V handle U PREPARE

z0001002H1R handle U CONNECT

z0001002H4L u authentication response unpack

z0001002H4O u authentication demand unpack

z0001002H4M u authentication result unpack

z0001002H4N u authentication reject unpack

Table 5: Interesting target functions in the MM, CMCE and MLE found in the SC
firmware of our MBTS BS.

1. Dump the CPU registers (Section 5.2.1)

2. Dump all the memory regions (Section 5.2.2)

Because we use the modified version of Cydia Substrate, we can easily hook specific
addresses and let it execute another function instead. In this case, we let it execute the
dump memory function, which we implement in the memory dump module.

5.2.1 Dumping the CPU registers

The first thing we need to dump before dumping anything else is the CPU registers.
This is because the CPU registers quickly change between function calls. We do not
want to lose any information stored in the CPU registers, since then emulation will not
be accurate and therefore may fail.

We have chosen to dump the registers by writing C-code and not writing assembly.
While it is possible to write this in pure assembly (and having full control over the
executed code), we think it is easier to use the C-code equivalent since it is easier to
understand and use within the memory dump module. The GNU Compiler Collection
(gcc) supports accessing registers in C-code with the following syntax: register int *

foo asm ("r12"); [26]. This syntax supports dumping all the general purpose registers
0 up to (and including) 31, sp and ctr. There are some registers which are unsupported,
such as cr, lr and xer. For these registers, we use the mfcr 4, mflr 4 and mfxer 4

instructions to move the contents of these registers to the general purpose register 4,
which we can dump via the gcc-method.

Next, we need to print the contents of the registers to the telnet session so we can
extract them. Because we use Fiddle and the modified version of Cydia Substrate,
this is straightforward: the telnet connection object is passed to the module during
initialization. This telnet connection object is required as the first argument in the mmi
flow control printf function. The second argument of the mmi flow control printf

is a format string, and their parameters, just like the arguments of a normal printf
function in C. So we can write the content of the registers as hex values in a string using
the %08x format-specifier. This string is automatically sent over the telnet connection,

33

which we can listen to.

5.2.2 Dumping the memory regions

We also need to have a memory dump of all the memory regions in our MBTS BS.
Somewhere in this memory dump will be the packet that is being parsed, as well as the
assembly code parsing the packet. Dumping the memory is straightforward using Fiddle
and the modified version of Cydia Substrate and similar to dumping the CPU registers:
we iterate over all the memory addresses in the existing memory regions, and we dump
the content of the memory address to the telnet session using mmi flow control printf

and the %02X format specifier. This will print the memory contents as hex values to the
telnet session, which we can later decode and load into Unicorn.

We need to know the exact starting addresses of the memory regions and the sizes of
the memory regions in order to dump the memory. The memory regions are initialized
at boot time of our MBTS BS. During initialization, some special registers called ‘BAT
registers’ are set which maintain address permissions for the memory regions [13]. During
development of Tinker (see Section 2.3), the BAT register setup in our MBTS BS has
been reverse engineered and we know that the following memory regions exists with the
following permissions:

1. Start: 0x0, end: 0x2000000, read-only

2. Start: 0x2000000, end: 0x4000000, read/write

3. Start: 0x4200000, end: 0x5200000, read/write

4. Start: 0xfe000000, end: 0xffffffff, read/write (used for I/O)

We can use this information to configure the memory dump module to dump regions
(1), (2) and (3). Since (4) is used for I/O, it is not necessary to dump it because we do
not have any actual hardware connected in the Unicorn emulator.

We have chosen to dump the memory contents as hex and not as raw bytes, since
dumping the raw bytes over telnet did not work. When doing so, only a few kilobytes
will be dumped. After that, we get the message that the telnet connection is terminated
by the remote and the memory dump stops. We do not know exactly why this happens,
but it may be related to the telnet escape sequence. This issue is blocking the memory
dump. Since dumping hex-characters only is working fine, we dump the memory using
hex and convert it afterwards to raw bytes.

The telnet connection is not very fast. And since we dump the memory in hex-format,
every byte will be two bytes for dumping (since hex doubles the output bytes). This
results in a full memory dump taking about 5 hours. Fortunately, since the first memory
region is read-only, we only have to dump the first memory region once. This saves about
1 hour for other memory dumps.

5.2.3 Defeating the watchdog

As stated in Section 2.4, our MBTS BS is protected by a watchdog. Since the memory
module takes more than 30 seconds to run, the watchdog will kick in and will reset
our MBTS BS, thus killing the memory dump. We have two options for solving this
problem:

1. Patching the Site Controller (SC) firmware to never start the watchdog task.

2. Feeding the watchdog during the memory dump procedure so it will not reset our
MBTS BS.

34

In order to implement method (1), we have to perform a firmware modification of the SC
firmware. This can have side effects since we change the initialization of the SC firmware.
We also thought that method (2) would be easier since it does not require additional
firmware modifications, and can be implemented in the memory dump module itself.
Therefore, we have chosen for method (2).

In order to replicate the behavior of feeding the watchdog, we need to first reverse
engineer the firmware to find the code which is responsible for feeding the watchdog.
Finding this code was easy, since it is part of the initialization method after boot and the
function starting the watchdog task includes the string AcLaunchWdogTask. Analyzing
the watchdog task code reveals that there are four important functions:

1. The watchdog initializer

2. The watchdog trigger

3. The first watchdog feeder

4. The second watchdog feeder

The watchdog initializer initializes a new watchdog object which can be used in the
watchdog trigger function to trigger the watchdog check. There are also two feeder
functions, which are called alternately with the constant value 0x1000 as the first pa-
rameter. With this knowledge, we also initialize a watchdog object in the memory dump
module just after dumping the CPU registers. While dumping the memory regions, we
feed the watchdog by alternately calling the feeder functions and then calling the trigger
function. We do this after every 100 bytes we dump to the telnet connection. This will
make sure that the watchdog will always be triggered within 30 seconds, which prevents
our MBTS BS from being restarted.

5.3 Creating the memory dump

Compiling the memory dump module gives an ELF binary, which can be loaded into
the Base Station (BS). This loading is done using Tinker, Fiddle and Cydia Substrate
(see Section 2.3). The result is that the firmware is automatically patched on runtime
to execute the dumping code when the hooked functions are executed. The moment of
hooking the packet parsing is visualized in Figure 14. Now we can listen to the telnet
output and redirect that to a file to store the memory dump on our external device.

Since we were unsure which function would be triggered when a Mobile Station (MS)
is connected to the BS, we decided to hook all target functions described in Table 5
to greatly increase our chance of triggering at least one target function. Activating the
MS and letting it start connecting to the BS almost immediately triggered the memory
dumping. Upon inspection of the CPU registers, the hook placed on z0001002H20

handle U LOCATION UPDATE DEMAND has issued the dump since the return address of the
hooked function points to an instruction after an instruction calling the z0001002H20

handle U LOCATION UPDATE DEMAND function. We decided that z0001002H20 handle U

LOCATION UPDATE DEMAND is also a good fuzzing case since the packet of U-LOCATION
UPDATE DEMAND is a packet with a considerable number of data fields, as can be
seen in Figure 15.

5.4 Emulating the memory dump

Now the goal is to emulate the packet parsing execution of the Site Controller (SC)
firmware in Unicorn using the captured memory dumps (in short ‘emulating the memory

35

Base Radio (BR)
Over the air

Demodulation Decryption

Site Controller (SC)

Defragmentation

Packet parsingPacket handling

Hooking packet
parsing

...

Mobile Station
(MS)

Figure 14: Visualization of the moment of hooking the packet parsing.

Figure 15: U-LOCATION UPDATE DEMAND packet content fields as defined on page
270 in the TETRA protocol standard [8].

dumps’). Before we can load the memory dump files into Unicorn for emulating it, we
have to parse the memory dump and do the following:

36

1. We split the CPU register dump and memory region dumps into multiple files to
easily load the memory regions at different memory offsets in Unicorn.

2. We hex-decode the memory region dumps.

A small Python script does the above two tasks.

Given the memory dump files, we can now start emulating the memory dump in Unicorn.
As a basis for our emulation, we use the code written for the fuzzgoat emulation and
fuzzing. This makes it trivial to load the CPU registers and memory region dumps into
Unicorn.

Starting the emulation with this configuration will fail because of the following issues:

1. Registers r0 (value of the LR register, a PowerPC specific register) and r1 (stack
pointer) are incorrect due to the function-prologue of the memory dump module.

2. The program counter is incorrect, since it points somewhere in the memory dump
module.

3. The emulator will execute the memory dump module again since the start of
the z0001002H20 handle U LOCATION UPDATE DEMAND function is still patched to
execute the memory dump module instead.

4. The emulated code will have code paths which trigger a syscall.

In Section 5.4.1 we discuss how to resolve issue (1) and (2). In Section 5.4.2 we discuss
how to resolve issue (3) and (4).

5.4.1 Patching the registers

Since we have decided to write the memory dump module in C and not in assembly,
we had to use a compiler to convert it to assembly. For a function call, the compiler
will put some ‘prologue’ assembly before actually executing the assembly inside the
function. This prologue assembly will initialize the stack frame for the function and it
will remember the return address. This changes some of the register values before we
have dumped the CPU registers.

The stack pointer in register r1 can be corrected by reverting the subtraction done
by the prologue assembly. By reverse engineering our own ELF binary of the memory
dump module, we can see that the memory dump function starts with the following
instruction: stwu r1,-208(r1). To undo this instruction, we can add 208 to the value
of the r1. Now the stack is properly setup for the z0001002H20 handle U LOCATION

UPDATE DEMAND function.

Register r0 is lost in the process of dumping the CPU registers. The prologue assembly
contains the following instruction before storing the value of r0 on the stack: mflr r0.
This instruction will move the value in the Link Register to the r0 register. This will
overwrite the value in the r0 register, and is therefore lost. However, r0 is a scratch-
register, so it is used to store temporary values. Therefore, it should not be an issue
since r0 cannot contain any parameter values for the function. Furthermore, the value
of r0 in the CPU register dump will actually be the value of the LR-register, so we can
use that value instead. The program counter can just manually be set to the start of
the z0001002H20 handle U LOCATION UPDATE DEMAND function.

37

5.4.2 Patching the memory

Since we have dumped the memory regions with our patch applied to the code, in
the emulator the z0001002H20 handle U LOCATION UPDATE DEMAND is also patched to
execute the memory dump module instead of the actual function. Of course, this is
not what we want to fuzz. So we have to revert the patch. This can easily be done by
reading from the original firmware the content of the addresses that are patched. The
read bytes from the original firmware will correspond to the original assembly before
it was patched by the modified version of Cydia Substrate. During the loading of the
memory regions in Unicorn, we can overwrite the bytes in the emulator with the original
bytes. This will revert the patched assembly in the emulator.

When we now start the emulator, we will hit a code path that will actually only run
a small part of the z0001002H20 handle U LOCATION UPDATE DEMAND function. This is
because the executed code path contains other functions, which execute syscalls. Syscalls
are not supported in Unicorn, unless a custom implementation is provided. Therefore,
the execution of functions depending on syscalls will probably fail. For example, the
xPrdCall function will allocate some memory using a syscall. However, the syscall does
nothing and therefore the function will fail. This failing is detected in the xPrdCall

itself and will result in a code path terminating the execution. We can solve this problem
in two ways:

1. We emulate the syscalls in Unicorn by implementing the required syscalls.

2. We skip the functions/code that require syscalls and hope that the important code
still works.

Our approach is to prefer method (1). It is, however, a time consuming approach
since the syscall numbers are not documented anywhere. However, this will make the
emulation as close as possible to the real execution of the code. Furthermore, there
are not many syscalls that will be executed during the fuzzing and that will reduce the
amount of work for reimplementing the syscalls in Unicorn. If we are 100% sure that a
function is not useful during emulation and fuzzing, then we may choose method (2) if
reimplementing the syscall is prohibitively hard. For method (2), it is straightforward
in Unicorn to hook a specific function and set the program counter to the end of that
function, thus skipping the function completely.

After implementing the syscalls, we verified that the firmware runs the packet parsing
without any issues within Unicorn.

5.5 Fuzzing in the Unicorn emulator

5.5.1 Preparing the fuzzing

At this point, we have set up almost everything to start fuzzing the packet parsing
code of the target z0001002H20 handle U LOCATION UPDATE DEMAND. We still need to
perform two steps:

1. Find the packet in memory and dump it to a file.

2. Write code to overwrite the packet with the fuzzing case.

(1) is done by inspecting the decompiled code of the packet parsing and determine
where the buffer is read. If we have found a location in the code where the reading
of the buffer is done, we set a breakpoint in Unicorn just before the reading of the
buffer. After executing Unicorn with this breakpoint, we inspect the pointer that is
used to locate the start of the buffer. By reverse engineering, we discovered that the

38

data structure of the buffer includes a size, a cursor offset and a ‘bits left to read’ value.
The packet that we are going to fuzz will then become the bits from the cursor offset
until the cursor offset plus the ‘bits left to be read’. We call this range the target buffer.
We then dump the target buffer to a file so it can be used as the initial seed for AFL++.

For (2), we write some code to write the bytes of the fuzz case over the target buffer.
Moreover, since the buffer can never hold more than 200 bytes, we implement the code
to write the bytes of the fuzz case in such a way that it allows the fuzz case to reach
the maximum packet length of 200 bytes. We do this by computing the new value for
‘bits left to read’ when the packet is bigger or smaller than the original fuzz case. This
updated ‘bits left to read’ value is then written to the correct address in memory, so the
packet parsing logic will use it correctly.

We fuzz with only a single persistent round. This means that after one fuzz case, Unicorn
will fork the process again to run a new fuzz case with. This is necessary since the CPU
registers and the memory are changed after one round of fuzzing. If we execute a new
fuzz case with these changes, the emulation will be wrong. Therefore, the state is reset
to the state before the fuzz case was executed by forking the process again.

As the last step before running the fuzzer, we wanted to verify the crash-detection of
AFL++ in order to prevent an implementation mistake. We verified our fuzzer by trig-
gering an abort() in the Unicorn harness when executing an unknown/not implemented
syscall. Some execution flows pertaining to exceptions did have a unique syscall and
AFL++ was able to detect this syscall as a ‘crash’, thus we have verified that AFL++
is able to properly detect crashes with our setup.

5.5.2 The three fuzzing targets

We have decided to fuzz the following three targets:

1. U-LOCATION-UPDATE-DEMAND (symbol z0001002H20 handle U LOCATION

UPDATE DEMAND)

2. U-SDS-DATA (symbol z0001002H1P handle U SDS DATA)

3. U-SDS-STATUS (symbol z0001002H1O handle U SDS STATUS)

We have chosen for these three targets since they are all straightforward to trigger
in our Base Station (BS) setup. All these three targets also parse big data frames,
as can be seen in Figure 15, Figure 16, and Figure 17. Moreover, U-LOCATION-
UPDATE-DEMAND and U-SDS-STATUS both are complex messages. This has been
concluded based on the large size of the decompiled code of U-LOCATION-UPDATE-
DEMAND and U-SDS-STATUS handlers: the decompiled code of the parsing function of
U-LOCATION-UPDATE-DEMAND is 343 lines (excluding lines of code of other parsing
functions within U-LOCATION-UPDATE-DEMAND) and the decompiled code of the
parsing function of U-SDS-STATUS is 382 lines. U-SDS-DATA has been chosen because
it can contain a lot of user defined data, since an SDS is similar to an SMS message
which can be send to other Mobile Stations (MSs). Because of this user defined data, it
may increase the probability of finding a bug in the code. The U-SDS-STATUS packet
can be seen in Figure 17, which is documented as ‘U-STATUS’ in the TETRA protocol
standard.

All three fuzzing targets have been fuzzed in parallel with five fuzzing instances us-
ing AFL++ support for parallel fuzzing. There is one parent and four children. This
together will utilize five CPU-cores for fuzzing. As described in the AFL++ documen-
tation [23], the parent will still perform deterministic checks while the childs are limited

39

Figure 16: U-SDS-DATA packet content fields as defined on page 193 in the TETRA
protocol standard [8].

to random tweaks. The parent will also synchronize the results of all instances, so a case
discovered by one instance can be used in other instances in subsequent fuzzing efforts.

5.5.3 Fuzzing U-LOCATION-UPDATE-DEMAND

The fuzzer ran for a total of 428.8 million executions in one day and around three hours
of fuzzing. The fuzzer found a total of zero crashes and zero hangs (executions that took
longer than one second). The AFL++ output can be found in Appendix A.

40

Figure 17: SDS-STATUS packet content fields as defined on page 192 in the TETRA
protocol standard [8].

In order for the fuzzer to work properly, we had to implement syscall number 17 in
the Unicorn harness. Syscall 17 is a syscall to allocate more memory. It is used by
functions to pass parameters to other functions. Moreover, we have ignored syscall
numbers 2 and 18. Syscall 2 is a syscall used to free memory. However, the allocation
mechanism implemented for syscall number 17 in the Unicorn harness does not try to
reduce fragmentation of memory. Therefore, it is also not necessary to actually free the
allocated memory, since we never allocate memory twice on the same address. Syscall
18 is used for translating a ‘task name’ to a ‘task id’. Upon inspecting the code invoking
this syscall, it appeared that ignoring the syscall will result in the correct code path
being taken. So no exception is triggered when nothing happens when syscall 18 is
executed.

5.5.4 Fuzzing U-SDS-DATA

For fuzzing U-SDS-DATA, we performed the following steps:

1. We modify the memory dump module created in Section 5.2 to hook the U-SDS-
DATA handler instead of the U-LOCATION-UPDATE-DEMAND handler.

2. We trigger the memory dump by sending an SDS message.

3. We load the new memory dump in Unicorn by writing another Unicorn harness
to parse the new memory dump.

4. We dump the U-SDS-DATA packet in memory so it can be used as the seed for
AFL++.

5. We run the fuzzer with the new Unicorn harness to fuzz U-SDS-DATA.

Two syscalls have to be implemented in order to support U-SDS-DATA. Syscall 96 is
used in error paths to log strings to a log file. This logging is implemented in the kernel

41

and therefore it uses a syscall. Syscall 96 does not expect any output from the kernel
and therefore we can safely ignore the syscall. Syscall -1 is also used in some error
paths. It is not clear what the exact purpose is for this syscall, but it may be related
to resetting the Base Station (BS) or reporting errors to the kernel. Ignoring syscall -1
appears to work perfectly fine, and therefore we can continue fuzzing.

The packet parsing code for U-SDS-DATA is quite short. Therefore we stopped fuzzing
after AFL++ did not discover any new execution paths after more than two hours, as
shown in the ‘last new find’ timer in the AFL++ output. The fuzzer ran for a total of
39.7 million executions in around four hours and twenty minutes. The fuzzer found a
total of zero crashes and zero hangs. The AFL++ output can be found in Appendix A.

5.5.5 Fuzzing U-SDS-STATUS

For fuzzing U-SDS-STATUS, we performed the following steps:

1. We modify the memory dump module created in Section 5.2 to hook U-SDS-
STATUS instead of U-SDS-DATA.

2. We trigger the memory dump by sending an SDS status message.

3. We load the new memory dump in Unicorn by writing another Unicorn harness
to parse the new memory dump.

4. We dump the U-SDS-STATUS packet in memory so it can be used as the seed for
AFL++.

5. We run the fuzzer with the new Unicorn harness to fuzz U-SDS-STATUS.

We did not have to implement any new syscalls for U-SDS-STATUS since all required
syscalls have already been implemented in the fuzzing steps for U-LOCATION-UPDATE-
DEMAND (Section 5.5.3) and U-SDS-DATA (Section 5.5.4). The fuzzer ran for a total
of 353.0 million executions in one day and around thirteen hours and twenty minutes.
The fuzzer found a total of zero crashes and zero hangs. The AFL++ output can be
found in Appendix A.

42

6 Manual Site Controller firmware analysis through
reverse engineering

Besides fuzzing the packet parsing of the MBTS Base Station (BS) as described in
Section 5, we have performed a brief manual security analysis of the firmware binary of
the Site Controller (SC) in the remaining time available for this research. The goal of
the manual firmware analysis is to research if it is possible to extract encryption keys
from the MBTS BS. With the original firmware running on the MBTS BS, it should
not be possible to easily extract any encryption keys since that would compromise the
confidentiality of the communication on the TETRA network. In the research of Section
5, we assumed that the adversary does not have physical access to the BS. However, in
order to interact with the SC firmware through the serial connection, the adversary has
to have physical access to the BS. Therefore, in this section we assume that the adversary
does have physical access to the serial port of the BS, but the adversary cannot perform
hardware attacks to extract the encryption keys.

The goal of the manual firmware analysis is to extract any of the following encryption
keys:

1. Static Cipher Key (SCK)

2. Common Cipher Key (CCK) or Derived Cipher Key (DCK)

As described in Section 2.1.1, access to the SCK would compromise the confidentiality
of class 2 networks and access to the CCK or DCK would compromise the confidentiality
of class 3 networks if the adversary has access to the proprietary algorithms used for
key derivation.

6.1 Backdoor password for engineer access

It is possible to connect with the Site Controller (SC) firmware by the following methods:

1. Telnet connection

2. Serial port

Both connection methods will prompt the user for a username and password. No account
registration is provided by the firmware of the SC.

We first reverse engineer the code in the SC firmware that implements the authentication
mechanism. By using strings that are printed by the authentication prompt, the code
for the authentication mechanism is discovered. We found that there are two privilege
levels implemented:

1. Field

2. Engineer

The privilege level is determined by the password the user provides. When a custom
password is set, it is set through a syscall. Only one password can be set per privilege
level.

The authentication check is done by retrieving the field and engineer passwords through
a syscall. Afterwards, it does a string comparison with the entered password and the
obtained password from the syscall to check if the entered password is correct. If the
password is correct, it will continue with the privilege level for which the password was
correct. However, the authentication check also matches the entered password with
two backdoor passwords: one backdoor password for field privileges and one backdoor

43

password for engineer privileges. Therefore, it is possible to authenticate using these
backdoor passwords to obtain field or engineer privileges. Due to the nature of the
findings, we have chosen to not publish the exact backdoor passwords in this thesis. It
is not possible to override these backdoor passwords by setting a different password, since
the user-set password as well as the backdoor password is accepted for authentication.

6.2 Extracting encryption keys using the debugger

In Section 6.2.1 we show that it is possible to dump memory by accessing the pROBE+
debugger. In Section 6.2.2 we discover the fixed addresses in memory where the en-
cryption keys are stored. Section 6.2.3 describes the chain of the backdoor password,
debugger access and fixed addresses in memory to dump the encryption keys of the Base
Station (BS).

6.2.1 Accessing the pROBE+ debugger

With the backdoor passwords found in Section 6.1, we can authenticate with engineer
access to the Site Controller (SC). We use engineer privileges and not field privileges,
since engineer privileges are a superset of the field privileges.

With an authenticated CLI-session over the serial port with engineer privileges, we can
list all the available commands by typing .help. One command is particularly interest-
ing: .crashdumptest with description “Cause the TSC to crash and enter pROBE+”.
pROBE+ is the integrated debugger of the pSOSystem Real-Time Operating System.
The .crashduptest will trigger an invalid operation, for example a read or write to un-
mapped memory, which will cause the SC firmware to crash. If the SC firmware crashes,
it will switch to pROBE+ and will display a lot of debugging output in order to help
the user troubleshoot the problem. At the end of the debugging output, a pROBE+
prompt is shown where the user can interact with the debugger. The time of interaction
is limited since the watchdog will reset the Base Station (BS) within 30 seconds, as
described in Section 2.4.

The pROBE+ prompt provides full access to the memory of the SC firmware and the
memory of pSOSystem. Therefore, it should be possible to dump the memory range
where the encryption keys are stored (in encrypted form). Dumping memory can be
performed by entering the command dm.l 00000000..ffffffff where 00000000 and
ffffffff is the chosen memory range to dump. However, dumping all the memory
available as with the memory dump module described in Section 5.3 is not possible due
to the time limit of the watchdog. We need to investigate where the encryption keys are
stored within the SC firmware so we only have to dump a small part of the memory of
the SC firmware.

6.2.2 Finding the encryption keys in memory

With engineer access to the Site Controller (SC) firmware, it is possible to display the
configuration of the SC firmware using the display config command. The output of
this command contains the ‘KEKz Update 1’ which displays the Random Seed for Over
The Air Re-keying (RSO) and the Sealed Key Encryption Key (SKEK). As described in
Section 2.1.2, the Key Encryption Key (KEK) is a Motorola specific key used to encrypt
and decrypt stored encryption keys in the MBTS BS. Moreover, the output contains the
‘SCK Update 1’ which displays the stored Static Cipher Key (SCK) (encrypted with
the KEK). However, we want to have the unencrypted SCK or Common Cipher Key
(CCK).

44

We assume that the KEK and SCK are stored somewhere in memory close to the SKEK
and stored SCK. We can use the values of the SKEK and the stored SCK as displayed
by the display config command to search for the addresses storing these values in
memory. To perform this search, we use the memory dumps created in Section 5.3. By
searching for the SKEK and stored SCK values in the memory dump, we find various
places where the exact value of the SKEK and stored SCK is stored. Because we are able
to dynamically inspect the memory dump through GDB by using udbserver as described
in Section 2.6, it is trivial to see that most of the results are values located on the stack.
Since the stack is dependent on the state of the SC firmware, these addresses can change
and are therefore not static. A different Base Station (BS) could have different addresses
containing the SKEK and stored SCK values on the stack. Therefore, these addresses
are not reliable and thus we ignore the values on the stack.

Only one result remains where both the SKEK and the stored SCK are stored close to
each other in memory that is not located on the stack: the memory range from 0x20f6600
to 0x20f67ff. We can find the code that uses these addresses by finding references in the
SC firmware to addresses within this memory range. The code that uses the information
stored within this memory range is already partially reverse engineered due to other
research done by Midnight Blue. Therefore, we can easily identify that the memory in
this memory range stores a global struct which contains all the information related to
the encryption keys. This struct includes the RSO, SKEK and stored SCK (as already
identified in the memory dump), and the (unsealed) KEK, stored CCK, (unsealed) CCK
and the Static Cipher Key Version Number (SCK-VN).

The (unsealed) SCK is missing. After discussing this internally, we concluded that this
is because air traffic decryption is actually done by the Base Radio (BR) firmware and
not the SC firmware. Therefore, the stored SCK is never decrypted to the SCK using
the KEK. However, the stored SCK can be decrypted by applying the TA32 algorithm
over the stored SCK with the KEK and SCK-VN, which yields the SCK.

6.2.3 Extracting the encryption keys from memory

With the backdoor password as found in Section 6.1, and the access to the pROBE+
debugger as described in Section 6.2.1, the adversary can dump the encryption keys
from the memory of the Site Controller (SC) firmware using the memory range found in
Section 6.2.2. The adversary can extract the Key Encryption Key (KEK), Static Cipher
Key (SCK) and Common Cipher Key (CCK) from the Site Controller (SC) firmware by
performing the following six steps:

1. Connect to the serial port of the SC by having physical access to the Base Station
(BS).

2. Authenticate as an engineer to the SC firmware by entering a username (for ex-
ample engineer) and the associated backdoor password.

3. Enter the following command to trigger an invalid read, therefore crash and enter
pROBE+: .crashdumptest -read

4. Wait for the debug output to finish and enter the following command in the
pROBE+ prompt to dump the correct memory region: dm.l 210bd00..210bfff

5. The output of step (4) will expose the Random Seed for Over The Air Re-keying
(RSO), Sealed Key Encryption Key (SKEK), Key Encryption Key (KEK), stored
Static Cipher Key (SCK), stored Common Cipher Key (CCK), Static Cipher Key
Version Number (SCK-VN) and CCK.

45

6. Apply the TA32 algorithm over the stored SCK with the required parameters to
obtain the SCK.

Now the adversary has access to the SCK and CCK by having physical access to the BS
and not having to modify the firmware of the SC.

46

7 Future Work

In this chapter, we write down all research ideas for future work on the security analysis
of the Base Station (BS). The future work ideas are ordered from most to least priority
in our opinion: fuzzing the Base Radio (BR) firmware has the highest priority (Section
7.1) for future research while fuzzing more target functions (Section 7.5) has the least
priority for future research.

7.1 Fuzzing the Base Radio firmware

In Section 5, we have focussed on fuzzing the packet parsing code. The packet parsing
code we focussed on was implemented in the Site Controller (SC) firmware. We have
only very briefly reverse engineered the Base Radio (BR) firmware (see Section 5.1.2).
However, the BR firmware could also contain (memory corruption) bugs. Therefore, in
future research it could be possible to change the research scope from the SC firmware
to the BR firmware.

More specifically, the BR firmware implements a queue for incoming packets. These
packets will then be defragmentated and decrypted before it is passed to the SC firmware.
The defragmentation and decryption looks like it has been manually implemented (and
thus it is not automatically generated code) since it does not contain any of the code-
patterns we discuss in Section 8.1.1. This is an interesting target to fuzz since it is
also related to the Air Interface of the Base Station (BS), and the Air Interface has the
highest impact when vulnerabilities are found since the adversary does not need physical
access to the BS.

7.2 Reverse engineering the Key Variable Loader protocol

As described in Section 2.1.2, an Infrastructure Key (Ki) is used to encrypt the Key
Encryption Key (KEK) and is used for encrypting traffic related to infrastructure man-
agement. The Ki can be seen as a master key for the Base Station (BS). The Ki can be
updated using a Key Variable Loader (KVL) hardware device. A KVL uses an undocu-
mented protocol to update the Ki in the MBTS BS over the serial port. It is expected
that the Ki can only be updated by using a KVL. Moreover, it should not be possible
to extract the Ki from the MBTS BS.

For future work on the security of the encryption keys used in the TETRA protocol and
in the BS, research can be done for this undocumented protocol to update the Ki in the
MBTS BS. This would allow a user to update the Ki without the need for a KVL which
is difficult to obtain and expensive to buy. Besides changing the Ki through an update
without using a KVL, this research could also include investigating whether the Ki can
also be extracted from the MBTS BS. Extracting the Ki would allow an adversary to
decrypt network management traffic, since the Ki is used for encrypting traffic related
to infrastructure management.

7.3 Improving emulation of pSOSystem

We have only fuzzed the packet parsing code in Section 5.5. We had to select a specific
target function from Table 5 on page 33 and we fuzzed the packet parsing code in the
target function from the beginning until the end, or we have stopped fuzzing earlier due
to interaction with the pSOSystem RTOS. The fuzzing can be improved by implementing
the syscall routine in the Unicorn harness. The syscall routine is triggered when a syscall
is executed by the firmware. The syscall routine changes the execution to kernel-land
and executes the corresponding syscall function, based on the syscall number. After the

47

syscall handler is done, the syscall routine will change back the execution to user-land
and will continue the execution of the firmware. With the syscall routine, it is possible
to fuzz the packet parsing state machine from the beginning until the end, including
the IPC done by pSOSystem. This will result in much more accurate results since the
execution is more realistic, and it will result in much more code that is fuzzed since the
whole state machine can then be fuzzed.

This syscall routine can for example be implemented by making it possible to change
to kernel-land when a syscall is executed. The CPU registers should be saved before
switching to kernel-land and be restored after the code located in kernel-space is done.
Furthermore, the user-land stack should be swapped to a kernel-land stack and the
user-land stack should be restored after swapping back to user-land. The syscall imple-
mentation should also be resolved by using the interrupt vector table of the pSOSystem
kernel. The interrupt vector table is a table which maps the syscall number to the cor-
responding syscall implementation. Since the kernel and firmware are all in one memory
region, the kernel and thus the interrupt vector table is already in the memory dump.
By reverse engineering, the interrupt vector table can be found in the memory dump
and can be connected to the syscall routine. Implementing the syscall routine in the
Unicorn harness will also reduce the implementation time of the syscalls in the Unicorn
harness, since it is not necessary anymore to implement each syscall individually in the
Unicorn harness.

7.4 Discovering more targets in the Site Controller firmware

Table 5 on page 33 contains all the target functions we have found for the packet parsing
code during reverse engineering. This table could be extended by reverse engineering
different functionalities within the Site Controller (SC) firmware, which are also related
to the Air Interface of the Base Station. For example, we encountered similar state
machines in the SC firmware as the packet parsing state machine we found. The other
state machines can also be reverse engineered and fuzzed. However, it is important to
keep in mind that since these state machines are similar to the state machine we found,
these other state machines are automatically generated code too (see Section 8.1.1).
Therefore, it is very unlikely to uncover any issues related to memory corruption in the
packet parsing code.

7.5 Fuzzing more target functions in the Site Controller firmware

In this thesis, we have only fuzzed three target functions as described in Section 5.5.2.
The research could be extended by fuzzing more target functions as shown in Table 5
on page 33. Even less interesting targets can be fuzzed, such as targets that where only
a few bits of data can be fuzzed. Moreover, if another Mobile Station (MS) would be
used (which was not available in this research), it is possible to setup a call between
the two MSs. The packet parsing code for the packets related to calling can then all be
fuzzed. However, the probability of finding issues related to memory corruption is very
low, since we conclude in Section 8.1.1 that the packet parsing code is automatically
generated.

48

8 Conclusions

In this section we reflect on the decisions, method and results of this thesis. This
includes summarizing and reflecting on various decisions and assumptions throughout
our research. In Section 8.1 we discuss the results of the fuzzing done in this thesis.
We also conclude that there are no vulnerabilities related to memory corruption found
in the packet parsing code. This is due to the packet parsing code being automatically
generated, as explained in Section 8.1.1. The limitations of the fuzzing done in this thesis
are discussed in Section 8.1.2. In Section 8.2, we discuss the insecure design of the Site
Controller (SC) firmware as researched in the manual firmware analysis as described in
Section 6. Moreover, in Section 8.3 we reflect on the usefulness of earlier research done
for the TETRA Base Station (BS). We also reflect in Section 8.4 on the decisions made
in Section 4.1.2 related to the emulation method with Unicorn. Furthermore, we shortly
discuss in Section 8.5 the effectiveness of our fuzzing efforts in this thesis.

8.1 The fuzzing results

In this thesis, we have fuzzed the following packet parsing code in the Site Controller
firmware:

1. U-LOCATION-UPDATE-DEMAND (symbol z0001002H20 handle U LOCATION

UPDATE DEMAND)

2. U-SDS-DATA (symbol z0001002H1P handle U SDS DATA)

3. U-SDS-STATUS (symbol z0001002H1O handle U SDS STATUS)

(1) is responsible for parsing the ‘U LOCATION UPDATE DEMAND’ packet. The
U LOCATION UPDATE DEMAND packet is for example send when the Mobile Sta-
tion connects to the Base Station after a (re)boot of the Mobile Station. (2) is responsible
for parsing the data of an SDS message. An SDS message can be seen as a small text
message, similar to SMS. (3) is responsible for parsing the SDS status packet. The SDS
status packet is used to communicate a pre-coded status message. The packet parsing
code of (1) and (3) are quite long and complex: the decompiled code of the parsing func-
tion of U-LOCATION-UPDATE-DEMAND is 343 lines (excluding lines of code of other
parsing functions within U-LOCATION-UPDATE-DEMAND) and the decompiled code
of the parsing function of U-SDS-STATUS is 382 lines. The packet parsing code of (2)
is not very long and much simpler: the decompiled code of the parsing function of
U-SDS-STATUS is 168 lines of code.

We did not find any issues related to memory corruption in (1), (2) and (3). We then
found that the packet parsing code we fuzzed is automatically generated code (further
discussed in Section 8.1.1), which greatly reduces the chance of finding issues related to
memory corruption in the code.

8.1.1 Automatically generated code

After we have fuzzed the packet parsing implementation, we did some additional in-
vestigation on the characteristics of the code we have fuzzed since we have not found
any memory corruption bugs in our research. One of the characteristics is the xGetPrd
function always being called before calling another parsing function. A Google search
for xGetPrd led us to a page hosted by the Michigan State University describing the use
of “Telelogic Tau” [28]. From this page, we have found that the packet parsing code is
automatically generated using an Specification and Description Language (SDL) called
“Telelogic Tau” since the output of Telelogic Tau matches the characteristics of the

49

packet parsing code exactly. An SDL is a specification language used to describe and
define the specification of systems. Using an SDL, it is possible automatically generate
C-code based on the specification of the system.

From the resource hosted by the Michigan State University [28], we can confirm that
the yPAD z0001002H DataTransferEntityType function from Section 5.1.3 is indeed a
state machine. This state machine behaves as the ‘packet parsing process’, where it
listens for incoming packets (‘signals’) from pSOSystem in order to parse the packets
and send them to another process. We can also identify that all the target functions
in Table 5 on page 33 contain automatically generated code, since they all call the
xGetPrd function and xAddPrdCall function. This is because the resource hosted by
the Michigan State University describes that before a SDL procedure is called, the
functions xGetPrd and xAddPrdCall are called. Therefore, we can conclude that all
our fuzzing efforts have been limited to auto-generated code. This explains why no
issues related to memory corruption were found, since the automatically generated code
follows the TETRA specification strictly and therefore is very unlikely to have any issues
related to memory corruption. Only if the TETRA specification or the SDL contains
any mistakes, the automatically generated code can contain mistakes.

8.1.2 Limitations of fuzzing

As shown in Table 5 on page 33, there are more targets to fuzz. We have decided to fuzz
only some of the targets listed in Table 5 since the time for this research is limited and
we focused on the most complex packet parsing code to increase the chance of finding
a bug. Some of the packet parsing code is very short and not complex, which results in
very few paths in the code and are therefore not the most interesting targets to fuzz.
Moreover, there are many more parsing routines in the Base Radio firmware and Site
Controller firmware (not listed in Table 5) which all can be fuzzed. However, the Base
Radio firmware and Site Controller firmware are far too large to audit in the context
of a thesis. Therefore, we have limited our fuzzing research scope to only some of the
target functions listed in 5.

There were also functionalities we could not fuzz since we were limited to only one
Mobile Station. For example, creating a call requires two Mobile Stations in order to
trigger. Since we could not trigger these functionalities, we were unable to fuzz the
corresponding packet parsing code.

For the packet parsing code we were able to fuzz, we were forced to fuzz with only one
seed (see Section 2.5) for the initial fuzz case for AFL++. AFL++ may be able to find
more interesting fuzz cases faster if we would be able to provide more seeds. However,
this is not possible since every memory dump would only contain one packet that it is
parsing at the moment of dumping the memory. Dumping the memory multiple times
to collect multiple seeds would also not be possible, because the state of the memory
dump would be different. For example, the registers of the CPU could contain different
values depending on the previous packets that are parsed. In order to emulate as close
as possible to the real Base Station, we can only use the packet that is being processed
in the emulated memory dump as the seed.

We were not able to fuzz all the code from the target functions we have fuzzed. This
is due to lots of pSOSystem interactions in some parts of the code. For example, some
error paths will send a message to a different task in pSOSystem (see Section 2.2 for
context). During fuzzing, we detected these faulty paths since they would cause a crash.
This is because in the Unicorn harness it was programmed to signal a crash on a not-
implemented syscall. In such a situation, we cancel the fuzzing and implement, stop at,

50

or ignore the syscall causing the crash. We cannot run the code that interacts with the
pSOSystem kernel since we do not have access to the kernel functionalities of pSOSystem
in Unicorn. This prevents us from end-to-end running the code and thus fuzzing the
complete code flow triggered by a packet. Improving the emulation done by Unicorn to
be able to fuzz the whole code flow is also mentioned in the future work in Section 7.3.

8.2 Insecure design of the Site Controller firmware compro-
mises the encryption keys

By manually reverse engineering the Site Controller firmware, we have shown in Section
6 that it is possible to extract encryption keys used for secure communication between
Mobile Stations and the Base Station. The extraction can be done by having physical
access to the serial port of the MBTS Base Station (BS), without having to modify the
Site Controller firmware and without having to perform any hardware attacks. This is
due to the following insecure design of the Site Controller firmware:

1. A backdoor password that gives engineer access (highest privileges) to the Site
Controller of the MBTS BS.

2. The possibility to trigger a crash by entering the .crashdumptest -read com-
mand.

3. A crash results in an interactive debugger session which gives full low-level access
to the whole firmware, operating system code and data.

4. Encryption keys are stored in a predefined address range, which can be dumped
using the interactive debugger session. This gives access to the Key Encryption
Key, Sealed Static Cipher Key and Common Cipher Key.

5. The Sealed Static Cipher Key can be decrypted by an adversary using the propri-
etary TA32 algorithm to obtain the Static Cipher Key.

With knowledge of the Key Encryption Key and Static Cipher Key or Common Cipher
Key, it is possible for an adversary to do the following:

� An adversary can send spoofed or decrypt intercepted encrypted one-to-one over-
the-air communication in class 2 networks using the proprietary TB5 algorithm
and the Key Stream Generator algorithm.

� An adversary can send spoofed or decrypt intercepted encrypted over-the-air group
data transportation in class 2 or class 3 networks using the proprietary TB5 algo-
rithm and the Key Stream Generator algorithm.

From this, we can conclude that it is trivial to compromise the confidentiality of one-to-
one data transportation in a class 2 network, and group data transportation in class 2
or class 3 networks if the adversary has physical access to the serial port of the MBTS
BS, and access to the specification of the proprietary TA32, TB5 and Key Stream
Generator (KSG) algorithms. The TA32 algorithm is the inverse of the proprietary
TA31 encryption algorithm. The TB5 and Key Stream Generator algorithms are used to
generate the Key Stream Segment from the encryption keys and are used for encryption
and decryption of data sent over the air interface. No firmware modifications are required
in order to extract the encryption keys and no hardware attacks have to be performed.

However, having physical access to the MBTS BS already compromises the confiden-
tiality and integrity of the network since the adversary can upload modified firmware
to the MBTS BS via the telnet connection. No cryptographic signature checks are per-
formed when an attempt is made to update the firmware. Therefore, even without the

51

interactive debugger, it is possible for an adversary to compromise the MBTS BS by
uploading modified firmware that dumps encryption keys for example. The insecure
design only makes it trivial to extract the encryption keys, since obtaining a firmware
binary, patching the binary to include malicious code and uploading the patched binary
to the MBTS BS is a time consuming and difficult process.

The extraction of the encryption keys is detectable, since entering the interactive de-
bugger requires a crash which causes downtime of the MBTS BS. The MBTS BS may
be unavailable for some minutes due to the debugger printing the output, entering the
command to extract the memory and waiting for the watchdog to reset the MBTS BS.
The boot sequence of the Site Controller firmware also take some minutes. Therefore,
the unavailability of the MBTS BS may indicate that the encryption keys of the MBTS
BS are being extracted. Authentication logs can be viewed to check if an adversary has
been connected to the MBTS BS. However, these authentication logs can also be wiped
through the interactive debugger when the storage address of these logs is known.

8.3 Reflecting on earlier research for the TETRA Base Station

As stated in Section 3.3, there is no previous work done on the research of the TETRA
Base Station, except for the research done at the TU Darmstadt by Müller et al. [16].
That research does not include research on the Air Interface which we have fuzzed in
this research. Moreover, the fuzzer that has been developed by Müller et al. was of no
use in this research, since it did not have coverage guidance which is important to have
to be effective, as stated in Section 2.5. The lack of earlier research resulted in a slow
start, since all the reverse engineering still had to be done. Furthermore, the TETRA
standard is big and complex. The TETRA standard had to be studied to understand
the important parts of the protocol, since no other research has summarized this. This
all has taken up a considerable portion of the available time.

The firmware analysis of the Site Controller firmware done by Müller et al. was useful.
This gave us some insight in the naming convention of the symbols and the purposes
of some functions (see Table 2, page 24). However, it had limited usefulness since their
research was focused on the Base Radio firmware while our research focused on the Site
Controller firmware. Moreover, we also had access to the firmware of the MTS2 BS, the
Base Station used in the research of Müller et al. Even though the firmware of our MBTS
Base Station (BS) and the firmware of their MTS2 BS contain a lot of differences (such
as the lack of C++ code in our MBTS BS firmware), it was still useful for our research.
The firmware of their MTS2 BS includes symbols, which greatly helped understanding
the firmware during reverse engineering. Moreover, it allowed us to successfully find
functions in the firmware of our MBTS BS, as described by Section 4.1.1. We think the
approach for finding functions, which is explained in Section 5.1.1, greatly increased the
efficiency of the research during the reverse engineering phase (see Section 5.1) and has
achieved its goals.

8.4 Emulating the Site Controller of the MBTS Base Station
in Unicorn

In Section 2.6 we have argued why we have used Unicorn as the emulator. We think this
was a good decision since Unicorn was perfectly suitable for the research we have done
in this thesis. Unicorn has a small but powerful API to write a harness from. With
UnicornAFL [24], it was straightforward to attach AFL++ [10] to the harness. The
feasibility study we did in Section 4.2 also greatly helped organizing the code of the Rust
harness we wrote. Since we used a patched version of udbserver [4] in order to attach

52

GDB to the Unicorn emulator, it was very easy to inspect the state of the emulated
code and debug any issues. The downside of Unicorn is that it lacks documentation
and examples. The examples published on the AFL++ repository to use AFL++ with
Unicorn3 are small and not very useful. This made the start of using Unicorn more
difficult.

We showed that it is possible to run the code of the MBTS BS in an emulator and fuzz
the code without using the hardware of the MBTS BS during fuzzing. The research done
by Müller et al. [16] suggested that this was not possible due to hardware dependencies
of the firmware. We bypassed these hardware dependencies by creating a memory dump
(see Section 5.3) and running the code in the emulator at the start of the packet parsing
code, see also Section 4.1.2. Thus we skipped the booting sequence of the Site Controller
firmware and therefore we did not encounter many hardware dependency issues. We had
to implement some syscalls (see Section 5.4.2), but this was only a very small subset
from all existing syscalls in pSOSystem.

8.5 The effectiveness of the fuzzing

We created a Unicorn harness (see Section 2.6.1) to fuzz the MBTS Base Station using
AFL++. With our fuzzing method, we managed to fuzz some packet parsing code in the
Site Controller firmware of the MBTS Base Station. We did this by creating a memory
dump just before the Base Station starts running the packet parsing code (see Section
5.3). Then we ran the packet parsing code in Unicorn, an emulator, and we connected
AFL++ to Unicorn to fuzz the packet parsing code using the emulator (see Section 5.4
and Section 5.5). This method is visualized in Figure 13 on page 29. With this method,
we managed to get coverage guidance which made our fuzzing effective since AFL++
can determine when new execution paths have been discovered by directly inspecting the
state of the Unicorn emulator. This effectiveness can be seen by the output of AFL++
(see Appendix A): on all targets it found many new inputs and new paths. From this
we can conclude that we fuzzed the packet parsing code thoroughly.

Since we decided to write the Unicorn harness in Rust, the fuzzer ran at a good speed
(between 400 to 1000 executions per second). It was also straightforward to implement
the harness because the Rust compiler gives great suggestions and the Unicorn-Rust
bindings are easy to understand and powerful to use.

8.6 Timetable

In Table 6 you can find an overview of an approximation of the amount of time spent
on certain tasks.

Task (1) and (2) are about Section 5.1, which is the manual reverse engineering of the
Base Radio firmware and Site Controller firmware. Task (3) relates to Section 4.2, which
includes writing code for the Unicorn harness and experimenting with the UnicornAFL
bindings. Task (4) is about Section 5.2, which includes writing a C-program, the memory
dump module, compatible with Fiddle and Cydia Substrate (see Section 2.3) to dump all
the memory regions and CPU registers of the Base Station. Task (5) is about running the
memory dump module on the Base Station, which required almost no human interaction.
We have done this multiple times where each run takes about 4 hours. There are also
some failed attempts included in the approximate amount of hours spent. Task (6) is
about emulating the execution of the Site Controller firmware with Unicorn by writing
Rust-code for the Unicorn harness. This includes researching the syscalls in the Site

3https://github.com/AFLplusplus/AFLplusplus/tree/stable/unicorn_mode/samples

53

https://github.com/AFLplusplus/AFLplusplus/tree/stable/unicorn_mode/samples

Controller firmware and implementing the syscalls in the Unicorn harness. Task (7) is
about running the fuzzer with the Unicorn harness, to let AFL++ find bugs related to
memory corruption. Task (7) does not require human interaction. Task (8) is about the
research done in Section 6. Task (8) is done by manually reverse engineering the Site
Controller firmware and having interaction with the Site Controller firmware.

Task Approximate
amount of hours
spent

(1) Reverse engineering the Base Radio firmware 20 hours
(2) Reverse engineering the Site Controller firmware 40 hours
(3) Feasibility study with fuzzgoat (see Section 4.2) 10 hours
(4) Writing the memory dump module 10 hours
(5) Dumping the memory regions 20 hours
(6) Emulating the memory dump by writing a Unicorn harness 40 hours
(7) Fuzzing in the Unicorn emulator 80 hours
(8) Dumping the encryption keys 15 hours

Table 6: Timetable

54

References

[1] National Security Agency. Ghidra. url: https://ghidra-sre.org/.
[2] S. Baskiyar and N. Meghanathan. “A Survey of Contemporary Real-time Op-

erating Systems”. In: vol. 29. 2. Informatica Slovenia, 2005, pp. 233–240. url:
https://www.eng.auburn.edu/~baskiyar/MyArticles/Survey- of- RTOS-

Informatica.pdf.
[3] bet4it. udbserver - Unicorn Emulator Debug Server. 2022. url: https://github.

com/bet4it/udbserver (visited on 10/06/2022).
[4] bet4it and Jonathan Jagt. udbserver - Unicorn Emulator Debug Server. 2022. url:

https://github.com/JJ-8/udbserver (visited on 11/17/2022).
[5] GNU C Library Contributors. The GNU C Library (glibc). 2022. url: https:

//www.gnu.org/software/libc/.
[6] ENEA. Operating systems for telecom, networking, and embedded. url: https:

//www.enea.com/products-services/operating-systems.
[7] ETSI. Terrestrial Trunked Radio (TETRA); Voice plus Data (V+D); Designers’

guide; Part 1: Overview, technical description and radio aspects. 1997. url: https:
//www.etsi.org/deliver/etsi_etr/300_399/30001/01_60/etr_30001e01p.

pdf.
[8] ETSI. Terrestrial Trunked Radio (TETRA); Voice plus Data (V+D); Part 2: Air

Interface (AI). 2000. url: https://www.etsi.org/deliver/etsi_ts/100300_
100399/10039202/02.01.01_60/ts_10039202v020101p.pdf.

[9] ETSI. Terrestrial Trunked Radio (TETRA); Voice plus Data (V+D); Part 7: Se-
curity. 2001. url: https://www.etsi.org/deliver/etsi_en/300300_300399/
30039207/02.01.01_60/en_30039207v020101p.pdf.

[10] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. “AFL++: Com-
bining Incremental Steps of Fuzzing Research”. In: 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX, 2020. url: https://www.usenix.
org/conference/woot20/presentation/fioraldi.

[11] Jean loup Gailly and Mark Adler. zlib, A Massively Spiffy Yet Delicately Unob-
trusive Compression Library. 2022. url: https://www.zlib.net/.

[12] Motorola Inc.MBTS DIMETRA BASE STATION. 2004. url: https://studylib.
net/doc/18750327/mbts-dimetra-base-station-the-motorola-mbts-is-

the-flexible.
[13] Motorola Inc.MPC750 RISC Microprocessor Technical Summary. 1997. url: https:

//www.nxp.com/docs/en/data-sheet/MPC750.pdf.
[14] Martin Meyers. Fuzzing HTTP inputs of IoT binaries emulated in Qiling. Research

internship report at Secura, Radboud University. 2021.
[15] LLC Motorola Trademark Holdings. MTS2 TETRA Base Station. 2022. url:

https://www.motorolasolutions.com/en_xl/products/tetra/infrastructure/

mts2.html.
[16] Uwe Müller, Eicke Hauck, Timm Welz, Jiska Classen, and Matthias Hollick. “Di-

nosaur Resurrection: PowerPC Binary Patching for Base Station Analysis”. In:
Proceedings 2021 Workshop on Binary Analysis Research. Internet Society, 2021.
doi: 10.14722/bar.2021.23009. url: https://www.ndss-symposium.org/wp-
content/uploads/bar2021_23009_paper.pdf.

[17] QEMU: A generic and open source machine emulator and virtualizer. 2022. url:
https://www.qemu.org/ (visited on 10/04/2022).

[18] Qiling Framework. url: https://qiling.io/ (visited on 10/07/2022).
[19] Nguyen Anh Quynh and Dang Hoang Vu. Unicorn: The Ultimate CPU emulator.

2022. url: https://www.unicorn-engine.org/ (visited on 10/04/2022).

55

https://ghidra-sre.org/
https://www.eng.auburn.edu/~baskiyar/MyArticles/Survey-of-RTOS-Informatica.pdf
https://www.eng.auburn.edu/~baskiyar/MyArticles/Survey-of-RTOS-Informatica.pdf
https://github.com/bet4it/udbserver
https://github.com/bet4it/udbserver
https://github.com/JJ-8/udbserver
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.enea.com/products-services/operating-systems
https://www.enea.com/products-services/operating-systems
https://www.etsi.org/deliver/etsi_etr/300_399/30001/01_60/etr_30001e01p.pdf
https://www.etsi.org/deliver/etsi_etr/300_399/30001/01_60/etr_30001e01p.pdf
https://www.etsi.org/deliver/etsi_etr/300_399/30001/01_60/etr_30001e01p.pdf
https://www.etsi.org/deliver/etsi_ts/100300_100399/10039202/02.01.01_60/ts_10039202v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/100300_100399/10039202/02.01.01_60/ts_10039202v020101p.pdf
https://www.etsi.org/deliver/etsi_en/300300_300399/30039207/02.01.01_60/en_30039207v020101p.pdf
https://www.etsi.org/deliver/etsi_en/300300_300399/30039207/02.01.01_60/en_30039207v020101p.pdf
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.zlib.net/
https://studylib.net/doc/18750327/mbts-dimetra-base-station-the-motorola-mbts-is-the-flexible
https://studylib.net/doc/18750327/mbts-dimetra-base-station-the-motorola-mbts-is-the-flexible
https://studylib.net/doc/18750327/mbts-dimetra-base-station-the-motorola-mbts-is-the-flexible
https://www.nxp.com/docs/en/data-sheet/MPC750.pdf
https://www.nxp.com/docs/en/data-sheet/MPC750.pdf
https://www.motorolasolutions.com/en_xl/products/tetra/infrastructure/mts2.html
https://www.motorolasolutions.com/en_xl/products/tetra/infrastructure/mts2.html
https://doi.org/10.14722/bar.2021.23009
https://www.ndss-symposium.org/wp-content/uploads/bar2021_23009_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/bar2021_23009_paper.pdf
https://www.qemu.org/
https://qiling.io/
https://www.unicorn-engine.org/

[20] LLC SaurikIT. Cydia Substrate. 2012-2014. url: http://www.cydiasubstrate.
com/.

[21] Fuzz Stati0n and Joseph Carlos. Fuzzgoat. url: https://github.com/fuzzcorp/
fuzzgoat.

[22] Ischa Stork. Fuzzing of emulated firmware using the Qiling emulation framework.
Research internship report, Radboud University. 2020.

[23] AFL++ team. AFL++ documentation. 2022. url: https://aflplus.plus/.
[24] AFL++ team. UnicornAFL. 2022. url: https://github.com/AFLplusplus/

unicornafl.
[25] GCC Team. 3.11 Options That Control Optimization. url: https://gcc.gnu.

org/onlinedocs/gcc/Optimize-Options.html.
[26] GCC Team. 6.47.5.2 Specifying Registers for Local Variables. url: https://gcc.

gnu.org/onlinedocs/gcc/Local-Register-Variables.html.
[27] TETRA Around the World. 2012. url: https : / / web . archive . org / web /

20120313035919/http://www.tetrahealth.info/worldCountries.htm.
[28] Michigan State University. Integration with Operating Systems. url: http://

sens . cse . msu . edu / Software / Telelogic - 3 . 5 / locale / english / help /

htmlhlp/rtos.html#908400.
[29] Nathan Voss. afl-unicorn: Part 2 — Fuzzing the ‘Unfuzzable’. 2017. url: https://

hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5

(visited on 10/07/2022).
[30] JasonWilliams. FSK Messaging Service. url: https://github.com/trailofbits/

cb-multios/tree/master/challenges/FSK_Messaging_Service (visited on
10/07/2022).

[31] Nikola Zlatanov. Architecture and Operation of a Watchdog Timer. July 2014. doi:
10.13140/RG.2.1.1149.1605.

56

http://www.cydiasubstrate.com/
http://www.cydiasubstrate.com/
https://github.com/fuzzcorp/fuzzgoat
https://github.com/fuzzcorp/fuzzgoat
https://aflplus.plus/
https://github.com/AFLplusplus/unicornafl
https://github.com/AFLplusplus/unicornafl
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Local-Register-Variables.html
https://gcc.gnu.org/onlinedocs/gcc/Local-Register-Variables.html
https://web.archive.org/web/20120313035919/http://www.tetrahealth.info/worldCountries.htm
https://web.archive.org/web/20120313035919/http://www.tetrahealth.info/worldCountries.htm
http://sens.cse.msu.edu/Software/Telelogic-3.5/locale/english/help/htmlhlp/rtos.html#908400
http://sens.cse.msu.edu/Software/Telelogic-3.5/locale/english/help/htmlhlp/rtos.html#908400
http://sens.cse.msu.edu/Software/Telelogic-3.5/locale/english/help/htmlhlp/rtos.html#908400
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://github.com/trailofbits/cb-multios/tree/master/challenges/FSK_Messaging_Service
https://github.com/trailofbits/cb-multios/tree/master/challenges/FSK_Messaging_Service
https://doi.org/10.13140/RG.2.1.1149.1605

Appendices

A AFL++ outputs

This appendix includes screenshots of all the AFL++ outputs after the fuzzing has been
terminated. The outputs are referred in Section 5.5.3, Section 5.5.4 and Section 5.5.5.
The outputs are listed here for completeness and validation of the research. For example,
it may be interesting to see the exact amount of corpus counts found for each AFL++
instance to get an indication of the amount of found inputs. The exact meaning of all
the statistics can be found in the AFL++ documentation4.

Figure 18: AFL++ output of the parent AFL++-process of fuzzing U-LOCATION-
UPDATE-DEMAND

4https://aflplus.plus/docs/status_screen/

57

https://aflplus.plus/docs/status_screen/

Figure 19: AFL++ output of the first child AFL++-process of fuzzing U-LOCATION-
UPDATE-DEMAND

Figure 20: AFL++ output of the second child AFL++-process of fuzzing U-
LOCATION-UPDATE-DEMAND

58

Figure 21: AFL++ output of the third child AFL++-process of fuzzing U-LOCATION-
UPDATE-DEMAND

Figure 22: AFL++ output of the fourth child AFL++-process of fuzzing U-LOCATION-
UPDATE-DEMAND

59

Figure 23: AFL++ output of the parent AFL++-process of fuzzing U-SDS-DATA

Figure 24: AFL++ output of the first child AFL++-process of fuzzing U-SDS-DATA

60

Figure 25: AFL++ output of the second child AFL++-process of fuzzing U-SDS-DATA

Figure 26: AFL++ output of the third child AFL++-process of fuzzing U-SDS-DATA

61

Figure 27: AFL++ output of the fourth child AFL++-process of fuzzing U-SDS-DATA

Figure 28: AFL++ output of the parent AFL++-process of fuzzing U-SDS-STATUS

62

Figure 29: AFL++ output of the first child AFL++-process of fuzzing U-SDS-STATUS

Figure 30: AFL++ output of the second child AFL++-process of fuzzing U-SDS-
STATUS

63

Figure 31: AFL++ output of the third child AFL++-process of fuzzing U-SDS-STATUS

Figure 32: AFL++ output of the fourth child AFL++-process of fuzzing U-SDS-
STATUS

64

	Glossary
	 Introduction
	 Background
	 The tetra protocol
	 Use of cryptography in the tetra protocol
	 Use of cryptography in the storage of the MBTS bs

	 Setup of our MBTS bs
	 Tinker, Fiddle and Cydia Substrate
	 Ensuring system availability through watchdogs
	 Fuzzing & coverage guidance
	 Choosing the emulation framework
	 Rust harness with Unicorn for fuzzing with AFL++

	 Compiling and decompiling

	 Earlier research for the tetra bs
	 PowerPC Binary Patching for bs Analysis
	 Firmware differences
	 Fuzzing differences

	Research Decisions and Preparation
	 Decisions
	 Comparing the firmware of our MBTS bs and the MTS2 bs
	 Emulation & Fuzzing

	 Feasibility study of fuzzing through Unicorn with AFL++
	Fuzzgoat

	 Fuzzing the packet parsing code of the bs
	 Finding the target through reverse engineering
	 Procedure for finding functions
	 Analyzing the br through reverse engineering
	 Analyzing the sc through reverse engineering

	 Writing the memory dump module
	 Dumping the CPU registers
	 Dumping the memory regions
	 Defeating the watchdog

	 Creating the memory dump
	 Emulating the memory dump
	 Patching the registers
	 Patching the memory

	 Fuzzing in the Unicorn emulator
	 Preparing the fuzzing
	 The three fuzzing targets
	 Fuzzing U-LOCATION-UPDATE-DEMAND
	 Fuzzing U-SDS-DATA
	 Fuzzing U-SDS-STATUS

	Manual sc firmware analysis through reverse engineering
	 Backdoor password for engineer access
	 Extracting encryption keys using the debugger
	Accessing the pROBE+ debugger
	Finding the encryption keys in memory
	Extracting the encryption keys from memory

	 Future Work
	 Fuzzing the br firmware
	 Reverse engineering the kvl protocol
	 Improving emulation of pSOSystem
	 Discovering more targets in the sc firmware
	 Fuzzing more target functions in the sc firmware

	 Conclusions
	 The fuzzing results
	 Automatically generated code
	 Limitations of fuzzing

	 Insecure design of the sc firmware compromises the encryption keys
	 Reflecting on earlier research for the tetra bs
	 Emulating the sc of the MBTS bs in Unicorn
	 The effectiveness of the fuzzing
	 Timetable

	References
	Appendices
	 AFL++ outputs

