BACHELOR’S THESIS COMPUTING SCIENCE

RADBOUD UNIVERSITY NIJMEGEN

An Accompaniment Chatbot for People Onboarding to Open-Source
Software Projects

Author: First supervisor/assessor:
Maikel Jans dr. Mairieli Santos Wessel

Second assessor:
dr. Bin Lin

August 21, 2023

Abstract

In this paper, we target the problem of newcomers encountering barriers,
created by rules that differ from project to project, that might discourage or
hinder their active participation and contributions to open-source software
(OSS) projects. This research is intended to enhance the onboarding pro-
cess for newcomers in open-source software projects by introducing a chatbot
designed to assist with understanding the guidelines of submitting their con-
tributions. The user study is centered around a specific repository, chosen as
a case study, and utilizes the Technology Acceptance Model to evaluate the
chatbot’s perceived usefulness and ease of use. Through quantitative anal-
ysis, we assessed the participants’ perceptions of the chatbot. Qualitative
insights were gathered through open-ended feedback. The findings suggest
that while the chatbot was generally well-received, opportunities exist for
improving its responsiveness and adaptability. The results underscore the
potential for chatbots to serve as valuable tools for facilitating newcomers’
engagement in OSS projects, albeit with further improvements.

Contents

2 Background|

[3.1 Bots in Software Engineeringl

[3.2 Omnboarding to OSS projects|.

[4 Methodology|

4.2 Chatbot Implementation Details|

[4.2.1 Website Hosting Chatbot|

4.3 Questionnaire]

[6_Results]

10

10

11

13

13

15

17

18

21

5.1 Quantitative Analysis|

5.2 Qualitative Analysis of the Open-Questions|

Chatbot Implementation Limitations|

16.1.2 Questionnaire Limitations|

28

30

30

32

33

37

Chapter 1

Introduction

When developing software in a distributed and collaborative environment,
developers will almost certainly use version control tools to collaborate.
With GitHulﬂ being one of the most popular web-based hosting service
for software development and version control [3]. The ability to create pull
requests (PRs) is an important feature of GitHub. They are used for sub-
mitting contributions to the code base as well as for quality assurance by
peer reviewing the PR. To streamline this process for the people reviewing
these PRs, repositories make contribution guidelines. A pull request that
for example, changes dozens of files and hundreds of lines of code without
any description or context is extremely difficult to review, if it is reviewed at
all and not immediately discarded. The aim of the contribution guidelines is
to prevent this type of pull requests, although their specifics can vary across
projects.

This streamlining process can be a bit of a double-edged sword, however.
Since it is not always clear to newcomers how they should handle mak-
ing these pull requests in accordance with repository-specific contribution
guidelines, which can create a technical barrier that can impede their join-
ing process [16]. And because anyone from any location worldwide can help
contribute to OSS projects, it is often infeasible to personally assist people
in onboarding a project.

In this study, we intend to answer the following research question:
RQ. How useful is the use of a chatbot to onboard newcomers to open source
projects with respect to making pull request?

1www.github .com

www.github.com

We developed a chatbot, built using Rasa Open SourceE| and Botfrontﬂ for
the JabRef repositoryﬁ We then test the bot by having fourteen newcomers
evaluate its perceived usefulness using the Technology Acceptance Model
(TAM) [8]. Following that, we assess the results of the experiment further
to gauge its effectiveness. It becomes evident that the chatbot’s perceived
utility and ease of use hold significant promise, affirming its potential as a
valuable tool for aiding newcomers in grasping the guidelines for making a
pull request within open source software (OSS) projects.

In summary, this study delves into the challenge of newcomers comprehend-
ing the guidelines for making a pull request in OSS projects. By employing
a chatbot as a potential solution, we have examined its utility and user-
friendliness among newcomers. In the upcoming chapters, we will delve into
the background and related work of onboarding processes and software en-
gineering bots in Chapter 2 and Chapter 3, respectively. After which we
will elaborate on our methodology for development of the chatbot and its
evaluation in chapter 4. We will then present the quantitative as well as
qualitative analysis of our results in chapter 5. We discuss the implica-
tions of our findings in chapter 6. Following that we will discuss some of
the limitations of our study in chapter 7, and finally in chapter 8, draw
comprehensive conclusions and outline some potential improvements.

2WWW .rasa.com
3www.botfront.io
4www.github.com/JabRef/jabref

www.rasa.com
www.botfront.io
www.github.com/JabRef/jabref

Chapter 2

Background

In this chapter, we lay the groundwork by first discussing the process of
onboarding newcomers to open-source projects. We then delve into the
realm of chatbots, exploring their evolving role and applications. Lastly, we
delve into the essential tools necessary for chatbot development.

2.1 Onboarding to Open Source Projects

GitHulﬂ is a powerful social coding platform that allows developers to col-
laborate on software projects. However, people onboarding OSS projects
may encounter hurdles that can be difficult to overcome on their own. OSS
onboarding refers to the process of introducing and integrating new con-
tributors into the development community and guiding them through the
initial steps of understanding the project’s goals, technical requirements, and
guidelines. New contributors may be unfamiliar with the project’s codebase
or development processes, making it difficult for them to make meaningful
contributions. Furthermore, project maintainers may have limited to no
time and resources to devote to onboarding new contributors, complicating
the process even further since people who are onboarding may have difficulty
finding answers to their questions [16].

To address these issues, many project maintainers have created onboard-
ing processes and documentation to help new contributors get up to speed
quickly. They may include tutorials, documentation, and guidelines for con-
tributing code, an example of which can be seen in Figure It’s worth
noting that project guidelines, which can usually be found in files like CON-

lwww.github.com

TRIBUTING.md or as a subsection in the README.md file within open
source repositories, serve as essential references for understanding and ad-
hering to proper contribution practices. But even with these resources, new
contributors may struggle to understand the project’s codebase and develop-
ment processes and require ad hoc guidance. Since the documentation might
not be exhaustive enough. One area that can be particularly challenging for
new contributors is submitting pull requests [16]. Pull requests are a critical
component of the collaborative software development process on GitHub,
as they allow developers to propose changes to a project’s repository and
collaborate with other contributors to review and refine those changes. How-
ever, pull requests can also be complex and require a significant amount of
time and effort to create and review.

Contributing

We encourage everyone to contribute to Python and that's why we have put up this developer’s guide.
If you still have questions after reviewing the material in this guide, then the Core Python Mentorship
group is available to help guide new contributors through the process.

A number of individuals from the Python community have contributed to a series of excellent guides at
Open Source Guides.

Core developers and contributors alike will find the following guides useful:

» How to Contribute to Open Source

 Building Welcoming Communities

Guide for contributing to Python:

Contributors Documentarians Triagers Core Developers
Helping with
Setup and Building ping . Issue Tracker Responsibilities
Documentation
Where to Get Help Getting Started Triaging an Issue Developer Log

Lifecycle of a Pull Helping Triage

Style Guide Accepting Pull Requests
Request v Issues pHng q
Running and Writing .
Tect reStructuredText Primer Experts Index Development Cycle

ests
Fixing “easy” Issues (and Motivations and
N v (Translating GitHub Labels L
Beyond) Affiliations
Following Python's GitHub Issues for Core Developers Office
Development BPO Users Hours
Git Bootcamp and Cheat .
Triage Team Experts Index

Sheet

Development Cycle

We recommend that the documents in this guide be read as needed. You can stop where you feel
comfortable and begin contributing immediately without reading and understanding these documents
all at once. If you do choose to skip around within the documentation, be aware that it is written
assuming preceding documentation has been read so you may find it necessary to backtrack to fill in
missing concepts and terminology.

Figure 2.1: Example of contribution page from the cpythorﬂGitHub Page.

Project maintainers may establish contribution guidelines for pull requests
to address these issues. These guidelines may include coding standards,
testing requirements, documentation, and review processes. For example, a
project may require that all code submitted via pull requests adhere to a spe-
cific set of coding standards to ensure consistency and maintainability. The
contribution guidelines may also state that all proposed changes should be
thoroughly tested to ensure that they do not introduce new bugs or errors.
By establishing contribution guidelines for pull requests, project maintainers
ensure that new contributors can submit high-quality, well-documented code
that meets the project’s standards and requirements. This helps streamline
the review process and reduce the burden on project maintainers, while also
improving the overall quality and reliability of the software being developed.
All these guidelines however may be difficult to comprehend for people on-
boarding a public repository.

2.2 Chatbots

In recent years, chatbots have emerged as a promising technology with the
potential to revolutionize various aspects by assisting people in a wide range
of tasks and interactions [4, [7, 6]. A chatbot is a program designed to sim-
ulate human conversation and engage in real-time interactions with users
through text-based or voice-based platforms. These intelligent bots are ca-
pable of understanding natural language and providing relevant responses,
thus enabling automated communication.

The idea of chatbots dates back to 1950 when Alan Turing proposed “The
Imitation Game” where he discussed the potential of computers being able
to think and partake in conversations [19]. With ELIZA (1966) being one
of first notable programs which made having a conversation with natural
language possible [20]. However only recently, thanks to advancements in Al,
machine learning, and natural language processing, chatbots started gaining
traction. Integrating Large-scale Language Models (LLMs) like ChatGPTﬂ
into chatbots has become a rising trend in software engineering. ChatGPT,
a prominent LLM, is gaining attention as a versatile code discussion bot,
offering suggestions, explanations, and even generating code [18].

Now, these chatbots are not just chatterboxes. They are like mentors, much
like the ones in education, where they guide learners step-by-step, recom-
mend things, and give insights [2I]. In the software development world,
these chatbots could take the same role as a mentor to newcomers dealing

2www.github.com/python/cpython
3www.chat.openai.com

with hurdles in open-source projects. Lessening the need for help from ex-
perienced developers, which can be hard to find in OSS development. It’s
important to note, however, that most bots in software development are
currently limited to executing pre-defined scripts, lacking the dynamic in-
teractions seen in education [10].

2.3 Chatbot Development

2.3.1 Rasa

Rasa Open Sourceﬁ is an open-source conversational Al framework that
enables the creation of chatbots. It provides a set of building blocks, such
as Natural Language Understanding (NLU), stories, intentions, and rules.
The NLU enables the chatbot to interpret prompts given by the user. You
can then create intentions by defining the goals or objectives that the user
wants to achieve through their message. For example, if a user asks, “How do
I make a good commit message”, the intention could be to get information
about the requirements for a good commit message. To train the bot to
map users’ prompts to the right intention, it is trained on training data
with example sentences of the different intentions.

® change _required Can you provide some guidance on how to address feedback on @ pull request?

% change _required Can you provide some guidance on how to effectively address feedback on a pull request?

% change _required My pull request requires changes what should | do?

% change _required What are some best practices for handling requested changes to a pull request?

% change _required What should | consider when making changes to a pull request to ensure that it is accepted?
% change _required What should | do after receiving feedback on my pull request?

% change _required What should I do if my pull request requires changes?

% change _required what sheuld | do if the pull request requires changes?

% changelog Can you advise me on where to document my changes?

Figure 2.2: NLU example, multiple training sentences that have the same
intention.

4WWW.I‘&SE),.COII]

Stories are used to define conversation flows and describe how the chatbot
should respond to different intentions. It is then possible to make different
branches of stories to handle multiple conversational flows. Rules allow for
specific behaviors for the chatbot, such as always responding with a greeting
when prompted with a “greeting” intention, such as “Hello” [2].

commit_message o »

how do | write a good commit message for my commit?
* commit_message

Did you make a good commit message?

(Yes) No)(Notsure)

not sure ga not sure walk yes gqa yes walk +

EE! Walk through: true|

no ®deny

Make sure you write a good commit message, if you want
more information on how to write a commit message click
here:

(" URL: How to write a commit)
message.

Here is a guide on how to change your old commit
messages:

(" URL: how to edit a commit
message. y

Let me know when you are happy with you commit
(message).

(Ready)

¥ Branch Story - Link to: -

Figure 2.3: Story example

2.3.2 Botfront

Botfromﬂ is an open-source platform that complements Rasa by offering a
user-friendly interface for chatbot development and management. It pro-
vides a visual chatbot builder, making it easier to design conversational
flows, define intents and manage stories [1]. Examples of the Botfront inter-
face are presented in the figures [2.2] and

Swww.botfront.io

Chapter 3

Related Work

In this chapter, we delve into the existing research and developments that
set the stage for our study. We begin by exploring the role of bots in
software engineering, where they have become integral in various aspects,
from development support to efficient team and task management. After
which, we look into the the research done on the challenges of onboarding
newcomers to open-source software projects.

3.1 Bots in Software Engineering

Bots have become commonplace in software engineering, offering invaluable
assistance in various aspects including development and deployment sup-
port, as well as facilitating efficient team and task management. Notably,
researchers like Lin et al. have explored how developers harness bots within
platforms like Slack, showing that developers currently use bots for develop-
ment and deployment support [12]. And Erlenhov et al. presented a mixed-
method empirical study of DevBot usage in industrial practice, identifying
distinct personas among software engineering bots users and highlighting the
need for consensus and development of more advanced and transformative
“smart” bots, bots that are unusually good or adaptive at executing task,
in software engineering [10]. These papers help us better our understanding
of the roles bots play within software engineering.

The goals of these bots is often to improve the productivity of developers.
Storey et al. aimed to inspire researchers to study both the positive as well
as the negative impact of bots on software development. So, they proposed
a cognitive support framework for how bots can support software develop-

10

ment which aims to help with making bots more efficient and effective [17].
Understanding how bots influence software development is crucial for refin-
ing newcomer onboarding, aligning with our study’s focus on the usefulness
and ease of use of such tools.

Traditionally these bots consisted mostly of plugins, scripts and architec-
tures but conversational chatbots have started gaining popularity. Matthies
et al. proposed a slack bot to support analyses and measurements of teams’
project data [14]. Another role that chatbots can take is that of a tutor.
Hobert’s research delves into the potential role of chatbots in supporting
novice programmers, particularly in instances where human teaching assis-
tants or other forms of support are not available. His design science research
project aims to create and evaluate a chatbot-based learning system that
aids novices in learning software code. The study indicates that a chatbot
is suited to take the role of a teaching assistant or lecturer [I1]. Daud et
al. and Chinedu et al. have showed that chatbots can provide significant
support to novice programmers when learning Java and Python respectively
[T, 6]. This aligns with our study’s exploration of chatbots’ capabilities in
assisting newcomers in understanding the guideline for making pull requests
within open source software projects.

In recent times, developers have begun to leverage Large Language Models
(LLMs) for assistance in their tasks. Ross et al. have introduced an intrigu-
ing concept, suggesting that engaging in conversations with a code-fluent
LLM, as opposed to simply invoking it, could potentially enable additional
knowledge and capabilities beyond code generation [I5]. This notion sheds
light on potential future directions where chatbots could evolve to provide
more comprehensive and interactive support for developers.

3.2 Onboarding to OSS projects

Efficiently onboarding newcomers is crucial for online communities that rely
on the input of external participants. For this reason, Steinmacher et al.
organised the barriers newcomers encounter when making their initial con-
tributions to OSS projects [16]. To overcome some of these barriers Canfora
et al. have suggested a system called Yoda (Young and newcOmer Devel-
oper Assistant) designed to identify and suggest mentors in software projects
through the analysis of data extracted from mailing lists and versioning sys-
tems [5]. That way newcomers can receive help from mentors to overcome
barriers they encounter. However, it is not always feasible to have a men-
tor help a newcomer. That is why Malheiros et al. introduced Mentor, a
recommender system that assists newcomers in software projects by ana-

11

lyzing change requests and version control to provide relevant source code
recommendations for solving these requests [I3]. These studies highlight the
critical importance of efficient onboarding processes and provide context for
our exploration of using a chatbot to aid newcomers in understanding the
guidelines for making pull requests.

Dominic et al. proposed a conversational bot that could help newcomers
find new projects and assist them through the process of onboarding to the
OSS community by providing helpful resources and recommending human
mentors if needed [9]. Alves et al. implemented a chatbot to assist people
in finding an appropriate task and compared the perceived usefulness of
the chatbot to that of the GitHub issue tracker using TAM and found that
mainly newcomers and inexperienced users perceive the chatbot as easier to
use [4].

Building upon the work of Dominic et al. and that of Avles et al., whose
chatbot was well-received by inexperienced users, our study tackles the chal-
lenge of newcomers encountering problems when making change request, a
problem highlighted by Steinmacher et al. [I6]. Through the implementa-~
tion of a chatbot, we aim to offer real-time, tailored guidance, simplifying
the onboarding process and enhancing newcomers’ ability to navigate the
specific contribution guidelines of open-source projects. By providing auto-
mated assistance, we also lessen the reliance on human mentors, making the
onboarding experience more accessible.

12

Chapter 4

Methodology

In this chapter, we will begin by outlining the guidelines set for the case
study repository which guide the development of our chatbot to provide in-
formation in alignment with these guidelines. Following this, we will delve
into the implementation details, offering an in-depth understanding of how
the bot was developed. Finally, we will discuss the structure of the ques-
tionnaire we used to evaluate the chatbot usefulness.

4.1 Chatbot Context

For this paper, we have chosen the JabRef repositoryE] as our case study
repository. JabRef is an open-source citation and reference management
tool. It’s important to emphasize that our focus on JabRef is for the pur-
pose of a case study, and the insights gained from this study can, to some
extent, be applied to other projects as well. We chose JabRef due to its
existing and clear documentation for contributing, which can be found on
their documentation websitd”] which they link to in the contribution section
of their README.md as seen in Figure However, it’s worth noting that
all the guidelines are consolidated on a single extensive page, which could
potentially pose challenges for newcomers who might unintentionally over-
look certain sections. In the documentation for contributing, we identified
the following basic guidelines:

!github.com/JabRef/jabref
2devdocs.jabref.org/contributing

13

1. Get the JabRef code on your local machine.

(a) Fork the JabRef into your GitHub account.

(b) Clone your forked repository on your local machine.
2. Create a branch for each improvement you implement.
3. Do your work on the new branch, not the main branch.
4. Create a pull request.

5. In case your pull request is not yet complete or not yet ready for
review, consider creating a draft pull request instead.

And we have identified the following formal requirements for a pull request,
aimed at both attributing credit to the contributor and maintaining clarity
in the contribution process:

e Add your change to “CHANGELOG.md”

e Format of keyboard shortcuts

e Author credits: Do not add yourself at JavaDoc’s @authors
e Write a good commit message

e Test your code

e When adding a new “Localization.lang” entry, add new
Localization.lang(“KEY”) to a Java file

e When adding a library, describe the library at external-libraries.md.

e When making an architectural decision, document your decision.

During the creation of our chatbot, we decided to exclude step 1b from the
basic contribution guidelines in our implementation of the chatbot. This
decision was based on several factors. Firstly, handling the variation that
comes with different operating systems would have introduced unnecessary
complexity to the chatbot. Additionally, the target audience of the chatbot
mainly consists of programmers who are presumed to have some experience
with Git(Hub). Finally step 1b does not impact the results of the pull
request. Because of these reasons we decided its exclusion was acceptable.

14

Contributing

code helpers HSH) gitter [join chat m abRef Deployment [passing Tests | failing
codecov 41%

Want to be part of a free and open-source project that tens of thousands of scientists use every
day? Check out the ways you can contribute, below:

« Not a programmer? Help translating JabRef at Crowdin or learn how to help at
contribute.jabref.org

* Quick overview on the architecture needed? Look at our high-level documentation

¢ For details on how to contribute, have a look at our guidelines for contributing.

= You are welcome to contribute new features. To get your code included into JabRef, just fork
the JabRef repository, make your changes, and create a pull request.

« To work on existing JabRef issues, check out our issue tracker. New to open source
contributing? Look for issues with the "good first issue” label to get started.

We view pull requests as a collaborative process. Submit a pull request early to get feedback from
the team on work in progress. We will discuss improvements with you and agree to merge them
once the developers approve. Please also remember to discuss bigger changes early with the core
developers to avoid a waste of time and work. Some fundamental design decisions can be found
within our list of Architectural Decision Records.

If you want a step-by-step walk-through on how to set-up your workspace, please check this
guideline.

To compile JabRef from source, you need a Java Development Kit 20 and JAavAa_HOME pointing to
this JDK. To run it, just execute gradlew run . When you want to develop, it is necessary to generate
additional sources using gradlew generateSource and then generate the Eclipse gradlew eclipse .
For IntelliJ IDEA, just import the project via a Gradle Import by pointing at the build.gradle .

gradlew test executes all tests. We use GitHub Actions for executing the tests after each commit.
For developing, it is sufficient to locally only run the associated test for the classes you changed.
Github will report any other failure.

Figure 4.1: Contribution section of the JabRef GitHub page.

4.2 Chatbot Implementation Details

The chatbot utilized in this research was developed using Rasa Open SourceEIand
Botfrontfl The source code for the chatbot can be accessed in our GitHub
Repository: Chatbot—for—making—pull—request—JabReiﬂ

3www.rasa.com
“www.botfront.io
Pwww.github.com/2maikell/Chatbot-for-making-pull-request-JabRef

15

https://github.com/2maikel1/Chatbot-for-making-pull-request-JabRef
www.rasa.com
www.botfront.io
www.github.com/2maikel1/Chatbot-for-making-pull-request-JabRef

The chatbot has the capability to address questions concerning each guide-
line and formal requirement for creating a pull request in JabRef. Addi-
tionally, it can provide guidance on some broader GitHub-related topics,
such as the naming conventions for forks or branches. This functionality
was achieved by assigning dedicated responses to individual the guidelines
and formal requirements, which are activated based on the intentions of the
users’ questions. Further details on these requirements and guidelines can
be found in section 4.1]- Chatbot Context.

Two distinct modes were implemented: the “walkthrough” mode and the

“open questions” mode. At the start of the conversation the user is asked if
they want to be walked through the process or if they have specific questions
and depending on their response they will be put into the appropriate mode.

The walkthrough mode was designed to assist users with little to no experi-
ence in navigating the contribution guidelines of the JabRef repositoryﬂ It
follows a structured conversational flow, a snippet of which can be seen in
Figure The full conversational flow can found be in the GitHub repos-
itory alongside the source codeﬂ By following this conversational flow, it
provides users with a guided step-by-step approach to ensure they cover all
the necessary aspects of the contribution guidelines. Once the user confirms
they completed a step, the chatbot automatically progresses to the next
question /requirement, ensuring comprehensive coverage of all the require-
ments. To further guide and speed up the conversations, buttons with quick
replies were implemented into the chatbot.

On the other hand, the open questions mode was created to provide quick
access to specific information. Users can directly ask for the information
they require without having to go through all the preceding steps. This
mode offers a more flexible conversational flow, allowing users to ask direct
questions and receive prompt responses. In the walkthrough mode, users
also have the option to ask specific questions; however, the chatbot will
subsequently proceed to the next step in the conversational flow.

By incorporating both the walkthrough and open questions modes, we aim
to cater to individuals with varying levels of familiarity with the JabRef
repository and its contribution guidelines.

Shttps://devdocs. jabref .org/contributing
Twww.github.com/2maikell/Chatbot-for-making-pull-request-JabRef

16

https://devdocs.jabref.org/contributing
www.github.com/2maikel1/Chatbot-for-making-pull-request-JabRef

« Ready

« Ready

[Make sure you write a good commit message, if you
want more information on how to write a commit
message click here:

https://github.com/joelparkerhenderson/git-commit-
message

Alright let me know when you have done so!

Here is a nice guide on how to commit your code to
GitHub
https:/igithub.com/git-guidesigit-commit

Also make sure you add a good commit message,
for more information go here

Make sure you write a good commit message, if you|
want more information on how to write a commit
message click here

https://github.comijoslparkerhenderson/git-commit-
message

« Nolwill dothat « How do | do that?

Have you pushed your commits containing your
contribution to your fork and accompanying branch?

hitps:/fgithub.com/joelparkerhenderson/git-commit- Here is a guide on how to change your old commit | ° Ready
message messages:
After you have committed your changes make sure https-i/docs.github.com/en/pull-requests/committing-
to push it to your accompanying branch! changes-to-your-project/creating-and-editing-
hitps:/idocs.github.com/en/get-started/using- commits/changing-a-commit-message
git/pushing-commits-to-a-remote-repositony#about- i X
git-push Let me know when you are happy with you commit
(message)
Let me know you are ready!
« No
« Not sure
Y . Yes
es ;
: Did you make a good commit message? Okay great now "\'25323?6”)‘ make the pull

Figure 4.2: Illustration of conversational flow: How to push commits to your
personal fork and branch.

4.2.1 Website Hosting Chatbot

In order to provide users with access to the chatbot, we established a simple
website. Visitors were instructed to open the chatbot interface positioned at
the bottom right corner of the webpage. The site also displayed a warning
advising users against sharing any sensitive information due to the absence
of encryption in the communication process. Additionally, a button was
implemented to enable users to reset or clear the chatbot conversation, this

way you could have a fresh start if needed.

Click the chat icon in the bottom right to start chatting with the bot!

The chat conversation is not encrypted, do not send any sensitive information!

pull request
Happy to help

Hello, | am Chat Bot you can ask me
questions on how to contribute (e.g.,
submit a pull request) to JabRef. How
can | help you?

Do you prefer to be walked through the
process of contributing?

Walkthrough
I want to ask specific
questions

Type your message.

Figure 4.3: Screenshot of the webpage with the chatbot.

17

4.3 Questionnaire

To evaluate the usefulness our chatbot we used a structured questionnaire
trough a Google Forms survey, which consists of three distinct sections. For
the first part we were interested to see if the perceived usefulness of the
chatbot will be influenced by the level of experience. For this reason, we
asked the following questions related to the participants’ experience level:

e How much experience do you have with GitHub?

e How much experience do you have with contributing to open-source
software projects?

e How much experience do you have with contributing to closed-source

software projects?

Participants were provided with following multiple choice options to answer
these questions:

e No Experience

e <1 year

1-2 years

3-5 years

e >) years

Afterward, the participants were given the assignment of assuming the role
of a contributor, considering that they were not actively contributing code.
In this simulated scenario, participants were asked to complete the following
task:

As part of this test, we will pretend that you have already imple-
mented the changes requested. Therefore, your task is to identify
what additional steps are necessary to create a pull request that
meets the formal requirements of the repository.

For this exercise, we would like you to imagine that you have
made the following changes to the repository:

18

An optional text box to write down the required steps as well as a link to
the chatbot were provided below this. The participants were told to move

e You have implemented a new feature that allows users to
select all entries using the keyboard shortcut “ctrl + a”.

e You have fixed a bug related to the edit button by intro-
ducing a new library called “button”.

Your objective is to determine the next steps required to create
pull request(s) such that it adheres to the formal requirements
of pull request for the JabRef repository. Use the chatbot found
here, to find out what these steps are. Note, the chatbot does
not scale well to smaller/mobile screens, so if possible, use a
computer.

Please do keep in mind that this chatbot is just a prototype
so you might encounter some bugs. For this same reason we
recommend using the provided buttons/quick replies, since those
have been tested more thoroughly. If, however you want to ask
something that is not one of the provided options feel free to ask
the bot.

to the next part of the form once they thought they knew all the steps.

The second section of the form aimed to assess the chatbot’s effectiveness by
asking whether participants found the necessary requirements for the given
task. The participants were presented with a series of yes or no questions

found in Table .11

ID | Requirement Description

R1 You must create separate branches on your own fork for both changes you
have implemented (i.e., the new feature and the bug fixing)

R2 | You have to add your changes to the CHANGELOG.md

R3 You must format the keyboard shortcut like follows in the changelog:
“<kbd>Ctrl< /kbd> + <kbd>A< /kbd>"

R4 | You should not add yourself to JavaDoc’s @authors list

R5 | You should write a descriptive commit message

R6 | You must add newly added libraries to external-libraries.md

Table 4.1: Relevant formal requirements for the task.

19

The third and last part of the questionnaire was used to evaluate the par-
ticipants’ experience with the chatbot based on the Technology Acceptance
Model (TAM) [§]. TAM is a theoretical framework used to assess users’ ac-
ceptance and adoption of new technologies or systems. It consists of two pri-
mary factors: perceived usefulness (PU) and perceived ease of use (PEOU).
In the context of the chatbot evaluation described, TAM was employed to
measure participants’ experience and acceptance of the chatbot.

Perceived usefulness refers to the participants’ perception of how the chat-
bot enhances their ability to accomplish tasks effectively and efficiently. Per-
ceived ease of use measures users’ perception of the ease and convenience
of interacting with the chatbot. The questionnaire included three items to
assess each of these factors which can be found in Table .2l

Factor ID. Item Description

Perceived usefulness | PUI. Using the chatbot would enable me to accomplish tasks more quickly.

PU2. T would find the chatbot useful when onboarding to an OSS project.

PU3. The chatbot makes it easier to learn the formal requirements of an OSS project.

Perceived ease of use | PEOUL. I found the chatbot easy to use.
PEOU2. The chatbot interaction was clear and understandable.
PEOUS. Interacting with the chatbot was a flexible and adaptable experience for me.

Table 4.2: Questions adapted from the Technology Acceptance Model [§].

By analyzing participants’ responses to the TAM questions, we can gain
insights into the perceived usefulness and ease of use of the chatbot. These
findings can help evaluate the chatbot’s acceptance and inform potential
improvements or modifications to enhance user experience. Additionally, an
open-ended question was included to allow participants to leave additional
feedback, providing qualitative insights into their overall experience with
the chatbot.

Participants were also asked to indicate which mode(s) they used to inter-
act with the chatbot, as explained in section |4.2| This question aimed to
understand the participants’ preferences and choices regarding the inter-
action modes, providing insights into the impact of these modes on their
experience.

20

Chapter 5

Results

In this chapter, we present the findings and results obtained from our study.
We begin by assessing the usefulness of the chatbot. To achieve this, we per-
form quantitative analysis on the responses to the TAM questions provided
by the participants. Additionally, we briefly examine the experience lev-
els of the participants to gain insights into their backgrounds and potential
impacts on the chatbot’s effectiveness.

Following that, we perform a qualitative analysis on the open feedback given
by the participants. This allows us to get a better understanding of their
perceptions and experiences with the chatbot, providing valuable context
and understanding beyond the quantitative data.

5.1 Quantitative Analysis

We received a total of 14 responses to the study including people following
a computer science related study as well as people working for the Institute
for Computing and Information Sciences of the university. The participants’
experience levels were varied, with some having 3 to 5 years of active in-
volvement in software development and using GitHub. Others had 1 to 2
years of experience, while a few had less than a year of experience. Some
participants were entirely new to GitHub and open-source contributions.
More detailed information about the experience levels of the participants
that partook in the test can be found in Table The results for the TAM
related questions can be found in Figure [5.1

21

Participant: How much experience do | How much experience do you have with How much experience do you have with
you have with GitHub? contributing to open-source software projects? | contributing to closed-source software?

P1 3-5 years No experience No experience

P2 1-2 years No experience >5 years

P3 >5 years 3-5 years 3-5 years

P4 3-b years 3-5 years 3-5 years

P5 1-2 years <1 year <1 year

P6 1-2 years <1 year No experience

p7 3-5 years No experience <1 year

P8 1-2 years No experience <1 year

P9 1-2 years <1 year 1-2 years

P10 3-5 years <1 year <1 year

P11 No experience No experience No experience

P12 1-2 years No experience 1-2 years

P13 <1 year No experience No experience

P14 >5 years 3-5 years 3-5 years

Table 5.1: Experience levels of the participants

The TAM questions, found in Table[d.2] focused on participants’ perceptions
of the chatbot’s usefulness and ease of use. The results of these TAM ques-
tions can be found in Figure[5.1] The responses show considerable variabil-
ity, as indicated by the standard deviation values found in Table While
some participants rated the chatbot positively, others expressed lower lev-
els of acceptance and ease of use. The median values pointed towards more
positive perceptions among the participants. However, when considering the
averages, the overall level of acceptance leaned slightly lower, though still
positive. The individual answers for each participant can be found in Table
in the appendix.

Em Strongly disagree
Disagree

Neither agree nor disagree
Agree

Strongly agree

|
PU2 [|
PU3 [|

pEOULY |

PEOU2 ~

reous | [N

1 2 3 45 6 7 8 91011 12
Number of Responses

o 4
w4
N
w 4
N
- 4
o

Figure 5.1: Responses to questionnaire

In Table we can see that PUl: Using the chatbot would enable me to
accomplish tasks more quickly and PEOUS3: Interacting with the chatbot was
a flexible and adaptable experience for me. scored lower compared to the

22

other PU and PEOU questions. This can suggest that the participants had
relatively low perceptions of the chatbot’s ability to enhance task efficiency
(PU1) and its overall flexibility and adaptability (PEOU3).

Question: | Average | Median | Standard Deviation
PU1 0.07 0.5 1.14
PU2 0.64 1 1.08
PU3 0.64 1 1.15
PEOU1 0.71 1 1.20
PEOU2 1.21 1 0.80
PEOU3 0.21 0 1.25

Table 5.2: Results of TAM questions, where “strongly disagree” through
“strongly agree” are mapped from -2 to 2

Lastly, most participants found all the relevant requirements for the pull-
request, as can be seen in Figure[5.2] There were however three participants
that did not find requirement R3: You must format the keyboard shortcut like
follows in the changelog: “<kbd>Ctri< [kbd> + <kbd>A< /kbd>". This
might be explained by the fact that this requirement was only given if you
respond “yes” to the following prompt: “Did you add keyboard shortcuts to
the changelog?”. So, some of the participants might not have realised that
they should have added a keyboard shortcut to the changelog at all, thus
not being made aware of the formatting rules of the shortcut. Interestingly,
all the participants that did not find this requirement had less than a year
or no experience in both OSS and CSS. Which might explain their lack of
knowledge about adding the shortcut to the changelog.

Number of participants that found the requirement R1-R6

14 1 mem Correct
B [ncomrect

5 R

=]
L

Count
[=a]

[} =
= (=

Requirement

R1
R2
RS
R&

Figure 5.2: Number of correctly found requirements.

23

5.2 Qualitative Analysis of the Open-Questions

The results of the open-ended questions were grouped and themed. The
feedback is presented in Table

Categories Occurrences
Communicability Unwanted loopbacks 1
Maxim of Quantity | Cannot go into further depth 4
Too much information on linked websites | 1
Takes too long 1
Profile Dependency | Lack of adaptability 3
Content Verify if the user understands 1
Lack of information about PR formatting | 1

Table 5.3: Thematic analysis from participants open feedback.

Communicability encompasses feedback on the chatbot’s ability to un-
derstand and respond appropriately. One participant mentioned unwanted
loopbacks, stating that “It seemed to loop back to the walkthrough mode
very quickly” [P6]. This was a known issue and is discussed in section
- Chatbot Implementation Limitations.

Maxim of Quantity contains feedback regarding how informative the chat-
bot is without giving too much information. The most common point of
feedback was about how the chatbot cannot go into further depth:

“I am not entirely sure that this is more useful than a regular
webpage, as all the responses are rather formatted and formal
still, so it seems very similar to a write-up online to me person-
ally. If I e.g. ask the chatbot to go more in depth on a specific
topic, or explain it in simpler terms, it just gives a response to
another question, which is not ideal.” [P7]

Another participant also highlighted there is too much information on
linked website:

“The way documentation is being offered could be improved a
little bit. Some URL’s lead to the documentation pages contain-
ing information, guidelines and rules for several different steps
and parts of the complete process. The general ’Contributing —
Developer Documentation’ page contains information about a lot

24

of different subjects, from commit guidelines, to specific JabRef
file structures, to explaining how to update the changelog. The
same big page is then provided at different interactions with the
chatbot, while at that step only a small part of the document is
actually needed. It would be clearer if only the exact informa-
tion is needed for the current step in the whole process, also to
prevent the wrong piece of documentation is used by accident.
Also, sometimes the URL did not jump to the correct location
in the page, which can be confusing and would be prevented by
splitting the pages up. It could still be nice to have a overview
of every different full documentation file, depending on the ones
used in the walkthrough being followed, at the beginning or end
of it.” [P12]

A different participant also expressed concern about the chatbot’s speed,
stating that it takes too long:

“This process took so long that it would have been easier to read
the information myself. The benefit of chatbots in my opinion
is that they are a quick method to answer your very specific
question. But this did not seem to do that.” [P6]

Profile Dependency contains feedback about how the chatbot adapts to
the different needs of profiles/users. Another participant also highlighted
the chatbot’s lack of adaptability to different user profiles and provided
feedback regarding the limited walkthrough options:

“Currently it extensively describes both the global GitHub con-
ventions, processes and documentation, as well as more JabRef
specific rules, processes and documentation specific for the type
of contribution. Being new to the JabRef project and making
a first contribution to it, does not necessarily mean it is also
the first time using GitHub. Seasoned programmers will prob-
ably know general naming conventions and processes by heart
and only need JabRef specific help, like where specific files or
documentation is located.

By adding multiple different walkthroughs by differentiating be-
tween the kind of contribution, developer skill and the degree of
help needed.” [P12]

25

This same participant also suggested enhancing the chatbot’s effectiveness
by incorporating various walkthrough modes. The participant expressed
that the chatbot’s current extensive description of both global GitHub con-
ventions and specific JabRef rules may not suit all contributors, especially
those experienced with GitHub. They recommended implementing multiple
walkthroughs tailored to different contribution types, developer skills, and
help requirements.

“You could for instance offer the following three walkthroughs:

e In depth, step-by-step guide and documentation on the ba-
sics of the general GitHub process; such as branches, com-
mits, pull requests, naming conventions and other standards

e A walkthrough describing only the process steps for JabRef
specific practices, rules or contribution types, without ask-
ing if users need help with programming and GitHub basics.

e A walkthrough describing all steps, like the one that is being
provided at the moment, with both global help, as well as
specific help for different JabRef processes.

The new process could look something like this: after the type
of contribution is chosen, multiple walkthroughs depending on
the different needs of each user are offered, for instance the three
described earlier: one with global GitHub help, one with JabRef
specific help and one containing both. The specific walktroughs
can therefore skip questions, help and documentation depending
on what the contributor needs, which means it can be completed
faster. If the amount of information that has to be provided on
each step is less, it will probably also be more clear to read
and easier to structure. This will result in the overall chatbot
interaction becoming more streamlined and user friendly.

Another use for different walkthroughs is that they could act as
a refresher course or extra checklist for contributors returning to
GitHub or JabRef after a (long) time so any possible changes to
any conventions, rules or processes can be taken into account, or
simply as additional support or verification for users when they
feel the need for that.” [P12]

26

Content includes feedback on the core topics covered. One participant
recommended the chatbot should verify if the user understands what
was explained, which it currently does not do.

The last point of feedback was about the lack of information about PR
formatting.

“None of the items raised by the chatbot are about how to format
the comment in the PR so it really doesn’t add anything above
the basics” [P3]

PR formatting is an important part of the contribution process, but since
JabRef did not have any specific requirements stated, this was not included
in our implementation of the chatbot.

27

Chapter 6

Discussion

This section provides additional insights on our results. Our quantitative
results showed that the chatbot was mostly perceived as useful. Hence, we
believe that a chatbot could serve as a useful tool for facilitating the on-
boarding process of individuals joining an open-source software project and
seeking to understand the formal requirements for submitting pull requests.
However, there are still some parts of the implementation that could be
improved. As showed in table the chatbot’s ability to aide people in
accomplishing tasks more quickly and the flexibility and adaptability of the
chatbot are two of the main things that could be improved. These insights
were reinforced by our qualitative analysis, with participants notably high-
lighting the need for more dynamic and varied responses.

One approach to achieve this is by using a combination of text summariza-
tion and natural language understanding techniques, applied to data mined
from platforms like Stack Overflow or the project’s existing documentation.
This integration could potentially enable the chatbot to provide more flex-
ible and relevant responses, aligning with the proposition of Dominic et al.
[9]. Furthermore, a valuable suggestion put forth by participant P12 sug-
gests the integration of multiple walkthrough modes, a feature that could
enhance the chatbot’s adaptability and reduce time waste by giving no/less
unnecessary information.

28

Another area for potential improvement lies in enhancing the quality of the
websites linked by the chatbot, as some of them appeared to be cluttered.
In our present chatbot implementation, we utilized links to existing docu-
mentation to explain certain more extensive requirements. However, these
existing pages occasionally contained an excess of information for the spe-
cific issue at hand. Developing streamlined pages tailored specifically for the
chatbot could mitigate this issue of clutter and provide more concise and
relevant guidance.

The sample size of our study is not large enough to draw statistically signifi-
cant conclusions about the influence of experience levels on perceived useful-
ness. Despite this, we still observed interesting trends within the data. The
data seems to indicate that there might be a positive correlation between
the PU and the CSS experience, while also indicating that there might be a
negative correlation between the PU and the OSS experience. This can be
seen in Figure and suggests that people that are more used CSS devel-
opment perceive the extra guidance from the chatbot as more useful, while
people with more OSS development experience might prefer more traditional
resources.

Correlation between Questions (Q1 to Q6) and Experience Levels (Git, 0SS, CSS)

03
— - 0.04 0.052
=
=8

0z
0.32 013

PUZ
|

-01
40.013

PU3

-0.0

014 0.038 0.048

PEOUL
.

-—-01

0.036

PEOUZ

—0.2
Mo 40.29 016
=
2 -0.3
[| |
Git Experience 055 Experience 55 Experience

Figure 6.1: Correlation heatmap between experience and TAM questions

It is worth considering that individuals with experience in OSS development
may be more accustomed to working independently, while those in CSS
development might be accustomed to seeking and benefiting from additional
guidance and support. This distinction in working styles could contribute
to the observed trends in perceived usefulness.

29

6.1 Limitations

In this section, we will first delve into the limitations encountered during
the implementation of the chatbot. After which we will discuss limitations
encountered during the analysis of our results.

6.1.1 Chatbot Implementation Limitations

The current implementation of the chatbot has certain limitations that could
be improved in future versions. For instance, the text on the buttons does
not actually correspond to their intentions, especially when it comes to the
walkthrough mode. So for example, a “no” button might be programmed
with the intention of “How to make a branch”. This approach was chosen
due to some difficulties encountered during development. When we pro-
grammed the stories to work with more generic intentions such as “deny” it
would sometimes unexpectedly redirect the conversation to a different part
of the story. So as a workaround, we programmed them to have more specific
intentions, so they correctly go to the next part of the story. This however
makes it so that the quick replies do not yield the same result as typing “no”
into the chatbot manually. To limit the impact of this limitation users are
encouraged to use buttons, if possible, provided that what they want to say
aligns with one of the possible options.

30

pull request

Happy to help

Okay before we can make a pull
request we will first go over some
prerequisites and the formal
requirements of the JabRef repository

Do you already have a GitHub
account?

If there are any problems you should
update the code to address these
problems.

Do you want to go over the checklist
agaln to make sure your changes
comply with the formal requirements?

o0

Type your message...

(a) Typing “Yes”

pull request

Happy to help

the codebase!

Which option would you like to hear
hear more about?

QOkay before we can make a pull
request we will first go over some

prerequisites and the formal
requirements of the JabRef repository

Do you already have a GitHub
account?

Yes

Great! Have you made your own fork of
the repository?

Type your message...

(b) Pressing button “Yes”

Figure 6.2: Example of how the text of the button does not always

correspond to the intention. Here the button has an intention of “How do I

make a fork?”

There are also a few more limitations of the walkthrough mode. Firstly,
it lacks contextual awareness, making it unable to comprehend requests
such as “can you provide further elaboration on this?” as it fails to identify
the referent of “this.” Another limitation is that if you ask a question in
walkthrough mode it will just “jump” to that part of the story. For example,
if you were to go all the way through the walkthrough and then ask “What
should I name my branch?” for example, it will then go over all the steps
that come after the explanation of naming branches again, in order of the

preprogrammed story.

31

6.1.2 Questionnaire Limitations

Due to the restricted number of participants, our ability to draw definitive
conclusions about the influence of experience levels on the outcomes of the
chatbot evaluation was somewhat constrained. While we aimed to include a
varied group of participants with varying experience levels with GitHub and
OSS contributions, the relatively small sample size of fourteen participants
introduces limitations in terms of statistical significance. Despite this we
observed some trends from the data collected. However, it’s important to
approach these findings with a degree of caution because of the small sample
size.

Due to the limited amount of participant, we encountered an additional
challenge in evaluating the chatbots performance. While our questionnaire
provided valuable insights into participants’ perceptions of the chatbot’s
perceived usefulness, we recognize that conducting a parallel evaluation of
the usefulness of the existing documentation for the same repository would
be beneficial. As this could have given us the opportunity to perform a
comparative analysis of the two methods. However, because of the limited
number of participants, we choose not to pursue this, as doing two separate
evaluations could have further diluted the already small participant pool.
Additionally, we opted not to conduct successive tests with the same partic-
ipants, as knowledge gained from one test could influence their perception
of the next tool used in the subsequent questionnaire.

32

Chapter 7

Conclusions

We proposed a new way to learn the the requirements for pull request of OSS
projects by letting users interact with a chatbot. To evaluate the usefulness
and ease of use of this new bot we used the technology acceptance model.
The results from this test shows that people do find the chatbot useful and
easy to use.

Since the participants indicated that the chatbot was useful and easy to use,
we believe that a chatbot can be a useful tool for guiding individuals new
to open-source software projects in understanding the formal requirements
of pull request.

There are, however, still ways the implementation of the chatbot could be
improved. Notably, its ability to help accomplish task faster and adapt-
ability could be refined. These findings, reinforced by participant feedback,
underscore the need for more dynamic responses. By better addressing these
areas, the chatbot could better aid newcomers with understanding the con-
tribution guidelines for open-source software projects’ pull requests.

33

Bibliography

[1]

Botfront: powerful gui for rasa stories, rules and forms. Accessed on
May 23, 2023.

Rasa: Open source conversational ai. Accessed on May 23, 2023.
Stack overflow developer survey 2022, 2022. Accessed on May 2, 2023.

Luiz Philipe Serrano Alves, Igor Scaliante Wiese, Ana Paula Chaves,
and Igor Steinmacher. How to find my task? chatbot to assist newcom-
ers in choosing tasks in oss projects. volume 13171 LNCS, pages 90-107.
Springer Science and Business Media Deutschland GmbH, 2022.

Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebas-
tiano Panichella. Who is going to mentor newcomers in open source
projects? In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE ’12, New
York, NY, USA, 2012. Association for Computing Machinery.

Okonkwo Chinedu and Abejide Ade-Ibijola. Python-bot: A chatbot for
teaching python programming. Engineering Letters, 29:25-34, 02 2021.

Siti Daud and Nurul Hidayah Mat Zain. e-java chatbot for learning pro-
gramming language: A post-pandemic alternative virtual tutor. Inter-
national Journal of Emerging Trends in Engineering Research, 8:3290—
3298, 07 2020.

Fred D. Davis. Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Quarterly, 13:319-340, 1989.

James Dominic, Jada Houser, Igor Steinmacher, Charles Ritter, and
Paige Rodeghero. Conversational bot for newcomers onboarding to
open source projects. pages 46—50. Association for Computing Machin-
ery, Inc, 6 2020.

34

[10]

[11]

[12]

[13]

[14]

[15]

Linda Erlenhov, Francisco Gomes De Oliveira Neto, and Philipp Leit-
ner. An empirical study of bots in software development: Character-
istics and challenges from a practitioner’s perspective. pages 445-455.
Association for Computing Machinery, Inc, 11 2020.

Sebastian Hobert. Say hello to ’coding tutor’! design and evaluation of
a chatbot-based learning system supporting students to learn to pro-
gram. In International Conference on Interaction Sciences, 2019.

Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Sere-
brenik. Why developers are slacking off: Understanding how software
teams use slack. In Proceedings of the 19th ACM Conference on Com-
puter Supported Cooperative Work and Social Computing Companion,
CSCW 16 Companion, page 333-336, New York, NY, USA, 2016. As-
sociation for Computing Machinery.

Yuri Malheiros, Alan Moraes, Cleyton Trindade, and Silvio Meira. A
source code recommender system to support newcomers. In 2012 IEEE

36th Annual Computer Software and Applications Conference, pages
19-24, 2012.

Christoph Matthies, Franziska Dobrigkeit, and Guenter Hesse. An addi-
tional set of (automated) eyes: Chatbots for agile retrospectives. pages
34-37. Institute of Electrical and Electronics Engineers Inc., 5 2019.

Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael Muller,
and Justin D. Weisz. The programmer’s assistant: Conversational in-
teraction with a large language model for software development. In
Proceedings of the 28th International Conference on Intelligent User
Interfaces, IUI 23, page 491-514, New York, NY, USA, 2023. Associa-
tion for Computing Machinery.

Igor Steinmacher, Tayana Uchoa Conte, Marco Aurélio Gerosa, and
David F. Redmiles. Social barriers faced by newcomers placing their
first contribution in open source software projects. pages 1379-1392.
Association for Computing Machinery, Inc, 2 2015.

Margaret-Anne Storey and Alexey Zagalsky. Disrupting developer pro-
ductivity one bot at a time. In Proceedings of the 2016 2/th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, FSE 2016, page 928-931, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung,
Jacques Klein, and Tegawendé F. Bissyandé. Is chatgpt the ultimate
programming assistant — how far is it?, 2023.

35

[19] Alan M. Turing. Computing machinery and intelligence, 1950.

[20] Joseph Weizenbaum. Eliza—a computer program for the study of nat-
ural language communication between man and machine. Communica-
tions of the ACM, 6:36-45, 1966.

[21] Sebastian Wollny, Jan Schneider, Daniele Di Mitri, Joshua Weidlich,
Marc Rittberger, and Hendrik Drachsler. Are we there yet? - a system-
atic literature review on chatbots in education. Frontiers in Artificial
Intelligence, 4, 2021.

36

Appendix A

Appendix

37

Participants:

Participant 1:

Participant 2:

Participant 3:

Participant 4:

Participant 5:

Participant 6:

Participant 7:

Participant 8:

Participant 9:

Participant 10:

Participant 11:

Participant 12:

Participant 13:

Participant 14:

How much experience do you have with GitHub? 3-5 years 1-2 years >5 years 3-5 years 1-2 years 1-2 years 1-2 years 1-2 years 3-5 years No experience | 1-2 years <1 year >5 years
How much experience do you have with contributing to open-source software projects? | No experience No experience 3-5 years 3-5 years <1 year <1 year No experience | No experience <1 year <1 year No experience | No experience No experience | 3-5 years
How much experience do you have with contributing to closed-source software? No experience >5 years 3-5 years 3-5 years <1 year No experience <1 year <1 year 1-2 years <1 year No experience 1-2 years No experience 3-5 years
You must create separate branches on your own fork Yes Yes Yes Yes les Yes Yes les Yes Yes Yes Yes Yes Yes

for both changes you have implemented (i.e., the new feature and the bug fixing)

You have to add your changes to the CHANGELOG.md Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

You must format the keyboard shortcut like follows in the changelog: Yes Yes Yes Yes No No Yes Yes Yes No Yes Yes Yes Yes

” <kbd>Ctrl</kbd>+ <kbd>A</kbd>"

You should not add yourself to JavaDoc’s @authors list Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes

You should write a descriptive commit message Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

You must add newly added libraries to external-libraries.md Yes Yes Yes Yes les Yes Yes les Yes Yes Yes No Yes Yes

The chatbot has two different interaction modes:

walkthrough and open questions. In the former,

the chatbot walks you through the process of contributing to JabRef; I used the T used the I used the I used a T used the I used the I used a T used the T used the I used the T used a I used the I used a T used a

in the latter, the bot allows you to ask specific questions.
A mixture of both interaction approaches is also possible.
‘Which one of the modes have you used?

walkthrough mode

walkthrough mode

walkthrough mode

mixture of both

walkthrough mode

open questions mode

mixture of both

walkthrough mode

walkthrough mode

walkthrough mode

mixture of both

walkthrough mode

mixture of both

mixture of both

How much do you agree with the following statement:

4 4 1 4 4 1 3 2 4 3 3 4 2 4

Using the chatbot would enable me to accomplish tasks more quickly.*
How much do you agree with} the following statement: 5 5 L 4 1 3 3 3 1 1 3 5 3 1
I would find the chatbot useful when onboarding to an OSS project.
How much do you agree with the following statement: 4 4 2 3 5 1 4 4 4 3 3 5 4 5
The chatbot makes it easier to learn the formal requirements of an OSS project.*
How much you agree with the following statement:

ow much do you agree with the following statement 5 9 3 5 5 9 3 4 5 4 9 5 4 3
I found the chatbot easy to use.
How much do you agree with the following statement: 5 4 3 5 5 5 5 4 5 4 3 4 3 4
The chatbot interaction was clear and understandable.
How much do you agree with the following statement: 5 4 9 3 3 1 4 3 5 3 1 4 4 3

Interacting with the chatbot was a flexible and adaptable experience for me.

Table A.1:

Raw results

of the Google Forum with open feedback removed

	Introduction
	Background
	Onboarding to Open Source Projects
	Chatbots
	Chatbot Development
	Rasa
	Botfront

	Related Work
	Bots in Software Engineering
	Onboarding to OSS projects

	Methodology
	Chatbot Context
	Chatbot Implementation Details
	Website Hosting Chatbot

	Questionnaire

	Results
	Quantitative Analysis
	Qualitative Analysis of the Open-Questions

	Discussion
	Limitations
	Chatbot Implementation Limitations
	Questionnaire Limitations

	Conclusions
	Appendix

