Bachelor’s Thesis Computing Science

Antivirus and EDR bypasses
for initial access

Jorn Heibrink
s1040183

January 17,2023

Company supervisor:
Stefan Vlems

First supervisor/assessor:
Bart Mennink

Second assessor:
lleana Buhan

Radboud University @S e C u r a

MiNe ¥ A BUREAU VERITAS COMPANY

Yerres

S

Abstract

For Red Team operations to accurately test the security of their tar-
get, it is important to implement Antivirus and Endpoint Detection
and Response (EDR) bypasses. Antivirus and EDR are getting better
over time, and so should the bypassing methods. In this research we
dive into these bypassing methods and implement them in Cobalt
Strike, a popular threat emulation software.

We take a look at the features of Antivirus and EDR, and imple-
mented bypassing methods focused on these features. The used
bypassing methods can be categorized into four categories: Signa-
ture evasion, sandbox evasion, APl hook evasion, and network de-
tection evasion.

Our results show that all the implemented bypassing methods de-
crease the detection rate, but fully bypassing Antivirus and EDR re-
quires effort and a good balance between methods.

Table of Contents

1 Introduction

11 TheToolset
12 Outcomes e
13 Outline e e
2 Preliminaries
21 Antivirus e
2.2 Endpoint DetectionandResponse
221 Functionality o L.
23 RedTedam. i ittt et e e e
2.31 Vulnerability Scan & Assessment
232 Pentesting oo ..
233 RedTeaming,
3 Research
31 Settingup CobaltStrike
3.2 TestingEnvironment
3.3 Expanding the ArtifactKit
331 Sighatureevasion............
33.2 Sandboxevasion 0.,
333 Namedpipes i
334 Sandboxdetection
3.4 Implementing DirectSyscalls
341 Bypassingthehooks
3.4.2 MovingtoSysWhispers
3.43 Implementing the functions
3.5 MalleableProfiles
351 Profilestructure
3.5.2 Situationalprofile,
3.5.3 Universalprofile

4 Related Work

5 Conclusions

A Request and Response pairs
Al Request andresponse read.aspxpage
A1l Request
Al2 Response

Chapter1

Introduction

There are many methods to assess the security of a company, one
of the methods Secura provides is Red Team operations [2.3]. With
Red Team operations the goal is to emulate a real world attack as
realistic as possible.

One key part of Red Team operations is to evade the defending Blue
Team. For successful evasion it is important to bypass all the detec-
tion methods that are deployed on a system. Two of these methods
are Antivirus (AV) and Endpoint Detection and Response (EDR). To
really test the limits of the security, a Red Team has to try to by-
pass the AV and EDR.

AV and EDR software keep improving to increase the security. The
Red Team also has to update bypassing methods to keep up with
the increased security. The Red Teams at Secura also have to up-
date the bypassing methods. The goal of this thesis is to research
bypassing methods and implement these methods in the toolset Se-
cura uses.

11 The Toolset

The main tool Secura uses is Cobalt Strike. Cobalt Strike is threat
emulation software ideal for Red Team exercises. Cobalt Strike can
replicate the tactics and techniques of a real life threat actor in a
network. Cobalt Strike makes use of so called Beacons as post ex-
ploitation payload.

A Beacon lets the attacker interact with the system it is deployed
on. Some examples of interactions are: Executing Powershell scripts,
log keystrokes, take screenshots, and spawn other beacons. A bea-

con uses asynchronous communication over HTTP, HTTPs or DNS.
The Beacon is developed to be as flexible as possible. Beacons can
be modified specifically for certain targets or can be used to emu-
late real threat actors. Our goal was to research bypassing methods
and implement these methods in the Beacons.

1.2 Outcomes

There are many methods AV and EDR deploy to detect malicious ac-
tivity. For our research we focused on a subset of these detection
methods. The methods can roughly be divided in four subsets: Sig-
nature, Sandbox, APl hooks and Behavior. For each of these four
parts we researched concepts for bypassing them. Afterwards we
implemented these concepts in the Beacons to make sure that the
concepts are actually viable.

For signature detection we made a list of concepts for bypassing.
We kept track of this list while implementing the rest of our meth-
ods to make sure signature detection will not trigger.

For Sandbox detection we found two bypassing methods. The first
method is to use functions that are not supported by the sandbox.
The second methodis to detectif the codeisruninasandbox. When
a sandbox is detected the Beacon will not execute the malicious
sections of the code.

For APl hooks we implemented methods for direct system calls, which
results in not having to use the hooked APIs at all. We can not trig-
ger hooks on an APl when we do not use the API. The functions
that would normally be called through the APl were implemented
directly in the code.

The final part focuses on the behavior of the Beacons. We researched
how we could change the behavior of our Beacons using the Mal-
leable Profiles of Cobalt Strike. For our implementation we focused
specifically on the the network traffic section of the Malleable Pro-
files. We implemented methods to hide Beacon traffic in normal
traffic that would be present in a target environment.

All the implemented methods showed improvement in detection rate.

1.3 Outline

In the next chapters we will first create a better understanding of
the concepts of AV in Section 2.1, EDR in Section 2.2, and Red Team-
ing in Section 2.3. After the preliminaries we will start the research
by setting up Cobalt Strike in Section 3.1 and the testing environ-
ment in Section 3.2. When the environment is set up correctly we
will visit each of the four detection methods. First we take a look at
the Cobalt Strike Artifact Kit in Section 3.3, and combine this with
our signature and sandbox bypassing methods in Section 3.3.1 and
Section 3.3.2. Next we focus on bypassing the APl hooks in Section
3.4, where we will implement direct syscalls. The last part of the re-
search will be about the behavior for which we used the Malleable
Profiles in Section 3.5. After the research we compare our findings
with findings of other research in Chapter 4. Finally we will talk
about the conclusions of our research in Chapter 5.

Chapter 2

Preliminaries

In this chapter we will explain how AV (Section 2.1) and EDR (Section
2.2) software works. We will also take a look at what Red Teaming
is, and how Red Teaming differs from other methods to test security
in Section 2.3.

2.1 Antivirus

AV is host-based security solution software with the goal to detect
and prevent malware attacks on the host machine [26]. The AV runs
in the background of a system to monitor activity. AV software can
have different functionalities, with different detection techniques.
In general we can combine these techniques in two categories: sig-
nature detection and behavior detection [6].

Signature detection scans the system for signatures of programs
that indicate malicious software. AV software compares the sig-
natures of software on the system with a dictionary of known indi-
cators of malicious software, also called indicators of compromise
(IOC). The dictionary is populated by analysing previously detected
malicious software. An IOC can be different parts of a program: file
hashes, byte sequences, malicious domains, and many more [7].

Behavior detection monitors the behavior of installed software. When
software shows suspicious activity, the behavior detection spots
this activity and alerts the user. Suspicious activity can be: modi-
fying protected files, installation of certificates, process injection,
and many more [12]. Behavior detection adds to signature detec-
tion by being able to detect unknown malware.

For this thesis we will focus on the two general techniques, as these

6

techniques are present in all AV products. For more vendor specific
information on advanced features, the website of the vendor can be
referenced. For an overview of AV products, comparison websites
like can be used.

2.2 Endpoint Detection and Response

Endpoint Detection and Response is an endpoint security solution
that continuously monitors end-user devices to detect and respond
to cyber threats [4]. EDR records and stores behaviour on the end-
point system, uses data analytic techniques to detect suspicious
system behaviour, provides contextual information, blocks malicious
activity, and provides remediation suggestions to restore the af-
fected systems.

2.21 Functionality

The functionality of EDR products can be divided in three sections:
Endpoint behavioral sensors, cloud security analytics, and threat in-
telligence [13].

Endpoint behavioral sensors functionality is nearly the same as the
behavior detection of AV products (Section 2.1). The only difference
is that the EDR sends the behavioral data to a cloud instance for re-
view.

The cloud security analytics processes the behavioral data using a
collective database and machine learning. The behavioral signals
are used for insights in activity, malware detection, and recommen-
dations for actions that have to be taken.

All the systems using EDR, together with security experts, collec-
tively create threat intelligence. The threat intelligence is used to
identify techniques and procedures. The intelligence is also used
for threat detection and recommendation for actions that have to
be taken.

The EDR also records all relevant activity to catch incidents that
evaded the automatic detection methods. The user can access ev-
erything that is recorded on their endpoint through the portal pro-
vided by the EDR vendor. The activity gives security teams every-
thing they need for manual investigations.

https://www.av-test.org/en/

For vendor specific features and an overview of all these vendors,
comparison websites like can be used.

2.3 Red Team

There exist many ways to assess the security of a target. We wiill
discuss three of these assessment methods that Secura and many
other security companies provide: Vulnerability Scan & Assessment,
Penetration Testing or Pentesting, and Red Teaming. For clarity we
will explain the goal of each of the methods, because these three
methods often get confused.

2.31 Vulnerability Scan & Assessment

A vulnerability scan & assessment gives a complete overview of the
vulnerabilities of the target scope [25]. It uses automated scanning
tools, extended with validation by the team that runs the scan. Af-
ter the scan the team identifies the weak spots and gives an advice
for improvement. The results will be summarized in a report which
the client organization can use to reduce their security risks.

2.3.2 Pentesting

During a pentest the target scope will also be scanned, but a pen-
test extends on a vulnerability scan & assessment by actually trying
to exploit the vulnerabilities [23]. By exploiting the vulnerabilities
the consequences of an issue will become a lot clearer. A pentest
will show the seriousness of issues, so the client will become aware
of the potential dangers. The results will also be shown in a report,
including a risk analysis and recommendations for the client.

The difference between a vulnerability assessment and a pentest
is that the first will find more vulnerabilities, while the second wiill
find less, but show more depth what the potential risk can be. Both
methods can also be combined to create a complete assessment.

2.3.3 Red Teaming

Finally we have Red Teaming. The key difference for Red Team-
ing is simulation, to simulate a full-spectrum cyber-attack [24]. The
Red Team will emulate attacks in such a way a real malicious ac-
tor would. Simulation gives a realistic insight in the security while
also testing the capabilities of the defending team (the Blue Team).

https://www.gartner.com/reviews/market/endpoint-detection-and-response-solutions

The Red Team has to avoid detection by evading the Blue Team and
their security measures.

The Red Team process can be split into three phases:

* Phase 1: Planning and Preparation
A dedicated project manager, the observers and the Red Team
lead will create the schedule and the rules of engagement.

* Phase 2: The Attack
The Red Team will start their attack and try to access so-called
“crown-jewels”. Trying to access can be done by any means
necessary within the scope.

¢ Phase 3: Clean Closure
After the attack it is time to clean up all the digital remains and
discuss the results with the Blue Team.

The attack phase can again be split up in four parts, resulting in a
total overview called the “kill-chain” (Figure 2.1).

-@-0-9-0-0

PLANNING RECONNAISSANCE EXPLOITATION POST-EXPLOITATION EXFILTRATION CLEAN CLOSURE
Figure 2.1: Red Team Kill-Chain

For this research the important part is the exploitation phase. Dur-
ing the exploitation phase the Red Team will try to break-in and get
the initial access.

Initial access can be achieved by compromising a system, or exploit-
ing target staff using social engineering (phishing, bypass physical
control). The goal is to get a backdoor on a system of the target
environment. To create a backdoor it is crucial for the payload to
avoid detection.

Chapter 3

Research

In this chapter we will discuss the bypassing methods that we will
implement, and test these methods using our testing environment.
First we will set up Cobalt Strike in Section 3.1 and the test environ-
ment in Section 3.2. When the environment is set up correctly we
will start with signature evasion in Section 3.3.1, followed by sand-
box evasion in Section 3.3.2. We will extend on these evasion tech-
niques by implementing direct system calls in Section 3.4. Finally we
will change the network behavior by creating malleable profiles in
Section 3.5.

3.1 Setting up Cobalt Strike

Cobalt Strike uses a client-server structure, so to interact with the
Beacon clients we have to setup a Team Server. For our infrastruc-
ture we used two servers, one as back-end and one as relay. The
back-end is the Team Server itself, the controller for the Beacon
payload. The Team Server also stores the data that is collected by
Cobalt Strike and manages all the logging. The relay serves as an
extra layer between the Team Server and the target. In real world
red team operations, we have to protect the Team Server, so the
defending Blue Team can not trace back to the server. The relay
makes sure the Team Server is not exposed directly.

The Infrastructure Deployment Figure 3.1 shows an overview of the
infrastructure.

10

Infrastructure \
Backend Infrastructure Relay Infrastructure

/ c2 I f Relay-Cobalt

backends_cobalt_strike relays_nginx
| DBRNERIHE -
'

CobaltStrike-ShortTerm Nginx-CobaltStrike-ShortTerm

\kProﬁle: browser.profile / k Relay for: cobaltstrike //

Figure 3.1: Infrastructure Deployment

3.2 Testing Environment

To test our Beacons, we need a testing environment that is as close
as possible to what the Secura Red Teams will encounter in the real
world. We used a virtual machine with the newest Windows version
at the time of installation, this version was Windows 11 Enterprise
version 10.0.22000 Build 22000. In addition we used the site AntiS-
can.me. AntiScan scans the supplied file with 26 of the most popular
antivirus products. We used AntiScan instead of well known scan-
ners like VirusTotal, because VirusTotal distributes the results, and
AntiScan does not. Distributing our Beacons will make them unus-
able and exposes our Cobalt Strike environment.

As our EDR solution we chose Microsoft Defender for Endpoint, be-
cause Defender for Endpointintegrates best with our Windows based
test environment. Defender for Endpoint is a part of the Microsoft
Defender 365 enterprise defense suite, this suite can be used for
free for 3 months by signing up with a company account. When we
use Defender for Endpoint, we have to disable distribution of the re-
sults, otherwise we will run into the same problem as VirusTotal.

1

https://antiscan.me/
https://antiscan.me/
https://www.virustotal.com/gui/home/upload

The distribution can be disabled in the [Advanced Features] section
of the endpoint settings of the Defender 365 portal. Onboarding the
test system can be done using the provided onboarding script on
the Defender 365 portal. When the system is onboarded correctly,
the system will show up in the [Endpoints] section.

The test system is now ready to be used for testing with our Cobalt
Strike payloads.

3.3 Expanding the Artifact Kit

Cobalt Strike uses a so called Artifact Kit to generate its payloads,
these payloads are also called artifacts. The artifacts can be an ex-
ecutable or a DLL. The Artifact Kit is a source code framework to
build artifacts, which can evade signature checking and sandbox-
ing. The Artifact kit is a part of the larger Arsenal Kit which can be
downloaded from the Cobalt Strike using a license key.

To use the Artifact Kit we first have to generate the configuration
file by running the included build_arsenal_kit.sh. The script gener-
ates a configuration file with the supplied settings. Afterwards we
can load the arsenal_kit.cna configuration file in the scripts view of
Cobalt Strike:

Event Log)(| Script Console)(l Scripts X|

path ready
fhome/jheibrink/Documents/arsenal-kit/dist/arsenal_kit.cna g

[Load H Unload H Reload H Help]

Figure 3.2: Loading scripts

Now we can generate our payloads by navigating to:
[Payload] -> [Windows Executable (Stageless)]

The menu presents options to select our listener and generate the
payload.

12

https://download.cobaltstrike.com/scripts

Windows Executable (Stageless)

Export a stageless Beacon as a Windows executable. Use Cobalt Strike
Arsenal scripts (Help -= Arsenal) to customize this process.

Listener: [DEFAULT-HTTPS | [

Output: [Windows EXE v]

x64: [#] Use x64 payload

[Generate H Help]

Figure 3.3: Generating a payload

After generating, we can check the script console to see that the
Artifact Kit was loaded successfully:

EventlLog X | Script Console X | Seripts X

:11:03] AR AR AR AR R AR R R AR R AR
4:11:03] # Cobalt Strike Arsenal Kit
(c) 2022 HelpSystems LLC
B GG a3
Artifact Kit Loaded
Artifact - EXECUTABLE ARTIFACT GENERATOR hook
Artifact -

44
heibrink/Documents/arsenal-kit/dist/artifact/artifact64big.exe
8 Artifact - Patching the artifact with the payload size of 276992

dggqressor=

Figure 3.4: Script View

The payload should be ready and can be moved to the target sys-
tem.

3.31 Signature evasion

Now we know how to generate payloads, we can start expanding
on the Artifact Kit. As mentioned in the preliminaries the AV can
recognize malicious software by using signatures. Signature detec-
tion can be bypassed using obfuscation methods. Obfuscation is
the process of modifying the source code in such a way that it is
more difficult to understand for the reader. The reader in our case
is the AV software.

13

There are multiple ways to obfuscate our code. In the following list
we will briefly explain some of these obfuscation methods:

e Change the code order
Change the execution order of the code without changing the
behaviour of the program.

* Inserting dead code
Add dead code to the program, this will not change the be-
haviour of the program, but makes it a lot harder for static
methods to distinguish the executed code from the dead code.

e Code replacement
Replace the original code with other instructions that result in
the same behaviour.

* Rename identifiers
Rename the identifiers of variables, functions, and registers
without changing the behaviour of the program.

* Packing the code
A packer compresses and encrypts the code into different forms
while maintaining the same behaviour. The packer includes
code into the program to unpack the compressed code. There
are several ways to pack code, some popular methods of which
are:

- Encryption
Encrypt the code using an encryption key. Different ver-
sions of the same malware can be made using the same
encryption method but different keys.

- Oligomorphic
Using Oligomorphic encryption, the decryptor is built from
different parts. The parts are randomly selected from a
predefined set, which results in a different program for ev-
ery decryption.

- Polymorphic
Polymorphic uses the same principle as Oligomorphic, but
now the packer can produce infinitely many different ver-
sions of the malware, instead of a limited set.

- Metamorphic
A metamorphic packer does not need encryption. The code
is changed dynamically by applying a series of transfor-
mations. The transformations resultin malware being very
hard to detect.

14

We will use some of these obfuscation methods together with other
methods that we will discuss in the rest of the research.

3.3.2 Sandbox evasion

AV software not only uses signature detection, another detection
method is behavior detection. Using a sandbox is part of the be-
havior detection. The AV software will create a virtual environment
where the software can be safely executed. Using this sandbox
the AV can determine if the software is malicious or not without
exposure of the host system. For each step in the execution the
AV checks the process space for malicious indicators. If indicators
show up the executable gets flagged.

The limitation of emulation in AV software is that the engine can
never support all existing operations. The AV will give up on the ex-
ecution of the unsupported section of the program. The limitation
enables bypassing the sandbox by “hiding” the malicious code in an
operation or set of operations that is not supported by the AV.

Another limitationis that malware can detect whenitrunsin asand-
box. When a sandboxis detected, the malware can switch to normal
behavior that would not be flagged as malicious.

3.3.3 Named pipes

One method we will use to bypass sandboxes is passing the payload
through a named pipe before execution. A named pipe is a one-way
or duplex pipe for communication between the pipe server and a
pipe client. More information on hamed pipes can be found in the
Win32 IPC documentation [15]. Named pipes is a technique that not
all sandboxes are able to emulate correctly. Passing the payload
through a named pipe will make the payload invisible to AV prod-
ucts that do not support named pipes.

Named pipesis atechnique already presentin the Cobalt Strike Arti-
fact Kit. The code for the bypass can be foundin the file src-common/-
bypass-pipe.c of the Artifact Kit folder. Because we will be modify-
ing the bypass, we create a new bypass file in the src-common folder
called bypass-secura.c. As a starting point, the code from the de-
fault bypass-pipe.c can be copied.

As mentioned, the pipe uses a server and a client, so first a server
has to be started. The server is defined in the void server(char *

15

data, int length) function. The data parameter passes the payload
data and the length parameter passes the payload length. In the
server function a pipe is created, followed by the data being writ-
ten to the pipe using writeFile().

Theclientisdefinedinthe BoOL client(char * buffer, int length) func-
tion. The buffer parameter passes the data taken from the pipe and
the length parameter is the length of the payload. In the client func-
tion ReadFile() is used to read the data from the pipe.

After setting the name for the pipe, the server is executed in a des-
ignated thread using the CreateThread () function. After a small delay
the client connects to the named pipe to take the payload data and
spawn the payload.

As a general rule we never want to use default values provided by
templates, because these values have a higher chance of trigger-
ing signature detection. We also want to change the default values
of the named pipe bypass. We can run the strings command on a
generated payload to check what values can possibly trigger the
signature detection. The output of strings shows a lot of informa-
tion, this information also includes the string:

%chehehehehehehehenetsve\%d

In the code for the bypass we can see that this string is used for
assigning the pipe name. Assigning the pipe name is done with the
following function:

sprintf (pipename, "Yclclhchehehehehehenetsve\\%d", 92, 92, 46, 92,
o 112, 105, 112, 101, 92, (int) (GetTickCount() % 9898));

On execution this is translated to the string //./pipe/netsvc, fol-
lowed by a number generated using the tick count. The tick count
is used to add some randomness to the string. The string can trig-
ger signature detection, therefore we should replace the name with
something else.

Finding a valid name can be done by looking at pipes that are al-
ready present. On a Windows system we can view all open pipes by
running the following command in Powershell:

(get-childitem \\.\pipe\).FullName

16

Having a look at the output on our test system in the open pipes,
Figure 3.5 shows that many names have the same kind of structure.
The structure that occurs the most is mojo followed by three num-
bers.

Figure 3.5: Open Pipes

The mojo pipes are part of the Chromium framework. Chromium
is used by Google Chrome, Microsoft Edge, Microsoft Teams, and
many more popular applications. Because Microsoft software uses
these Chromium pipes, the pipes are common on most Windows
systems.

The code on line 33 to 41 of the source code for the named pipes
used by Chromium [10] reveals the structure for the names:

NamedPlatformChannel: :ServerName GenerateRandomServerName() {
return base::StringPrintf(L"/lu.%lu.%I64u",

< ::GetCurrentProcessId(), ::GetCurrentThreadId(),

< base::RandUint64());

}

std: :wstring GetPipeNameFromServerName (const
— NamedPlatformChannel: :ServerName& server_name) {
return L"\\\\.\\pipe\\mojo." + server_name;

}

17

We can see the pipes start with the mojo name, which is followed by
a process id, thread id, and a random integer.

Implementing the same structure for the named pipes as Chromium
in our bypass results in the following code:

HANDLE hProc = GetCurrentProcess();

srand ((int) (GetTickCount()));

sprintf (pipename, "YclhchchehchehehehcLOCAL\\mojo.%d.%d.%d", 92, 92,
- 46, 92, 112, 105, 112, 101, 92, (int) (GetProcessId(hProc)),

— (int) (GetCurrentThreadId()), rand());

The process and thread id’s are retrieved using GetProcessId() and
GetCurrentThreadId (). The random numberis generated using rand ().
The seed for the random number generator is set using the tick count
to increase randomness.

3.3.4 Sandbox detection

The second method we will use to bypass sandboxes combines two
methods to detect if the program is executed in a sandbox. We wiill
execute a function that can be emulated incorrectly by the sand-
box and combine this function with the limited resources available
to the sandbox. The blogpost of Michael Schierl about AV evasion
with Metasploit [22] was used as inspiration for this bypass.

First we will post a random thread message for the current thread
id using PostThreadMessageA(). The message will be retrieved using
PeekMessageA(). After the message is retrieved we will check if the
returned message is the same as the posted message. When thread
messages are handled incorrectly, anincorrect message isreturned,
which indicates that the program is not executed in the intended en-
vironment. When the message check fails, execution of the payload
is skipped.

As an extra safeguard we combined the message technique with a
timing check. Between posting and retrieving the message we add
a sleep period. Before the sleep starts we will check the tick count
using GetTickCount (). After the sleep period is passed we will check
the tick count again. The tick count should be correct relative to the
provided sleep time.

Using the timing check, the sandbox has to execute the entire sleep
period, otherwise the execution of the payload is skipped. Because

18

VO 0 N O U W N A

o =
S ®» I o n M ® S = O

20

of the limited resources available to the sandbox, the AV may not
have the time to wait for this sleep period. The AV can skip the sleep
period, but skipping is detected with the tick count check.

The two methods combined result in the following code:

srand ((int) (GetTickCount()));
UINT msg_in = rand();

MSG msg_out;

DWORD tc;

// Post thread message
PostThreadMessageA(GetCurrentThreadId(), msg_in, 23, 42);

// Check AV sandboz timing (sleeps for 65 seconds)
tc = GetTickCount();
Sleep(65000) ;
if (((GetTickCount() - tc) / 30000) != 2)
return;

// Check if a message can be retreived and compare the content
if (!PeekMessageA(&msg_out, (HWND)-1, 0, 0, 0))

return;
if (msg_out.message != msg_in || msg_out.wParam != 23 ||
— msg_out.lParam != 42)

return;

Future Perspective

For future research the sandbox detection could be expanded fur-
ther. Other detection methods could be used, or the timing and
sleep combination could be expanded with a more complex program
flow. Intertwined threads with more complicated timings would be
even harder to emulate by a sandbox. Other functions that are hard
to emulate or are unsupported by the sandbox could be researched.
These unsupported functions could be implemented on their own or
combined with other methods.

19

3.4 Implementing Direct Syscalls

To bypass the signature detection we also want to clean up the im-
port table. We can take a look at our import table using the strings
command, the results of which can be seen in the base import table
Figure 3.6.

GCC: (GNU) 9.3-win32 20200320 HeapCreate
CloseHandle HeapReAlloc
ConnectNamedPipe InitializeCriticalSection
ConvertThreadToFiber LeaveCriticalSection
CreateFiber QueryPerformanceCounter
CreateFileA ReadFile
CreateNamedPipeA RtlAddFunctionTable
CreateThread RtlCaptureContext
DeleteCriticalsSection RtlLookupFunctionEntry
DeleteFiber RtlvirtualUnwind
EntercCriticalsSection SetUnhandledExceptionFilter
GetCurrentProcess Sleep
GetCurrentProcessId SleepEx
GetCurrentThreadId SwitchToFiber
GetlLastError TerminateProcess
GetModuleHandleA TlsGetValue
GetProcAddress UnhandledExceptionFilter
GetStartupInfoA VirtualProtect
GetSystemTimeAsFileTime VirtualQuery
WaltForsingleObject
WriteFile

Figure 3.6: Base import table using strings

The import table contains some imports that could indicate mali-
cious activity: HeapAlloc, VirtualProtect and CreateThread. The three
possibly malicious functions are part of the Win32 API. Information
on the APl and the functions can be found in the programming refer-
ence [16]. HeapAllocis usedto allocate memory from a heap, Virtual-
Protect is used to change the protection on aregion of memory, and
CreateThread is used to create a thread in the designated address
space.

The combination of memory allocation, changing memory protec-
tion and creating a thread can indicate that shellcode isloaded. Not
only can the combination trigger the signature checking, but the
combination can also trigger the hooks that most AV or EDR prod-
ucts have on the Win32 API. Replacing or removing the usage of this
combination of functions can help us bypass both AV and EDR.

20

3.41 Bypassing the hooks

First we have to take alook at how the Win32 APl interacts with ap-
plications and the operating system, Figure 3.7 shows an overview

of the Windows Programming Interface and the position of the Win32
API.

User Applications
A
User Mode Win32 Subsystem
System
Processes Win32 APY
(Kemel32 o, User32.all, GD32. dii)
Session
Manager Environment Functions
WinLogon
[B ¥
NTDLLDLL
User Mode
Kernel Mode
Executive Services
Kerne! Mods System Process System Services
LD Manager 7#?&13?!(5Y8
T Runyme YOGS Wirteal ,mn”dwm,,
dager Uy et DG amoy — o —
Fila Systam interiace
Manager
Hardwars Kernal -
Davice Drivirs
Hardware Abstraction Layer (HAL) Devica Drivers
Hargware

Figure 3.7: Windows Programming Interface

We can see that the interface is split into two security levels, User
Mode and Kernel Mode. Normally applications are always run in
User Mode, so for the application to interact with the operating sys-
tem a developer would normally use the Win32 API. This API inter-
acts with the Native API, which is also called NTDLL. NTDLL can be

21

seen as the gateway between applications and the operating sys-
tem. The Win32 APl is well documented, but there is no official doc-
umentation for NTDLL, so for normal development the Win32 API
should always be used.

Because NTDLL functions as a gateway between the user and ker-
nel level, most AV and EDR products have hooks on NTDLL. To by-
pass the hooks we have to find a way around the usage of the Win32
APl and the underlying NTDLL. One way was described by Outflank
in one of their Red Team Tactics blog posts [20]. The blog post was
the inspiration for our implementation.

If we want to find a way around the usage of the Win32 API, we have
to take a look at the functionality, specifically when we call our sus-
picious functions HeapAlloc, VirtualProtect and CreateThread. First
we will run our payload in a debugger. We will use the WinDbg pro-
gram on our test system. We start debugging by opening our pay-
load using the launch executable option. To quickly find the three
functions we will set breakpoints on the usage of the functions and
run the program.

When we reach our breakpoints we can see the NTDLL functions
that are used: HeapAlloc callsNtAllocateVirtualMemory, CreateThread
calls NtCreateThreadEx, and VirtualProtect calls NtProtectVirtual-
Memory. Now we know the underlying Nt functions we can determine
the functionality of these Nt functions. To determine the functional-
ity, we have to step into the previously found Nt functions. In Figure
3.8 we can see the disassembled NtCreateThreadEx instruction as an
example.

ntdll !NtCreateThreadEx:
Beea7ffb’ c68c5408 4cgbdl
8eee7ffb” c68c5483 b3c5000008 r eax, 8C5h
0eee7ffb” c68c5488 f6042508083fe7fO1 byte ptr [7FFE@3@2h], 1
8eee7ffb" c68c5418 7503

12 efes

eeee7ffb” c68c5415 cd2e int 2Eh
8eee7ffb” c68c5417 3
00887ffb" c68c5418 6f1f340000000000 nop dword ptr [raxtrax]

Figure 3.8: Disassembled NtCreateThreadEx function

First the function moves the arguments on the stack (line 1), then
the function puts the system call number in the eax register (line 2),
followed by checking if the correct function name is called (lines 3
and 4). Finally the function executes the syscall (line 5). After the

22

syscall the CPU will enter kernel mode, finds the corresponding API
call to the system call number and executes this API call. When the
call is finished the function will return back to user mode including
the return values of the API call.

Now we have found the syscall number for each of the three sus-
picious functions. The only problem is that these syscall numbers
change for different versions of Windows. Instead of running a de-
bugger each time, we can find these numbers a lot easier by loading
ntdl1.d11 in a disassembler program like . In IDA we can quickly
search for each function, but searching requires which NTDLL func-
tion corresponds to which Win32 API function. In Figure 3.9 we can
see the disassembled NtProtectVirtualMemory in IDA as an example.

ectVirtualMemory

internal - EXECUTE COM]
> counted CR-terminated command string

Figure 3.9: Disassembled NtProtectVirtualMemory in IDA

3.4.2 Moving to SysWhispers

Even if we can find the syscall numbers easier, implementing the
numbers for every version takes a lot of time. To counter having to
implement the numbers every time, the project was
created. SysWhispers is a tool which generates header and assem-
bly pairs to make it easier to use direct syscalls.

Instead of having to look up the syscall numbers manually, the code
will find the DLLBase address of ntd11.d11 on runtime by looping
through the full list of imported dlls. Looping through the full list is
necessary, because NTDLL is not always in the same position. When
NTDLL is found, the code loads all included syscall entries in a list.
The list can later be accessed to find the correct syscall number.

23

https://hex-rays.com/ida-pro/
https://github.com/jthuraisamy/SysWhispers

Loading such a list on runtime is compatible with all windows ver-
sions without having to alter the code each time.

For our implementation we used the newest version of Syswhispers,
which is . SysWhispers3 can be installed using the in-
structions on the GitHub page. Using SysWhispers we generate our
three functions. The generation can be done using the following
command:

python3 ./syswhispers.py --functions
< NtProtectVirtualMemory,NtWriteVirtualMemory,NtCreateThreadEx
— —o syscalls

This command generates three files: syscalls.c, syscalls.h and
syscalls.asm. When we have a look at the code we can see that the
Nt functions are defined like the Ntinternals NTAPI Undocumented
Functions [19], to make sure the functions behave the same as their
NTDLL counterparts.

As an example we will have a look at the NtProtectVirtualMemory

function. In Table 3.1 we can see the SysWhispers3 version side by
side with the NTDLL version.

24

https://github.com/klezVirus/SysWhispers3

SysWhispers3

NTDLL

Definition

NtProtectVirtualMemory (
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,

Definition

NtProtectVirtualMemory (
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,

IN OUT PSIZE_T RegionSize, IN OUT PULONG

IN ULONG NewProtect, < NumberOfBytesToProtect,

OUT PULONG OldProtect) IN ULONG

< NewAccessProtection,
0UT PULONG

—» 0ldAccessProtection)

Assembly Assembly

mov r10, rcx

mov eax, 50h

test byte ptr ds:7FFE0308h
jnz short loc_1800A4585

mov [rsp +8], rcx
mov [rsp+16], rdx
mov [rsp+24], r8
mov [rsp+32], r9

sub rsp, 28h syscall
mov ecx, 00E93061Ch retn
call SW3_GetSyscallNumber

add rsp, 28h

mov rcx, [rsp+8]
mov rdx, [rsp+16]
mov r8, [rsp+24]
mov r9, [rsp+32]
mov rl10, rcx
syscall

ret

Table 3.1: Comparison of SysWhispers3 and NTDLL

As we can see in the table, the definition is the same, but the as-
sembly instructions are a bit different. The NTDLL version checks if
the loaded function name is correct, which is an extra error check.
The SysWhispers version first saves the used registers to restore
them afterwards, this restoration is included to not disrupt the nor-
mal program flow.

Instead of loading the syscall number, the SysWhispers version calls
the function sw3_GetSyscallNumber. This is the function that looks for
the correct syscall number based on the function name, and stores
the number in the eax register. Looking for the syscall numbers in
the list is the part which makes the code compatible with all Win-
dows versions. We can see that the assembly syntax is different,
but, as shown, the semantics are the same.

25

N O o M ow

3.4.3 Implementing the functions

Knowing the SysWhispers functions should work correctly compared
to their NTDLL version, the functions can be implemented in the Ar-
tifact Kit. To use the generated SysWhispers3 functions, the files
syscalls.cand syscalls.hhave to beincluded in the build config. To
support the 64 bits assembly instructions the -masm=intel flag also
has to be used. This flag tells the compiler to generate the assem-
bler output file using Intel syntax. Now the functions can be used in
the Artifact Kit code by including the syscalls.h header.

The next step is to replace all the occurrences of the functions with
their Nt counterpart. The definitions of the old functions can be
found in the Win32 API documentation [16], and the definitions of
their replacements can be found in the syscalls.h header or on the
Ntinternals site [19].

First we will be replacing all the instances of CreateThread. In the
code the instances are used in patch.c and the previously created
bypass-secura.c. We start with translating the CreateThread used in
bypass-secura.c. The following codeblock shows the two different
versions:

// Original
CreateThread (NULL, O, (LPTHREAD_START_ROUTINE)&server_thread,
< (LPVOID) NULL, 0, NULL);

// Using direct syscall

HANDLE hProc = GetCurrentProcess();

HANDLE thandle = NULL;

NtCreateThreadEx (&thandle, GENERIC_EXECUTE, NULL, hProc,

— (LPTHREAD_START_ROUTINE)&server_thread, NULL, FALSE, 0, 0, O,
< NULL);

Before using NtCreateThreadEx the current process handle has to be
obtained and a thread handle has to be initialized. We can use the
same process handle that was earlier defined for the named pipes
Section 3.3.3.

The translation in patch.c is a bit different, because in this transla-

tion we have to pass an argument to the function that is run in the
thread. The following code block shows the two different versions:

26

N O o WN A

® N o U M w

// Original
CreateThread (NULL, O, (LPTHREAD_START_ROUTINE)&run, ptr, O, NULL);

// Using direct syscall

HANDLE hProc = GetCurrentProcess();

HANDLE thandle = NULL;

NtCreateThreadEx (&thandle, GENERIC_EXECUTE, NULL, hProc,

— (LPTHREAD_START_ROUTINE)&run, ptr, FALSE, 0, 0, 0, NULL);

Now we move on to the next function, this functionis VirtualProtect.
VirtualProtect is used twice in spoof.c, which also includes an if-
statement. Replacing VirtualProtect in the if-statement should be
no problem, as the returned NTSTATUS value by NtProtectVirtual-
Memory can be used in the same way as the returned boolean of
VirtualProtect. The following code block shows how both functions
are replaced:

// First original function
if (!VirtualProtect(addressToHook, dwSize, PAGE_EXECUTE_READWRITE,
— &oldProt)) {

return O;

}

// First replacement

HANDLE hProc = GetCurrentProcess();

if (!NtProtectVirtualMemory(hProc, (PVOID)&addressToHook,

— (PSIZE_T)&dwSize, PAGE_EXECUTE_READWRITE, &oldProt)) {
return O;

}

// Second original function
VirtualProtect (addressToHook, dwSize, oldProt, &oldProt);

// Second replacement
NtProtectVirtualMemory (hProc, (PVOID)&addressToHook,
— (PSIZE_T)&dwSize, oldProt, &oldProt);

In the replacement a process handle has to be used. We can use
the same process handle we used previously. Some typecasting is
required to make the original values compatible with the Nt func-
tion.

The final function will be HeapAlloc, which is only used in patch.c. As

we have seen before, HeapAlloc eventually calls NtAllocateVirtual-
Memory. Instead of rewriting every part of the heap allocation pro-

27

o U A W N A

cess, we step away from using heap allocation, and use the Nt func-
tion NtAllocateVirtualMemory directly.

When using the Nt function an extra memory protection fix has to
be used. The extra protection is done with NtProtectVirtualMemory.
The heap creation process includes the protection change, but Nt-
AllocateVirtualMemory does not. The following codeblock shows how
we replaced HeapAlloc:

// Original memory allocation using HeapAlloc
HANDLE heap;

heap = HeapCreate (HEAP_CREATE_ENABLE_EXECUTE, 0, 0);
ptr = HeapAlloc(heap, 0, 10);

// Replacement using NtAllocateVirtualMemory and

— NtProtectVirtualMemory

NtAllocateVirtualMemory(hProc, (PVOID)&ptr, O, (PSIZE_t)&length,
< MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

DWORD old;
NtProtectVirtualMemory (hProc, (PVOID)&ptr, (PSIZE_T)&length,
<, PAGE_EXECUTE_READ, &old);

Now all the occurrences of our suspicious functions are replaced.
The artifacts have to be built and the updated payloads can be gen-
erated. We run the strings command again on the generated pay-
load, Figure 3.10 shows the resulting import table.

28

GCC: (GNU) 9.3-win32 20200320
CloseHandle
ConnectNamedPipe
ConvertThreadToFiber
CreateFiber

CreateFileA
CreateNamedPipeA
DeleteCriticalSection
DeleteFiber
EnterCriticalsection
GetCurrentProcess
GetCurrentProcessId
GetCurrentThreadId
GetlLastError
GetModuleHandleA
GetProcAddress
GetStartupInfoA
GetSystemTimeAsFileTime
GetTickCount

LeaveCriticalSection
QueryPerformanceCounter
ReadFile
RtlAddFunctionTable
RtlCaptureContext
RtlLookupFunctionEntry
RtlvirtualUnwind
SetUnhandledExceptionFilter
Sleep

SleepEx

switchToFiber
TerminateProcess
TlsGetValue
UnhandledExceptionFilter
VirtualProtect
VirtualQuery
WaltForsingleObject
WriteFile

Figure 3.10: Updated import table using strings

As we can see in the figure, two of the suspicious functions are no
longer imported, the only one that is still present is VirtualProtect.
We replaced all our usages of VirtualProtect, but VirtualProtect is
still imported. The function is still imported, because some other
included standard functions also use VirtualProtect internally. We
can never completely remove VirtualProtect from the import table,
but all usages of VirtualProtect that can be considered suspicious
are replaced.

The final stepis to checkif the payload still works as intended. When
we moved the payload to the test system and executed the pay-
load, the Beacon checked in as normal in the Cobalt Strike client.
Interacting with the beacon also worked as before, so we can as-
sume that our replacements work as intended.

If we take a look at the Microsoft 365 Defender portal we notice
that the EDR takes a lot longer before an active instance of Cobalt
Strike is spotted. At first an active instance would be reported im-
mediately but now spotting takes a couple of minutes of interac-
tion before the EDR flags the payload as malicious. The Defender
365 portal states that the detection source is the behaviour of the
program.

29

Future Perspective

In future research more Win32 API functions could be implemented
using direct syscalls. Another method for bypassing the hooks could
also be implemented. For instance a fresh copy of NTDLL without
hooks could be loaded on execution.

3.5 Malleable Profiles

Malleable Command and Control (C2) profiles control the behavior
of the Beacon on the system and the network. Forinstance, C2 pro-
files can be used to simulate normal web traffic or copy the charac-
teristics of areal threat actor. In our case we need to make sure the
traffic looks as normal as possible. We have to blend in with normal
traffic to not raise any suspicion. What is considered normal traffic
can be different for each target environment, therefore we have to
find a universal profile or find a way to modify the profile for each
target environment.

3.5.1 Profile structure

A C2 profile consist of multiple sections, where each section defines
a part of the behavior. We will first take a look at what every section
is used for based on the Malleable Command and Control section of
the Cobalt Strike User Guide [5].

Profile Name

In this section the name of the profile is defined. The profile name
has no influence on the behavior of the Beacon, the name is only
used in reports.

Sleep Times

The sleep time settings control the time between check ins of the
Beacon. The time is defined in milliseconds. In this section we can
also define the jitter. The jitter is a percentage that defines the
range around the sleep time in which the beacon can check in. The
jitter adds some randomness to the checkins. The Beacon becomes
harder to detect when the interval is higher and less predictable.

30

Server response size jitter

The server response size jitter adds a string of random length to the
http-get and http-post server responses. The provided value de-
fines the maximum length of the string.

User-Agent

The User-Agent value defines the User-Agent for the traffic. An
agent should be selected that fits in with the target environment.
The best agent would be one that is actually present within the tar-
get network.

SSL Certificate

This section defines the used SSL certificate for the HTTPS traffic.
Best practice would be to use a real and correctly issued SSL cer-
tificate for the domain that is used. A trusted certificate makes it
harder to detect for the defenders.

SpawnTo Process

This section defines what process will be used by a beacon to spawn
to for post-exploitation, that is why we can also call this section the
post-exploitation options. The used process can be defined individ-
ually for 32 and 64 bits. We can also specify the command line ar-
guments to help blend in even more.

SMB Beacons

The Cobalt Strike SMB Beacons use named pipes to communicate
through their parent Beacon. The SMB Beacons can be used for
peer-to-peer communication between Beacons on either the net-
work or the same host. The names of the pipes can be defined in
this section.

DNS Beacons

The Cobalt Strike DNS Beacons use DNS for their traffic. ADNS Bea-
con can be best used as a slow backup in case other Beacons get
detected. In the DNS Beacon section we can define the DNS re-
quests of the Beacon.

31

Staging Process

The staging process is used in staged payloads. When the smaller
staged payload is executed, the stager has to download the full
Beacon. In Cobalt Strike the downloading of the full Beacon is done
using a HTTP request. The behavior of this HTTP request is defined
inthe Staging Process section. Staging can also be disabled entirely.

Memory Indicators

AV and EDR products look at the properties of memory to detect
malicious activity in a process. The Memory Indicators section pro-
vides options for In-Memory Evasion, by controlling how the Bea-
con is loaded into memory. The creator of Cobalt Strike, Raphael
Mudge, has a series of video’s for a more in-depth look at the mem-
ory problems. [18]

HTTP GET

The HTTP GET section defines the requests the Beacon sends to
the team server to check for new tasks. Here we can define the UR|,
content, and the headers for the client request and server response.

HTTP POST

The HTTP Post section defines the response of the Beacon to com-
mands that are issued by the server. Despite the name, this can be
done as botha HTTP POST and HTTP GET request. The requests can
be defined in the same way as done in the HTTP GET Section 3.5.1.

The final syntax of a profile has to be checked for errors. Cobalt
Strike includes a tool to check profiles for errors; c2lint. We will use
this to check the profiles for any syntax errors. The semantics of the
profile can be tested using a network traffic inspector.

For our research we will only focus on the network traffic parts of
the profiles. In future research the profiles could be expanded for
other parts of the profiles, like the memory indicators (Section 3.5.1)
or the post-exploitation (Section 3.5.1).

3.5.2 Situational profile

When we want to hide our traffic, we should have a look at the traf-
fic that is already present in the target network. For our traffic to

32

not stand out, it should blend in with the rest. We can capture pack-
ets in the target network, and look if we can implement the packet
in a profile.

As an example we will take a look at the Radboud University net-
work. There are a lot of sites that people on campus can visit often.
We will take the website of the as an example.
When a user visits the website of the University Library, the client
will always send a POST request to read.aspx for JSON data. The
POST request is sent for every section on the site, which means that
the request is sent a lot when a user visits the site. The request also
includes enough data to hide our traffic in.

First we will have to capture the request and response pair to read.
Capturing this pair can be done using . Burp Suite is an
application used for analysing and testing the security of web ap-
plications. After we captured the pair using the Burp Suite proxy,
we can save the pair on our device. The request and response pair
is also included as Appendix A.1 for reference.

Now we have to translate this request to a profile. Translating can
be done manually, but an easier way is to use the

script, a tool by CodeXTF2 that turns request and response pairs
into the network traffic section of C2 profiles. We run the script on
our stored request and response using the command:

python3 burp2malleable.py request.txt response.txt

The script presents the user with options for where to store meta-
data, id’s, tasks and responses of the Beacon. Again we have to
make sure the traffic looks as normal as possible, so we want to
store the Cobalt Strike data in such a way that the packets look as
normal.

We chose to store the metadata in the Cookie header. We stored
the Beacon id as extra parameter “id” in the URI. The Beacon re-
sponses are stored in the body of the request, replacing the value
of varIdt. Finally the Beacon tasks are stored in the body of the re-
sponse, replacing the value for id of the element.

To check for any errors we run c2lint on the resulting profile. The
check returned two errors about the header sizes. Both the header
for the request and response were too large, which can result in in-
stability. To fix the errors some sections of the headers have to be

33

https://ru.nl/ubn
https://portswigger.net/burp
https://github.com/CodeXTF2/Burp2Malleable

moved or removed.

Headers can also be defined in the http-config section, but the Burp-
2Malleable script does not use this section. We manually moved
the Date, Server, Content-Length, Connection, and Content-Type
headers to the http-config section to save space. We can move
these headers to the http-config, because these headers are either
the same for each request, or can be set automatically by the client.
Together with removing non-essential headers we saved enough
space to fit in the size limit.

The Burp2Malleable script can only be used for the http-get and
http-post sections of the profile. We had to add sections for the
sleep time ourselves. The full profile can be seen on

After finishing the profile we can load the profile on our Team Server.
The behavior of the profile can be checked using any network mon-
itoring tool. We used , because Fiddler can be
easily used to read HTTPS traffic from applications using a tunnel
and local proxy. Reading the content of HTTPS traffic is necessary
to confirm that our profiles work as intended.

When we run a payload on the test system the beacon checks in
correctly. The university library profile Figure 3.11 shows the post
request to the domain of our team server with the correct request
and response according to the profile. The traffic imitates the re-
quest and response of the university library website as intended.

34

https://github.com/sjornn/Profiles/blob/main/ub.txt
https://www.telerik.com/download/fiddler-everywhere

URL T PVersion ¥ Status.. Y Method Y Process T

a1 hept k. HTTP/AD 200 CONNECT ub:8264 06:48:32.166

32 mps. 'k HTTPAL1 200 POST uD:8264 06:48:32 492
Request 2l I— K-
Params Cookies Raw
Y Y
Accept application/jso vascript, */*; q=0.01

Content-Type application/x-w m-urlencoded; charset=UTF-8
Referer LD/ WWWALTULI
Accept-Encoding gzip, deflate

Cookie cookie-agreed-version=1.0.0; cookie-agreed=2; _fop=fb.1.1670593551589.1024575.
User-Agent Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko
p-Alive
no-cache
Response o)
L Cookie Raw Preview Body
K T T
application/jsan
on: p-alive
Ca ublic
Vary H
P3P CP="NOI DSP MON CUR ADM DEV TAl OUR NOR STA'
X-Frame-Options SAMEOQRIGIN

fullscreen=self, geolocation=self

w-Origin https//radboudgezichten.ru.nl

Figure 3.11: Traffic for University Library Profile

3.5.3 Universal profile

Making a profile for each environment will increase the effective-
ness of the profile, but the level of effort is also increased. The ef-
fort would be a lot less if a profile could be used in multiple environ-
ments. To create a universal profile we have to know what network
traffic can commonly be found on systems in corporate networks.
Common traffic can be from applications that are used by employ-
ees, like mail clients or collaboration tools. Common traffic can also
be web requests that are often sent by websites regardless of the
environment.

35

According to a survey conducted by Stack Overflow [21], the top 3
most used web frameworks and technologies used by Professional
Developers are Node.js, React.js,and jQuery. jQuery is a single Java-
Script library that has to be loaded to be used in a webpage. The
fact that it has to be loaded for each webpage using jQuery makes
it interesting compared to Node.js and React.js. Each time a web-
page that uses jQuery is loaded, a file called jQuery-[version].jsis
also loaded. Because jQuery is used on many websites, the request
for the file is common in many environments.

Because jQuery is this common, a great universal profile could be
one thatis able to imitate loading the jQuery file. We can start again
by making a profile manually or using the Burp2Malleable script as
basis. Luckily a lot of time can be saved by using the jQuery pro-
file template provided on the GitHub. We edited
the template slightly to better fit in with our used payloads and in-
frastructure. The network traffic section of the final profile can be
found on

Now we can load the profile on the team server, generate a pay-
load, and run the payload on the test system. Afterwards the bea-
con checked in correctly. We can confirm the traffic was accord-
ing to the profile using Fiddler. Using a tunnel through a local proxy
we can see the traffic acts as specified in the profile. The stripped
traffic is included in Figure 312. We can see that the requests and
responses imitate jQuery as intended.

36

https://github.com/threatexpress/malleable-c2
https://github.com/sjornn/Profiles/blob/main/jquery.txt

Y HTTPVersion ¥ Staws..'Y Method Y Process Y RequestTime
;E, 1 http‘fl:r.‘. HTTP/1.0 200 CONNECT jq:1904 07:41:52.391
R — TR = S 074152853
;[E; 4 hps{) HTTP/11 200 POST jq:1904 07:41:52 887
Request nmpsz | umeAa posT
eaders (8 Params Cookies (0 Raw Body

Key Y Value T

Accept texv/htmi, application/xhtmi+xml, application/xml;g=0.9,*/*,q=0.8

Referer http://code jquery.com/

Accept-Encoding g2ip, deflate

User-Agent Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv-11.0) like Gecko

Host : n

Content-Length 1398

Connection Keep-Alive

Cache-Control no-cache

T C 4 KB HTTP 1 @
Cookies (0) Raw Preview Body

Y | Value Y

Server nginx/1.18.0 (Ubuntu)

Date Fri, 16 Dec 2022 15:41:53 GMT

Content-Type application/javascript; charset=utf-8

Content-Length 5671

Connection keep-alive

Cache-Control max-age=0, no-cache

Pragma no-cache

Figure 3.12: Traffic for jQuery

Even with the traffic imitations the payload still gets spotted. Hav-
ing a look at all the network traffic using the

tool, we can see that directly after the beacon sends a DNS
request for the team server, a DNS request for the domain eu-v20.
events.data.microsoft.com is also sent. The DNS requests can be
seen in the DNS Requests Figure 3.13.

Protocol Mame Description - e
eam Server Domain

1) DNS DNS:Queryld = 0x2E7A, QUERY (Standard query), Query for NI . | of type Host Addr on dass L.

2) DNS DNS:QueryId = 0xCF 30, QUERY (Standard query), Query for eu-v20.events.data.microsoft. com of type Host Addr on dass...

Figure 3.13: DNS Requests

According to the Defender for Endpoint URL list published by Mi-
crosoft [14], the eu-v20 domain is used for EDR Cyber Data. The do-

37

https://www.microsoft.com/en-us/download/4865
https://www.microsoft.com/en-us/download/4865

main confirms that the sample is submitted to the EDR. When we
have alook at the EDR dashboard we can see that both executables
are still flagged as suspicious, but the detection was done using the
AV, not the EDR. The detection by the AV shows that payloads gen-
erated with a jQuery profile trigger the signature detection again.

Future Perspective

In future research the profiles could be expanded further. Sections
for in-memory evasion and post-exploitation could be added to fur-
ther decrease the detection rate. Extra research could also be done
on other common network traffic to imitate. The Burp2Malleable
script could also be expanded upon by including a way to automate
the other sections of the profile besides the network traffic.

38

Chapter 4

Related Work

Marpuang et al. give a great overview of existing malware evasion

techniques for AV [11]. They split up the evasion techniques further

and explain them in more detail. The division contains seven con-

cepts: Obfuscation, fragmentation, application specific violations,

protocol violations, inserting traffic, denial of service, and code reuse
attacks. The more detailed insights give a great overview of all the

existing methods, however the implementationis not discussed. The
second part of the paper looks into possible mitigations of the pre-

viously mentioned evasion methods.

Kalogranis uses existing AV evasion techniques and their mitigations,
implements these techniques, and uses them to test popular AV prod-
ucts [8]. Testing the AV evasion techniques places the effectiveness
of them in a real world perspective.

Chailytko et al. also looks at the effectiveness of AV evasion meth-
ods, but focuses specifically on sandboxes [3]. In the research they
look into a popular open-source sandbox product. The detection
methods of the sandbox are investigated, and the problems with
these detection methods are discussed. The research focuses more
on the defending side by providing a solution for all of the found
problems.

Not only AV is represented, great research has been done in EDR
products as well. Arfeen et al. give insight in the motivation and the
functionality behind EDR [1]. The research gives more insights than
the vendors like CrowdStrike [4] give by also showing the limitations
of the product.

Research by Karantzas et al. assesses the security of EDR products

39

using Cobalt Strike [9]. Different bypassing methods than we used,
like DLL sideloading, were tested for the detection rate of popular
EDR products. The focus is not on the bypassing methods, but how
the EDR handles them, therefore the paper gives a good insight in
how EDR works in real scenarios.

No specific research has been done on bypassing network detec-
tion, however the detection itself has been researched. Moussaileb
et al. dive into malicious traffic generated by ransomware [17]. Bek-
erman et al. have a more general approach to malware network
traffic detection [2]. The research focuses on detecting unknown
malware using machine learning, specifically classification. Both
studies show where the detection focuses on when looking for mali-
cious traffic, which is very useful for developing evasion techniques.

40

Chapter 5

Conclusions

There are many ways to bypass AV and EDR, we only showed some
of these methods. From our research we can conclude that the
methods we implemented showed improvement for the detection
rate of the Cobalt Strike Beacons.

Signature evasion methods can be implemented on many levels. Ba-
sic methods are easy to implement and can already show great im-
provementin detectionrate. More advanced signature evasion meth-
ods take more time, but spending more time results in an even lower
detection rate. For the evasion of AV and EDR, implementing signa-
ture evasion methods are very useful as the methods greatly reduce
the detection rate of AV products with a relative small amount of
work.

Behavior detection bypassing methods can also be implemented in
different parts of the Beacons. Sandbox detection, together with
unsupported functions like named pipes, can be implemented in a
small number of lines. The sandbox evasion methods will reduce the
detection rate of AV products. Implementing direct syscalls for eva-
sion of APl hooks takes more time, even when the implementation
is made easier using SysWhispers. The extra effort does pay off, as
using direct syscalls reduces the detection rate of both AV and EDR.

Malleable profiles can modify the behavior of the payload in many
ways, which enables the user to adapt to any environment. Making
a good profile for every environment takes a lot of time, but makes
the payload a lot harder to detect. Using a universal profile takes a
lot less time, but can possibly increase the detection rate compared
to situational profiles. Using a malleable profile, either universal or
situational, does decrease the detection rate compared to not us-

11

ing a profile at all, therefore malleable profiles are very useful for
bypassing AV and EDR.

All methods we researched showed a decrease in detection rate,
but the Red Team should be careful when combining multiple meth-
ods. Implementing one evasion method can result in detection by
another method. One example is the Malleable Profile, while the
network detection decreases, the payload gets spotted again by
the AV signature detection. Another example is the sandbox eva-
sion, when we implemented the named pipe, we also had to change
the name of the pipe to avoid signature detection. Balancing be-
tween bypassing methods is very important when we want to evade
both AV and EDR.

As shown in the Future Perspective sections for each method (Sec-
tion 3.3.4, Section 3.4.3, and Section 3.5.3), the methods we have re-
searched show a lot of possibilities for future adaptation and im-
provement. Future perspective is very important when the AV and
EDR products will also keep updating the detection methods in the
future.

42

Bibliography

[11 Asad Arfeen et al. Endpoint Detection Response: A Malware
Identification Solution. url:

[2] DmitriBekerman et al. Unknown Malware Detection Using Net-
work Traffic Classification. url:

[3] Alexander Chailytko and Stanislav Skuratovich. Defeating Sand-
box Evasion: How To Increase The Successful Emulation Rate
In Your Virtual Environment. url:

[4] CrowdStrike. Whatis Endpoint Detection and Response (EDR)?
url:

[5] Fortra.Malleable Command and Control User Guide. url:

[6] SANS Institute. What is Anti-Virus? url:

[7]1 CenterforInternet Security. Signature-Based vs Anomaly-Based
Detection. url:

[8] Christos Kalogranis. AntiVirus Software Evasion: An Evalua-
tion Of The AV Evasion Tools. url:

[9] George Karantzas and Constantinos Patsakis. An Empirical
Assessment of Endpoint Detection and Response Systems against
Advanced Persistent Threats Attack Vectors. url:

43

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9703010&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9703010&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7346821&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7346821&tag=1
https://blog.checkpoint.com/wp-content/uploads/2016/10/DefeatingSandBoxEvasion-VB2016_CheckPoint.pdf
https://blog.checkpoint.com/wp-content/uploads/2016/10/DefeatingSandBoxEvasion-VB2016_CheckPoint.pdf
https://blog.checkpoint.com/wp-content/uploads/2016/10/DefeatingSandBoxEvasion-VB2016_CheckPoint.pdf
https://www.crowdstrike.com/cybersecurity-101/endpoint-security/endpoint-detection-and-response-edr/
https://www.crowdstrike.com/cybersecurity-101/endpoint-security/endpoint-detection-and-response-edr/
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2_main.htm#_Toc65482834
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2_main.htm#_Toc65482834
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2_main.htm#_Toc65482834
https://www.rwu.edu/sites/default/files/downloads/it/what_is_anti_virus.pdf
https://www.rwu.edu/sites/default/files/downloads/it/what_is_anti_virus.pdf
https://www.cisecurity.org/insights/spotlight/cybersecurity-spotlight-signature-based-vs-anomaly-based-detection
https://www.cisecurity.org/insights/spotlight/cybersecurity-spotlight-signature-based-vs-anomaly-based-detection
https://www.cisecurity.org/insights/spotlight/cybersecurity-spotlight-signature-based-vs-anomaly-based-detection
https://dione.lib.unipi.gr/xmlui/handle/unipi/11232
https://dione.lib.unipi.gr/xmlui/handle/unipi/11232
https://www.mdpi.com/2624-800X/1/3/21
https://www.mdpi.com/2624-800X/1/3/21

[10] Google LLC.Chromium Named Platform Channel Source Code.
url: https://raw.githubusercontent . com/chromium/chromium/
c4d3c31083a2e1481253f£2d24298a1dfe19c¢754/mojo/public/cpp/
platform/named_platform_channel_win.cc.

[111 Jonathan A.P.Marpaung, Mangal Sain,and Hoon-Jae Lee. Sur-
vey on malware evasion techniques: state of the art and chal-
lenges. url: https://ieeexplore. ieee.org/stamp/stamp. jsp?
tp=&arnumber=6174775&tag=1.

[12] Microsoft. Behavioral blocking and containment. url: https :
//learn . microsoft . com/en-us/microsoft - 365/ security/
defender-endpoint/behavioral-blocking-containment ?view=
0365-worldwide.

[13] Microsoft. Microsoft Defender for Endpoint Overview. url: https:
// learn . microsoft . com/en-us/microsoft - 365/ security/
defender-endpoint/microsoft-defender-endpoint?view=0365-
worldwide.

[14] Microsoft. Microsoft Defender for Endpoint URL list for com-
mercial customers. url: https : //learn . microsoft . com/en -
us/microsoft-365/security/defender-endpoint/configure-
proxy - internet ?view=0365- worldwide # enable - access - to-
microsoft - defender - for - endpoint - service-urls-in-the-
proxy-server.

[15] Microsoft. Named Pipes Documentation. url: https://learn.
microsoft.com/en-us/windows/win32/ipc/named-pipes.

[16] Microsoft. Programming reference forthe Win32 APl. url: https:
//learn.microsoft.com/en-us/windows/win32/api/.

[17] Routa Moussaileb et al. Ransomware Network Traffic Analy-
sis for Pre-encryption Alert. url: https://link.springer.com/
chapter/10.1007/978-3-030-45371-8_2.

[18] RaphaelMudge.In-Memory Evasion.url:https://www.cobaltstrike.
com/blog/in-memory-evasion/.

[19] NTinternals. NTAPI Undocumented Functions. url: https : / /
undocumented.ntinternals.net/.

[20] Outflank. Red Team Tactics: Combining Direct System Calls
and sRDI to bypass AV/EDR. url: https://outflank .nl/blog/
2019/06/19/red-team-tactics - combining-direct - system-
calls-and-srdi-to-bypass-av-edr/.

[21] Stack Overflow. 2022 Developer Survey. url: https://survey.
stackoverflow.co/2022/#most-popular-technologies-webframe-
prof.

44

https://raw.githubusercontent.com/chromium/chromium/c4d3c31083a2e1481253ff2d24298a1dfe19c754/mojo/public/cpp/platform/named_platform_channel_win.cc
https://raw.githubusercontent.com/chromium/chromium/c4d3c31083a2e1481253ff2d24298a1dfe19c754/mojo/public/cpp/platform/named_platform_channel_win.cc
https://raw.githubusercontent.com/chromium/chromium/c4d3c31083a2e1481253ff2d24298a1dfe19c754/mojo/public/cpp/platform/named_platform_channel_win.cc
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6174775&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6174775&tag=1
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/behavioral-blocking-containment?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/behavioral-blocking-containment?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/behavioral-blocking-containment?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/behavioral-blocking-containment?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/configure-proxy-internet?view=o365-worldwide#enable-access-to-microsoft-defender-for-endpoint-service-urls-in-the-proxy-server
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/configure-proxy-internet?view=o365-worldwide#enable-access-to-microsoft-defender-for-endpoint-service-urls-in-the-proxy-server
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/configure-proxy-internet?view=o365-worldwide#enable-access-to-microsoft-defender-for-endpoint-service-urls-in-the-proxy-server
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/configure-proxy-internet?view=o365-worldwide#enable-access-to-microsoft-defender-for-endpoint-service-urls-in-the-proxy-server
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/configure-proxy-internet?view=o365-worldwide#enable-access-to-microsoft-defender-for-endpoint-service-urls-in-the-proxy-server
https://learn.microsoft.com/en-us/windows/win32/ipc/named-pipes
https://learn.microsoft.com/en-us/windows/win32/ipc/named-pipes
https://learn.microsoft.com/en-us/windows/win32/api/
https://learn.microsoft.com/en-us/windows/win32/api/
https://link.springer.com/chapter/10.1007/978-3-030-45371-8_2
https://link.springer.com/chapter/10.1007/978-3-030-45371-8_2
https://www.cobaltstrike.com/blog/in-memory-evasion/
https://www.cobaltstrike.com/blog/in-memory-evasion/
https://undocumented.ntinternals.net/
https://undocumented.ntinternals.net/
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe-prof
https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe-prof
https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe-prof

[22]

[23]

[24]

[25]

[26]

Michael Schierl. Facts and myths about antivirus evasion with
Metasploit. url: http : //schierlm . users . sourceforge . net /
avevasion.html.

Secura. Penetration Testing. url: https : / /www . secura . com/
services/information-technology/vapt/penetration-testing.

Secura. Red Teaming. url: https://www.secura. com/services/
information-technology/vapt/red-teaming.

Secura.Vulnerability Scan Assessment.url:https://wuw.secura.
com/services/information-technology/vapt/vulnerability-
scan—assessment.

National Cyber Security Centre UK. What is an antivirus prod-
uct? Do | need one? url: https://www.ncsc.gov.uk/guidance/
what-is—an-antivirus—product.

45

http://schierlm.users.sourceforge.net/avevasion.html
http://schierlm.users.sourceforge.net/avevasion.html
https://www.secura.com/services/information-technology/vapt/penetration-testing
https://www.secura.com/services/information-technology/vapt/penetration-testing
https://www.secura.com/services/information-technology/vapt/red-teaming
https://www.secura.com/services/information-technology/vapt/red-teaming
https://www.secura.com/services/information-technology/vapt/vulnerability-scan-assessment
https://www.secura.com/services/information-technology/vapt/vulnerability-scan-assessment
https://www.secura.com/services/information-technology/vapt/vulnerability-scan-assessment
https://www.ncsc.gov.uk/guidance/what-is-an-antivirus-product
https://www.ncsc.gov.uk/guidance/what-is-an-antivirus-product

Appendix A

Request and Response pairs

A1 Request and response read.aspx page

A1l Request

POST /aspx/read.aspx HTTP/1.1

Host: www.ru.nl

Cookie: cookie-agreed-version=1.0.0; cookie-agreed=2;

— _fbp=£fb.1.1670593551589.1024575632; _ga=GA1.2.23700656.1670593551;
— _ga_6C86NZ2VXH=GS1.1.1670593550.1.1.1670593571.0.0.0;

— cookie_notification=functional; _gid=GA1.2.2062466150.1670764872;
— cookies_consent=-1

Content-Length: 63

Sec-Ch-Ua: "Chromium";v="107", "Not=A?Brand";v="24"

Accept: application/json, text/javascript, */*; gq=0.01

Content-Type: application/x-www-form-urlencoded; charset=UTF-8
X-Requested-With: XMLHttpRequest

Sec-Ch-Ua-Mobile: 70

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
— (KHTML, like Gecko) Chrome/107.0.5304.107 Safari/537.36
Sec-Ch-Ua-Platform: "Linux"

Origin: https://www.ru.nl

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: cors

Sec-Fetch-Dest: empty

Referer: https://www.ru.nl/

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

Connection: close

AppIdt=10000009%MwtIdt=16703%IpxIdt=0kVarIdt=3297}ItmIdt=670677

46

OV 0 N O A W N a

N NN N - _
ROBNRNROCISIT®I>GHE R®O =20

Al1.2 Response

HTTP/1.1 200 OK

Cache-Control: public

Content-Type: application/json

Vary: Host

Server:

P3P: CP="NOI DSP MON CUR ADM DEV TAI OUR NOR STA"
X-Frame-Options: SAMEORIGIN

Permissions-Policy: fullscreen=self, geolocation=self
Access-Control-Allow-Origin: https://radboudgezichten.ru.nl
X-Content-Type-Options: nosniff

Referrer-Policy: strict-origin

Date: Sun, 11 Dec 2022 13:22:54 GMT

Content-Length: 364

X-Cache: MISS from roesje02.uci.ru.nl

X-Cache-Lookup: MISS from roesje02.uci.ru.nl:80

Connection: close

Strict-Transport-Security: max-age=63072000; includeSubDomains; preload

{"token":"","session_csrf_id":"3db520a3ae2d48a1b36917c938277538",
"startEnvIdt":"2","root":"https://cms.ru.nl/","elements": [{"id":"Ipx_0",
"screens":[{"alias":"login","size":"Small","args" :{"AppIdt":"00000000",
"exitAppIdt":"00000000"}}1}],"labels":{"console": "Redactie","stick":
"Pennetjes altijd tonen","unstick":"Pennetjes tonen bij zweven","login":
"Inloggen CMS"}}

47

	Introduction
	The Toolset
	Outcomes
	Outline

	Preliminaries
	Antivirus
	Endpoint Detection and Response
	Functionality

	Red Team
	Vulnerability Scan & Assessment
	Pentesting
	Red Teaming

	Research
	Setting up Cobalt Strike
	Testing Environment
	Expanding the Artifact Kit
	Signature evasion
	Sandbox evasion
	Named pipes
	Sandbox detection

	Implementing Direct Syscalls
	Bypassing the hooks
	Moving to SysWhispers
	Implementing the functions

	Malleable Profiles
	Profile structure
	Situational profile
	Universal profile

	Related Work
	Conclusions
	Request and Response pairs
	Request and response read.aspx page
	Request
	Response

