
Bachelor’s Thesis Computing Science

Solving Robust Reachability Using
Quantified Boolean Formulas

Jorrit de Boer
s1026441

July 6, 2023

First supervisor/assessor:
Dr. Sebastian Junges

Second Supervisor:
Marck van der Vegt, MSc.

Second assessor:
Dr. Nils Jansen

Abstract

Markov Decision Processes (MDPs) are state machines which are employed
to model decision-making under uncertainty. We consider Multiple Envi-
ronment Markov Decision Processes (MEMDPs) which consist of multiple
MDPs that each represent a possible real world scenario. Our goal is to
construct a strategy for an agent, who is unaware of which environment it is
in, to reach a goal state. We provide an efficient translation from a MEMDP
to a Quantified Boolean Formula (QBF formula) to allow solving the deci-
sion problem with a theorem solver. We have implemented this approach
in a prototype on top of the Z3 theorem prover. The empirical evaluation
shows that the translation yields large and challenging formulas. While
solving MEMDPs using this translation is not yet competitive, we provide
an extensive discussion of future directions that highlight the probability to
obtain smaller QBF formulas.

Contents

1 Introduction 2

2 Preliminaries 5

3 SAT Translation 8
3.1 Translation . 8

4 QBF Translation 11
4.1 Example . 11
4.2 General Form Policy with Memory 13
4.3 Translation . 14

5 Experimental Results 18
5.1 Models Tested . 18
5.2 Results . 20

6 Discussion on Reducing the Number of Phases 23

7 Conclusions 26

8 Appendix 28

1

Chapter 1

Introduction

Markov Decision Processes

Markov Decision Processes (MDPs) [2, 4, 6] are the standard framework for
modeling and analyzing real-world scenarios involving both probabilistic and
nondeterministic phenomena. MDPs model decision making with uncertain
outcomes: in every state an agent picks an action from a set of actions
and then transitions to a new state. The outcome of an action can be
random: the next state the agent transitions to is governed by a probability
distribution. The combination of nondeterminism (picking an action) and
randomization (the transition to a new state as a result of this action) make
MDPs such a powerful and widespread formalism.

To illustrate, consider the game of Rock Paper Scissors, which can be mod-
eled as a simple MDP. The agent picks an action from the set {rock, paper,
scissors}. The probability distribution over possible states as a result of
this action represent the opponent’s move. For example, this distribution
could be the uniform distribution: each move has a chance of 1

3 . The transi-
tion to a new state reflects the game’s outcome, such as a win, loss, or draw,
determined by the opponent’s move’s probability distribution.

Consider another example where an MDP represents a medical treatment
process [4]. In this context, the actions available to medical practitioners
include prescribing medications and performing surgical procedures. How-
ever, the effectiveness and outcomes of these interventions are subject to
uncertainty. This uncertainty arises from the unpredictable responses and
potential complications associated with the treatments being administered.

In this thesis we consider almost-sure reachability. We want to construct a
strategy, also called policy, that decides what actions to take in each state.
The goal is to reach a goal state with this policy. When applying a policy
to an MDP, we get certain probabilities to reach each state. In the Rock

2

Paper Scissors example, reaching the goal state (winning) has probability
1
3 , independent of the chosen strategy. For almost-sure reachability we want
this chance to equal one.

Even though MDPs are widely used for modeling and analyzing dynamic
systems, they have certain limitations when it comes to capturing the com-
plexity of real-world scenarios. One key limitation is that MDPs assume a
single fixed scenario, disregarding the possibility of multiple possible scenar-
ios or variations in the underlying system. In an MDP, the agent is aware
of the exact probability distribution that results from an action. In real-
ity, however, often we are not aware of the precise probabilities that result
from each action. Instead, there are various possible scenarios, each of which
could induce a different distribution for each action. In these scenarios, even
though we do not know precisely the MDP in which we are acting, we still
want to obtain a policy to reach our goal.

To illustrate this limitation, consider another example involving a game of
Rock Paper Scissors. In this game, the agent is playing against a secret
opponent who could be one of three individuals: one who tends to choose
rock more often, one who favors paper, and one who frequently plays scissors.
The probabilities associated with each action (the agent’s move) now depend
on the real-world scenario, specifically on which opponent the agent is facing.
This introduces a level of complexity that cannot be adequately captured
by a single MDP.

Multiple Environment Markov Decision Processes

To fix this limitation, we introduce Multiple Environment Markov Decision
Processes (MEMDPs) [2, 4, 6], the main focus of this thesis. MEMDPs are
an extension of MDPs that provide a natural and even more powerful way
of modeling real-world scenarios. A MEMDP consists of multiple MDPs,
which we call environments. Each environment represents a different possi-
ble scenario. An agent still wants to reach the goal, but now has to do so
without a priori knowledge about which specific environment it is in. They
do this the same way as in an MDP: in each state an agent chooses one
action that leads them with some probability to another state. Because the
agent does not know which of the possible environments it is in, it must
either take actions that progress towards the goal in all environments, or
take actions to try to determine in which environment it is in. Subsequently
it can then take actions to reach the goal in that specific MDP.

In the context of the MDP that models a medical treatment, consider an
extension where different environments represent different patient groups
that cannot be diagnosed to be in a specific group. A doctor will not know
to which group a patient belongs (in what environment they are in) and

3

will thus have to take actions (prescribe medicines or perform surgery) that
have the biggest chance of positive results for all of the possible patient
groups (environments). Similarly, for a robot, different environments can
model different scenarios a robot can be in, like the presence of unlocated
obstacles. The robot will need to either take actions that avoid all obstacles,
or take actions to locate the obstacles, which reduces the number of possible
environments, after which the robot can more effectively reach their goal.

We extend almost-sure reachability to MEMDPs. Almost-sure reachability
is achieved in a MEMDP when the application of a policy guarantees reach-
ing the goal state with a probability of one across all environments. Such a
policy robustly satisfies almost-sure reachability for the MEMDP.

Contributions

This thesis contributes a translation from the decision problem for finding a
policy in a MEMDP to a Quantified Boolean Formula, see Chapter 4. This
translation allows solving the decision problem with a theorem solver. We
implement this approach and test its performance, see Chapter 5. Finally,
we provide a discussion on how to improve the translation and its imple-
mentation to speed up solving the decision problem using this approach, see
Chapter 6.

4

Chapter 2

Preliminaries

In this chapter we give some formal definitions which we will use in sub-
sequent chapters. We start with MDPs and related concepts, and then do
the same for MEMDPs. We give some concrete examples to provide some
intuition about the concepts.

Definition 1 (MDP). A Markov Decision Process (MDP) is a tuple M =
〈S,A, s0, p〉 consisting of a finite set of states S, a finite set of actions A, s0
the initial state, and p : S ×A → Dist(S) the transition function.

Dist(S) in the transitions function’s codomain is the set of all distributions
over the set S. This is where the randomization arises.

Figure 2.1 shows an example MDP with states S = {S0, S1, S2, S3}, actions
A = {a, b}, initial state S0, and the transition function p given by the tables.

A policy σ for the MDP M is a function that decides what actions to take.
We consider two types of policies: a memoryless policy and a policy with
memory. A memoryless policy takes the form σ : S → Dist(A). The policy
maps each state to a probability distribution over the actions. This means
the action can be different if the same state is visited multiple times. How-
ever, the policy itself will not change when a state is visited again, the
distribution stays the same. If the distribution does change when the state
is visited again the policy is dependent on the path taken to get there.
So the policy remembers the previously visited states and taken actions,
i.e. the policy has memory. We define Path to be the set of paths in the
form π = s0a0s1a1 . . . sn with si ∈ S and ai ∈ A. A policy with memory is
then σ : Path → Dist(A).

Traversing the MDP using a policy will result in reaching each state with a
certain probability [1]. We denote the probability of reaching a state G ∈ S
starting from state s ∈ S using a strategy σ by PM(s → G |σ). If s = s0

5

S0

S1

S2 S3a

a

0.25

0.25

0.5

b

b

1.0

b a

a1.0

a

a
0.5 0.5

b

b

0.5

0.5

a, b

S0 S1 S2 S3

S0 0.25 0.25 0.5 0

S1 0 0.5 0.5 0

S2 0 1 0 0

S3 0 0 0 1

(a) Action a

S0 S1 S2 S3

S0 0 0 1 0

S1 0 1 0 0

S2 0.5 0 0 0.5

S3 0 0 0 1

(b) Action b

Figure 2.1: Example MDP with transition function p.

the starting state we denote the chance as PM(G |σ). We say almost-sure
reachability is achieved for a goal state G if PM(G |σ) = 1. The policy σ is
also called winning in this case.

A policy for the MDP in Figure 2.1 that achieves almost-sure reachability
for the goal state G = S3 would be: σ(S0) = σ(S1) = σ(S2) = b. As the
domain of σ is S this policy is memoryless.

Note that there is a path in the MDP that this winning policy σ can take
that does not reach the goal state: π = S0bS2bS0bS2 However, the
probability that the policy takes this path is limn→∞(0.5)n = 0, so the
probability for reaching the goal state is still one. This is why the definition
is called almost-sure reachability.

For simplicity sake in this thesis we assume that there is just one goal state G.
Furthermore, we assume this state G is absorbing, meaning that all transi-
tions leading from G lead back to G.

Note that we can do this without loss of generality: making the goal state
absorbing does not change the probability that the state is reached, and

6

if there are multiple goal states, we can add an additional state G with
transitions from all goal states to G.

Definition 2 (MEMDP). A MEMDP is a tuple M = 〈S,A, S0, {pi}i∈I〉
where S,A, S0 are the same as for an MDP, and {pi}i∈I a finite set of tran-
sition functions, where I is a finite set of environment indices.

So a MEMDP is a set of MDPs that all share the same states, actions, and
starting state. This way, we can define a policy without knowing in which en-
vironment we are acting. We reference a specific MDP (environment) using
the notation Mi for i ∈ I. On a MEMDP we define almost-sure reachability
achieve for a single policy the goal state is reached in all environments: for
all i ∈ I, we have PMi(G |σ) = 1.

M1 : s0 s1

q1, q2

q1, q2
a1a2, a3

M2 : s0 s1

q1

q1

q2 q2

a2a1, a3

M3 : s0

q1, q2

a3a1, a2

Figure 2.2: Example MEMDP, taken from [6].

Figure 2.2 shows an example MEMDP. The idea is to ‘ask’ questions q1 and
q2, which yield responses of either ‘switch’ or ‘stay’. By interpreting these
responses, the agent can determine the specific environment it is operating
in. Based on this knowledge, the agent then selects one of a0, a1, a2 to
‘answer’ the question of what environment it is in, in an attempt to end
up in . Note that to improve readability some shorthand notation is used:
all probabilities in this MEMDP are zero or one so these are not explicitly
shown, and the fact that and are absorbing is indicated by a looping
arrow.

We exemplify a winning policy. This policy starts by ‘asking’ q1. On switch
the policy answers a1, on stay it ‘asks’ q2 and then on switch it answers a2
and on stay a3. Note that this policy takes memory, you need to consider
both ‘answers’ before guessing the right environment. In fact, this MEMDP
is not winnable with a memoryless policy. This example is worked out in
more detail in Chapter 4.

7

Chapter 3

SAT Translation

In this chapter we translate the decision problem for finding a memoryless
policy that almost-surely reaches a goal state G to SAT. This translation
forms the basis for the translation to QBF in the next chapter.

The SAT translation and Theorem 1 which is required for it, are based on a
paper by Chatterjee et al. [2] where they provide an analogous construction
for Partially Observable Markov Decision Processes (POMDPs) [5].

Equivalent Statement Almost-Sure Reachability

Theorem 1 below is the basis for both translations. It gives an equivalent
statement to almost-sure reachability that can be captured well by proposi-
tional formulas.

We define Rσ ⊆ S to be the set of states reachable in an MDP with policy
σ. For a MEMDP we define Ri

σ ⊆ S to be the set of states reachable in the
MDP Mi with policy σ. We define πk(s, s

′) = s0a0s1a1 . . . ak−2sk−1 ∈ Path
to be a path of length k from s0 = s to sk−1 = s′. We say that πk(s, s

′) is
compatible with the policy σ if σ(si)(ai) > 0 for all 0 ≤ i < k − 1. In other
words, the policy σ could have taken this path in the MDP.

Theorem 1. A memoryless policy σ is winning in an MDP M if and only
if for all states s ∈ Rσ there is a path πk(s, g) from s to the goal state G
that is compatible with σ and has length at most k = |S|.

The proof is given in Appendix A.

3.1 Translation
Below we define, for a MEMDP M and a goal state G, the propositional
formula φM,G. After that, we prove in Theorem 2 that the decision problem

8

polynomially reduces to deciding if φM,G ∈ SAT and show how a satisfying
valuation to φ relates to a policy in the MEMDP.

Boolean Variables

We introduce the following boolean variables:

• {Asa} for s ∈ S, a ∈ A, indicating that σ(s)(a) > 0. Note that it
is not important what the exact value is of σ(s)(a) is because we are
considering almost-sure reachability.

• {Sis} for i ∈ I, s ∈ S, indicating s ∈ Ri
σ.

• {Pisk} for i ∈ I, s ∈ S, k ∈ N, 0 ≤ k ≤ |S|, indicating that there is a
path compatible with σ from state s to the goal state G in at most k
steps.

Logical Constraints

The formula φM,G is defined as the conjunction of all constraints defined
below.

In each state at least one action should be taken. For all s ∈ S:

∨
a∈A

Asa (3.1)

If a state s is reachable in an environment i and action a is taken in state
s, then all states t ∈ S with pi(s, a)(t) > 0 are reachable, so Sit should be
true. For all i ∈ I, a ∈ A, and s, t ∈ S with pi(s, a)(t) > 0:

(Sis ∧Asa) → Sit (3.2)

The initial state s0 needs to be true because it is definitely reachable. For
all i ∈ I:

Sis0 (3.3)

If a state is reachable under σ in an environment, there should be a path
from that state compatible with σ to the goal state G in k = |S| steps. For
all i ∈ I, and s ∈ S:

Sis → Pisk (3.4)

9

From the goal state the path to the goal state has length zero. This con-
straint is required because the P variables for other states flow from there
with Constraint 3.7. For all i ∈ I, and k ∈ N with 0 ≤ k ≤ |S|:

PiGk (3.5)

Only the goal state has a path of length zero to the goal state, any other
state cannot reach the goal state with a path of length zero. For all i ∈ I,
and s ∈ S \ {G}:

¬Pis0 (3.6)

The next constraint makes sure that the P variables are assigned correctly.
It does this by ensuring that the variable Pisk can only be true, indicating
there is a path of length at most k to G from s in environment i, if and only
if from state s we can take some action a that can take us to a state t from
which it is possible to reach the goal state in at most k − 1 steps. For all
i ∈ I, s ∈ S, and k ∈ N with 1 ≤ k ≤ |S|:

Pisk ↔
∨
a∈A

(
Asa ∧ (

∨
t∈S

pi(s,a)(t)>0

Pit(k−1))
)

(3.7)

Now that we have defined φM,G, we can show that translation indeed poly-
nomially reduces the decision problem.

Theorem 2. The decision problem for finding a memoryless policy in the
MEMDP M that almost-surely reaches the goal state G polynomially reduces
to deciding if φM,G ∈ SAT:

• For a MEMDP M and a goal state G, there exists a memoryless
winning policy in M if and only if φM,G ∈ SAT.

• φM,G can be computed in polynomial time.

The proof is given in Appendix A.

10

Chapter 4

QBF Translation

In this chapter we provide the translation from the decision problem for
finding a policy with memory in a MEMDP to a Quantified Boolean Formula
(QBF formula). It is known that this translation had to exist because it was
shown that the decision problem is PSPACE-complete [6].

We start by explaining how a winning policy with memory for the MEMDP
in Figure 2.2 can be built up. In this example we show the core idea of
the translation: a policy with memory can be seen as a set of memoryless
policies, between which the policy switches when taking certain paths. We
then show how we can extend this idea of layers of memoryless policies to
a general form of a policy with memory. Finally, we provide the translation
to the QBF formula and explain in more detail how it works.

4.1 Example
We will show how to construct a winning policy with memory for the
MEMDP in Figure 2.2. For reference we show the MEMDP in this chapter
as well, see Figure 4.1.

M1 : s0 s1

q1, q2

q1, q2
a1a2, a3

M2 : s0 s1

q1

q1

q2 q2

a2a1, a3

M3 : s0

q1, q2

a3a1, a2

Figure 4.1: Copy of Figure 2.2.

The resulting policy with memory is illustrated in Figure 4.1. We start with
the memoryless policy σ0 = {s0 7→ q1, s1 7→ q2}. In state s0 it takes action

11

σ0
s0 7→ q1
s1 7→ q2

(s1, q2, s0)

(s1, q2, s1)

(s0, q1, s0)

σ1

{s0 7→ a1}
σ2

{s1 7→ a2}
σ3

{s0 7→ a3}

Figure 4.2: Illustration of a winning policy with memory for Figure 4.1.

q1 and in state s1 it takes action q2. So we start in the initial state, s0, and
σ0 prescribes we take action q1. There are now two possibilities:

• If we are in environment one or two, we take the transition (s0, q1, s1).

• If we are in environment three, we take the transition (s0, q1, s0).

If we take transition (s0, q1, s1), we know for certain that we are in envi-
ronment three, because that transition only exists in that environment. So
if we take this transition, we can switch to a different memoryless policy
σ3 = {s0 7→ a3}, that can act upon this newly gained information. In this
scenario we know we are in environment three, so we can take action a3 and
reach the goal state. This is illustrated on the right in Figure 4.2. We call
such a transition that reveals information about our current environment
and causes us to switch to a new policy, a frontier transition.

Next we consider the other scenario where we take transition (s0, q1, s1).
We are now at state s1 and σ0 says we take action q2. Again there are two
possibilities:

• If we are in environment one, we take the transition (s1, q2, s0).

• If we are in environment two, we take the transition (s1, q2, s1).

Observe that both of these transitions reveal information about the current
environment: if we take (s1, q2, s0) we are certainly in environment one,
and if we take transition (s1, q2, s1) we are certainly in environment two
because both of these transitions only exist in those environments. Thus,
these transitions can be used as frontier transitions: if we take (s1, q2, s0)
we switch to the memoryless policy σ1 = {s0 7→ a1} and win, and if we take
(s1, q2, s1) we switch to the memoryless policy σ2 = {s1 7→ a2} and win.
This again is illustrated in Figure 4.2.

So we have constructed a winning policy with memory for the MEMDP,
by starting with the memoryless policy σ0. Then, upon taking frontier

12

transitions that reveal what environment we are in exactly, we switch to a
different memoryless policy (one of σ1, σ2, σ3) that allows us to transition to
the goal state.

4.2 General Form Policy with Memory
We extend this idea to a general form for policies with memory. Every policy
with memory can be seen as memoryless policies between which the policy
switches when taking frontier transitions.

Phase 1 σ1

Phase 2 σ2
1

...
...Phase n

σ2
2

...
...

...

. . . σ2
k−1

...
...

...

σ2
k

...
...

σ

Figure 4.3: Illustration of how the memoryless policies σn
i (for n ∈ I) make

up the policy with memory σ.

Figure 4.3 illustrates the general form of a policy with memory in a tree form.
We start at the memoryless policy σ1, and upon taking a frontier transition,
we switch to a next memoryless policy σ2

i , and upon taking another frontier
transition we switch to some other memoryless policy σ3

j . We call each layer
of memoryless policies in the tree a phase.

Note that the number of children per node (subsequent policies a policy
can switch to) may vary and depends on the number of frontier transitions.
The depth of the tree also varies. It is possible that no frontier transitions
need to be taken in the first phase, and almost-sure reachability to the goal
state is already achieved in phase one. In this case, a memoryless strategy
suffices. It is also possible that more phases are required for some paths
than for others. In this case some branches in the tree might stop sooner
than others. The maximum depth of the tree is |I|, the maximum number
of phases, as follows from the following lemma:

Lemma 1. If a policy can be found using more than |I| phases in the QBF
formula, a policy also exists with |I| or fewer phases.

The proof is given in Appendix A.

Corollary 1. If no policy can be found using |I| phases, no policy exists.

13

Figure 4.3 also illustrates an important fact: the winning policy can be
exponentially large. The QBF formula we define below can only be used to
decide in PSPACE whether a winning policy exists. Obtaining the policy can
take exponential space as the policy itself already could take up exponential
space. This was shown by Van der Vegt et al. [6, Theorem 4].

4.3 Translation
Next, we give the translation to the QBF formula, building upon the ideas
explained above.

We recall that a QBF formula is an extension of propositional formulas. It
is again a propositional formula, but now every variable in the formula is
bound by either an existential (∃) or a universal (∀) quantifier. For instance,
∀x∀y∃z[(¬x∨ z)∧ (¬y ∨¬z)] is a QBF formula. If such a formula evaluates
to true, the formula is in the language TQBF (True Quantified Boolean
Formula). A true QBF formula is also called valid.

In each phase we try to find a memoryless strategy such that in all envi-
ronments, for all reachable states there is a path of at most |S| steps to the
goal state, i.e., the policy is almost-sure winning, according to Theorem 1.
This is encoded in the formula in the same way as in the previous chapter
with roughly the same variables and constraints. The differences are that
now these variables are bound by the existential quantifier, and they exist
for each phase.

If it is not possible to find a policy that reaches the goal state almost-surely,
a transition (s, a, t) can be ‘marked’ as a frontier transition. In that case,
taking that transition is also considered winning in that phase. So instead
of the target being just the goal state, the target is now a set containing the
goal state, but possibly also frontier transitions.

In the next phase the universal quantifier considers all those frontier transi-
tions and ‘picks’ one at a time. A new memoryless policy needs to be found
for after those transitions have been taken. So if in phase n the transition
(s, a, t) is chosen as a frontier transition, and the universal quantifier con-
siders that transition, phase n+1 starts in state t in that case. However, we
only need to consider those environments where this transition could have
been taken, so this (hopefully) will give more information. Note that it is
not a requirement that the frontier transition reveals information about the
current environment, although this will generally be the case.

In the final phase transitions can no longer be marked as frontier transitions.
It is forced that the policy in that phase almost-surely reaches the goal state.
This is because of Corollary 1.

14

Quantified Variables

Next we give the quantified variables. As explained above, for finding the
memoryless policies in each phase the same variables are used as for the
memoryless translation. These variables are the A, S, and P variables.

The variables F and C variables are new in this translation. Fn
(s,a,t) means

transition (s, a, t) is ‘marked’ as a frontier transition in phase n. Cn
(s,a,t)

indicates we now consider this frontier transition in phase n.

For a MEMDP M and a goal state G we define the QBF formula ΦM,G.
This formula has the following form

ΦM,G = ∃1 . . . ∀2 . . . ∃2 ∃n−1 . . . ∀n . . . ∃n . . . [Φ′
M,G],

so first all of the quantifiers, and then the propositional formula Φ′
M,G con-

taining the quantified variables. In Theorem 3 we prove that the decision
problem polynomially reduces to deciding if ΦM,G ∈ TQBF and how a wit-
ness for the formula relates to a winning policy in the MEMDP.

By (s, a, t) ∈ p we mean there is an i ∈ I with pi(s, a)(t) > 0. In other
words: the transition exists in an environment.

∃1

∀s∈S
∀a∈A︷︸︸︷
A1

sa

∀i∈I
∀s∈S︷︸︸︷
S1
is

∀i∈I
∀s∈S

∀k∈N s.t. 0≤k≤|S|︷︸︸︷
P 1
isk

∀(s,a,t)∈p︷ ︸︸ ︷
F 1
(s,a,t)︸ ︷︷ ︸

Phase 1

∀2

∀(s,a,t)∈p︷ ︸︸ ︷
C2
(s,a,t) ∃2

∀s∈S
∀a∈A︷︸︸︷
A2

sa

∀i∈I
∀s∈S︷︸︸︷
S2
is

∀i∈I
∀s∈S

∀k∈N s.t. 0≤k≤|S|︷︸︸︷
P 2
isk

∀(s,a,t)∈p︷ ︸︸ ︷
F 2
(s,a,t)︸ ︷︷ ︸

Phase 2

...

∀|I|−1

∀(s,a,t)∈p︷ ︸︸ ︷
C

|I|−1
(s,a,t) ∃|I|−1

∀s∈S
∀a∈A︷ ︸︸ ︷
A|I|−1

sa

∀i∈I
∀s∈S︷ ︸︸ ︷
S
|I|−1
is

∀i∈I
∀s∈S

∀k∈N s.t. 0≤k≤|S|︷ ︸︸ ︷
P

|I|−1
isk

∀(s,a,t)∈p︷ ︸︸ ︷
F

|I|−1
(s,a,t)︸ ︷︷ ︸

Phase |I| − 1

∀|I|

∀(s,a,t)∈p︷ ︸︸ ︷
C

|I|
(s,a,t) ∃|I|

∀s∈S
∀a∈A︷︸︸︷
A|I|

sa

∀i∈I
∀s∈S︷︸︸︷
S
|I|
is

∀i∈I
∀s∈S

∀k∈N s.t.;0≤k≤|S|︷︸︸︷
P

|I|
isk︸ ︷︷ ︸

Phase |I|

15

Logical Constraints

Next we look at the the formula Φ′
M,G which depends on these variables.

The formula Φ′
M,G is defined as the conjunction of all constraints defined

below, for all phases n ∈ I:

In each state at least one action should be taken. For all s ∈ S:

∨
a∈A

An
sa (4.1)

If s is reachable in environment i and action a is taken, the states reachable
with that action are now also reachable. If the transition is chosen as a
frontier transition, t does not have to be considered reachable in this phase.
For all i ∈ I, a ∈ A, and s, t ∈ S with pi(s, a)(t) > 0:

(Sn
is ∧An

sa) → (Sn
it ∨ Fn

(s,a,t)) (4.2)

If σ can reach state s in an environment, there should be a path from that
state conforming to σ to the target set for this memoryless policy in k = |S|
steps. For all i ∈ I, and s ∈ S:

Sn
is → Pn

isk (4.3)

From the goal state the path to the goal state has length zero. This con-
straint is required because the P variables for other states flow from here
with constraint 4.6. For all i ∈ I, and k ∈ N with 0 ≤ k ≤ |S|:

Pn
iGk (4.4)

Only the goal state has a path of length zero to the goal state, any other
state cannot reach the goal state with a path of length zero. For all i ∈ I,
and s ∈ S \ {G}:

¬Pn
is0 (4.5)

The next constraint makes sure the P variables are assigned correctly. It
does this by ensuring that the variable Pn

isk can only be true, indicating
there is a path of length at most k to the goal set from s in environment
i, if and only if from a state s we can take some action a that can take us
to a state t from which it is possible to reach the goal set it at most k − 1
steps, or, if it leads to a frontier transition. This way for a frontier transition
(s, a, t) the literals Pn

is1, P
n
is2, . . . , P

n
is|S| are true, indicating the goal can be

16

reached in 1, 2, . . . , |S| steps from s, which in this phase means taking the
frontier transition. For all i ∈ I, s ∈ S, and k ∈ N with 1 ≤ k ≤ |S|:

Pn
isk ↔

∨
a∈A

(
An

sa ∧
(∨

t∈S
pi(s,a)(t)>0

(Pn
it(k−1) ∨ Fn

(s,a,t))
))

(4.6)

In phase one the starting state is just the starting state of the MEMDP s0.
For all i ∈ I:

S1
is0 (4.7)

For subsequent phases, the starting states depend on the frontier transitions
picked in the last phase. If Cn

(s,a,t) is true and Fn−1
(s,a,t) is too, meaning that

(s, a, t) was chosen as a frontier state in the last phase, we consider all
environments in which that transitions exists and was taken. For all i ∈ I,
a ∈ A, and s, t ∈ S with pi(s, a)(t) > 0:

(Fn−1
(s,a,t) ∧ Cn

(s,a,t) ∧ Sn−1
is ∧An−1

sa) → Sn
it (4.8)

Now that we have defined ΦM,G, we can show that the translation indeed
polynomially reduces the decision problem.

Theorem 3. The decision problem for finding a policy in the MEMDP M
that almost-surely reaches the goal state G polynomially reduces to deciding
whether ΦM,G ∈ TQBF:

• For a MEMDP M and a goal state G, there exists a winning policy in
M if and only if ΦM,G ∈ TQBF

• ΦM,G can be computed in polynomial time.

The proof is given in Appendix A.

17

Chapter 5

Experimental Results

We implemented the translation to a QBF formula to test its application for
deciding the decision problem. The implementation converts a MEMDP to
the corresponding QBF formula and then uses the Z3 theorem solver from
Microsoft [3] to determine its validity, thereby establishing the truth value
of the decision problem.

Technical Specifications The experiments were carried out on a 2.3 GHz
Dual-Core i5 processor. Due to small differences between identical exper-
iments, all experiments were done three times and the times in the tables
are the average of those results. The provided time is the time it took Z3
to prove (in)validity after it was given the formula. The time it takes for
the MEMDP to be converted to the formula is not included because it runs
in polynomial time and we used a simple implementation that can easily be
improved. We used a 30 minute time limit for all experiments. The source
code of the implementation is available on GitHub1.

5.1 Models Tested

Grid

The first models we tested represent a set of games, called Grid, where the
agent needs to traverse a two-dimensional grid of n×n cells to reach a goal.
An illustration of the game can be seen in Figure 5.1. The agent starts in
the bottom left cell and needs to reach the top right by moving to the north,
east, south, or west. Somewhere on the grid there is a hole that the agent
needs to avoid (shown in Figure 5.1a by ×). If the agent moves into the cell
where the hole is located, it is stuck and cannot reach the goal anymore.

1https://github.com/Jorritboer/memdp-qbf

18

https://github.com/Jorritboer/memdp-qbf

×danger

danger

danger danger

danger danger

danger

danger

Start

Goal

(a) Example of an envi-
ronment in Grid4.

? ? ?
? ? ? ?
? ? ? ?

? ?Start

Goal

(b) Possible hole loca-
tions in Grid4.

? ? ? ?
Start

Goal

(c) Possible hole loca-
tions in NGrid4.

Figure 5.1: Illustration of the Grid models.

In the cells around the hole, the agent can ‘detect’ that the hole is close.
This is illustrated in Figure 5.1a by danger. Using this information it can
traverse around the hole. Each environment represents a possible location
for the hole. Figure 5.1b shows the possible locations for the 4 × 4 grid.
Note that in the cell to the right of the start, there cannot be a hole, as it
would prevent any winning policy due to the possibility of encountering the
hole on the first move. We denote the specific model by the size of the grid,
for example Grid5 is the model for a grid of 5× 5 cells.

For testing the not valid models we use a variant of Grid, which we refer
to as NGrid, where the agent cannot detect that the hole is close. Due to
this change the agent cannot know where the hole is and thus not guarantee
winning in all environments. For NGrid also restrict the possible locations
for the hole to one row, because otherwise the time taken to prove invalidity
already goes past the timeout for the first model. An example is shown in
Figure 5.1c.

Mastermind

The second set of MEMDP models we tested are simplified versions of the
game Mastermind. In Mastermind a secret code consisting of a number
of balls of different colors is given. The player’s objective is to guess this
code within a limited number of turns. After each guess, the player receives
feedback indicating the number of colored balls in the correct positions.
In the MEMDP representation of the game, each environment represents a
different possible secret code, and the actions represent guesses.

Different versions of the game are determined by three variables: the number
of possible colors, the number of guesses the player gets, and the number of
balls that the code consists of. We denote each version of the game by these
variables. For instance, M243 has two colors, four guesses, and three balls.

19

5.2 Results

Invalid Models

We first provide some results for models where the decision problem is false,
i.e. the game is not always winnable with the provided number of guesses.
The corresponding QBF formula will thus be invalid. Table 5.1 shows the
invalid models and the time it took for Z3 to prove they were false. The table
also includes information about the MEMDP and the size of the resulting
QBF formula, Z3 provides the option to write the formula to a text file, this
gives us a measure for the size of the formula. As expected from Theorem 3,
this is O(|S|3 · |A| · |I|2).

Model |I| |S| |A| |QBF | Time (s)
M221 2 3 2 10 KB 0.041
M222 4 7 4 184 KB 1.8
M233 8 13 8 27.6 MB Timeout
NGrid3 3 9 4 298 KB 2
NGrid4 4 16 4 2.3 MB Timeout

Table 5.1: Experimental Results For Invalid QBF Formulas

The data shows that the implementation is not a very effective way of prov-
ing that no winning policy exists. The time required to prove invalidity
is significantly larger compared to the results obtained by Van der Vegt
et al. [6], who developed a specific algorithm. The main factor for this is
the number of phases, because each phase comes with universally quantified
variables, which have a big impact on the complexity of the problem. As
per Corollary 1 we can only prove that no policy can be found if the formula
with |I| phases is invalid, so for proving invalidity all phases will have to be
used.

Valid Models

Proving a policy does exist can be easier because it is possible less phases
are required. In fact, for the tested models only one or two phases were
required. For each model we first tested whether one phase was sufficient,
and if it was not, we used two. Table 5.2 provides the results for valid
formulas, including the number of phases used. Note that when the number
of phases is one the formula is effectively the SAT formula.

20

Model |I| |S| |A| |QBF | # Phases Time (s)
M221 2 5 2 21 KB 1 0.019
M232 4 10 4 227 KB 1 0.038
M243 8 17 8 2.2 MB 1 0.29
M342 9 13 9 1.9 MB 2 0.47
M452 16 16 16 8.4 MB 2 4.7
M353 27 21 27 36.6 MB 2 620
M364 81 31 81 N/A2 2 Timeout
Grid3 6 17 4 1.1 MB 2 1.6
Grid4 13 32 4 8 MB 2 5.6
Grid5 22 50 4 33.1 MB 2 26
Grid6 33 72 4 103.1 MB 2 300
Grid7 47 98 4 N/A2 2 Timeout

Table 5.2: Experimental results for valid QBF formulas.

The data is plotted in Figure 5.2. As you can see, both lines seem to follow
a linear trajectory, although at a different gradient. Due to the logarithmic
y-axis, the linear trajectories indicate an exponential time requirement as a
function of the size of the QBF formula.

0 20 40 60 80 100

1

100

500

Size of QBF (MB)

T
im

e
(s

)

Mastermind
Grid

Figure 5.2: Graph of the data in Table 5.2.

We are unsure why the two lines for the different models seem to exhibit a
different gradient. It is possible that the number of actions, which increase
for Mastermind but not for Grid, has a big impact on the complexity of
the resulting formula. It is also possible that the Grid models require a less
complicated policy with fewer frontier transitions.

2Our machine was not able to write the QBF formula to a text file for these models.

21

The times required to prove validity, i.e., that a policy does exist for the
game, are more competitive, although still not as fast as those obtained by
Van der Vegt et al. [6].

It is worth mentioning that when only one phase is required, effectively
reducing the formula to a SAT formula, the winning memoryless strategy
can be extracted. Because there are no universal quantifiers, Z3 can output
a satisfying valuation, from which we can construct the strategy. This is
not possible for more than one phase because the policies in the following
phases depend on the universal quantifier.

22

Chapter 6

Discussion on Reducing the
Number of Phases

We showed in the previous chapter that the required number of phases is
often a lot lower than |I|. This observation raises the question whether the
upper limit can be reduced. Especially considering the number of phases ap-
pears to be the primary factor contributing to the slowdown of the theorem
solver. By reducing the number of phases, we can potentially significantly
improve the efficiency of the provided approach.

Although we did not obtain definitive results in achieving this goal, we
explored some promising approaches. In this chapter, we will delve into
these approaches, laying the groundwork for potential future research.

Features

Our approach relies on describing the set of environments in terms of a set
of features and define I as all possible combinations of these features. For
instance, consider again the Grid model of the previous chapter. A hole
is located on a two-dimensional grid, so we can define its position by two
features: the x and y position. If we can now gain information about these
features, we can gain a lot of information about what environment we are
in. For example, if we learn the hole is not on the row for x = n, we can
eliminate a possible number of environments equal to y.

We define the feature set F = {F0, F1, . . . , Fn}, where Fi ∈ {0, 1}. For
now, we restrict our consideration to binary features. This enables us to
formulate propositional formulas using these features. We now redefine the
environment set as all possible combinations of these features. This means
that for n features, we have 2n environments. The key to this approach lies
in the way we construct the transition function p. For each feature Fi ∈ F

23

we define a set of transitions TFi = {(s0, a0, t0), (s1, a1, t1), . . . , (sk, ak, tk)}
that are present in an environment if Fi = 1 and another set T¬Fi =
{(s0, a0, t0), (s1, a1, t1), . . . , (sk, ak, tk)} that are present in an environment
if Fi = 0. The transition function is now restriced as follows:

{(s, a, t) | (s, a, t) ∈ p} =
⋃

Fi∈F
(TFi ∪ T¬Fi)

Note that these sets of transitions need not be disjoint, they can, and often
will, contain the same transitions. Our interest lies in transitions that occur
in some environments but do not in others. These will be frontier transitions
in the policy with memory and make the policy gain information about which
environment it is in. In this setup, such a transition will necessarily exist in
half of the environments, thus allowing the elimination of half of the possible
environments.

S0M0

S1

S2

S3

S4

S5

S6 S0M1

S1

S2

S3

S4

S5

S6

S0M2

S1

S2

S3

S4

S5

S6 S0M3

S1

S2

S3

S4

S5

S6

(a) MEMDP written out.

F0 ¬F0

F1 0 1
¬F1 2 3

(b) Table showing which features describe
what environment.

S0M3

S1

S2

S3

S4

S5

S6

¬F0

F0

¬F0

F0

¬F1

F1

¬F1

F1

(c) MEMDP described using features.

Figure 6.1: MEMDP explicitly written out, and denoted using features.

We illustrate with an example. Figure 6.1 presents a MEMDP with four
environments, represented in two different ways. Firstly, in Figure 6.1a the

24

environments are explicitly written out, and secondly, in Figure 6.1c they
are described using the features F = {F0, F1}.

Consider the problem of traversing the MEMDP and in state S6 answering
in which environment we are in in order to reach the goal state. The QBF
translation of this MEMDP would require |I| = 4 phases to solve. However,
if we consider the MEMDP as described by the features, we only need |F | = 2
phases. Consider a policy taking the transition (S0, S1). This means F0 =
1, which implies that we can eliminate environments 1 and 3. Using this
approach of finding the values of the features to establish the environment we
can demonstrate that we only need a number of phases equal to the number
of features |F |, which will be logarithmic in the number of environments.

However, there is a drawback to this approach. While it decreases the
number of phases, the constraints on the transition function reduces the
expressiveness of MEMDPs. We found that this decrease in expressiveness
was too significant to remain useful, as it prevented modeling most examples.
For example, we were unable to model the Grid and Mastermind models
from the previous chapter using binary features.

Increasing Expressiveness

The goal would be to increase expressiveness of the MEMDPs while keeping
the number of phases equal to the number of features. One approach would
be to extend the idea explained above of binary features to features that
can take on more than two values.

Another possible approach is to not just have sets of transitions per truth
value of each feature, but to define propositional formulas depending on
these features to construct the sets of transitions. More concretely: a set
of features Tφ that exist in an environment if the formula φ(F0, F1, . . . , Fn)
containing F0, F1, . . . Fn evaluates to true.

In a MEMDP set up this way, a path through a set of frontier transitions
would provide a set of formulas Γ = {φ0, φ1, . . . , φn} that we know are true.
If we can somehow show, or modify the constraints to be able to show,
that for |F | transitions, this set of formulas Γ = {φ0, φ1, . . . , φn} provides a
unique valuation for the features, then we would achieve our objective.

25

Chapter 7

Conclusions

In this thesis, we consider MEMDPs and finding a policy that achieves
almost-sure reachability. We provide a translation from a MEMDP to a
propositional formula that is satisfiable if and only if there exists a mem-
oryless policy that achieves almost-sure reachability. We build upon this
SAT translation to make a translation to a QBF formula that is valid if and
only if a winning policy with memory exists. This translation is based upon
the idea of ‘phases’ of memoryless policies, between which the policy with
memory switches when taking selected transitions.

The translation to a QBF formula was implemented and tested using the Z3
theorem prover. This approach to deciding whether a policy exists did not
yield competitive results in comparison to existing strategies.

Finally, we provided a discussion on decreasing the number of phases re-
quired for the QBF formula. This could significantly increase the efficiency
of the approach.

Future work could focus on refining and concretizing the ideas suggested
for reducing the number of phases. Additional ways the approach could
be improved include improving the QBF formula by reducing the number
of variables and constraints, considering alternative theorem solvers, and
employing different solving tactics. It is also worth investigating whether the
limitations encountered during testing were specific to the models used, and
whether the approach may prove more effective for different types of models.

26

Bibliography

[1] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008.

[2] Krishnendu Chatterjee, Martin Chmelik, and Jessica Davies. A symbolic
SAT-based algorithm for almost-sure reachability with small strategies
in POMDPs. In AAAI, pages 3225–3232. AAAI Press, 2016.

[3] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient
SMT solver. In TACAS, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer, 2008.

[4] Jean-François Raskin and Ocan Sankur. Multiple-environment markov
decision processes. In FSTTCS, volume 29 of LIPIcs, pages 531–543.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

[5] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach (4th Edition). Pearson, 2020.

[6] Marck van der Vegt, Nils Jansen, and Sebastian Junges. Robust almost-
sure reachability in multi-environment MDPs. In TACAS (1), volume
13993 of Lecture Notes in Computer Science, pages 508–526. Springer,
2023.

27

Chapter 8

Appendix

Proof of Theorem 1.

⇒ Assume σ is a memoryless winning strategy. Then, for all s ∈ Rσ we
know PM(s → G |σ) = 1. So there must be a path from s to the goal state
G. The shortest path from s to the goal state must have length j ≤ k.
Because if it is not, so j > k = |S|, that means we have visited a state twice,
which contradicts our assumption that we have the shortest.

⇐ Now assume σ is a memoryless strategy such that for all s ∈ Rσ there
is a path πj(s,G) of length at most k, 0 ≤ j ≤ k. Start in the starting
state s0. Take k steps from s0. Because there is a finite path of length at
most k to G from s0, the probability that we will have reached the goal
state is bigger than 0. Take p0 as the chance this does not happen. Note
0 ≤ p0 < 1. If it does not happen we are in another state s1 ∈ Rσ. So again
we can take k steps and have a probability p1 that we do not reach the goal
state. Again 0 ≤ p1 < 1. Let pmax be the maximum chance of not reaching
the goal state G in MDP. The chance that we will never reach the goal state
is p0 · p1 · · · · · pn−1 · pn ≤ (pmax)

n = 0 for n → ∞. So PM(G |σ) = 1.

Proof of Theorem 2.

⇒ Assume there is a memoryless policy σ : S → Dist(A) that almost-
surely reaches the goal state G. We give a valuation v : Atoms → {0, 1}
such that v(φM,G) = 1.

We assign the following variables to true and all others to false.

28

For all s ∈ S, a ∈ A, i ∈ I and k ∈ N with 0 ≤ k ≤ |I|:

v(Asa) = 1 ↔ σ(s)(a) > 0

v(Sis) = 1 ↔ s ∈ Ri
σ

v(Pisk) = 1 ↔ there is a path πj(s,G) for some
0 ≤ j ≤ k compatible with σ

• Constraint 3.1 is satisfied because for all reachable states we can as-
sume the policy has at least one action it can take, and for unreachable
states we can randomly pick an A variable to assign true.

• Constraint 3.2 is satisfied because of the definition of Ri
σ.

• Constraint 3.3 is satisfied because s0 ∈ Ri
σ.

• Constraint 3.4 is satisfied because σ almost-surely reaches G and The-
orem 1.

• Constraint 3.5 holds because clearly for the goal state there is always
a path of at most k to itself, the empty path.

• Constraint 3.6 holds because a path of 0 to the goal state can only be
possible for the goal state itself.

• Constraint 3.7 is satisfied because if a path πk(s,G) exists, the pol-
icy has to have a path of length one to a state t from which a path
πk−1(t, G) exists. Observe in particular that because the goal state G
is absorbing it always has a path of length one to a state with a path
of k − 1 steps to the goal state, namely itself.

So v(φM,G) = 1.

⇐ Assume φM,G ∈ SAT. This means that φM,G is satisfiable, and there
exists a valuation v : Atoms → {0, 1} that assigns truth values to the boolean
variables in φ such that v(φM,G) = 1.

We define the policy σ : S → Dist(A) as follows: for each state s and action
a if v(Asa) = 1 then we set σ(s)(a) > 0. Because of Constraint 3.1 the
policy will have at least one action it can take in each state.

Because of Constraint 3.3 it has to be the case that v(Sis0) = 1 for all
i ∈ I. Now from Constraint 3.2 it follows that for a transition (s, a, t) in
environment i ∈ I, if s is reachable for the policy σ in environment i and the
policy σ can take action a in state s (σ(s)(a) > 0), t will now be reachable in
environment i. So for an environment i, the S variables will reflect whether
σ can reach a state: s ∈ Ri

σ → v(Sis) = 1.

From Constraint 3.4 it follows that if v(Sis) = 1 (state s is reachable for σ in
environment i) the corresponding P variable must also be true for k = |S|:

29

v(Pisk) = 1. Constraint 3.6 makes sure this can only be the case if the
policy can reach another state s1 in one step that has a path compatible
with σ to the goal state in k − 1 steps, i.e. v(Pis1(k−1)) = 1. Continuing
this allows us to construct a path π = sa0s1a1s2 . . . aks compatible with σ
with v(Pis|S|−kk) = 1 for 0 ≤ k ≤ |S|. Now note that v(Pisk0) = 1 can only
be the case for sk = G the goal state because Constraint 3.5 makes sure
v(PiG0) = 1 and Constraint 3.6 forces v(Pit0) = 1 for t 6= s0. Note that it is
possible that the last states in the path are all the goal state, because G is
absorbing.

So for the constructed policy σ, for all environments i ∈ I and states s ∈ Ri
σ

reachable for σ there is a path of at length most |S| to the goal state. From
Theorem 1 it now follows that σ almost-surely reaches the goal state G.

Finally, the amount of clauses φM,G is O(|I|·|A|·|S|3) due to Constraint 3.7,
so φM,G can be computed in polynomial time.

Proof of Lemma 1.

The minimum amount of information gained from one phase to the next is
ruling out one environment. Additionally, information gain in a MEMPD is
monotonic: once we know that we are not in a particular environment, we
never lose this knowledge [6].

So if a winning policy exists with more than |I| phases, that policy transi-
tioned between one memoryless strategy σ1 to another σ2 without gaining
information about the environment it is in. We show that we can combine
these policies into a single memoryless policy.

Say σ1 almost-surely reaches some set G1 which can include the goal state,
and frontier transitions. G1 at least contains the frontier transition (s, a, t).
If that transition is taken the policy switches to σ2. But, the set of envi-
ronments I ′ ⊆ I σ1 and σ2 ‘know’ they can be in remains the same. σ2
then starts at state t and almost-surely reaches a set G2 which can also
include the goal state and frontier transitions. We compute the set of states
Rσ2 = ∪i∈I′R

i
σ2

⊆ S that σ2 can reach starting at state t while being in one
of the environments in I ′. Now define a new memoryless policy σ′

1 which is
the same as σ2 in Rσ2 and the same as σ1 in S \Rσ2 . That is, for s′ ∈ Rσ2

σ′
1(s

′) = σ2(s
′) and for s′ ∈ S \Rσ2 we have σ′

1(s
′) = σ1(s

′).

This new memoryless policy σ′
1 will either follow σ1 and reach G1, or it

will reach some state in Rσ2 (which includes t) and then operate like σ2
did in its phase and almost-surely reach G2. So it will almost-surely reach
G = G1∪G2, i.e. the same result is reached with just one memoryless policy
as was previously with two.

30

Note that this is only possible because the set of environments the two
policies can be in are the same. Because of that, σ2 cannot operate on
different assumptions than σ1, so its strategy will also work in the previous
phase.

So we must gain information from every transition to the next phase. So a
policy exists with |I| phases or fewer.

Proof of Theorem 3.

⇒ Assume there exists a policy with memory σ : Path → Dist(A) that
almost-surely reaches the goal state G.

We turn this policy into a tree of memoryless policies, like in Figure 4.3. We
define the starting policy by σ1(s0) = σ(s0), the action σ takes at the first
state. Now for a path π = s0a0s1 we switch from policy σ1 to σ2 if transition
(s0, a0, s1) is taken. And σ2 is defined by σ2(s1) = σ(π). We continue this
construction to form the tree of memoryless strategies.

Because of Lemma 1 we can reduce this tree of memoryless policies to a tree
with a maximum depth |I|. Now for every memoryless policy we can assign
a valuation for the corresponding phase in the QBF formula, analogously to
the ⇒ proof of Theorem 2. Combining these valuations into a witness for
the QBF formula is a valid witness.

⇐ Assume that ΦM,G ∈ TQBF, so ΦM,G ∈ is valid. This means there
exists a witness for the QBF formula.

Because the first phase consists just of existentially quantified variables, we
can get a valuation v : Atoms → {0, 1} for these variables such that the
clauses in Φ′

M,G that contain just these variables are true.

Analogously to the ⇐ part of the proof of Theorem 2 we can show this
assignment allows us to construct a memoryless policy σ1 that almost-surely
reaches some goal. The only difference being what this goal is. Instead of the
goal being just the goal state, here we allow it to be a set, possibly containing
transitions: G1 = {G,T0, T1, . . . }. Where Ti = (si, ai, ti) ∈ p a transition. If
v(F 1

(si,ai,ti)
) = 1 a transition is picked as a frontier transition, and ‘added’ to

the goal set. This has an effect on Constraints 4.2 and 4.6. In Constraint 4.6
taking that transition is now considered winning, so the state si now has a
path to the goal in one step. So v(P 1

js1) = v(P 1
js2) = · · · = v(P 1

js|S|) = 1 for
j ∈ I. And Constraint 4.2 allows v(S1

js) to be false because we do not need to
consider s to be visitable in this phase if it is reached through the transition
(s, a, t). So σ1 almost-surely reaches the goal set G1 = {G,T0, T1, . . . }.

31

Now consider the next phase. For all frontier transitions Ti there will be a
phase two where a memoryless policy σ2

i is found. For frontier transition
Ti = (si, ai, ti), per Constraint 4.8, ti will be the starting state, but only
in those environments the previous policy σ1 could actually reach this state
through Ti. These memoryless policies will again reach some goal set G2. If
this set contains transitions, a next phase will be considered. Until the final
phase, where it is forced that G|I| = {G} is just the goal state.

Now assemble the policy with memory σ as follows: start with σ1 and upon
taking frontier transition Ti switch to policy σ2

i , and again for transition Tj

and σ3
j , etc. This policy with memory will almost-surely reach the goal state

G because every memoryless policy σn
i will almost-surely reach a frontier

transition and switch to a next memoryless policy σn+1
j , or it will almost-

surely reach the goal state G.

There are O(|S|3 · |A| · |I|) clauses in Constraint 4.6 and all constraints are
in I phases so there are O(|S|3 · |A| · |I|2) clauses. So computing ΦM,G can
be done in O(|S|3 · |A| · |I|2) time.

32

	Introduction
	Preliminaries
	SAT Translation
	Translation

	QBF Translation
	Example
	General Form Policy with Memory
	Translation

	Experimental Results
	Models Tested
	Results

	Discussion on Reducing the Number of Phases
	Conclusions
	Appendix

