
Bachelor’s Thesis Computing Science

Formalizing the query language of Semantic
MediaWiki

Marijn van Wezel
s1040392

June 27, 2023

First supervisor/assessor:
dr. Robbert Krebbers

Second assessor:
dr. Patrick van Bommel

Acknowledgements

I am extremely grateful to dr. Robbert Krebbers for his time and energy spent
helping me write this thesis. Without his feedback and the weekly meetings,
this thesis would not exist. I especially want to thank him for answering my
many questions about Coq, and for his help on structuring the text.

I also want to thank my friends and family for their support and their time
spent proofreading this thesis.

Abstract

Semantic MediaWiki is a popular extension to the well-known wiki-engine
MediaWiki, used to power Wikipedia, that allows editors to annotate pages
with structured data and link pages together. In this thesis, we formalize a
fragment of the query language of Semantic MediaWiki. To make our seman-
tics simpler and more principled, we only present a direct set-based semantics
for a minimal core language. We also provide a type-sound translation from
the fragment that we formalize to this core language. We provide the for-
malizations both in written mathematics, as well as the Coq proof assistant.
Finally, we use the Coq mechanized semantics to prove a number of semantic
equivalences for queries in the core language.

Contents

1 Introduction 3

2 Semantic MediaWiki by example 7
2.1 Introduction . 7
2.2 Semantic MediaWiki . 7
2.3 Topography wiki . 8
2.4 Features . 10

2.4.1 Identifier selectors . 10
2.4.2 Category selectors . 10
2.4.3 Property selectors . 10
2.4.4 Subqueries and property-chains 12
2.4.5 Disjunctions and conjunctions 12

3 Notation 14
3.1 Record types . 14
3.2 Multi-argument function types . 14
3.3 Partial functions . 15

4 Core Semantic MediaWiki 16
4.1 Introduction . 16
4.2 Abstract syntax . 16
4.3 Database function . 18
4.4 Datatypes . 19
4.5 Semantics . 20

4.5.1 Semantics of comparators 21
4.5.2 Semantics of queries and selectors 21

4.6 Explanation of the semantics . 22
4.6.1 Property value selectors . 23
4.6.2 Subquery selectors . 23

4.7 Equivalence proofs . 24

5 Surface Semantic MediaWiki 25
5.1 Introduction . 25

1

5.2 Abstract syntax . 25
5.3 Elaboration . 27

5.3.1 Elaboration of identifier selectors 28
5.3.2 Elaboration of categories 29
5.3.3 Elaboration of values . 29
5.3.4 Elaboration of property selectors and queries 30
5.3.5 Type-soundness of elaboration 31

6 Coq mechanization 32
6.1 Introduction . 32
6.2 Coq-std++ . 32
6.3 Values and identifiers . 32
6.4 Database . 33
6.5 Core Semantic MediaWiki . 34
6.6 Surface Semantic MediaWiki . 34

6.6.1 Type-soundness of elaboration 34

7 Related Work 38
7.1 SQL formalizations . 38
7.2 Verifications of query compilers 39
7.3 Formalizations of other query languages 39
7.4 Semantic MediaWiki . 40

8 Conclusions and future work 41

2

Chapter 1

Introduction

Semantic MediaWiki is a popular extension to the well-known wiki-engine
MediaWiki, used to power Wikipedia. The first stable version was released
in 2007 (Semantic MediaWiki contributors, 2020c), and it is now used on nu-
merous websites, such as Liquipedia1, TranslateWiki2 and FSF’s Free Software
Directory3. A conference for users and developers of Semantic MediaWiki is
also held every year4.

Semantic MediaWiki enables editors of a wiki to annotate pages with structured
data. This data can be queried and shown on other pages, used to create lists or
be used for searching. Data can also be exported for external analysis. To query
this structured data, Semantic MediaWiki comes with a domain-specific query
language. Because everyone is able to contribute to a wiki, regardless of their
technical knowledge, the main focus of this query language is simplicity. This
simplicity makes queries easy to read and write, but also leads to ambiguity
and invalid assumptions. For example, consider the query:

[[Has zip code::1337]] AND [[Has zip code::!1337]]

You might expect this query to never return any results, but the law of non-
contradiction does not apply. In fact, the above query returns any city that has
the zip-code 1337 and at least one other zip-code. Also consider the following,
very similar query:

[[Has zip code::1337]] OR [[Has zip code::!1337]]

Instead of returning every page, this query returns only pages that have a
zip-code.

1https://liquipedia.net
2https://translatewiki.net
3https://directory.fsf.org
4https://www.semantic-mediawiki.org/wiki/SMWCon

3

https://liquipedia.net
https://translatewiki.net
https://directory.fsf.org
https://www.semantic-mediawiki.org/wiki/SMWCon

It is important that the behaviour of the query language is well-understood by
editors, so that they can make sure that the queries they write give the results
they desire. An often used approach to reason about a query or programming
language is by defining a formal semantics for it. This allows you to mathemat-
ically reason about the meaning and behaviour of a language, enabling you to
do proofs of correctness, equivalence, termination, et cetera (Floyd, 1967). To
make proofs easier and more reliable, a mechanized semantics, i.e. a semantics
that has been defined in a proof assistant, such as Coq (Coq Development Team,
2021), HOL4 (Slind & Norrish, 2008) or Isabelle (Wenzel et al., 2008), is most
ideal.

Mechanized semantics have already been defined for many programming
and query languages, and they have been used to study the mathematical
meaning of programs (Appel and Blazy, 2007; Krebbers, 2015; Chu et al., 2017),
create a formally-verified compiler for C (Leroy, 2009) and SQL (Benzaken
et al., 2022) and give a machine-checked safety proof for a (subset) of Rust’s
type system (Jung et al., 2018), among other things. Defining a (mechanized)
semantics for Semantic MediaWiki’s query language will be the main focus of
this thesis.

Bao et al., 2008 are as far as we know the only authors to have worked on
formalizing Semantic MediaWiki. They give (indirect) semantics by translating
queries to logic programs. We will give a direct set-based semantics instead,
using well-defined set operations, such as union and filter, since it is easier to
reason with and to mechanize. We mechanize our semantics in the Coq proof
assistant. The mechanization in Coq not only makes it easier and more reliable
to prove properties about queries, it also makes it possible to relate our work
to the work mentioned above in the future. For instance, to create a verified
compiler for Semantic MediaWiki queries.

The application of our semantics is twofold: (i) It serves as utterly precise
documentation of the query language. This is not only useful for users of
Semantic MediaWiki, but also for developers of Semantic MediaWiki that want
to make sure that their code does not contain breaking changes. (ii) It serves
as a basis for proofs about the query language.

Our semantics are based on a core language, called Core Semantic MediaWiki.
Semantic MediaWiki queries contain quite a bit of superfluous syntax and
duplicate constructs, which would make the semantics unnecessarily compli-
cated. Instead, we define our semantics by first elaborating (translating) from
Surface Semantic MediaWiki, a language that closely resembles a subset of
the query language of Semantic MediaWiki, to Core Semantic MediaWiki,
for which we give the semantics directly. We have proven this elaboration
to be type-sound in Coq. The different parts of the semantics are graphically
displayed in Figure 1.1.

4

We have determined the semantics by studying the reference manual (Semantic
MediaWiki contributors, 2019), by looking at compiled queries and by looking
at the results of queries. Furthermore, we have proven some properties about
the semantics in Coq to gain more confidence that it indeed constitutes the
semantics of Semantic MediaWiki.

The Coq formalization and the installation instructions can be found on Zenodo
(van Wezel, 2023).

Surface Semantic
MediaWiki

Core Semantic
MediaWiki

Elaboration

§5 §4

Set-based
semantics

Typechecking

Type soundness

Figure 1.1: High-level overview of the semantics.

In this thesis, we make a number of assumptions and simplifications, which
are listed below.

• We have not formalized the printing language of Semantic MediaWiki.

The printing language is responsible for taking the result of a query and
presenting it to the user as a table, calendar, diagram, etc.

• We take the database as a given and therefore do not formalize how data
is modified.

• We do not formalize any inferencing that Semantic MediaWiki does (Se-
mantic MediaWiki contributors, 2020a), nor do we formalize synonyms.

Semantic MediaWiki automatically does simple inferencing for sub-
categories and sub-properties. For example, if a page is in the category
‘A’, and that category is a sub-category of ‘B’, then a query to ‘B’ will still
return the page. It is also possible to add synonyms for pages by using
redirects: if a page ‘A’ redirects to a page ‘B’, then replacing ‘B’ in any
query with ‘A’ will give the same result.

• We only formalize a fragment of the query language. A complete list of
features that we formalize is given in Chapter 5. A list of notable missing

5

features is given in Chapter 8.

• We do not formalize a parser for Semantic MediaWiki queries.

• Queries are compiled to a back-end (SQL, Elasticsearch or SPARQL) by
Semantic MediaWiki. We do not formalize this compilation process.

• We take the SQL-implementation of Semantic MediaWiki as the reference
implementation.

Semantic MediaWiki supports a number of different back-ends, such as
SQL or Elasticsearch. When the result of a query is different between
back-ends, and the documentation does not resolve this conflict, we use
the behaviour of the SQL-implementation to define the semantics. An
example of such a conflict is the behaviour of the inequality comparator
on (namespaced) identifiers, as explained in Section 5.3.1.

Contributions. The main contributions of this thesis are:

• A formal semantics for a fragment of the Semantic MediaWiki query lan-
guage, both in written mathematics as well as in the Coq proof assistant.
These semantics serve both as documentation of the query language, as
well as a basis for proofs.

• A number of semantic equality proofs about Core Semantic MediaWiki
queries in Coq, as well as a proof of the type-soundness of the elaboration.

Outline. Chapter 2 introduces the query language of Semantic MediaWiki
through a number of examples. Chapter 3 introduces special notation that is
used throughout this thesis. In Chapter 4 we introduce Core Semantic Media-
Wiki, and give its formal semantics. Chapter 5 formalizes the translation from
Surface Semantic MediaWiki to Core Semantic MediaWiki. In Chapter 6, we
give a short explanation of our Coq implementation. Finally, in Chapter 7 we
discuss related work and Chapter 8 concludes this thesis and gives possible
directions for future work.

6

Chapter 2

Semantic MediaWiki by
example

2.1 Introduction

In this chapter, we will cover the basics of Semantic MediaWiki and informally
introduce the concepts that we will formalize in Chapter 4 and Chapter 5.

This chapter is divided into the following sections:

(i) In Section 2.2 we will briefly look at what Semantic MediaWiki is.

(ii) In Section 2.3 we look at how to organize a Semantic MediaWiki wiki
and we introduce the database that we will use for examples throughout
this thesis.

(iii) In Section 2.4 we will give concrete examples for all features that we will
formalize in this thesis.

2.2 Semantic MediaWiki

Semantic MediaWiki 1 is an extension to the wiki-engine MediaWiki 2 — best
known for powering Wikipedia 3 — that enables users to store and query
information on a wiki. It comes with a domain-specific query language, which
is what we will formalize in this thesis. It also has a secondary language that is
used to display, order and work with results, but this language is out-of-scope
for this thesis.

1https://www.semantic-mediawiki.org
2https://www.mediawiki.org
3https://www.wikipedia.org

7

https://www.semantic-mediawiki.org
https://www.mediawiki.org
https://www.wikipedia.org

Because Semantic MediaWiki is an extension to MediaWiki, it is good to take a
moment and clarify which things are part of MediaWiki and which things are
added by Semantic MediaWiki.

A MediaWiki installation consists of pages uniquely identified by their title, for
instance Amsterdam might be a page that talks about Amsterdam. These pages
are organized into namespaces by prefixing the title with ‘<namespace>:’. For
example, the page Talk:Amsterdam lives in the Talk namespace. If a title is
not prefixed, it lives in the main namespace (for example, our imaginary page
about Amsterdam lives there). We will call a namespaced title an identifier and
a non-namespaced title an article name.

Pages can be categorized using categories. Unlike namespaces, a page can be in
any (finite) number of categories, including no categories at all. Furthermore,
categories can contain pages from different namespaces. For example, the
page about Amsterdam might be in the Capital and the City category.

Semantic MediaWiki extends MediaWiki to add the concept of properties, which
allow you to add structured data to pages and link pages together. Our recurring
example Amsterdam may for instance be linked to the page The Netherlands

using the property Is located in. This link creates a so-called semantic triple
(Lassila & Swick, 1999), which can be read like a sentence:

Amsterdam is located in The Netherlands.

The concept of semantic triples comes from the Semantic Web 4, of which
Semantic MediaWiki is an implementation.

Properties in Semantic MediaWiki have a global datatype. By default, this
datatype is page, which is the datatype used to link pages together. However,
other data types, such as string or number, are also possible and allow you to
store structured data directly on a page, which can then be queried and shown
on other pages.

2.3 Topography wiki

Suppose you are a topographer and you want to publish some data that you
have collected. After looking at the available options, you have decided to
use Semantic MediaWiki for this. This section will explain how you can best
organize such a wiki, and introduce the database that will be used for examples
throughout the rest of this thesis.

The topography wiki will contain pages about a number of topography concepts,
namely cities, countries and continents. You organize the wiki as a hierarchy
of topographical areas. You do this by linking pages using the (used-defined)

4https://www.w3.org/standards/semanticweb/

8

https://www.w3.org/standards/semanticweb/

Is located in Has zip code Has population Is capital Categories

Amsterdam The Netherlands 1023;1024;1025 821,752 True City; Capital

Barcelona Spain 08001;08002;08003 1,620,000 False City

Berlin Germany 10115;10117;10119 3,645,000 True City; Capital

Cairo Egypt 3753450;3755220 9,540,000 True City; Capital

Nijmegen The Netherlands 3769;5211 170,681 False City

Egypt Africa 109,300,000 Country

Germany Europe 83,200,000 Country

The Netherlands Europe 17,530,000 Country

Spain Europe 47,420,000 Country

Africa 1,216,000,000 Continent

Europe 746,400,000 Continent

Table 2.1: The topography wiki.

Is located in property. More specifically, you link cities to countries and
countries to continents using this property. For example, the page Amsterdam
would be linked to The Netherlands, which would be linked to Europe. Note
that Semantic MediaWiki does not place any constraints on what pages can be
linked, and it is up to the wiki’s administrator to organize their wiki in such a
way that it forms a logical hierarchy.

You categorize your topography wiki by adding the following categories:

• Capital, containing all capital cities;

• City, containing all cities;

• Country, containing all countries;

• Continent, containing all continents.

And you also create the following (additional) properties:

• Has zip code (string), containing the zip code(s) for a city;

• Has population (number), containing the number of inhabitants of an
area;

• Is capital (boolean), containing whether the city is a capital.

In Semantic MediaWiki, all properties are a set. It is up to the wiki administrator
to only assign a single value if that is appropriate (for example, multiple values
for Has population would be nonsense).

We define an example database in Table 2.1. Note that the data is only an
example and it may not be accurate or complete. Multiple values for the same
property are separated using a semicolon. The categories for the page are
given in the italicized column Categories.

9

2.4 Features

In this section, we will look at the different features of Semantic MediaWiki
that we will formalize, and informally describe their behaviour. We will also
give a number of examples.

2.4.1 Identifier selectors

Semantic MediaWiki allows you to query pages based on their title. We call
these selectors ‘identifier selectors’. The simplest identifier selector selects
a single page. For example, the query [[Amsterdam]] would only select the
page Amsterdam.

It is possible to use comparators in an identifier selector, such as ! to select all
identifiers except one, or > to select all identifiers (lexicographically) greater
or equal. For example, to get all pages that start with the letter A or B, we can
do:

[[>A]] [[<<C]]

Where > means greater than or equal, << means strictly less than, and the
juxtaposition of the selectors a conjunction (intersection of the results of both
selectors). This gives Amsterdam, Barcelona and Berlin.

Finally, it is also possible to select pages based on whether they live in a specific
namespace:

[[Talk:+]]

This gives the empty set, since our wiki does not have any pages in the Talk

namespace.

2.4.2 Category selectors

As mentioned in Section 2.2, categories can be used to group pages of similar
subjects together. For example, the category City would contain all cities, and
the category Country would contain all countries.

Semantic MediaWiki allows you to query these categories like so:

[[Category:City]]

Which would return all cities (Amsterdam, Barcelona, Berlin, Cairo and
Nijmegen).

2.4.3 Property selectors

Semantic MediaWiki is also capable of selecting pages based on the properties
that are on a page. For example, we could write

[[Is located in::The Netherlands]]

10

to get all pages for which the property ‘Is located in’ has the value ‘The Nether-
lands’, which in our case would give Amsterdam and Nijmegen.

Similar to identifier selectors is it possible to use comparators in a property
selector. The available comparators are:

Syntax Name Description
! inequality The property must have a value that is

unequal.
> greater than or equal The property must have a value that is

greater or equal.
>> greater than The property must have a value that is

strictly greater.
< less than or equal The property must have a value that is

less or equal.
<< less than The property must have a value that is

strictly less.

Note that the ! comparator does not select pages that do not have the property
at all, instead, it only selects pages that have a value unequal to the value
specified. This can lead to unintuitive behaviour when a property has multiple
values. Consider the following query:

[[Category:City]] [[Has zip code::!1023]]

Instead of selecting all cities that do not have the zip code 1023, it selects
all cities that (also) have a zip code unequal to 1023. In particular, any page
without the property Has zip code will not be a result of this query, and any
city with multiple ZIP-codes will always be a result of this query. The result
of the above query is therefore Amsterdam, Barcelona, Berlin, Cairo and
Nijmegen.

A special case of the property selector is the wildcard selector, which selects
all pages that have at least one value for a particular property. The syntax
for the wildcard selector is very similar to that of a regular property selector,
but instead of writing an comparator and a value, you simply write a +. For
example, to select all pages with the property Has population, you can write
[[Has population::+]].

Finally, it is also possible to select pages based on multiple different compara-
tors and values by putting || between them. For example, to select all capital
cities where the population is more than five million or less than one million,
you can use the query:

[[Category:Capital]] [[Has population::<<1000000||>>5000000]]

Which would yield Amsterdam and Cairo.

11

2.4.4 Subqueries and property-chains

Subqueries allow you to select pages based on the results of another query.
This can be useful if you have a large number of values you want to select
on or if the values you are selecting on are dynamic. Consider the following
query:

[[Category:City]] [[Is located in::Germany||Spain||...]]

This query selects all cities located in a country in Europe. Since there are
many countries in the Europe, and countries can split or merge at any time,
enumerating all of them is not feasible. Luckily, Semantic MediaWiki thought
of this and has support for subqueries. We can use the following query to first
generate a list of all countries in Europe:

[[Is located in::Europe]]

And then we can use the results of that query in our original query. In-
stead of copying the results and pasting them in our query, we can use a
subquery:

[[Category:City]]

[[Is located in::<q>[[Is located in::Europe]]</q>]]

This pattern is so common that Semantic MediaWiki provides syntactic sugar,
called property chains, for it. The following query will give identical results to
the query above:

[[Category:City]] [[Is located in.Is located in::Europe]]

Subqueries (and by extension property chains) can be of arbitrary depth.

2.4.5 Disjunctions and conjunctions

Semantic MediaWiki also supports disjunctions (or’s) and conjunctions (and’s)
between selectors. To create a disjunction, you can use the keyword OR:

[[Category:Country]] OR [[Category:City]]

To create a conjunction, you can use juxtaposition or the keyword AND:

[[Category:Country]] [[Is located in::Europe]]

or

[[Category:Country]] AND [[Is located in::Europe]]

Without explicit groupings, queries are in disjunctive normal form, i.e. a dis-
junction of conjunctions. For example, the query A OR B AND C OR D should

12

be read as A OR (B AND C) OR D. Instead of the more conventional opening
and closing parentheses, Semantic MediaWiki uses <q> and </q> respectively
for groupings. For example:

[[Category:Capital]] <q>[[Berlin]] OR [[Nijmegen]]</q>

13

Chapter 3

Notation

In this chapter, we define some notation that will be used throughout the rest
of this thesis.

3.1 Record types

We occasionally use record types instead of product types (tuples). Record
types are similar to product types, as they are also used to hold multiple values
of possibly distinct types. However, unlike product types, they automatically
introduce a named projection to read each value. For example, consider the
following type:

{head : Z, tail : R}

Instead of using anonymous projections, we can use the functions head and
tail to denote the values in the tuple. That is, for any value 𝑐 = (𝑧, 𝑟) ∈
{head : Z, tail : R}, we can write head 𝑐 to denote the first value (𝑧) and
tail 𝑐 to denote the second value (𝑟).

3.2 Multi-argument function types

For functions that accept multiple input arguments, we use currying. For
brevity, we shall omit parentheses in function types. Specifically, for any type
𝐴, 𝐵 and 𝐶, we shall write the type of a function as:

𝐴 → 𝐵 → 𝐶

to denote
𝐴 → (𝐵 → 𝐶)

14

3.3 Partial functions

Partial functions are occasionally in this thesis when no reasonable result
exists for some input of a function. For any type 𝐴 and 𝐵, we shall write the
type of a partial function 𝑓 as:

𝐴 ⇀ 𝐵

Where ⇀ denotes the partial relation. This makes it possible to combine partial
functions with total functions. For example, we can write 𝐴 → 𝐵 ⇀ 𝐶 to denote
a total function that yields the partial function 𝐵 ⇀ 𝐶 when the first argument
is applied.

We write ⊥ to indicate that an expression is undefined. For example, we can
write 𝑓 𝑎 := ⊥ to denote that 𝑓 is undefined for any input 𝑎 ∈ 𝐴.

Furthermore, we shall write 𝑓 𝑎 ↓ for the predicate that 𝑓 is defined for input
𝑎 ∈ 𝐴 and 𝑓 𝑎 ↑ for the predicate that 𝑓 is not defined for input 𝑎 ∈ 𝐴.

Finally, we define the convention that undefined values propagate. That is, if
the result of a sub-expression is undefined, then the entire expression is also
undefined.

15

Chapter 4

Core Semantic MediaWiki

4.1 Introduction

In this chapter, we will describe Core Semantic MediaWiki. Core Semantic
MediaWiki closely resembles regular Semantic MediaWiki, but omits duplicate
or superfluous syntax. For example, the different disjunctions allowed by
Semantic MediaWiki are generalized into a single construct (see Example 4.2.1)
and all values are explicitly typed. These simplifications make the semantics
easier to grasp and more principled. The expressiveness of Semantic Media-
Wiki queries is retained through a translation from our formalized fragment
of Semantic MediaWiki (Surface Semantic MediaWiki) to Core Semantic
MediaWiki queries (see Chapter 5).

We start by giving the abstract syntax of Core Semantic MediaWiki (Section 4.2),
then we will describe the data model (Section 4.3) that we use. Next, in Sec-
tion 4.4, we will explain how datatypes work. Finally, we will give the semantics
of Core Semantic MediaWiki (Section 4.5).

4.2 Abstract syntax

The first step in defining the semantics for any language is specifying its syntax
(Floyd, 1967). In this thesis, we will use Backus-Naur form (BNF) to describe
the syntax. It is important to note that we only define the abstract syntax. The
abstract syntax captures the structure of a query, but omits details that enable
unique parse trees to be constructed. It is the job of the concrete syntax to
provide enough details to be able to construct unique parse trees. When we
talk about syntax, we mean the abstract syntax, unless otherwise noted.

We start by listing the various meta-variables that will be used throughout this
section and the rest of this chapter to describe the different syntactic categories

16

(Nielson & Nielson, 1992). For Core Semantic MediaWiki queries, we use the
convention that:

• 𝑥 will range over names, Name;

• 𝑖 will range over identifiers, CIdent;

• 𝑣 will range over values, CVal;

• 𝜔 will range over comparators, CComp;

• 𝑠 will range over selectors, CSel;

• 𝑞 will range over queries, CQuery.

These meta-variables may be primed or subscribed. So, 𝑞1, 𝑞2 and 𝑞′ all stand
for constructs in the category CQuery.

The first syntactic category, Name, contains all names that MediaWiki allows.
To avoid conflicts with other parts of the syntax, the rules for which names
are allowed are complex (MediaWiki contributors, 2022). Since names do not
influence the semantics, we will not formalize the syntax of Name in this thesis
and define it to be a string.

Definition 4.2.1. We define the abstract syntax of Core Semantic MediaWiki
below. Terminals are given in the typewriter font, whereas non-terminals
are given in italics.

𝑥 ∈ Name := string (name)
𝑖 ∈ CIdent ::= 𝑥:𝑥 (identifier)
𝑣 ∈ CVal ::= true | false (boolean)

| numeral (number)
| string (string)

𝜔 ∈ CComp ::= = | != | > | < (comparator)
𝑠 ∈ CSel ::= Category:𝑥 (category selector)

| 𝑥:+ (namespace selector)
| 𝑥::+ (existence selector)
| 𝑥::<q> 𝑞 </q> (subquery selector)
| 𝜔 𝑥 (article name selector)
| 𝑥::𝜔 𝑣 (value selector)

𝑞 ∈ CQuery ::= [[𝑠]] (selector)
| 𝑞1 OR 𝑞2 (disjunction)
| 𝑞1 AND 𝑞2 (conjunction)

17

For any identifier 𝑖 = 𝑥1:𝑥2 ∈ CIdent, we shall write namespace 𝑖 to refer to
the namespace of 𝑖 (𝑥1), and article 𝑖 to refer to the article name of 𝑖 (𝑥2).

Example 4.2.1. In Surface Semantic MediaWiki, a disjunction can be written
two forms:

(i) [[Has zip code::1023||10115]]

(ii) [[Has zip code::1023]] OR [[Has zip code::10115]]

Both queries are identical. Since (i) is just syntactic sugar for (ii), Core Semantic
MediaWiki only supports the de-sugared form (ii).

4.3 Database function

The evaluation of any query language will depend on the contents of the
database. A semantic function for a query language will therefore have to take
an argument that determines the values in the database. In this section, we
will formalize this argument in the form of a database function.

Recall from the preliminaries (Section 2.2) that a MediaWiki installation con-
sists of a finite number of pages. For Semantic MediaWiki, the relevant infor-
mation for each page is limited to:

(i) The categories on that page,

(ii) The values for each property on that page, and,

(iii) The identifier (title) of that page.

In reality, the database contains much more information about pages (such as
old revisions, edit summaries, etc.), but this is not relevant for the semantics,
and therefore not included in our formalization of the database.

We can easily capture (i) through a set. Since categories are simply pages that
live in the ‘Category’ namespace, we can identify a category solely by its name.
Therefore, the categories for any particular page is simply a constant of the
type:

P(Name)

Where P refers to the power set.

We will capture (ii) by using a function going from the name of a property to
the set of values for that property. Similar to categories, properties are also
pages (but in the ‘Property’ namespace) and can therefore also be identified by
a name in Name. Since a property can also contain references to other pages
(when the type of the property is page), the values of any property are actually
a set containing both members of CVal and members of CIdent. Therefore,

18

the function capturing the properties on a page will be of the type:

Name → P(CIdent + CVal)

If a property does not exist on a page, this function will return the empty set.
Note that this function will only return an inhabited set for a finite number of
input values, as the database can only be finitely large.

Definition 4.3.1. We shall define the type Page as a record that contains both
the categories of a page and the values of each property of a page.

Page := {
cats : P(Name),
props : Name → P(CVal + CIdent)

}

Finally, we capture (iii) by using a (partial) map going from an identifier to a
page.

Definition 4.3.2. The database function is a partial function going from an
identifier to a page. That is, the database function is an element of the type:

Database := CIdent ⇀ Page

The result of a function in Database is ⊥ if the identifier is unknown.

For any database 𝐷 ∈ Database, we write dom 𝐷 to refer to the domain of 𝐷,
that is, the identifiers known to Semantic MediaWiki.

Note that the database function will only be defined for finitely many input
values, as a database can only be finitely large. dom 𝐷 will therefore always
be a finite set.

4.4 Datatypes

Every property in Semantic MediaWiki has a global datatype set by an editor
of the wiki. This datatype changes how values are compared, parsed and
stored in the database. While in Surface Semantic MediaWiki (Chapter 5),
every value is a plain string, in Core Semantic MediaWiki, a value must have
an explicit type. Instead of more conventional languages that parse values
based on differences in syntax (quotes always mean a string, numbers always
mean an integer, etc.), Semantic MediaWiki parses values differently based
on this (silent) datatype. All values in the database for a property must have
the correct type. For example, if a property has the global datatype number, all
values in the database for that property must also be numbers.

19

Consider the boolean property Is capital and the string property Has name.
In the query [[Is capital::No]], the value No would be elaborated to the
boolean value false, while in the query [[Has name::No]] 1, No would be
parsed as the stringNo (assuming that the datatype of Has name isstring).

To capture the concept of datatypes, we define a total function going from the
name of a property to a type.

Definition 4.4.1. We inductively define the datatypes as:

𝜏 ∈ Datatype ::= boolean | string | number | page

Definition 4.4.2. We define a typing function, which is a total function going
from a property name to a datatype. That is, it has the type:

Typing := Name → Datatype

We assume that every property is explicitly assigned a type. In reality, the type
of a property is often omitted and defaults to page.

Definition 4.4.3. We say that a Core Semantic MediaWiki query is well-typed
if and only if:

• All property selectors are well-typed, and

• All subquery selectors are well-typed.

A property selector is well-typed if and only if:

• Its property has type boolean and its value is true or false, or,

• Its property has type string and its value is a string, or,

• Its property has type number and its value is a number.

Any other property selectors are not well-typed. A subquery selector is well-
typed if and only if its property has type page and the subquery is well-typed.

4.5 Semantics

In this section, we will give the formal semantics of Core Semantic Media-
Wiki.

1No is a small village located in Denmark.

20

4.5.1 Semantics of comparators

In this subsection, we define the semantics of comparators.

The (ordinal) comparison operations (> and <) are dependent on the types
of their operands, and we assume that the semantics of these operations are
well-defined for all relevant types.

Definition 4.5.1 (Article name comparators). We define the semantic function
Ca to compare article names as:

Ca : CComp → Name → Name → B

Ca⟦=⟧ 𝑥1 𝑥2 := 𝑥1 = 𝑥2

Ca⟦!=⟧ 𝑥1 𝑥2 := 𝑥1 ≠ 𝑥2

Ca⟦>⟧ 𝑥1 𝑥2 := 𝑥1 > 𝑥2

Ca⟦<⟧ 𝑥1 𝑥2 := 𝑥1 < 𝑥2

In Semantic MediaWiki, article names are compared lexicographically.

Definition 4.5.2 (Value comparators). We define the partial semantic function
Cv to compare values as:

Cv : CComp → CVal → CVal ⇀ B

Cv⟦=⟧ 𝑣1 𝑣2 := 𝑣1 = 𝑣2

Cv⟦!=⟧ 𝑣1 𝑣2 := 𝑣1 ≠ 𝑣2

Cv⟦>⟧ 𝑣1 𝑣2 := 𝑣1 > 𝑣2

Cv⟦<⟧ 𝑣1 𝑣2 := 𝑣1 < 𝑣2

Cv is only well-defined for values of the same datatype and will be ⊥ for non-
matching datatypes.

4.5.2 Semantics of queries and selectors

In this subsection, we will define the semantics of the queries and selectors in
Core Semantic MediaWiki. The result of executing a query in Semantic Media-
Wiki is a set of identifiers, and not a more complicated value such as a table, as
is the case for SQL (Benzaken et al., 2022). This makes the semantics set-based,
and we can use well-defined set operations such as union (∪), intersection (∩)
and set-builder to define it.

The semantics of the main query connectives OR and AND can be modelled
exactly as the set operations union (∪) and intersection (∩) respectively. We
capture this in the function Q (Definition 4.5.3) of the type:

Q : CQuery → Database → P(CIdent)

21

The selectors can be modelled as a filter on the set of pages that are known
to Semantic MediaWiki. For this, we use set-builder notation. The predicate
for this set-builder will be a function that takes the syntax of the selector, the
identifier of the page in question and the database as arguments and returns
whether the identifier matches the selector (see Example 4.5.1). We capture
this through the function S of the type:

S : CSel → CIdent → Database → B

Example 4.5.1. Consider the query with only a single selector:

[[Category:City]]

To answer this query, we can look at each page in the database and check
whether it indeed contains the category City. If we filter (remove) all pages
that do not contain the category City, we’ll be left with the set of pages that
satisfy the above query.

S and Q will be mutually recursive because of subqueries. A query can con-
tain a selector that can contain a query. For the semantics of Core Semantic
MediaWiki, we assume that the query is well-typed.

Remark. The semantic brackets⟦·⟧have nothing to do with the brackets around
a selector ([[·]]), even though they look similar.

Definition 4.5.3. We mutually recursively define the semantic functions S
and Q as:

S⟦Category:𝑥⟧ 𝑖 𝐷 := 𝑥 ∈ cats (𝐷 𝑖) (category)
S⟦𝑥:+⟧ 𝑖 𝐷 := namespace 𝑖 = 𝑥 (namespace)

S⟦𝑥::+⟧ 𝑖 𝐷 := props (𝐷 𝑖) 𝑥 ≠ ∅ (property existence)
S⟦𝑥::<q> 𝑞 </q>⟧ 𝑖 𝐷 := props (𝐷 𝑖) 𝑥 ∩ Q⟦𝑞⟧ 𝐷 ≠ ∅ (subquery)

S⟦𝜔 𝑥⟧ 𝑖 𝐷 := Ca⟦𝜔⟧ (article 𝑖) 𝑥 (article name)
S⟦𝑥::𝜔 𝑣′⟧ 𝑖 𝐷 := ∃ 𝑣 ∈ props (𝐷 𝑖) 𝑥. Cv⟦𝜔⟧ 𝑣 𝑣′ (property value)

Q⟦𝑞1 AND 𝑞2⟧ 𝐷 := Q⟦𝑞1⟧ 𝐷 ∩ Q⟦𝑞2⟧ 𝐷 (conjunction)
Q⟦𝑞1 OR 𝑞2⟧ 𝐷 := Q⟦𝑞1⟧ 𝐷 ∪ Q⟦𝑞2⟧ 𝐷 (disjunction)
Q⟦[[𝑠]]⟧ 𝐷 :=

{

𝑖 ∈ dom 𝐷
�� S⟦𝑠⟧ 𝑖 𝐷

}

(selector)

4.6 Explanation of the semantics

In this section, we will give some additional intuition behind the more difficult
parts of the semantics to hopefully make them clearer.

22

The semantic function for selectors, S, yields a proposition on whether the
given identifier matches the selector for the given database. For most selectors,
this proposition is relatively straightforward. We shall only take a deeper look
at subquery and property value selectors, as those are the least intuitive.

4.6.1 Property value selectors

Because properties can contain multiple values, Semantic MediaWiki selects a
page if there is at least one value that satisfies the comparator. To capture this,
the semantics uses an existential quantification that checks if there is a value
𝑣 in the database that satisfies the comparator with the value in the selector,
𝑣′. This definition leads to somewhat unintuitive behaviour for the not-equals
comparator (!=). Instead of only selecting pages that do not have the specified
value, it selects all pages that have at least one value that is unequal to the
specified value. Therefore, any page with multiple values for that property
will always match. Consider the query:

[[Has zip code::!=1054]]

You might expect Amsterdam to not be included in this query (1054 is a zip
code for Amsterdam), but that is not the case! Since Amsterdam has many zip
codes unequal to 1054, the exists quantifier is satisfied and Amsterdam will be
included in the results.

Because we assume that queries are well-typed, we know that 𝑣 and 𝑣′ have
the same datatype, and we can therefore be sure that the comparison is well-
defined. As such, we do not check this explicitly.

4.6.2 Subquery selectors

Before we go into the formal semantics of subqueries, lets take a brief moment
to look at how subqueries should intuitively behave. We do this by looking at a
concrete example. Consider the query:

[[Is located in::<q>[[Is located in::Europe]]</q>]]

To execute this query, Semantic MediaWiki must check for every page if the
property Is located in shares at least one value with the results of the query
[[Is located in::Europe]].

In the semantics, this is captured using an intersection. The left-hand side of
the intersection, props (𝐷 𝑖) 𝑥, is the values in the database for the property on
which the subquery is executed, and the right-hand side, Q⟦𝑞⟧ 𝐷, is the result
of the subquery. A page is included in the results if and only if this intersection
is not empty, i.e. the result of the subquery and the property share at least one
value.

23

4.7 Equivalence proofs

Using our mechanized semantics (see Chapter 6), we have proven a number of
semantic equivalences for Core Semantic MediaWiki queries. In this section,
we will only give a table of the proven equivalences, and the actual proofs are
given only in the Coq development, which can be found on Zenodo (van Wezel,
2023).

We have proven that the following queries are semantically equivalent:

• [[𝑥::<q>𝑞1 OR 𝑞2</q>]] = [[𝑥::<q>𝑞1</q>]] OR [[𝑥::<q>𝑞2</q>]]

• [[𝑥::+]] = [[𝑥::=𝑣]] OR [[𝑥::!=𝑣]]

• [[𝑥1:+]] = [[𝑥1:+]] AND ([[=𝑥2]] OR [[!=𝑥2]])

• [[𝑥1:+]] = [[𝑥1:+]] AND ([[=𝑥2]] OR [[>𝑥2]] OR [[<𝑥2]])

• [[=𝑥2]] OR [[!=𝑥2]] = [[=𝑥2]] OR [[>𝑥2]] OR [[<𝑥2]]

• 𝑞1 AND 𝑞2 = 𝑞2 AND 𝑞1

• 𝑞1 OR 𝑞2 = 𝑞2 OR 𝑞1

24

Chapter 5

Surface Semantic MediaWiki

5.1 Introduction

In this chapter, we will describe Surface Semantic MediaWiki, which is the frag-
ment of the Semantic MediaWiki query language that we will formalize in this
thesis. It contains most of the important features of the Semantic MediaWiki
query language, namely:

• Category selectors

• Identifier selectors

• Property selectors

• Subqueries and property-chains

• Disjunctions and conjunctions

• Comparators on identifiers and property values

• The page, number, boolean and string datatypes

We start by giving the abstract syntax of Surface Semantic MediaWiki in Sec-
tion 5.2. The semantics of Surface Semantic MediaWiki are not given directly.
Instead, a translation from Surface Semantic MediaWiki to a simpler language,
Core Semantic MediaWiki, is given in Section 5.3. The semantics of Core Se-
mantic MediaWiki are given in Chapter 4.

5.2 Abstract syntax

Similar to what we did for Core Semantic MediaWiki, we will first list the differ-
ent syntactic categories and associated meta-variables. These meta-variables

25

will be used to range over constructs (members) of the respective syntactic
category (Nielson & Nielson, 1992).

Definition 5.2.1 (Syntactic categories). We define the following syntactic cate-
gories for Surface Semantic MediaWiki:

• 𝑥 will range over names, Name;

• 𝑣 will range over values, SValue;

• 𝜔 will range over comparators, SComp;

• 𝑟 will range over references (identifiers and article names), SRef;

• 𝑝 will range over properties, SProp;

• 𝑐 will range over category selectors, SCSel;

• 𝜄 will range over identifier selectors, SISel;

• 𝜙 will range over property selectors, SPSel;

• 𝑞 will range over queries, SQuery.

Identically to Core Semantic MediaWiki, the first syntactic category, Name,
contains all names that MediaWiki allows. Since names do not influence the
behaviour of queries in any way, we will not formalize their syntax in this
thesis and define it to be a string.

The syntactic category SValue captures the different data types that Semantic
MediaWiki has. We define it to be a string, which gets elaborated differently
based on the type of the associated property (see Section 4.4).

Definition 5.2.2 (Abstract syntax). We mutually inductively define the abstract

26

syntax of Surface Semantic MediaWiki as:

𝑥 ∈ Name := string (string)
𝑣 ∈ SValue := string (value)

𝜔 ∈ SComp ::= = | != (equality and inequality)
| > | < (greater and less than)
| >= | <= (greater and less than or equal)

𝑟 ∈ SRef ::= 𝑥:𝑥 (identifier)
| 𝑥 (article name)

𝑝 ∈ SProp ::= 𝑥 (single property)
| 𝑥.𝑝 (property chain)

𝑐 ∈ SCSel ::= 𝑥 (singleton category)
| 𝑐1 || 𝑐2 (disjunction)

𝜄 ∈ SISel ::= 𝑥:+ (namespace selector)
| 𝜔 𝑟 (reference selector)
| 𝜄1 || 𝜄2 (disjunction)

𝜙 ∈ SPSel ::= + (property existence)
| 𝜔 𝑣 (value selector)
| <q> 𝑞 </q> (subquery)
| 𝜙1 || 𝜙2 (disjunction)

𝑞 ∈ SQuery ::= [[Category:𝑐]] (category selector)
| [[𝜄]] (identifier selector)
| [[𝑝::𝜙]] (property selector)
| 𝑞1 OR 𝑞2 (disjunction)
| 𝑞1 AND 𝑞2 (conjunction)

5.3 Elaboration

In this section, we will describe the translation (elaboration) from Surface
Semantic MediaWiki to Core Semantic MediaWiki. Given some typing envi-
ronment in Typing (see Section 4.4), the elaboration function E (see Defini-
tion 5.3.4) turns a Surface Semantic MediaWiki query into a Core Semantic
MediaWiki query.

The result of the elaboration may be undefined if the input query is not well-
typed. This happens when a value does not correspond to its associated
datatype. For example, a query like [[Has population::true]] would not
be well-typed, since true is not a number. If the result of the elaboration is

27

well-defined, then the resulting core query will be well-typed. We have proven
this property in Coq (see Section 5.3.5).

To make the elaboration slightly more comprehensible, we will split it up into
the following functions:

• Eident : SISel → CQuery (Definition 5.3.1)

• Ecat : SCSel → CQuery (Definition 5.3.2)

• Eval : Name → SComp → SValue → Datatype ⇀ CQuery (Defini-
tion 5.3.3)

• Eprop : SProp → SPSel → Typing ⇀ CQuery (Definition 5.3.4)

• E : SQuery → Typing ⇀ CQuery (Definition 5.3.4)

We will assume that a function val : SValue → Datatype ⇀ CValue that
parses a value exists. It is a partial function, because the result will be undefined
if the value is invalid for the given type. We do not define these functions
explicitly, because their exact implementation is not relevant for the behaviour
of queries.

5.3.1 Elaboration of identifier selectors

In this subsection, we give the elaboration rules of identifier selectors.

Definition 5.3.1. We recursively define the function Eident to elaborate a sur-
face identifier selector (SISel) to a core query.

Eident⟦𝑥:+⟧ := [[𝑥:+]]

Eident⟦= 𝑥⟧ := [[:+]] AND [[= 𝑥]]

Eident⟦>= 𝑥⟧ := [[> 𝑥]] OR [[= 𝑥]]

Eident⟦<= 𝑥⟧ := [[< 𝑥]] OR [[= 𝑥]]

Eident⟦𝜔 𝑥⟧ := [[𝜔 𝑥]]

Eident⟦!= 𝑥1:𝑥2⟧ := [[!= 𝑥2]]

Eident⟦>= 𝑥1:𝑥2⟧ := [[𝑥1:+]] AND ([[> 𝑥2]] OR [[= 𝑥2]])
Eident⟦<= 𝑥1:𝑥2⟧ := [[𝑥1:+]] AND ([[< 𝑥2]] OR [[= 𝑥2]])
Eident⟦𝜔 𝑥1:𝑥2⟧ := [[𝑥1:+]] AND [[𝜔 𝑥2]]

Eident⟦𝜄1 || 𝜄2⟧ := Eident⟦𝜄1⟧ OR Eident⟦𝜄2⟧

The reason that = 𝑥 elaborates to a conjunction between a namespace selector
and an article name selector, is because the article name 𝑥 is implicitly assumed
to be in the main namespace. This is not the case for other comparators (see
Example 5.3.1). The elaboration rule for != 𝑥1: 𝑥2 ignores the namespace
completely in the SQL-implementation, but doesn’t ignore it in the Elasticsearch

28

implementation. Since there is no documentation on this, we use the current
behaviour of the SQL-implementation for the elaboration.1

Example 5.3.1. Consider the queries [[>Berlin]] and [[=Berlin]]. Al-
though these queries look very similar, they should be interpreted quite differ-
ently. The first query, [[>Berlin]], selects all pages of which the article name
is (lexicographically) greater than Berlin, regardless of which namespace the
page is in. However, the second query will only select exactly the page Berlin
in the main namespace.

5.3.2 Elaboration of categories

In this subsection, we give the elaboration rules of category selectors.

Definition 5.3.2. We define the function Ecat to elaborate a surface category
selector (SCSel) to a core query.

Ecat ⟦𝑥⟧ := [[Category:𝑥]]

Ecat ⟦𝑐1 || 𝑐2⟧ := Ecat⟦𝑐1⟧ OR Ecat⟦𝑐2⟧

Example 5.3.2. The query [[Category:City||Country]] would be elabo-
rated to:

[[Category:City]] OR [[Category:Country]]

5.3.3 Elaboration of values

In this subsection, we give the elaboration rules for values.

Definition 5.3.3. We define the function Eval to elaborate a surface value
selector to a core query.

Eval⟦𝑥::>= 𝑣⟧ 𝜏 := Eval⟦𝑥::>𝑣⟧ 𝜏 OR Eval⟦𝑥::=𝑣⟧ 𝜏

Eval⟦𝑥::<= 𝑣⟧ 𝜏 := Eval⟦𝑥::<𝑣⟧ 𝜏 OR Eval⟦𝑥::=𝑣⟧ 𝜏

Eval⟦𝑥::𝜔 𝑣⟧ 𝜏 := [[𝑥::𝜔 (val 𝑣 𝜏)]]

Recall that the val function parses a value differently based on the type of
the value, and may be undefined if 𝑣 is not valid for 𝜏. In a query such
as [[Is capital::True]], True would be elaborated to a boolean, while
in a query such as [[Has zip code::True]], it would be elaborated to a
string.

1We have reported this as a bug on GitHub (SemanticMediaWiki/SemanticMediaWiki#5482).

29

5.3.4 Elaboration of property selectors and queries

In this subsection, we give the mutually recursive elaboration rules of prop-
erty selectors and queries. The definition is mutually recursive because of
subqueries.

Definition 5.3.4. We define the mutually recursive functions E and Eprop to
elaborate a surface query and a surface property selector respectively to a
core query.

Eprop⟦𝑥::𝜔 𝑣⟧ Γ :=

[[𝑥::<q> Eident⟦𝜔 𝑣⟧ </q>]] if Γ 𝑥 = page

Eval⟦𝑥::𝜔 𝑣⟧ (Γ 𝑥) otherwise

Eprop⟦𝑥::<q>𝑞</q>⟧ Γ :=

[[𝑥::<q> E⟦𝑞⟧ Γ </q>]] if Γ 𝑥 = page

⊥ otherwise

Eprop⟦𝑥.𝑝::𝜙⟧ Γ :=

[[𝑥::<q> Eprop⟦𝑝 :: 𝜙⟧ Γ </q>]] if Γ 𝑥 = page

⊥ otherwise

Eprop⟦𝑥::+⟧ Γ := [[𝑥 ::+]]

Eprop⟦𝑥::𝜙1 || 𝜙2⟧ Γ := Eprop⟦𝑥 :: 𝜙1⟧ Γ OR Eprop⟦𝑥:: 𝜙2⟧ Γ

E⟦[[Category:𝑐]]⟧ Γ := Ecat⟦𝑐⟧
E⟦[[𝜄]]⟧ Γ := Eident⟦𝜄⟧

E⟦[[𝑝::𝜙]]⟧ Γ := Eprop⟦𝑝::𝜙⟧ Γ

E⟦𝑞1 OR 𝑞2⟧ Γ := E⟦𝑞1⟧ Γ OR E⟦𝑞2⟧ Γ

E⟦𝑞1 AND 𝑞2⟧ Γ := E⟦𝑞1⟧ Γ AND E⟦𝑞2⟧ Γ

We will take a deeper look at the elaboration of value selectors and property
chains, as those are the most difficult.

If we look at how property chains are elaborated, we see that the first property
in the chain is removed at each iteration, and the rest is recursively elaborated
as a subquery. Since property chains are just syntactic sugar for a subquery
(as shown in Section 2.4.4), the elaboration does not change the meaning of
the query.

Example 5.3.3. Consider the following query:

[[Is located in.Has population::>1000000]]

Following our elaboration rules, we get:

[[Is located in::<q>[[Has population::>1000000]]</q>]]

Value selectors are elaborated differently based on the property’s datatype. If
the datatype is a page, we elaborate it to a subquery containing an identifier

30

selector. We do this because identifier selectors and property selectors with
pages are semantically equivalent, and so that our core language does not need
a separate page datatype. It also serves as an example of how to elaborate
other complex datatypes, such as records 2. For the simple datatypes (number,
boolean and string), we use Eval.

5.3.5 Type-soundness of elaboration

We have proven that the elaboration function is type-sound in Coq (Section 6.6.1).
More specifically, we have proven that:

∀ 𝑞, ∀ Γ, (E⟦𝑞⟧ Γ) ↓→ 𝑇 (E⟦𝑞⟧ Γ)

Where 𝑇 is a unary predicate that denotes whether a query is well-typed
according to the typing rules given in Definition 4.4.3. In other words, we have
proven that if the result of our elaboration is well-defined, then that resulting
query is well-typed.

2https://www.semantic-mediawiki.org/wiki/Help:Type Record

31

https://www.semantic-mediawiki.org/wiki/Help:Type_Record

Chapter 6

Coq mechanization

6.1 Introduction

In this chapter, we will discuss how we mechanized our semantics in Coq and
show how the most important definitions are encoded.

Everything from Chapter 4 and Chapter 5 has been mechanized in Coq. This
includes the semantics of Core Semantic MediaWiki and the elaboration
from Surface Semantic MediaWiki to Core Semantic MediaWiki. We have
used this mechanization to prove that our elaboration is type-sound, and
to prove a number of semantic equivalences of Core Semantic MediaWiki
queries.

6.2 Coq-std++

We use the Coq-std++ (The Iris Development Team, 2023) library in our Coq
mechanization, which provides a large number definitions and lemmas for
well-known data structures. The most notable definitions that we use are:

• gmap, used to represent finite maps, and,

• gset, used to represent finite sets.

6.3 Values and identifiers

We encode names, identifiers and values (Definition 4.2.1) as shown in Listing 1
in a separate module named Common, since they are used in multiple places
throughout the Coq development.

The definition name is simply an alias for a string. An identifier is encoded
as a Record with two fields: ident nspace containing the namespace of the

32

identifier, and ident art name containing the article name of the identifier. Coq
automatically introduces a function for each field of a record to retrieve that
field. For example, if 𝑖 is an identifier, we can write ident_nspace 𝑖 to refer to
the namespace of 𝑖. Values are encoded as an Inductive.

Module Common.

Definition name := string.

Record ident := Ident {

ident_nspace : name;

ident_art_name : name

}.

Inductive val :=

| ValNat : nat → val

| ValStr : string → val

| ValBool : bool → val.

End Common.

Listing 1: The common definitions.

6.4 Database

We have mechanized the Page type (Definition 4.3.1) as a Record containing
the fields cats and props as shown in Listing 2. The cats field is a finite set of
names encoded as a gset, whereas the props field is a finite map going from
names to sets of values, and is encoded as a gmap. The values in the database
are encoded as a sum type.

The database function (Definition 4.3.2) is simply a map from ident to page.

Module Database.

Definition val := sum Common.val Common.ident.

Record page := Page {

cats : gset Common.name;

props : gmap Common.name (gset val);

}.

Definition database := gmap Common.ident page.

End Database.

Listing 2: The definition of Page and Database.

33

6.5 Core Semantic MediaWiki

We use a number of Inductive definitions to represent the abstract syn-
tax trees of Core Semantic MediaWiki (Definition 4.2.1) as shown in List-
ing 3.

The with keyword creates a mutually inductive definition. This is required
for the mechanization of subqueries. We cannot use two separate Inductive
definitions, because they would not be able to refer to each other.

The semantics (Definition 4.5.3) are implemented using a mutually recursive
Fixpoint and are shown in Listing 3. A fixpoint is similar to a regular defini-
tion, but is able to call itself. To be able to formalize subqueries, the semantics
need to be recursive.

The bool_decide function is a Coq-std++ definition that takes a (decidable)
Prop and turns that into a boolean. This is required, because filter only
works on decidable propositions, and Prop in general is not. It is not possible
to change the return type of eval selector to Prop and add it to the Decision
typeclass, because of its mutual dependency on eval.

The semantics on paper are very close to the semantics in Coq. This makes it
easy to verify that the Coq implementation indeed constitute the semantics
given in this thesis on paper.

6.6 Surface Semantic MediaWiki

The abstract syntax of Surface Semantic MediaWiki is encoded in Coq using
a number of Inductive definitions and is given in Listing 4.

The query and prop sel definitions need to be mutually inductive, because of
subqueries. The inductive definitions directly encode Definition 5.2.2.

6.6.1 Type-soundness of elaboration

We have used our Coq formalization to prove that our elaboration is type-sound
(Section 5.3.5). That is, if the result of the elaboration is well-defined, then the
result is well-typed. We have encoded this in Coq as follows:

Lemma elaborate_Some_typecheck

(Γ : typing) (q : Surface.query) (q' : Core.query) :

elaborate Γ q = Some q' → typecheck Γ q'.

Because theelaborate function operates on a mutuallyInductive type (query),
we have to use mutual induction for this proof. For induction on non-mutual
inductive types, the induction principle that Coq automatically generates is
often sufficient. However, for mutually inductive types, this is not the case. Coq

34

only automatically generates non-mutual induction principles. This means
that the inductive proof will get stuck on the PropSel case, since we know
nothing about the prop sel parameter. To solve this, we use the Scheme com-
mand to generate a mutual induction principle manually, and use that to prove
elaborate Some typecheck.

35

Module Core.

Inductive comp := CompEq | CompNeq | CompGt | CompLt.

Inductive query :=

| Selector : selector → query

| Disjunction : query → query → query

| Conjunction : query → query → query

with selector :=

| Category : Common.name → selector

| Namespace : Common.name → selector

| Existence : Common.name → selector

| Subquery : Common.name → query → selector

| Article : comp → Common.name → selector

| Value : comp → Common.name → Common.val → selector.

Fixpoint eval (q : Core.query) (d : Database.database) :

gset Common.ident

:= match q with

| Core.Selector s =>

dom (filter (𝜆 i_di, eval_selector s i_di.1 i_di.2 d) d)

| Core.Disjunction q1 q2 => eval q1 d ∪ eval q2 d

| Core.Conjunction q1 q2 => eval q1 d ∩ eval q2 d

end

with eval_selector

(s : Core.selector)

(i : Common.ident)

(di : Database.page)

(d : Database.database)

: bool :=

match s with

| Core.Category x => bool_decide (x ∈ Database.cats di)

| Core.Namespace x => bool_decide

(x = Common.ident_nspace i)

| Core.Existence x => bool_decide

(set_inhabited $ Database.props di !!! x)

| Core.Subquery x q => bool_decide

(set_inhabited

(Database.props di !!! x ∩ set_map inr (eval q d)))

| Core.Article 𝜔 x => bool_decide

(eval_art_name_comp 𝜔 (Common.ident_art_name i) x)

| Core.Value 𝜔 x v' => bool_decide

(set_Exists

(𝜆 v, eval_val_comp 𝜔 v v')

(Database.props di !!! x))

end.

End Core.

Listing 3: The abstract syntax and the semantic function of Core Semantic
MediaWiki.

36

Module Surface.

Inductive comp :=

| CompEq | CompNeq

| CompGt | CompLt

| CompGte | CompLte.

Inductive ref :=

| Ident : Common.ident → ref

| ArtName : Common.name → ref.

Inductive prop :=

| SingletonProperty : Common.name → prop

| PropertyChain : Common.name → prop → prop.

Inductive cat_sel :=

| Category : Common.name → cat_sel

| CatSelDisj : cat_sel → cat_sel → cat_sel.

Inductive ident_sel :=

| Namespace : Common.name → ident_sel

| IdentComp : comp → ref → ident_sel

| IdentSelDisj : ident_sel → ident_sel → ident_sel.

Inductive query :=

| CatSel : cat_sel → query

| IdentSel : ident_sel → query

| PropSel : prop → prop_sel → query

| Disjunction : query → query → query

| Conjunction : query → query → query

with prop_sel :=

| Wildcard : prop_sel

| Subquery : query → prop_sel

| Value : comp → string → prop_sel

| PropSelDisj : prop_sel → prop_sel → prop_sel.

End Surface.

Listing 4: The abstract syntax of Surface Semantic MediaWiki.

37

Chapter 7

Related Work

In this chapter, we discuss related work. Since not much academic work has
been done formalizing Semantic MediaWiki in particular, this section will also
look into formalizations of other (query) languages, such as SQL.

7.1 SQL formalizations

Guagliardo and Libkin, 2017 give the formal semantics of a basic fragment of
SQL. In particular, they include the handling of NULL values in their fragment,
which is non-trivial. Using their semantics, they show that the formalized
fragment, called basic SQL, has the same expressive power as relational algebra
extended with bag semantics and NULLs. Furthermore, they demonstrate that
the common believe that SQL queries require three-valued logic (true, false
and unknown) is incorrect. They do this by providing a translation from two-
values semantics, where true and unknown are conflated, to three-valued
semantics. We do not consider the handling of NULL values in our semantics,
because they do not exist in Semantic MediaWiki.

Chu et al., 2017 give denotational semantics for a large fragment of SQL, that
includes bags, correlated subqueries, aggregations and indexes. They also
implement their semantics in Coq as part of Cosette. Cosette is a tool that can
be used to prove the equivalence of SQL rewrite rules. The power of Cosette
is demonstrated through 23 equivalence proofs.

Benzaken and Contejean, 2019 give executable semantics of a realistic fragment
of SQL, called SQLCoq, and also mechanize these semantics it in Coq. Similar
to our semantics, they started with set-theoretic semantics. Only later in the
development were bag semantics added. According to the authors, the real
challenge in defining semantics for SQL are correlated queries, and especially
SQL’s management of expressions and environments. Using their semantics,

38

they were able to prove that SQLCoq is equivalent to relational algebra.

7.2 Verifications of query compilers

Q*cert (Auerbach et al., 2017) is a platform for the development and verification
of query compilers. It allows you to describe and reason about a compiler in
Coq. The compiler is then extracted from Coq using Coq’s extraction mechanism.
Q*Cert supports the implementation of compilers with a number of different
front-ends, such as SQL, OQL or JRule. It has the ability to compile these
different front-ends, to a number of back-ends, such as Java, JavaScript or
IBM’s Cloudant.

DBCert (Benzaken et al., 2022) is a mechanically verified optimizing compiler
implemented in the Coq proof assistant that goes from standard SQL queries to
imperative JavaScript. This JavaScript can then be used to query an in-memory
database through Node.js. DBCert works by first parsing standard SQL into a
canonical form of SQL called SQLCoq, which in turn is compiled to an extended
version of relational algebra called SQLAlg. SQLAlg is translated to NRAe, which
is where query optimizations can be performed. Finally, NRAe is translated
using different intermediate languages, to the imperative language Imp, which
is used for generating the JavaScript code. Every step of the compilation from
SQLCoq to Imp is formally verified using Coq. DBCert also handles nested
queries (subqueries), which is challenging because of correlation between the
queries, where a nested query uses a variable from the outer query. This is
not an issue for Semantic MediaWiki, because it does not have the notion of
variables.

7.3 Formalizations of other query languages

While much academic work focuses on formalizing SQL, there are also formal-
izations of other query languages.

Pérez et al., 2009 provide compositional semantics for a fragment of SPARQL,
and use it to provide several rewrite rules that may be used for optimizing
queries.

Dı́az et al., 2020 give the first mechanized formalization of GraphQL, called
GraphCoQL. As the name suggests, the formalization is implemented in the
Coq proof assistant. They demonstrate GraphCoQL by studying the normaliza-
tion process of GraphQL queries proposed by Hartig and Pérez, 2018. More
specifically, they define a property in GraphCoQL about whether a query is
in normal form and define and verify a normalization procedure using their
formalization.

39

7.4 Semantic MediaWiki

Papers talking about formalizing Semantic MediaWiki are unfortunately few
and far between. As far as we know, there is only one other paper that worked
on formalizing Semantic MediaWiki.

Bao et al., 2008 give semantics for both the modelling language (the language
that is used to insert new data into a wiki) and the query language of Semantic
MediaWiki.

They formalize the query language of Semantic MediaWiki by translating
queries into logic programs. This translation can be used to transform any
Semantic MediaWiki query 𝑞 to a logic program, which, when executed, will
respond with the pages that match 𝑞. They also provide a translation from
the data model to logic programs. Using their semantics, Bao et al., 2008 show
that query answering in Semantic MediaWiki is P-complete for the number
of annotations in the database, meaning that it can be solved in polynomial
time, or logarithmic if subqueries are not considered. It should be noted that
the formalization does not consider data types appropriately, as they only
consider the data type page. However, they argue that the semantics can easily
be extended incorporate data types.

Furthermore, Bao et al., 2008 present a model-theoretical semantics for the
modelling language used in Semantic MediaWiki, used to insert new data into
the database. Model-theoretical semantics is an approach that is used in formal
logic to provide a precise interpretation of a language. They define an interpre-
tation of a Semantic MediaWiki wiki as a tuple, 𝑊 , that contains the semantic
data stored in the wiki. An interpretation is a model of𝑊 if it satisfies a number
of conditions that reflect the behaviour of Semantic MediaWiki’s modelling
language. For example, if a page contains the annotation [[Category:City]],
an interpretation must establish that the page is then part of the City category.
They use their semantics to reason about the inference capabilities that Se-
mantic MediaWiki offers through a number of entailment rules. Furthermore,
they show that these entailment rules are sound and complete, and they show
that inference in Semantic MediaWiki is tractable.

Finally, Bao et al., 2008 provide a number of improvements that can be made to
the modelling and query language of Semantic MediaWiki. Some of these im-
provements have already been implemented in later versions, such as inverse
properties (Semantic MediaWiki contributors, 2018b).

40

Chapter 8

Conclusions and future work

In this thesis, we have formalized a fragment of the query language of Semantic
MediaWiki and have provided a mechanized semantics in Coq. We did this by
defining the semantics for a minimal language that captures all the features of
our fragment of Semantic MediaWiki, called Core Semantic MediaWiki, and
by providing a translation from regular Semantic MediaWiki queries to Core
Semantic MediaWiki. Furthermore, we used our semantics to prove a number
of semantic equivalences.

Future work includes defining the semantics for more of the features of Se-
mantic MediaWiki, such as:

• Inverse properties (Semantic MediaWiki contributors, 2018b)

• Like and not-like comparators (Semantic MediaWiki contributors, 2023)

• Full-text search (Semantic MediaWiki contributors, 2018a)

• Inferencing (Semantic MediaWiki contributors, 2020a)

• Additional datatypes (Semantic MediaWiki contributors, 2020b)

Other future work could be the verification of the query compiler for Semantic
MediaWiki. For example, by using the semantics of SQLCoq (Benzaken & Conte-
jean, 2019) and our semantics of Semantic MediaWiki to prove that all compiled
queries are equivalent to the respective source query. Finally, one could do
the same for other supported back-ends (SPARQL and Elasticsearch) and in the
process show that the different back-ends give equivalent results.

41

Bibliography

Appel, A. W., & Blazy, S. (2007). Separation logic for small-step cminor. In K.
Schneider & J. Brandt (Eds.), Theorem proving in higher order logics,
20th international conference, tphols 2007, kaiserslautern, germany,
september 10-13, 2007, proceedings (pp. 5–21, Vol. 4732). Springer. https:
//doi.org/10.1007/978-3-540-74591-4\ 3

Auerbach, J. S., Hirzel, M., Mandel, L., Shinnar, A., & Siméon, J. (2017). Q*cert: A
platform for implementing and verifying query compilers. In S. Sali-
hoglu, W. Zhou, R. Chirkova, J. Yang, & D. Suciu (Eds.), Proceedings of the
2017 ACM international conference on management of data, SIGMOD
conference 2017, chicago, il, usa, may 14-19, 2017 (pp. 1703–1706). ACM.
https://doi.org/10.1145/3035918.3056447

Bao, J., Ding, L., & Hendler, J. (2008). Knowledge representation and query in
Semantic MediaWiki: A formal study.

Benzaken, V., & Contejean, E. (2019). A Coq mechanised formal semantics for
realistic SQL queries: Formally reconciling SQL and bag relational
algebra. In A. Mahboubi & M. O. Myreen (Eds.), Proceedings of the 8th
ACM SIGPLAN international conference on certified programs and proofs,
CPP 2019, cascais, portugal, january 14-15, 2019 (pp. 249–261). ACM.
https://doi.org/10.1145/3293880.3294107

Benzaken, V., Contejean, E., Hachmaoui, M. H., Keller, C., Mandel, L., Shinnar,
A., & Siméon, J. (2022). Translating canonical SQL to imperative code
in Coq. Proc. ACM Program. Lang., 6(OOPSLA1), 1–27. https://doi.org/10.
1145/3527327

Chu, S., Weitz, K., Cheung, A., & Suciu, D. (2017). HoTTSQL: Proving query
rewrites with univalent SQL semantics. In A. Cohen & M. T. Vechev
(Eds.), Proceedings of the 38th ACM SIGPLAN conference on program-
ming language design and implementation, PLDI 2017, barcelona, spain,
june 18-23, 2017 (pp. 510–524). ACM. https://doi.org/10.1145/3062341.
3062348

Coq Development Team. (2021). The Coq proof assistant reference manual.
https://coq.inria.fr/doc/

Dı́az, T., Olmedo, F., & Tanter, É. (2020). A mechanized formalization of GraphQL.
In J. Blanchette & C. Hritcu (Eds.), Proceedings of the 9th ACM SIGPLAN

42

https://doi.org/10.1007/978-3-540-74591-4_3
https://doi.org/10.1007/978-3-540-74591-4_3
https://doi.org/10.1145/3035918.3056447
https://doi.org/10.1145/3293880.3294107
https://doi.org/10.1145/3527327
https://doi.org/10.1145/3527327
https://doi.org/10.1145/3062341.3062348
https://doi.org/10.1145/3062341.3062348
https://coq.inria.fr/doc/

international conference on certified programs and proofs, CPP 2020,
new orleans, la, usa, january 20-21, 2020 (pp. 201–214). ACM. https :
//doi.org/10.1145/3372885.3373822

Floyd, R. W. (1967). Assigning meanings to programs. Mathematical Aspects of
Computer Science, 19, 19–32. https://doi.org/10.1090/psapm/019/0235771

Guagliardo, P., & Libkin, L. (2017). A formal semantics of SQL queries, its vali-
dation, and applications. Proc. VLDB Endow., 11(1), 27–39. https://doi.
org/10.14778/3151113.3151116

Hartig, O., & Pérez, J. (2018). Semantics and complexity of GraphQL. In P.
Champin, F. Gandon, M. Lalmas, & P. G. Ipeirotis (Eds.), Proceedings of
the 2018 world wide web conference on world wide web, WWW 2018,
lyon, france, april 23-27, 2018 (pp. 1155–1164). ACM. https://doi.org/10.
1145/3178876.3186014

Jung, R., Jourdan, J., Krebbers, R., & Dreyer, D. (2018). RustBelt: Securing the
foundations of the Rust programming language. Proc. ACM Program.
Lang., 2(POPL), 66:1–66:34. https://doi.org/10.1145/3158154

Krebbers, R. J. (2015). The C standard formalized in Coq [Doctoral dissertation].
Lassila, O., & Swick, R. R. (1999). Resource description framework (RDF) model

and syntax specification. http://www.w3.org/TR/1999/PR-rdf-syntax-
19990105

Leroy, X. (2009). A formally verified compiler back-end. J. Autom. Reason., 43(4),
363–446. https://doi.org/10.1007/s10817-009-9155-4

MediaWiki contributors. (2022). Manual:Page title [Online; accessed 18-April-
2023]. https : / / www. mediawiki . org / w / index . php ? title = Manual :
Page title&oldid=5609477

Nielson, H. R., & Nielson, F. (1992). Semantics with applications - a formal intro-
duction. Wiley.

Pérez, J., Arenas, M., & Gutierrez, C. (2009). Semantics and complexity of
SPARQL. ACM Trans. Database Syst., 34(3), 16:1–16:45. https : / / doi .
org/10.1145/1567274.1567278

Semantic MediaWiki contributors. (2018a). Help:full-text search [Online; ac-
cessed 31-May-2023]. https://www.semantic-mediawiki.org/w/index.
php?title=Help:Full-text search&oldid=64477

Semantic MediaWiki contributors. (2018b). Help:inverse properties [Online;
accessed 31-May-2023]. https://www.semantic-mediawiki.org/w/index.
php?title=Help:Inverse properties&oldid=62695

Semantic MediaWiki contributors. (2019). Help:user manual [Online; accessed
31-May-2023]. https://www.semantic-mediawiki.org/w/index.php?
title=Help:User manual&oldid=68119

Semantic MediaWiki contributors. (2020a). Help:inferencing [Online; accessed
27-May-2023]. https://www.semantic-mediawiki.org/w/index.php?
title=Help:Inferencing&oldid=73704

43

https://doi.org/10.1145/3372885.3373822
https://doi.org/10.1145/3372885.3373822
https://doi.org/10.1090/psapm/019/0235771
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.1145/3178876.3186014
https://doi.org/10.1145/3178876.3186014
https://doi.org/10.1145/3158154
http://www.w3.org/TR/1999/PR-rdf-syntax-19990105
http://www.w3.org/TR/1999/PR-rdf-syntax-19990105
https://doi.org/10.1007/s10817-009-9155-4
https://www.mediawiki.org/w/index.php?title=Manual:Page_title&oldid=5609477
https://www.mediawiki.org/w/index.php?title=Manual:Page_title&oldid=5609477
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
https://www.semantic-mediawiki.org/w/index.php?title=Help:Full-text_search&oldid=64477
https://www.semantic-mediawiki.org/w/index.php?title=Help:Full-text_search&oldid=64477
https://www.semantic-mediawiki.org/w/index.php?title=Help:Inverse_properties&oldid=62695
https://www.semantic-mediawiki.org/w/index.php?title=Help:Inverse_properties&oldid=62695
https://www.semantic-mediawiki.org/w/index.php?title=Help:User_manual&oldid=68119
https://www.semantic-mediawiki.org/w/index.php?title=Help:User_manual&oldid=68119
https://www.semantic-mediawiki.org/w/index.php?title=Help:Inferencing&oldid=73704
https://www.semantic-mediawiki.org/w/index.php?title=Help:Inferencing&oldid=73704

Semantic MediaWiki contributors. (2020b). Help:list of datatypes [Online; ac-
cessed 31-May-2023]. https://www.semantic-mediawiki.org/w/index.
php?title=Help:List of datatypes&oldid=74038

Semantic MediaWiki contributors. (2020c). Semantic MediaWiki 1.0.0 [Online;
accessed 24-May-2023]. https://www.semantic-mediawiki.org/w/index.
php?title=Semantic MediaWiki 1.0.0&oldid=74787

Semantic MediaWiki contributors. (2023). Help:search operators [Online; ac-
cessed 31-May-2023]. https://www.semantic-mediawiki.org/w/index.
php?title=Help:Search operators&oldid=84481

Slind, K., & Norrish, M. (2008). A brief overview of HOL4. In O. A. Mohamed,
C. Muñoz, & S. Tahar (Eds.), Theorem proving in higher order logics
(pp. 28–32). Springer Berlin Heidelberg.

The Iris Development Team. (2023). Coq-std++. https://gitlab.mpi-sws.org/iris/
stdpp

van Wezel, M. (2023). Formalizing the query language of Semantic MediaWiki
(Version 1.0.0). Zenodo. https://doi.org/10.5281/zenodo.8086728

Wenzel, M., Paulson, L. C., & Nipkow, T. (2008). The Isabelle framework. In
O. A. Mohamed, C. Muñoz, & S. Tahar (Eds.), Theorem proving in higher
order logics (pp. 33–38). Springer Berlin Heidelberg.

44

https://www.semantic-mediawiki.org/w/index.php?title=Help:List_of_datatypes&oldid=74038
https://www.semantic-mediawiki.org/w/index.php?title=Help:List_of_datatypes&oldid=74038
https://www.semantic-mediawiki.org/w/index.php?title=Semantic_MediaWiki_1.0.0&oldid=74787
https://www.semantic-mediawiki.org/w/index.php?title=Semantic_MediaWiki_1.0.0&oldid=74787
https://www.semantic-mediawiki.org/w/index.php?title=Help:Search_operators&oldid=84481
https://www.semantic-mediawiki.org/w/index.php?title=Help:Search_operators&oldid=84481
https://gitlab.mpi-sws.org/iris/stdpp
https://gitlab.mpi-sws.org/iris/stdpp
https://doi.org/10.5281/zenodo.8086728

	Introduction
	Semantic MediaWiki by example
	Introduction
	Semantic MediaWiki
	Topography wiki
	Features
	Identifier selectors
	Category selectors
	Property selectors
	Subqueries and property-chains
	Disjunctions and conjunctions

	Notation
	Record types
	Multi-argument function types
	Partial functions

	Core Semantic MediaWiki
	Introduction
	Abstract syntax
	Database function
	Datatypes
	Semantics
	Semantics of comparators
	Semantics of queries and selectors

	Explanation of the semantics
	Property value selectors
	Subquery selectors

	Equivalence proofs

	Surface Semantic MediaWiki
	Introduction
	Abstract syntax
	Elaboration
	Elaboration of identifier selectors
	Elaboration of categories
	Elaboration of values
	Elaboration of property selectors and queries
	Type-soundness of elaboration

	Coq mechanization
	Introduction
	Coq-std++
	Values and identifiers
	Database
	Core Semantic MediaWiki
	Surface Semantic MediaWiki
	Type-soundness of elaboration

	Related Work
	SQL formalizations
	Verifications of query compilers
	Formalizations of other query languages
	Semantic MediaWiki

	Conclusions and future work

