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Abstract

A growing number of companies use Industrial Control Systems (ICS) in order
to facilitate and speed up production. OPC UA is a widely used standard that
describes how devices in ICS should communicate. The functioning of such systems
is critical in many cases, and malfunction could cause both economic and physical
harm depending on the system, hence it is important that such systems are secured
properly.

Therefore, we performed fuzzing of the protocol stack of multiple open-source
implementations of the OPC UA standard. Fuzzing is a method of testing a System
Under Test (SUT). During a fuzzing test, the fuzzer automatically sends malformed
messages to the SUT. The fuzzer continuously checks for crashes during testing.
If a crash is found, this could be indicative of a serious flaw that could be used to
take over or perform denial of service on a system.

While research has been performed on the security of Open Platform Commu-
nications Unified Architecture (OPC UA) protocols, it is either a few years old or
lacks depth on the fuzzing part of the research. We performed both black-box and
grey-box fuzzing on 7 Open Platform Communications Unified Architecture (OPC
UA) implementations and ensured that the experiments were repeatable for future
use.

We found that performing grey-box fuzzing using AFLNet was the most effec-
tive fuzzing-method. Using this method, we found one crashe in the legacy OPC
UA ANSI-C stack and two crashes in FreeOpcUa.
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1 Introduction

Open Platform Communications Unified Architecture (OPC UA) is a standard which
is used to exchange messages between different machines within Industrial Control Sys-
tems (ICS), such as industrial robots or CNC machines. These messages include device
metadata, sensor data and commands. One of the main reasons the OPC UA standard
exists is to ensure that communication is possible between different combinations of
machines and software. As a result of this, numerous open source implementations of
the OPC UA protocol have been written.

In 2020, a study was performed on the security of OPC UA servers that were exposed
to the internet [4]. Dahlmanns et al. discovered 1114 accessible OPC UA servers, out of
which 92% were configured insecurely. 44% of the found servers allowed unauthenticated
users to read, write and/or execute other commands. The fact that a high amount of
these systems are available to the internet increases the importance to consider the
security of them.

Multiple researchers have already looked into the security of several OPC UA im-
plementations. In 2022, researchers from the German Federal Office for Information
Security (BSI), wrote an extensive report about the security of various implementations
and applications of the OPC UA protocol, including a section about fuzzing these im-
plementations [7]. Researchers from Kaspersky Lab ICS CERT also tested the security
of the OPC UA protocol. The main focus of their paper, published in 2018, was fuzzing
the reference server provided by the OPC Foundation [3]. We discuss the works by BSI
and Kaspersky Lab in Chapter 3.

Most research that has been done about fuzzing OPC UA is either a few years old, or
lacks detail about the fuzzing process. The nature of open source software also means
that such software is often frequently updated. To ensure relevancy of this research,
it is important to describe the process of testing the security of the several OPC UA
implementations. This way, these experiments could be repeated in the future to assess
the security of future versions of these implementations. Therefore, in this thesis, the
research question How do we effectively fuzz open source implementations of
the OPC UA protocol? will be answered.

In Chapter 2, required background information for this thesis will be explained. This
includes information about the workings of the OPC UA protocol that is required for
fuzzing the OPC UA implementations, information about sanitizers and general fuzzing
terminology. In Chapter 3, we discuss related work. Specifically, we discuss research
which has already been done about the security of OPC UA. In Chapter 4, we perform
black-box fuzzing on seven OPC UA implementations using Boofuzz. In Chapter 5, we
use AFLNet, a fuzzer only capable of fuzzing C and C++ programs, to perform grey-box
fuzzing on three OPC UA implementations written in C and C+-. Chapter 6 discusses
future work and Chapter 7 contains the conclusions of this thesis.



2 Background

In this chapter, we explain the background information required to understand the
experiments in this thesis. In Section 2.1, background about sanitizers is given. In
Section 2.2, fuzzing terminology is defined. In Section 2.3, important details about the
OPC UA standard that are required for fuzzing OPC UA implementations are explained.

2.1 Sanitizers

Sanitizers are tools that can be specified during compile time that add checks to a
program when it is run. Languages such as C and C++ do not check if the developer
is doing something it should not do, such as accessing an array out of bounds. While
the behavior of these languages improves performance, it also makes it more likely for
programmers to make mistakes that can cause bugs. Sanitizers add a set of checks to
the code that will cause the program to report various errors that C/C-++ compilers do
not check for by default.

Sanitizers are supported by both the GCC and Clang compilers. In most cases, they
can simply be enabled by adding a flag to the compiler. However, most sanitizers cost
a significant amount of performance while using it with a program. An overview of
popular sanitizers is given in Sections 2.1.1 to 2.1.4.

2.1.1 AddressSanitizer

AddressSanitizer (ASAN) [24] was introduced in 2012 by researchers at Google. ASAN
detects out-of-bounds accesses of memory and use-after-free bugs, the latter of which
occurs when a program uses a pointer whose destination that has been freed. If either
out-of-bounds access or use-after-free occurs, ASAN crashes the program and reports
the problem. According to the researchers from Google, using ASAN causes an average
slowdown of 73%.

2.1.2 MemorySanitizer

MemorySanitizer (MSAN) [26] was introduced in 2015, also by a group of researches at
Google. MSAN detects uninitialized reads, which occurs when we initialize a variable
in C/C++ and read from it without first assigning a value to it. For example, if we
initialize an array in C, it will not initialize its values: the values of the array will initially
be set to what was in that exact spot in memory before it was initialized. These values
are unpredictable and bugs could occur if the developer assumes that the values are,
for example, 0. Since the initial values of variables are quite often 0, these bugs do not
always occur. If MSAN detects such a read, it will crash the program and print a report
stating where the uninitialized read occurred. MSAN causes an average slowdown of
250%.

2.1.3 UndefinedBehaviorSanitizer

UndefinedBehaviorSanitizer (UBSAN) detects various types of undefined behavior in
C/C++. Examples of undefined behavior include:

e bool values being set to other values than 0 or 1
e Functions not returning values while a return type has been defined

e Usages of null pointers



UBSAN can be configured such that when it detects undefined behavior, it will print
an error and crash the program. The documentation! for Clang contains a list of avail-

able configuration options. It also contains a complete list of undefined behaviors that
UBSAN detects.

2.1.4 ThreadSanitizer

ThreadSanitizer (TSAN) [25] is used for detecting data races in multithreaded C/C++
applications. By default, TSAN will print a report both when it finds a data race. It
will not crash the program as soon as it finds a data race. Instead, it prints a full report
with all found data races after the program has finished running. If any data races were
reported, TSAN changes the exit code of the program so it can be easily detected by
other tools.

2.2 Fuzzing

In Sections 2.2.1 to 2.2.5, we determine the fuzzing terminology and techniques that are
used throughout this thesis.

2.2.1 General idea

When fuzzing a System Under Test (SUT), we send various malformed inputs to the
SUT in hopes of crashing it [6, 17]. These crashes could reveal several types of bugs
in the SUT. For example, in memory unsafe languages, a buffer overflow could occur,
which could then be used to crash the program and could cause denial of service. In
more sophisticated attacks, this kind of bugs could be abused by an attacker to take
over the system.

2.2.2 Black-box fuzzing

When we black-box fuzz a SUT, we do not have or use any knowledge about the internal
workings of said SUT [28]. A black-box fuzzer provides input to the SUT and can only
observe the program from outside. A black-box fuzzer can only read the output the
program gives, which includes observing crashes.

2.2.2.1 Grammar-based fuzzing

Black-box fuzzing is often grammar based. The most basic form of fuzzing would be to
provide completely random input to the SUT. However, the large number of possible
inputs a program can have when fuzzing would make this method of fuzzing unfeasible
in most cases. Furthermore, a lot of programs and protocols depend on a specific
format, such as XML, and simply reject packets that stray away from that format. With
grammar based fuzzing, the expected input format must be determined and provided
beforehand, including each of the fields within said format [14]. Depending on the fuzzer,
it is also possible to determine a grammar for the state model of the program.

An example of a fuzzer capable of black-box fuzzing is Boofuzz [22], which we used
to fuzz an OPC UA implementations in Chapter 4. Boofuzz accepts grammar written
with a specific Python syntax. If we would for example want to fuzz the OPC UA
message type OpenSecureChannelRequest, we would need to provide a grammar for
that message and the Hello message type preceding it. Furthermore, we would also need
to specify to specify the state model. In this case, we should specify in the grammar
that OpenSecureChannelRequest follows Hello.

Thttps://clang.1lvm.org/docs/UndefinedBehaviorSanitizer.html
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2.2.2.2 Dumb mutation-based fuzzing

Mutation-based fuzzing is a form of fuzzing where the fuzzer takes an input and mutates
it. We do not provide a grammar of the SUT for this kind of fuzzer. Instead we provide
seed inputs: actual inputs that could be given to the SUT. Examples of tools that aid
with or perform mutation based fuzzing are Radamsa [15] and zzuf [16]. We could
consider these tools as '"dumb’ mutation based fuzzers: they do not use feedback from
the SUT to adjust their inputs. An example of several mutations generated by Radamsa
has been provided in Figure 1.

$ echo "The current time is 12:00." | radamsa
The current time is 12:4294967297.
The current time is 12:0.

$ echo "The current time is 12:00." | radamsa
The current time is 12:3182974.
$ echo "The current time is 12:00." | radamsa

The current time is 128:—-170141183460469231731687303715884105728.

Figure 1: Examples of mutations generated by Radamsa

2.2.3 White-box fuzzing

White box fuzzers commonly use symbolic execution in order to effectively explore dif-
ferent branches in the SUT. Reaching the branch containing the call to abort in the
program shown in Figure 2 could take a long time when using a traditional black-box
fuzzer, as the fuzzer would A white-box fuzzer, would perform symbolic execution in an
attempt to reach as many paths as possible within the SUT. As such, a white-box fuzzer
would be able to reach the call to abort in the example program more quickly than a
black-box fuzzer.

void function (int a) {
if (a = 1234) {
abort () ;

Figure 2: Example program

2.2.4 Grey-box fuzzing

Grey-box fuzzers, also known as coverage guided fuzzers, leverage data about the exe-
cution of the SUT to attempt to reach as many different parts of the code as possible.
AFL [30] is a mutation-based grey-box fuzzer which uses a genetic algorithm to generate
test cases, of which it then measures the edge-coverage inside the SUT. An edge is a
single 'path’ a program can take. For example, in the program shown in Figure 2, the
if-case introduces two edges: the edge where a == 1234 is true leading to the abort ()
call and an edge where it is false, leading to the function returning.

AFL measures edge-coverage by injecting instrumentation into the SUT, which causes
the SUT to report each encountered edge back to AFL. AFL then uses this data to com-
pare different mutated inputs and prioritizes the input which discovered the most new
edges in order to discover different execution paths in the SUT more effectively.




2.2.5 Stateful fuzzing

In fuzzing terminology, we can distinguish between stateless and stateful fuzzers [6].
Stateless fuzzers assume that past inputs to a SUT do not affect the outcome of future
inputs. Stateful fuzzers, on the other hand, aim to explore the state space of a SUT.

Stateless fuzzing is often faster than stateful fuzzing, since the fuzzer does not have
to reset the state of the SUT by for example restarting it, as it assumes it is stateless.
Stateful fuzzing, on the other hand, finds deeper errors in stateful binaries, as those
fuzzers attempt to cover the state model as much as possible.

There are several ways for a fuzzer to achieve a high state coverage. Grammar-based
fuzzing, as performed in Chapter 4, requires a pre-defined definition of the state model.
The fuzzer has to know a path from the initial state to the target state we want to fuzz.
Coverage guided fuzzers, as used in Chapter 5, do not require a pre-defined grammar,
but instead use seeds and feedback from the program in order to deduct the state model
and explore it.

In the example state model shown in Figure 3, a stateless fuzzer might take path A
and get stuck in the loop at s;. A stateful fuzzer, on the other hand, uses knowledge of
the state model to navigate from the starting state to the other states described in the
state model. A stateful fuzzer might for example first take path A, fuzz state si, then
restart the SUT, take path B and fuzz state ss.

A/B
o=
start H
B
(Do

Figure 3: Example state model

An example of a stateful fuzzer is AFLNet [23], which has been used in Chapter 5,
and was able to find reproducible crashes in two different OPC UA implementations, as
shown in section Section 5.3. Other examples of stateful fuzzers include, SGPFuzzer [29]
and SGFuzz [1]. These fuzzers could be used in future work, as described in Section 6.5.

2.3 OPC UA

In this section, important details of the OPC UA standard are explained. In Sec-
tion 2.3.1, an overview of the OPC UA protocol is given. Section 2.3.3 contains an
overview of the different message types that are used within the OPC UA standard.
Section 2.3.2 contains an explanation of important service sets defined within the OPC
UA standard. Section 2.3.4 contains the state machine of the OPC UA standard.

2.3.1 Overview

Open Platform Communications Unified Architecture (OPC UA) is a standard used for
enabling multiple devices in an ICS to communicate with each other. After a connection
is facilitated between two or more devices, various types of data and messages can be
sent, such as sensor-data or commands to control one or more devices.



2.3.2 Service sets

The OPC UA standard defines several service sets. Each service set is essentially a
group of message types that are used to fulfill one purpose within an OPC UA connec-
tion. Some examples of commonly used service sets, along with the message types that
accompany them, have been listed in Section 2.3.3. Sections 2.3.2.1 to 2.3.2.3 discuss
the SecureChannel, Discovery and Session service sets. The usage of these service sets
are required to establish a connection between a client and a server. The OPC UA
specification? specifies a complete list of service sets.

2.3.2.1 SecureChannel Service Set

The SecureChannel messages are sent to either open or close a secure channel between
a server and client. These are described in section 5.5 of the OPC UA specification®.
Secure channels support several message security modes?:

e None
e Sign
e Sign and encrypt

Note that a secure channel is set up and used even when security mode None is used.
This secure channel will not have encryption or message verification enabled. When
fuzzing OPC UA implementations, it is important that security mode None is used, as
this avoids us having to sign and possibly encrypt messages while fuzzing in order to
get the OPC UA implementation to accept them.

2.3.2.2 Discovery Service Set

The messages from the Discovery Service Set® are used by the client to discover infor-
mation about the server without having to establish a secure channel beforehand. For
example, a client can request a list of endpoints from the server that it could connect
to. The client could also request data, such as a list of supported encryption methods,
that is required to establish a secure channel. Note that, while a secure channel must
be established for this service set, this secure channel will not use encryption.

2.3.2.3 Session Service Set

The Session Service Set® is responsible for authenticating users. The service set first
creates a session. Then, it activates the session by authenticating the user. Authenti-
cation is performed using a UserldentityToken”. Four types of authentication methods
are defined in the OPC UA standard:

e Anonymous
e Username and password
e X.509 Certificate

e Issued identity, provided by an external authorization service (e.g. OAuth2)

2https://reference.opcfoundation.org/Core/Partl/v105/docs/7 (Client/Server Service Sets)

Shttps://reference.opcfoundation.org/Core/Partd/v105/docs/5.5 (SecureChannel Service Set)

4https://reference.opcfoundation.org/Core/Part4/v105/docs/7.20 (MessageSecurityMode)

Shttps://reference.opcfoundation.org/Core/Part4/v105/docs/5.4 (Discovery Service Set)

Shttps://reference.opcfoundation.org/Core/Part4/v105/docs/5.6 (Session Service Set)

"https://reference.opcfoundation.org/Core/Partd/v105/docs/7.41 (Userldentity Token parame-
ters)
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https://reference.opcfoundation.org/Core/Part4/v105/docs/5.6
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2.3.3 Message types

The OPC UA reference defines multiple basic message types (Hello, Acknowledge, Error,
ReverseHello) that can be used within a message header®.

In order to limit the scope of this research, we mostly limit ourselves to the following
4 sets for a total of 9 messages. These messages are all related to establishing connections
with an OPC UA server. This is the same set of messages that BSI used [7] for black-box
fuzzing as discussed in Section 3.1. Fuzzing more message types and service sets has
been left as future work, which is discussed in Section 6.2.

e Basic message types
1. Hello

SecureChannel service set
2. OpenSecureChannel

3. CloseSecureChannel

e Discovery service set
4. FindServers
5. FindServersOnNetwork
6. RegisterServer2
7. GetEndpoints

Session service set
8. CreateSession

9. ActivateSession

2.3.4 State machine

OPC UA is a stateful protocol. Multiple ’layers’ of connections have to be initiated
before a client and server can communicate properly. Firstly, the client has to request
an unencrypted connection using the Hello message. It then has to request and open a
secure channel for further communication with the server. At this point, the client can
perform actions from the discovery service set as discussed in Section 2.3.2.2. The client
can also choose to authenticate and open an authenticated session with the server, after
which it can interact with the OPC UA application it has connected to.

Using section 7.1.3 from the OPC UA specification® and a network capture of an
OPC UA client and server, we reconstructed the state machine from the perspective of
the client. This state machine can be seen in Figure 4.

Shttps://reference.opcfoundation.org/Core/Part6/v105/docs/7.1.2.2 (Message Header)
9https://reference.opcfoundation.org/Core/Part6/v105/docs/7.1.3 (Establishing a connection)
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start *>
Hello
OpenSecureChannelRequest

Sessionless messages (discovery service set)

CloseSecureChannel

CreateSessmnRequest

ActivateSessionRequest

Messages requiring a session

CloseSecureChannel

CloseSessmnRequest

Figure 4: Manual reconstruction of the OPC UA state machine

10



3 Related Work

In this chapter, we discuss related work on analyzing the security of several OPC UA
implementations. Section discusses two security analyses on several aspects of OPC
UA. Section Section 3.2 discusses a fuzzing campaign performed by Kaspersky Lab ICS
CERT. Section Section 3.3 discusses work by Miihlbauer et al. which analyzed four
OPC UA implementations based on specific aspects. Section 3.4 gives an overview of
the OPC UA implementations used in this thesis and in the related work. In Section 3.5,
we compare these works and list their contradictions and similarities.

3.1 German Federal Office for Information Security

In 2017 the German Federal Office for Information Security [5], also known as Bunde-
samt fiir Sicherheit in der Informationstechnik (BSI) in German, published an extensive
security analysis of OPC UA. They analyzed both the OPC UA specification and the
official OPC UA ANSI C implementation.

e BSI analyzed the OPC UA specification by analyzing how the OPC UA specifica-
tion covers specific security features and checking the OPC UA specification for
errors and unclear descriptions. They concluded that their analysis revealed no
systematic errors in the specification. However, several improvements were rec-
ommended. For example, BSI suggested to add a note to the specification about
outdated and insecure algorithms such as SHA1.

e The official OPC UA ANSI C implementation was examined by first testing if the
implementation properly accepts and rejects different certificates. It was found
that the C implementation accepted various types of incorrect certificates as cor-
rect.

e BSI also performed both static code analysis and found that the implementation
used a deprecated function that could cause issues with multi-threading, if used.

e BSI fuzzed the implementation using Peach [21]. The fuzzer found that the ANSI
C implementation had several deviations from to the OPC UA specification. Two
of those were security related. One of the found issues was that the server accepted
messages with an incorrect sequence number.

e Finally, BSI re-performed the fuzzing experiments with Valgrind. Several issues
were found. According to BSI, these could cause crashes. However, they stated
that more evaluation is required in order to determine the impact the found issues
could cause.

In 2022, BSI re-performed their OPC UA security analysis.

e Most changes suggested in their initial research have been implemented in the
specification. BSI looked at the OPC UA specification again, focusing on security
related changes since the last analysis. Multiple disparities, unclear or lacking
descriptions were found within the same specification. Most significantly, BSI
found that the specification lacks an overview of all security features in one place.
Instead, information about security features is spread between 8 different chapters
in the OPC UA specification.

e BSI performed a black-box fuzzing campaign on five open source OPC UA imple-
mentations. They examined the official .NET Standard Stack, open62541, Eclipse

11



Milo, python-opcua and node-opcua. They used Boofuzz for this and have re-
leased the accompanying setup on GitHub'?. They specifically fuzzed 9 message
types, which have also been listed in Section 2.3.3. Many crashes were found that
were not reproducible outside the testing environment. Notably, they did not use
sanitizers while fuzzing. Some reproducible crashes were found for node-opcua,
which were solved by the authors of the implementation after BSI reported the
bugs to them.!!

e BSI also performed a grey-box fuzzing campaign, which they mistakenly called
white-box fuzzing in their report. They used libFuzzer with ASAN to fuzz the
open62541 OPC UA implementation written in C. Several crashes were found,
including a heap buffer overflow.

3.2 Kaspersky Lab ICS CERT

In 2018, researchers from Kaspersky Lab ICS CERT [3] also ran a fuzzing campaign on
the reference OPC UA ANSI C implementation. They fuzzed the legacy OPC UA ANSI
C implementation, on top of sample applications provided by the OPC Foundation, using
AFL. To make this work, they overloaded the networking functions to read data from
local files instead, which also increased the fuzzing speed. They also compiled the OPC
UA ANSI C implementation using AddressSanitizer. As a result, nine vulnerabilities
were found in the tested OPC UA applications. They also tested several commercial
products and found that some of these products borrowed code from examples provided
by the OPC Foundation found similar security issues.

In 2020, Kaspersky Lab [2] described how they fuzzed OPC UA applications. They
fuzzed an example server on the legacy OPC UA ANSI C implementation by specifically
fuzzing the data handling functions in that implementation. For their report, they used
libfuzzer on Windows to perform the testing. After setting up the fuzzer, they managed
to find a crash within a few minutes. Like BSI, the code they used has been provided
on GitHub'2. Note that the ANSI C implementation they tested is no longer developed
by the OPC Foundation and as such, is no longer available for download. Nonetheless,
their research could be applied to other C/C++ OPC UA implementations.

3.3 Miihlbauer et al.

Miihlbauer et al. [18] analyzed the security of four open source OPC UA implementa-
tions, as listed in Section 3.4. They inspected several aspects of these implementations.
They mainly analyzed the dependencies of the tested implementations, timeouts, avail-
able security policies, how messages are processed and randommess used within the
implementations.

The analysis of how messages are processed is the most relevant for us. The re-
searchers used the source code of the examined OPC UA implementations to check if
messages are processed according to the OPC UA standard. For example, they checked
if incorrect message types make the server return an error, instead of silently being
accepted by the server.

A few shortcomings were found. Mainly, they found that node-opcua, an OPC UA
implementation written in JavaScript, had less strict packet checks than specified in
the OPC UA standard. Specifically, a decryption function within the OPC UA imple-
mentation ignored the incoming message type, always assuming it was a secure channel
message that should be decrypted. However, they concluded that at the time their

Ohttps://github.com/fkie-cad/blackbox-opcua-fuzzing
Uhttps://github.com/node-opcua/node-opcua/releases/tag/v2.47.0
2https://github. com/KL- ICS- CERT/opcua-fuzzing-example
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research was published, the open source implementations they tested were sufficiently
secure.

3.4 Overview of OPC UA implementations

Various open source implementations for the OPC UA standard exist. An extensive list
of OPC UA implementations has been documented by Erba et al. [8]. In Figure 5, we
list various open source OPC UA implementations that we encountered in the related
work and implementations which we used in this thesis.

Used in
)
==
S5 7
o |2 | %
=SS
| > > 1)
r~ N 4 ~4 =
=0 |22 E |
2181812 2|2
HEIEIR IR E
Implementation Language | H | @ | @ | X [ | =
OPC UA .NET Standard Stack [11] C+# * * *
open62541 [20] C * * *
Eclipse Milo [9] Java * *
python-opcua [12] Python * *
node-opcua [19] JavaScript | * *
FreeOpcUa [13] C++ *
legacy OPC UA ANSI-C Stack [10] C O O

Figure 5: Table of OPC UA implementations and their occurrences within related works

Besides the .NET Standard Stack, the OPC Foundation also used to provide OPC
UA implementations in other languages. The legacy OPC UA ANSI-C Stack [10] is
commonly discussed in older related works. However, this specific implementation is
no longer maintained by the OPC Foundation and has been discontinued since 2021 in
favor of the .NET Standard Stack and other open source implementations. However, a
slimmed down version of the legacy OPC UA ANSI-C Stack is still used in the actively
maintained OPC Foundation LDS (Local Discovery Server) Stack!3. Furthermore, it is
not unlikely that other implementations and software exists which uses the legacy OPC
UA ANSI-C Stack as either a dependency or as a basis.

3.5 Discussion

Interestingly, in the work by Miihlbauer et al. from 2020, potential issues are found
in node-opcua, while in 2022, BSI found several crashes in the same implementation.
Miihlbauer et al. found that node-opcua had less strict packet checks than specified
in the OPC UA standard. BSI later found crashes using black-box fuzzing. Upon
inspection of the changes made in the node-opcua version that fixed the crashes found
by BSI'4, it appears that the shortcomings found by Miihlbauer at al. are not related
to the crashed found by BSI. Version v2.47.0 of node-opcua specifically fixed multiple
untrapped exceptions of various message types that are sent outside a secure channel,
such as the Hello message.

3https://github.com/0PCFoundation/UA-LDS
Mhttps://github.com/node-opcua/node-opcua/releases/tag/v2.47.0
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4 Black-box fuzzing OPC UA using Boofuzz

Re-doing the black-box fuzzing experiments from BSI allows us to determine if the
results of the tested OPC UA implementations have improved. Due to the relatively
small time-frame between the experiments from BSI and this thesis, we do not expect
large changes in the results. However, even if no errors are found, it will still allow us to
set a baseline for further experiments. Secondly, we tested two more implementations,
FreeOpcUA and the legacy OPC UA ANSI-C stack, the latter of which has not been
updated since 2018 and should have a higher chance of Boofuzz finding crashes in it.
Thirdly, we run Boofuzz on open62541 (C) with sanitizers, which might reveal more
errors. However, the chance of finding bugs in open62541 is low since this project is
continuously fuzzed by Google’s OSS-Fuzz!®.

The reason we have chosen to redo and extend upon the black-box fuzzing experi-
ments by BSI is that they have provided all code used to setup Boofuzz on GitHub'®,
making it easier to reproduce then when we have to rely on just the paper. Further-
more, the research BSI performed is general in the sense that the used fuzzer should
be compatible with most OPC UA implementations. Comparatively, Kaspersky Labs
as discussed in Section 3.2, did not provide their setup outside of their paper and also
exclusively focused on the outdated legacy OPC UA ANSI-C stack, thus making it less
interesting to repeat.

In this chapter, we redo the black-box fuzzing experiments performed by BSI [7]
in 2022, which we discussed in Section 3.1. In Section 4.1, we discuss the software
and hardware used on our machines to perform the experiments. In Section 4.2, we
discuss how the GitHub setup made for BSI works and can be run. In Section 4.4 we
re-run the experiment using the open62541 (C) OPC UA implementations using various
sanitizers. We discuss the results in Section 4.5, and give our conclusions about the
Boofuzz experiments in Section 4.6.

4.1 System setup

Each of the experiments in this chapter has been performed on a virtual machine.
Using such an isolated environment is generally more secure than running it on the
host computer, as crashes of the SUT will not impact the operating system of the host
and should in the worst case only be able to crash the virtual machine. Furthermore, the
usage of a virtual machine reduces the number of variables that interfere with the fuzzing
process. However, the performance of virtual machines is not entirely independent of
the host machine. For example, if the host machine is running a CPU intensive task, the
host’s operating system might prioritize this task over the task running in the virtual
machine itself. As a result of this, fluctuations of performance can occur in the virtual
machine dependent on the host machine, which might cause inaccuracies in the measured
times.

We used VMWare Workstation Player to run the virtual machine for these experi-
ments. The virtual machine used for fuzzing the OPC UA implementations using Boo-
fuzz was running Ubuntu Linux 22.10. The virtual machine was assigned 8 CPU-cores
and 8 GB of RAM.

5https://github.com/google/oss-fuzz
6nttps://github.com/fkie-cad/blackbox-opcua-fuzzing

14


https://github.com/google/oss-fuzz
https://github.com/fkie-cad/blackbox-opcua-fuzzing

4.2 Boofuzz setup

For performing the Boofuzz experiments within the virtual machine, we are using the
same scripts and Docker environment that was used in the report by BSI [7]. As dis-
cussed in Section 3.1, this code has been open sourced on GitHub!” by Fraunhofer FKIE,
who performed the black-box fuzzing for the report written by BSI. A flowchart of this
setup has been given in Figure 6.

The state-grammar for Boofuzz provided by BSI covers the following states from the
OPC UA state machine given in Figure 4:

Hello

Hello — OpenSecureChannelRequest

Hello — OpenSecureChannelRequest — CloseSecureChannel

Hello — OpenSecureChannelRequest — FindEndpoints (Sessionless message)
Hello — OpenSecureChannelRequest — GetEndpoints (Sessionless message)
Hello — OpenSecureChannelRequest — FindServersOnNetwork (Sessionless mes-
sage)

Hello — OpenSecureChannelRequest — RegisterServer2 (Sessionless message)
Hello — OpenSecureChannelRequest — CreateSessionRequest

9. Hello — OpenSecureChannelRequest — CreateSessionRequest — ActivateSession-
Request

A il S

® N

For each message sequence given above, only the last message is fuzzed by Boofuzz. The
other messages are used to get to that state. With this state grammar, most states from
Figure 4 are covered. The CloseSessionRequest transition and following state s5 are not
covered, however. Boofuzz also does not cover messages requiring a session.

We run the provided Boofuzz setup to fuzz the open62541 implementation and keep
track of the time, using the following command:

$ time python3 run_docker fuzzing.py —path ./results/open62541 open62541

After running this command, a Docker container will be created, in which the pro-
vided implementation will be installed. After the implementation and the accompanying
OPC UA example server are built automatically. The OPC UA example server will be
launched using the Boofuzz process monitor, which watches the process for any crashes.
Simultaneously, the provided Boofuzz script, which contains all required grammar, mes-
sage sequences and fuzzing parameters will be executed.

The Boofuzz script will then try to perform 32.389 test cases, where each test case
consists of a message sequence to be sent to the SUT. This reliance on pre-defined
sequences means that Boofuzz does not fully explore the state space of the SUT, unlike
Grey- and White-box fuzzers described in Section 2.2 do. For each test case, Boofuzz
will either wait for a response for the server, or retrieve a signal from the process monitor
that the process has crashed.

After sending the message, Boofuzz will wait for a response from the SUT. If it
succeeds, it will simply move on to the next test case. If a crash of the SUT is detected
by the process monitor, or if no response by the SUT is detected within 5 seconds, the
test case will be considered as a failure by Boofuzz. On failure, the SUT will be killed,
after which the message sequence will be logged. Furthermore, the script will attempt
to replay the crash on a newly started server and stores the result.

After all tests cases have run, the results will be exported to a SQLite database.
Additionally, a list of failed test cases, including the sent sequence of messages, reason

https://github.com/fkie- cad/blackbox-opcua-fuzzing
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for failure and if the crash was reproducible will be stored in a separate file in JSON
format.

] Build SUT \

’ Run Boofuzz ‘

| Start SUT \
’ Reproduce and log failure ‘ ’ Generate message sequence ‘<7
’ Terminate SUT ‘ ’ Send message sequence ‘
Fail { Check for failure }M

Message sequences exhausted

’ Terminate SUT ‘

’ Store results ‘

Figure 6: Flowchart of Boofuzz setup described in Section 4.2.

4.3 Adding support for new implementations

The OPC UA implementations used as SUTs by Boofuzz each have their own subfolder
with installation files within the targets folder of the setup. For each OPC UA imple-
mentation, this folder contains an installation script named install.sh and can hold
other files required to build said OPC UA implementations as well. When starting
Boofuzz using run_docker_fuzzing.py as described in 4.2, the files from the targets
folder are copied and the install.sh file is run.

The structure of the Boofuzz setup provided by BSI allows us to easily add new
implementations. This can be done by performing a few steps:

1. Create a folder in targets with the name of the implementation.

2. Create an installation script named install.sh. This installation script usually
does the following things:

(a) Use the APT package-manager to install dependencies required for building
and running the OPC UA implementation.

(b) Download the source code of the OPC UA implementation by cloning a
GitHub repository.

(¢) Build the OPC UA implementation.
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(d) Copy the server binary of the OPC UA to /opt/app/target/ so Boofuzz can
find it.

3. Add the name of the OPC UA implementation to run_docker_fuzzing.py so
that this script knows where the find the installation files.

Using this method, we added support for fuzzing the OPC UA implementations
FreeOpcUa and the legacy OPC UA ANSI-C Stack using BSI’s Boofuzz setup. The
installation scripts we used can be found in Appendix B. We also used this method to
add separate targets that compile open62541, FreeOpcUa and the legacy ANSI-C OPC
UA Stack using the sanitizers ASAN and UBSAN in Section 4.4.

4.4 Compiling OPC UA implementations using sanitizers

As discussed in Section 3.1, BSI did not use sanitizers during their black-box fuzzing
experiments. Sanitizers add additional run-time checks to the program it is compiled
with, as discussed in Section 2.1. Compiling the SUT using sanitizers thus increases
the chance of finding bugs through fuzzing. Note that the sanitizers we discussed in
Section 2.1 can only be added to C/C++ implementations.

We compiled open62541, FreeOpcUa and the legacy OPC UA ANSI-C Stack with
ASAN and UBSAN separately. For each C/C+-+ implementation, we added two ad-
ditional ’target’ folders with accompanying installation scripts to the Boofuzz setup as
described in Section 4.3. For open62451, we did this by adding a parameter to cmake
command used to build the implementation. For example, to add ASAN to open62541,
we would add the following C-flags to the cmake command in the implementation’s
installation script:

cmake —DCMAKE C FLAGS="-fsanitize—address —fno—omit—frame—pointer" —
DBUILD SHARED_ LIBS=ON —DUA BUILD EXAMPLES=ON ../open62541

Similarly, to add ASAN to both FreeOpcUa and the legacy OPC UA ANSI-C Stack,
we would change the cmake command in the implementation’s installation script to
either of the following:

# C implementations (legacy OPC UA ANSI-C Stack):

cmake —DCMAKE C FLAGS="—fsanitize—=address —fno—omit—frame—pointer"
# CH implementations (FreeOpcUa):

cmake —DCMAKE CXX FLAGS="-fsanitize—address —fno—omit—frame—pointer"

To use UBSAN, we use the C/C++-flag -fsanitize=undefined instead. Due to
time-limitations, we did not repeat the experiments using other sanitizers.
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4.5 Fuzzing results

Failures
<
2
[
5
9
= 2
N
Implementation Version | Language | &= | &~ Runtime
__ NET Standud Stack____| 758065 | C# | /| /| |
open62541 4640395 C 95 0 09:49:01
open62541 (ASAN) 4640395 C 94| 0 09:50:29
| opent2541 (UBSAN) | 460395 | C__ |94 0 | 094943 |
legacy OPC UA ANSI-C Stack 1.04.342 C 941 0 08:48:46
legacy OPC UA ANSI-C Stack (ASAN) 1.04.342 C 91 0 08:48:55
| logacy OPC UA ANSLC Stack (UBSAN) | 104342 | C__ |90 | 0_| O08:57:11 |
FreeOpcUa 6eac097 C++ 73 0 08:39:38
FreeOpcUa (ASAN) 6eac097 C++ 721 0 09:33:38
| _ _ _ FreeOpcUa (UBSAN) | 6eac097 | Ct+ |66 0 | 09:32:00 |
IS Eclipse Milo | 0.5.0 | _Java 185 0 | 19:06:07 |
I python-opeua | fdf5f3c | Python |83 ) 0 | 21:05:27 |
node-opcua v2.46.0 | JavaScript | 18 | 18 05:22:16
node-opcua v2.47.0 | JavaScript | 0 0 14:01:14
node-opcua v2.107.0 | JavaScript | 12 0 08:44:29

Figure 7: Black-box fuzzing results with Boofuzz

As can be seen in the table in Figure 7, Boofuzz could only find reproducible failures in
an old version of node-opcua. Note that we call these failures and not crashes. Boofuzz
counts a result as a failure when the SUT crashes, when the SUT responds with empty
messages or when the SUT does not respond to messages at all. Most of the failures
that were found by Boofuzz are related to connection and session limits set by the
implementations. Due to the nature of fuzzing, many sessions are not closed properly
and would be left open on the server side. This is especially likely to happen when
fuzzing messages that are supposed to close a session, as many of these messages should
be rejected by the server for being malformed, thus keeping the session open indefinitely.
When these limits are hit, the implementation might not respond to further session
requests, which Boofuzz counts as a failure.

Furthermore, we could not get the .NET Standard Stack to run within the Boo-
fuzz setup. After attempting to build the .NET Standard Stack, it states that some
dependencies are missing. We decided not to look into this any further.

Boofuzz was able to find several failures within node-opcua. We tested 3 versions
of node-opcua: the version where the bugs reported by BSI were fixed, a version before
that and a newer version. Within the BSI report, 13 reproducible failures were found
for node-opcua. We found 18 reproducible failures. This difference could potentially be
explained by a mismatch in tested versions between the BSI report and this thesis, as
BSI did not mention the specific version of node-opcua they used for testing, while we
tested the version before the issues were resolved. Since no failures could be found in
the next version, no further investigation into this is needed.
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4.6 Conclusions

In the introduction of this experiment, we mentioned several goals we aimed to achieve.
Firstly, we aimed to reproduce the results by BSI on more recent versions of the imple-
mentations they tested. We were only able to reproduce the failures on an old version
of node-opcua that BSI had also found in their research, but were not able to find new
failures in newer versions of the OPC UA implementations that they tested. Secondly,
we tested two additional implementations, namely the legacy OPC UA ANSI-C stack
and FreeOpcUa. No reproducible failures were found in these implementations. Thirdly,
we repeated the tests of open62541 with two different sanitizers, which also did not yield
any additional failures.

Setup. As described in Section 4.2, we used the Boofuzz setup used in BSI’s research
as a basis for this experiment. This setup provided by BSI uses Docker containers, which
makes it simple to reset the container if something went wrong with running or modifying
the setup. Furthermore, if configured properly, it ensures that the experiments can be
performed consistently and independent of the host operating system. This is especially
useful, as different OPC UA implementations require different versions of dependencies
which might conflict with one another otherwise. One disadvantage of Docker containers
is that it was difficult to get access to the web interface of Boofuzz in order to view the
fuzzer’s progress. To get around this, we ran curl in the container to fetch the web-page
and view this progress.

Reproducibility. Re-running the experiments performed by BSI could be done by
running a single Python-script which should automatically sets up a Docker container
with the chosen OPC UA implementation and runs Boofuzz in it. The work by BSI was
not fully reproducible using the setup from their GitHub repository. The installation
script of some implementations, such as node-opcua, were not hardcoded to install a
specific version of the OPC UA implementation. node-opcua’s installation script had
a hardcoded version for the stack, but always downloaded the latest version of the
example server, resulting in a version mismatch which initially prevented node-opcua
from running within the Boofuzz setup. The .NET Standard Stack was not able to run
at all due to a dependency error.

Many non-reproducible failures were found on the several OPC UA implementations
we tested using Boofuzz. Many of these non-reproducible failures can be considered
normal behaviour. For example, a commonly encountered issue is that the tested OPC
UA implementation has a limit on the number of open sessions. Since sessions are rarely
properly closed by the fuzzer, these limits are often reached, causing the SUT to refuse
new connections, or to simply not respond to them.

Extensibility. The setup from BSI currently supports 9 message types as described
in section Section 2.3.3, which are mainly related to server discovery and creating ses-
sions. If we want Boofuzz to fuzz more types of messages, such as messages of different
service sets as described in section Section 2.3.2, we would need to define a literal gram-
mar of the structures of this messages. Furthermore, defining a sequence of messages to
get to a specific state can be done with a single line of code.

Support for other OPC UA implementations could be added by writing an instal-
lation script for the implementation and modifying the Python-script to use the in-
stallation script. In most cases, an installation-script script only downloads and builds
the chosen OPC UA implementation. For the legacy OPC UA ANSI-C Stack, small
modifications were required the source code of the implementation as well to ensure it
could be fuzzed properly. This includes disabling the startup-prompt that requires user
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interaction in the OPC UA ANSI-C stack. For open62541, we had to specifically disable
encryption during the compilation process, as it was enabled by default.

Performance. While running the experiments, we found that the OPC UA im-
plementations open62541, Eclipse Milo, python-opcua and node-opcua performed badly
with Boofuzz. For open62541, 32.389 test cases were completed in about 10 hours,
averaging 1.11 executions per second. Eclipse Milo and python-opcua took about 20
hours to complete all test cases, while node-opcua was inconsistent between different
versions, with runtimes varying between 5 and 14 hours. We found that the legacy OPC
UA ANSI-C Stack performed much better, finishing in slightly more than an hour with
about 8 executions per second. Interestingly, open6251, Eclipse Milo, python-opcua and
node-opcua, had many test cases that had an execution time of exactly 10 seconds.

The execution times of exactly 10 seconds can be attributed to the fact that Boofuzz,
by default, has a 5 second timeout for both sending and receiving messages from the
SUT. Many of the messages Boofuzz sends are malformed in such a way that the tested
OPC UA implementation does not respond to them. This would cause Boofuzz to wait
for both timeouts, thus explaining the 10 second execution time for a lot of the test
cases. It is likely that these timeouts can be reduced. Determining the right timeout
values has been left as future work as described in Section 6.1.

We expected that the usage of a sanitizer such as ASAN would slow down the
performance of the fuzzer. However, we found that the time the fuzzer takes to go
trough all test cases does not noticeably change when a sanitizer is used. This can also
be attributed to the 10 second timeouts, as these timeouts result in an execution time of
10 seconds despite how long the SUT actually needs outside of the time Boofuzz spends
waiting.

Interestingly, BSI reported similarly long runtimes, ranging from about 1 to 11 hours.
However, they did not consider these runtimes good or bad and did not comment on
the potential reasons for these long runtimes.
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5 Grey-box fuzzing OPC UA using AFLNet

In this chapter, we perform grey-box fuzzing on the open62541 OPC UA implemen-
tation. We fuzz open62541 using AFLNet [23], a fork of AFL [30] with additions for
fuzzing network based protocols. As discussed in background Section 2.2.2, coverage
guided fuzzers use feedback from instrumentation compiled into the SUT in order to
guide which messages will be sent next. Furthermore, AFLNet is a stateful fuzzer and
attempts to automatically explore and determine the state space of the program, which,
as described in Section 2.2.5, should result in the fuzzer being able to find crashes that
occur deeper into the state model. Hence, we expect this fuzzing method to be able
to find crashes more effectively than Boofuzz used in Chapter 4, which depends on a
predefined grammar for both the messages and state model of the SUT.

In Section 5.1, we discuss how to modify AFLNet in order to perform fuzzing on OPC
UA implementations. Section 5.2 discusses how we compiled AFLNet and open62541,
and set up and ran both in order to perform grey-box fuzzing. In Section 5.3, we discuss
and analyze the found results. In Section 5.4 we analyze the found crashes, and in
Section 5.5 we give our conclusions about these experiments.

5.1 Modifying AFLNet

AFLNet has support for several popular protocols, including HTTP, FTP and TLS.
However, AFLNet does not support OPC UA by default. Therefore, we need to modify
the source code of AFLNet to add support for OPC UA. The readme file on the GitHub
of AFLNet'® describes the steps required to both implement a protocol and to fuzz an
implementation of implemented protocols.

In order to modify the source code of AFLNet to implement support for fuzzing OPC
UA, we must implement the extract_requests_opcua and extract_response_codes_o
pcua functions in both aflnet.c and aflnet.h. Finally, we must modify the code that
handles the protocol parameter -P to accept opcua as an argument.

The extract_requests_opcua function is responsible for breaking up both the pro-
vided seed inputs and incoming requests from the SUT into separate messages in order
to extract the response codes. For OPC UA, we do this by looking at the length pa-
rameter set in the message header, whose structure is shown in Appendix A.2.1. The
source code for this function can be found in Appendix D.1.

The extract_response_codes_opcua function extracts response codes from OPC
UA messages returned by the server. Possible response codes are listed in Appendix
A.2 of the OPC UA specification'®. Since there are more than 28 response codes and
AFLnet expects an 8 bit integer value, we chose to only return specific response codes
for errors, making all successful messages return 0. The source code for this function
can be found in Appendix D.2.

8https://github.com/aflnet/aflnet/blob/c2714e9/README . md
nttps://reference.opcfoundation.org/Core/Part6/v105/docs/A.2
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5.2 Installing and running AFLNet

After modifying the source code of AFLNet, we have to perform several steps in order
to prepare our SUT for fuzzing. These steps are described in the readme file on the
GitHub of AFLNet?0,

In summary, they are:

e Compile and install AFLNet (Section 5.2.1)
e Setup the example client and server of the SUT (Section 5.2.2)

e Take a packet capture between the example client and server and extract the
relevant seeds to use as inputs for AFLNet (Section 5.2.3)

e Run AFLNet (Section 5.2.4)

5.2.1 Compiling and installing AFLNet

We install AFLNet using the instructions listed in the documentation in the AFLNet
GitHub Repository. Initially, we used the same virtual machine as we used for the
Boofuzz experiments as described in Section 4.1. Ubuntu 22.10, which ran in this virtual
machine, was not compatible with the build process of AFLNet resulted in various
compilation errors, as was also discussed in a GitHub issue for AFLNet?!.

After re-trying the build process on Ubuntu 20.04 and installing the correct depen-
dencies, we built AFLNet successfully. Appendix E contains the script we used to install
AFLNet.

5.2.2 Setting up the implementations for fuzzing

We set up three C and C++ implementations for fuzzing with AFLNet. Namely,
open62541, the legacy OPC UA ANSI-C Stack and FreeOpcUa. For each of these
implementations, we need to ensure that we do the following things:

1. Disable encryption and enable anonymous authorization.
2. Disable session limits and timeouts.

3. Enable them to run on different ports for parallel fuzzing. This can be done by
adding a port parameter to the binary, or by creating multiple copies of the binary
with different ports.

4. Build the implementations using instrumentation.

For the legacy OPC UA ANSI-C Stack and FreeOpcUa, minimal modifications were
required. In order to achieve different ports, we modified the string defining this port in
the binary and made different copies with different ports, as this was faster to do than
adding a parameter doing this. Do note that for system with more than 8 cores, adding
a parameter or automating this method is preferable.

For open62541, we had to perform more modifications. These are described in Sec-
tion 5.2.2.1.

2Onttps://github.com/aflnet/aflnet/blob/c2714e9/README. md
2Inttps://github.com/aflnet/aflnet/issues/81
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5.2.2.1 Setting up open62541

The source code of the C OPC UA implementation open6254122 contains various client
and server examples. These examples vary from simple servers and clients that only
perform connection and authentication, to more complicated examples where actual
data is sent between the client and server in various ways.

We chose to use the server_ctt example, where CTT stands for Compliance Testing
Tools. This example server was also used in the Boofuzz experiment performed in
Chapter 4. The built server binary will be used both for packet captures and for fuzzing.
We also need a client so that we can capture communication between the client and the
server to use as seed inputs for AFLNet. For this, we will use the client example
provided by open62541. This specific example connects to the server multiple times and
attempts to read and write data to it.

In order to make server_ctt more suitable for fuzzing, we changed some configu-
ration settings in the source code of this example server. We specifically remove the
limits set by the settings maxSecureChannels, maxSession. Furthermore, we also re-
moved the 5 second delay the server waits for when shutting it down by removing the
shutdownDelay configuration option.

We also added a -port parameter to server_ctt. This parameter enables us to
run multiple instances of the server at the same time, each using a different port. We
can use this to perform parallel fuzzing with AFLNet, where we run each instance of
server_ctt with a separate port.

Similarly to the Boofuzz experiment from Chapter 4, we disabled encryption by set-
ting the DUA_ENABLE_ENCRYPTION cmake flag to off. However, this caused the example
client to refuse connecting to the server stating that it cannot find a suitable UserTo-
kenPolicy for the server. This was caused by the default configurations of the example
clients and servers, which expect encrypted authentication even if encryption is disabled.
To solve this, we manually enabled anonymous authentication in both server_ctt and
client.

e server_ctt should allow anonymous authentication when it is launched using the
-enableAnonymous flag. Due to a bug, the first parameter is hardcoded such that
it is always read as a path for a certificate file. By patching out the code that
reads the filename, the anonymous authentication flag can be used successfully.

e To enable anonymous authentication in the client, we have to replace the line
containing the call to UA_Client_connectUsername with UA_Client_connect.

Finally, we built open62541 and instrumented the binaries for fuzzing with AFL
using the shell script shown in Appendix C.1.

5.2.3 Generating seed inputs for AFLNet

AFLnet requires seed inputs of communication between a client and server as a starting
point. In order to generate these seed inputs, we will capture and dump communication
between the client and server of open62541 using tcpdump. We let tecpdump listen on the
loopback interface for the server port used by open62541 using the following command:

sudo tcpdump —w opcua.pcap —i lo port 4840 ‘

We then run the modified open62541 example client and server using the following
commands in separate terminals:

./server _ctt —enableAnonymous
./client _anonymous

22nhttps://github. com/open62541/0pen62541/tree/defd286
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After the client has finished running, we can stop tcpdump, which will make it output
opcua.pcap. We can then open this file in Wireshark which shows us the captured OPC
UA messages and allows us to inspect the individual fields in each of these messages,
as shown in Figure 8. By following the TCP stream of these packets in Wireshark, we
can see view a full stream from connection to disconnection. With our modified client
and server, we see that four distinct TCP streams were captured. The first three TCP
streams are related to OPC UA server discovery as discussed in Section 2.3.2.2. The
last TCP stream contains actual data sent between the client and the server.

opcua.pcap - o0 &

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

P o @t 2o QEPI@D = = &=

[[Apply a display filter ... <Ctrl-/> ERE

No. Time Source Destination  Protocol Length Info -

] 490.109231 127.0.0.1 127.0.0.1 TCP 6640394 — 4840 [FIN, ACK] Seq=339 Ack=367 Win=65536 Len=0 T
500.109277 127.0.0.1 127.0.0.1 TCP 66 4840 — 40394 [ACK] Seq=367 Ack=340 Win=65536 Len=0 TSval=

I 510.109448 127.0.0.1 127.0.0.1 OpcUa 119 Hello message
520.109481 127.0.0.1 127.0.0.1 TCP 664840 — 40404 [ACK] Seq=1 Ack=54 Win=65536 Len=0 TSval=706—
530.109624 127.0.0.1 127.0.0.1 OpcUa 94 Acknowledge message
540.109685 127.0.0.1 127.0.0.1 TCP 66 40404 — 4840 [ACK] Seq=54 Ack=29 Win=65536 Len=0 TSval=7€@
550.109889 127.0.0.1 127.0.0.1 OpcUa 198 OpenSecureChannel message: OpenSecureChannelRequest
560.110170 127.0.0.1 127.0.0.1 OpcUa 201 OpenSecureChannel message: OpenSecureChannelResponse
570.110486 127.0.0.1 127.0.0.1 OpcUa 229UA Secure Conversation Message: CreateSessionRequest
580.110804 127.0.0.1 127.0.0.1 OpcUa 666 UA Secure Conversation Message: CreateSessionResponse
590.111113 127.0.0.1 127.0.0.1 OpcUa 203 UA Secure Conversation Message: ActivateSessionRequest
600.111398 127.0.0.1 127.0.6.1 OpcUa 162 UA Secure Conversation Message: ActivateSessionResponse -

< »

» Frame 51: 119 bytes on wire (952 bits), 119 bytes captured (952 bits)

» Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)
» Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1

» Transmission Control Protocol, Src Port: 40404, Dst Port: 4840, Seq: 1, Ack: 1, Len: 53

» OpcUa Binary Protocol

000 00 00 00 0O 00 00 00 00 00 00 00 00 08 00 45 00 :
010 00 69 29 71 40 00 40 06 13 1c 7f 00 00 01 7f 00 -i)q@ @
020 ©0 01 9d d4 12 e8 c1 bd ed 9d a4 a7 de c7 80 18

30 02 00 fe 5d 60 00 01 ©1 08 Ga 2a 17 2c 02 2a 17 1 SRk
0040 2c 02 46 35 00 00 00 00 00 00 00 00 00 , -[[FEF5

5 0 .

02 00 00 00 02 GO0 00 OO 00 40 00 80 00 00 15 Of ceeee @
) 00 00 6f 70 63 2e 74 63 70 3a 2f 2f 75 62 75 6e opc.tc p://ubun
70 74 75 3a 34 38 34 30 tu:4840
© 7 opcua.pcap Packets: 148 - Displayed: 148 (100.0%) Profile: Default

Figure 8: OPC UA communication in Wireshark

In order to extract these streams, we use the 'Follow TCP Stream’ option in Wire-
shark. In the window that opens we filter for packets sent from the client which are the
packets with destination port 4840. We then set the display mode to 'Raw’ and save the
result to a file. This file contains the exact data that has been sent between the client
and the server for the specified stream. We repeat this process for all OPC UA streams,
extracting all of them to the same folder.

The 3 seed inputs we used covered the following states from the OPC UA state
machine given in Figure 4:

1. Hello — OpenSecureChannelRequest — FindServers (Sessionless message) —
CloseSecureChannelRequest

2. Hello — OpenSecureChannelRequest — GetEndpoints (Sessionless message) —
CloseSecureChannelRequest

3. Hello — OpenSecureChannelRequest — CreateSessionRequest — ActivateSession-
Request — ... (Messages requiring a session) — CloseSessionRequest — CloseSe-
cureChannelRequest

The third captured trace sends various messages that require a session. The messages
that are sent with in this trace that require a session are from the NodeManagement
Service Set, Call Service Set and Subscription Service Set. See Section 2.3.2. See 2.3 for
background on the service sets defined in the OPC UA standard.
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5.2.4 Running AFLNet

Now that we have completed all prerequisites, it is time to run AFLNet. We will be
running AFLNet in parallel. On our 8-core machine, this resulted in a performance
increase of up to 8 times. AFLNet requires a main instance to run using -M, alongside

sub-instances using -S. We used the following commands to start the main instance of
AFLNet:

$ afl—fuzz —i in —o out/<name> sync —M fuzzer0 —N tcp://127.0.0.1/4840 —P OPCUA
—q 3 —s 3 —E K —R <binary using port 4840>

And we ran the following command in 7 separate terminals to run the sub-instances,
where X should be replaced with the numbers 1-7:

$ afl —fuzz —i in —o out/<name>_ sync —S fuzzerX —N tcp://127.0.0.1/484X —P OPCUA
—q 3 —s 3 —E —K —R <binary using port 484X>

Initially, running AFLNet refused to run due to a misconfiguration related to core
dump notifications. Fortunately, AFLNet provides immediate instructions on how to
resolve it:

[—] Hmm, your system is configured to send core dump notifications to an
external utility . This will cause issues: there will be an extended delay
between stumbling upon a crash and having this information relayed to the
fuzzer via the standard waitpid () API.

To avoid having crashes misinterpreted as timeouts, please log in as root
and temporarily modify /proc/sys/kernel/core pattern, like so:

echo core >/proc/sys/kernel/core_ pattern

After following these instructions, we could successfully run the 8 parallel instances
of AFLNet. Each instance has a separate status screen which can be used to follow the
fuzzing-progress in real time, as shown in Figure 9.

american fuzzy lop (server_ctt)
— process timing overall results
run time : 0 days, 2 hrs, 7 min, 37 sec cycles done : 60
last new path : 0 days, 0 hrs, © min, 31 sec total paths : 101
last uniq crash : none seen yet uniq crashes : 0
last uniq hang : none seen yet uniq hangs : 0
— cycle progress map coverage
now processing : 51 (50.50%) map density : 8.58% / 9.21%
paths timed out : 0 (0.00%) count coverage : 1.22 bits/tuple
— stage progress findings in depth
now trying : splice 12 favored paths : 30 (29.70%)
stage execs : 9/16 (56.25%) new edges on : 44 (43.56%)
total execs : 75.1k total crashes : 0 (0 unique)
exec speed : 9.77/sec (zzzz...) total tmouts : 4 (3 unique)
— fuzzing strategy yields path geometry
bit flips : n/a, n/a, n/a levels : 5
byte flips : n/a, n/a, n/a pending : 17
arithmetics : n/a, n/a, n/a pend fav : 3
known ints : n/a, n/a, n/a own finds : 100
dictionary : n/a, n/a, n/a imported : n/a
havoc : 50/15.8k, 50/58.2k stability : 95.76%
trim : n/a3, n/a
[cpu00O: 27%]

Figure 9: AFL(Net) status screen
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Furthermore, the afl-whatsup tool can be used to view the combined progress of
all fuzzers:

$ afl—whatsup out/temp sync/
status check tool for afl—fuzz by <lcamtuf@google.com>

Individual fuzzers

>>> fuzzer0 (0 days, 0 hrs) <<<

cycle 1, lifetime speed 9 execs/sec, path 0/26 (0%)
pending 2/26, coverage 9.05%, no crashes yet

Summary stats

Fuzzers alive : 8
Total run time : 0 days, 1 hours
Total execs : 0 million
Cumulative speed : 72 execs/sec
Pending paths : 76 faves, 572 total
Pending per fuzzer : 9 faves, 71 total (on average)
Crashes found : 0 locally unique

Since AFLNet does not have a fixed number of test cases, it runs indefinitely unless
stopped. We fuzzed open62541 for 48 hours. The legacy OPC UA ANSI-C Stack and
FreeOpcUa were fuzzed for 24 hours.

5.3 Fuzzing results

Crashes | Hangs

[} [}

= =

Q Q

3 =

3 °

— o —_ o

£ A& | &8

o Q o Q
Implementation Lang. | H o E | @ | Exec/s | Runtime
legacy OPC UA ANSI-C Stack C 8 8 0| 0| +20-8 | 48 hours
open62541 C 68 0 141 0 +8-8 24 hours
FreeOpcUa C++ (43| 43 | 9 | 0 | £8-8 | 24 hours

Figure 10: Results of grey-box fuzzing using AFLNet

As can be seen in the table in Figure 10, we found several crashes and hangs in various
OPC UA implementations using AFLNet. Some of these crashes are reproducible. In
order to test the reproducibility of a crash, we use aflnet-replay. This tool takes
a crash from the replayable-crashes output by AFLNet and sends it to an already
running instance of the SUT. In section Section 5.4, we explain how we analyzed the
crashes found by AFLNet. In sections Sections 5.4.1 and 5.4.2, we analyze the crashes
that were found in FreeOpcUa and the legacy OPC UA ANSI-C Stack.
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5.4 Analyzing crashes found by AFLNet

After finding a crash, AFLNet stores the data that caused the SUT to crash in the
replayable-crashes folder. We analyze the found crashes using the following steps:

1. Verify if the crash is reproducible using aflnet-replay.
2. Minimize the crash data.
3. Debug the crash using GDB.

4. Using the output from GDB, analyze the source code to find the root cause of the
crash.

To use aflnet-replay, we have to start the SUT beforehand. We run the SUT with
a memory limit of 50 MB, which is the same memory limit as AFLNet uses by default,
by running the SUT as follows?3:

‘$ (ulimit —Sv $[50 << 10]; <SUT binary >) ‘

In a different terminal, we run aflnet-replay as follows:

‘&; aflnet replay <file > OPCUA 4840 ‘

Finally, we check if the SUT is still running and if it has output any logs. In case
the SUT crashed, we want to continue the analysis. We want to minimize the crash case
and remove as much unnecessary data from it as possible to make it easier to diagnose.
Unfortunately, AFLNet does not have a tool to do this automatically, unlike AFL’s
afl-cmin, so we have to minimize crashes manually. We can minimize the crashes
manually using dd:

8 dd if=crash of=crash_ trimmed bs=1 count=<count>

Our goal is to find the smallest value for count that still crashes the SUT. We manually
modify the parameter and re-test after each change using aflnet-replay until we find
the minimized the crash data maximally such that it still crashes the SUT.

Once we have minimized the crash data, we run the SUT in the debugger GDB
and replay the crash again. GDB is able to give us more information about why the
SUT crashed. Most notably, GDB is able to print a backtrace of the crash by using the
bt command. A backtrace contains the chain of function calls that led to the crash,
including parameter values. We use the backtrace, combined with the source code of
the SUT, to find the root cause of the crash.

5.4.1 Analyzing the FreeOpcUa crashes

AFLNet found a total of 48 reproducible crashes, as can be seen in Figure 10. These 48
crashes result in two types of behavior.

e The first type of crash only crashes FreeOpcUa when a memory limit of 50MB is
set. Otherwise, it causes FreeOpcUa to get stuck in an infinite loop. This loop
causes the CPU usage of the FreeOpcUa example server to top out. However, new
connections are still accepted until a connection limit is hit. We decided not to
further analyze this crash during this thesis, since it only crashes the FreeOpcUa
server under unrealistic conditions.

23See ’7) Interpreting output’ in the documentation of AFL: https://lcamtuf.coredump.cx/afl/
README. txt

27


https://lcamtuf.coredump.cx/afl/README.txt
https://lcamtuf.coredump.cx/afl/README.txt

e The second type of crash results in the FreeOpcUa example server binary terminat-
ing due to an uncaught error, stating that the buffer size given to InputFromBuffer
was invalid. A screenshot of this behavior can be seen in Figure 11. Since this
crashes the full server and thus prevents future connections, we chose to analyze
this crash further.

$ aflnet-replay id\:000000\,sig\:06\,sync\:fuzzer®\,src\:000015 0 [2023-08-06 20:50:48.152] [server] [error] address_space_internal
PCUA 4840 parent node 'n 1=9069;"' does not exists
2023-08-06 20:50:48.153] [server] [error] address_space_internal
Size of the current packet 1 is 8 parent node 'n ;1=9111;' does not exists
2023-08-06 20:50:48.153] [server] [error] address_space_internal
Size of the current packet 2 is 330 parent node 'ns=0;1=9113;' does not exists
2023-08-06 20:50:48.154] [server] [error] address_space_internal
-------------------------------- parent node 'ns=0;1=9213;' does not exists
Responses from server:0- 2023-08-06 20:50:48.155] [server] [error] address_space_internal
parent node 'ns=0;1=2949;' does not exists
Responses in details: 2023-08-06 20:50:48.171] [server] [info] Root node is: Node(ns=0

-------------------------------- $ D 2023-08-06 20:50:48.171] [server] [info] Children are:
2023-08-06 20:50:48.171] [server] [info] Node(ns=!
2023-08-06 20:50:48.171] [server] [info] Node(ns=
2023-08-06 20:50:48.171] [server] [info] Node(ns=0;1=87;)
2023-08-06 20:50:48.171] [server] [info] Ctrl-C to exit
2023-08-06 20:50:50.960] [server] [info] opc_tcp_processor |
Sessionld; ns=0;1=6;
terminate called after throwing an instance of 'std::invalid_argu
ment'

what(): InputFromBuffer: Invalid size of buffer
Aborted
s

Figure 11: Replaying a crash on a FreeOpcUa server
On the left side, we use aflnet-replay to replay the crash. On the right side, the
FreeOpcUa example server was running.

The first thing we did was minimize the crash data. Originally, the crash data
that AFLNet output was 1214 bytes long. By manually minimizing it as described in
Section 5.4, we reduced the size of the crash data to 9 bytes. The following data crashes
the FreeOpcUa example server:

0800 0000 4845 4c46 08 ....HELF.

1. The first 4 bytes, 0800 0000, is the length of the message as used by aflnet-replay.
This is not relevant to the crash.

2. The next 3 bytes, 4845 4c describe the message type, HEL or Hello. The structure
of this message type has been given in Appendix A.2.2

3. The next byte 46 describes the chunking type F. For the Hello message, this value
is reserved and should be hard-coded to F.

4. Finally, 08 describes the length of the current OPC UA message in little-endian.
Since 00-bytes are assumed after the crash file ends, this length-value is interpreted
by FreeOpcUa as 08 00 00 00, or 8 bytes.

Now, let’s use GDB to analyze the crash. We use $ gdb ./example_server to open
FreeOpcUa’s example server in GDB and then run it using (gdb) run. We then use
aflnet-replay to replay the minimized crash file and crash the binary. We can now
print a backtrace of line of code that resulted in the crash by using (gdb) bt. The most
important parts of this backtrace printed by GDB can be seen below:
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#0  GI raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:50

#6 0x00007ffff6ell4e2 in OpcUa::InputFromBuffer:: InputFromBuffer (this=<
optimized out >,
buf=0x7ffff0001f00 "HELF\b", bufSize=0)
at /home/ubuntu/Documents/Implementations/freeopcua/src/protocol/
input_from buffer.cpp:35
#7 0x00007ffff741c182 in (anonymous namespace) :: OpcTcpConnection ::
ProcessMessage
this=0x7ffff0000e20 , type=OpcUa:: Binary ::MT HELLO, error —=..
bytesTransferred=0)
at /home/ubuntu/Documents/Implementations/freeopcua/src/server/
opc_tcp_async.cpp:238
#8 0x00007ffff74197d4 in (anonymous namespace) :: OpcTcpConnection ::
ProcessHeader (boost ::system :: error code const&, unsigned long)::$ 1::
operator () (boost ::system:: error_code const&, unsigned long) const

L)

(this=0x7{fff66clbal, error=..., bytesTransferred=140737327972363)
at /home/ubuntu/Documents/Implementations/freeopcua/src/server /opc_tcp_async.
cpp:220

#20 0x00007ffff733efd6 in boost::asio::detail::scheduler operation::complete (
this=0x7ffff0005210 ,
owner=0x490380, ec=..., bytes transferred=0)

#30 0x00007ffff6afbdf4 in ?? () from /lib/x86 64—linux—gnu/libstdc++.s0.6

#31 0x00007ffff7f98609 in start thread (arg=<optimized out>) at pthread create.
c:477

#32 0x00007ffff67e8133 in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S
:95

We can see that InputFromBuffer is called with the parameters buffer "HELF\b" and
buffer size 0, and that an error is thrown afterwards. Looking at input_from_buffer.cpp
from FreeOpcUa’s source code reveals that the error is thrown due to the buffer size
being 0:

InputFromBuffer :: InputFromBuffer (const char % buf, std::size_t bufSize)
Buffer (buf)
, Size(bufSize)

if (!Buffer) { throw std::invalid_argument ("InputFromBuffer: Input buffer
cannot be empty."); }

if (!bufSize) { throw std::invalid argument("InputFromBuffer: Invalid size of
buffer"); }

By further analyzing the source files referred to in the backtrace, we eventually find
that the buffer size of 0 originates from the fact that FreeOpcUa reads the OPC UA
header and contents separately. First, FreeOpcUa reads the header from the network
socket in the OpcTcpConnection: :ReadNextData function. It does this by reading the
first 8 bytes of the socket, which corresponds with the header size of OPC UA. It passes
the read data on to the ProcessHeader function, which, after processing the header,
tries to read the message after the header. It determines the number of bytes it needs
to read by subtracting the total size of the message, determined from the header, by the
hardcoded header size.

The problem is that, according to the header in the crash data, the message is 8
bytes long. Since an OPC UA header is also 8 bytes long, this means that FreeOpcUa
will attempt to read O bytes from the message. When it tries to create a buffer of 0
bytes, the error will thus be thrown and result in a crash.

This crash should be fixable by catching the error higher-up in the code. Preferred
behavior should be that FreeOpcUa sends an error message to the client and gracefully
closes the connection, while still allowing for future connections. Unfortunately, we were
not able to report the issue, as the maintainers of FreeOpcUa do not have any contact
details for this. In May 2022, another security researcher opened a GitHub issue asking
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to whom he could responsibly report a security issue?*. As of August 2023, this issue
has no replies.
5.4.2 Analyzing the legacy OPC UA ANSI-C crash

AFLNet found a single type of crash for the legacy OPC UA ANSI-C implementation.
This crash results in a segmentation fault, as can be seen in Figure 12.

$ aflnet-replay crash OPCUA 4840 $ ./AnsiCServer

kXK AR KRR SEATEING SErVer| FRkERkERkk Rk ARk kR kR Rk
Size of the current packet 1 is 56
Size of the current packet 2 is 3383

B I Y Ty N TR L LR R R —
-------------------------------- |140168908986112| 14:34:02.629Z OpcUa_TcpListener_ProcessHelloMessage: Tra

Responses from server:0-0-0- nsport connection from ::ffff:127.0.0.1:51466 accepted on socket ©x2277db@
!
Responses in details: UaTestServer_EndpointCallback: SecureChannel 1 opened with http://opcfound
ACKFoOPNFe/http://opcfoundation.org/UA/SecurityPolicy#NoneoooosooooooBoooe ation.org/UA/SecurityPolicy#None in mode 1 status 0x00000000!
900%9Boooo’
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr s
FI SERVIC|

Seﬁmentat‘lon fault (core dumped)
$

Figure 12: Replaying a crash on a legacy OPC UA ANSI-C Stack server
On the left side, we use aflnet-replay to replay the crash. On the right side, the
legacy OPC UA ANSI-C Stack example server was running.

After manually minimizing this crash using the method described in Section 5.4, we
found the following backtrace after crashing the server while it was running in GDB.
The important parts of the backtrace are shown below:

#0  strncmp_avx2 ()

#1 0x0000000000559aaa in OpcUa_ P _String strncmp (stringl=0x0,
string2=0x56¢c269 "Nano Server", uiLength=<optimized out>)
at /home/ubuntu/Documents/Implementations /UA-AnsiC—Legacy —1.04.342/UA—-AnsiC

—Legacy —1.04.342/Stack/platforms/linux /opcua_p_string.c:87

#2 0x000000000042a310 in my_ FindServers (a_hEndpoint=<optimized out>,
a_hContext=<optimized out>, a_ pRequestHeader=0x7ffff0021950 ,
a_pEndpointUrl=<optimized out>, a nNoOfLocalelds=<optimized out >,
a_pLocalelds=<optimized out>, a_nNoOfServerUris=1,
a_pServerUris=0x7ffff0003490 , a_pResponseHeader=0x7ffff00114e0 ,
a_pNoOfServers=0x7ffff0011580 , a_ pServers=0x7ffff0011588)
at /home/ubuntu/Documents/Implementations /UA-AnsiC—Legacy —1.04.342/UA-AnsiC

—Legacy —1.04.342/ AnsiCSample/ansicservermain.c:498

#3 0x000000000043f25¢c in OpcUa_Server_BeginFindServers

#4 0x000000000043db9e in OpcUa_Endpoint_ BeginProcessRequest

#5 OpcUa_Endpoint _OnNotify

#6 0x0000000000456a16 in OpcUa_ SecureListener ProcessSessionCallRequest

#7 0x000000000045762b in OpcUa_SecureListener ProcessRequest

#8 0x0000000000450998 in OpcUa_SecureListener  OnNotify

#9 0x000000000053e836 in OpcUa_TcpListener ProcessRequest

#10 OpcUa_TcpListener ReadEventHandler

#11 0x000000000053dc7f in OpcUa_ TcpListener EventCallback

#12 0x00000000005536ed in OpcUa_Socket HandleEvent

#13 0x00000000005551e9 in OpcUa_P_Socket HandleFdSet

#14 0x0000000000554857 in OpcUa_P_SocketManager_ ServeLooplnternal

#15 0x0000000000551173 in OpcUa_ P SocketManager ServerLoopThread

#16 0x000000000055a006 in pthread start

#17 0x00007ffff7f98609 in start_ thread

#18 0x00007ffff7b54133 in clone ()

At #1 in the backtrace, we find that OpcUa_P_String_strncmp is called with the
first string being null and the second string being "Nano_Server". This function calls
the C function strncmp.

24nttps://github. com/FreeOpcUa/freeopcua/issues/391
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*

* Compare two OpcUa_ Strings Case Sensitive

* *

OpcUa_Int32 OPCUA_ DLLCALL OpcUa_P_String strncmp (OpcUa_ StringA stringl ,
OpcUa_StringA string2 , OpcUa_Ulnt32 uiLength)

return (OpcUa_Int32)strncmp (stringl , string2, uiLength);

Using strncmp with a null string on either side is considered undefined behavior,
and causes a segmentation fault in this case. #2 in the backtrace contains the function
that requested the strncmp, my_FindServers. This is a function defined in the example
server of the legacy OPC UA ANSI-C Stack. Within the following code, the string
compare is called:

for (i=0;i<a_nNoOfServerUris;i++)
{
if (((OpcUa_Port_ CallTablex) UaTestServer g PlatformLayerHandle)—>StrnCmp
(OpcUa_String_ GetRawString(a_pServerUris+i),"Nano Server" ,((
OpcUa_Port_CallTablex) UaTestServer g PlatformLayerHandle)—>StrLen ("
Nano Server"))==0)
break;
*a_pNoOfServers=0;
*a_pServers=OpcUa_ Null;
OpcUa_ GotoError

}

This code is run when a FindServers request is received by the server. It loops over
the server URIs inside the request and checks if the server name matches the one of the
example server, namely "Nano_Server".

By analyzing the crash data using Wireshark, we can more easily see what the fields
are within this data. As can be seen in Figure 13, the EndpointUrl value is indeed
null.
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© 7 Bytes 255-258: EndpointUrl (opcua.EndpointUrl)

Figure 13: Analyzing OPC UA packets using Wireshark

Since this bug originates from the example server provided with the legacy OPC UA
ANSI-C Stack and not the main code of the stack itself, and since this stack is no longer
directly supported nor available, we have chosen not to report this issue. While parts
of the legacy OPC UA ANSI-C Stack are used within the actively maintained OPC
Foundation LDS (Local Discovery Server) Stack?, the example server is not used there.

25https://github.com/0PCFoundation/UA-LDS
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5.5 Conclusions

While performing this experiment, we expected that we would find crashes more effec-
tively than the Boofuzz experiment performed in Chapter 4. AFLNet was able to find
multiple reproducible crashes in both the legacy OPC UA ANSI-C Stack and FreeOpcUa,
while Boofuzz was able to find none. Part of this could be attributed to the fact that
AFLNet explores the state space of OPC UA more extensively, as can be seen by com-
paring the state coverage of Boofuzz described in Section 4.2 and the state coverage of
AFLNet described in Section 5.2.3. Furthermore, AFLNet is ‘smarter’ in exploring the
state space of the SUTs, as it uses instrumentation to determine and prioritize the next
messages it is going to send, while Boofuzz generates the same messages for each run.
Thus, we could conclude that, when comparing AFLNet to Boofuzz, AFLNet is indeed
able to find crashes more effectively than the Boofuzz setup used in Chapter 4.

Setup. As described in Section 5.1, AFLNet does not have built in support for
the OPC UA protocol. Therefore, we had to implement this ourselves by modifying
the source code of AFLNet. The documentation of AFLNet, alongside the countless
examples of other implemented protocols, made this simple to do.

AFLNet requires seed inputs based on actual communication. We can generate
these seed inputs by capturing network communication between a client and server and
extracting the individual traces from this communication. This requires significantly less
effort than writing both the message and state grammar of the SUT from the ground
up.

The tooling provided by AFLNet is useful and well documented, as described in Sec-
tion 5.2.4. The documentation of both AFL and AFLNet are clear, providing examples
and advice for running the fuzzer and resolving problems. The main user interface, as
seen in Figure 9 provides a clear overview of the fuzzing process. afl-whatsup gives
useful statistics for a currently running aflnet-replay allows for quickly replaying and
verifying found crashes.

AFL has a tool named afl-cmin which minimizes found crashes in order to aid
debugging. Due to the fact that AFL inputs crashes to the SUT as a file, and AFLNet
does so via the network, afl-cmin is not compatible with the SUTs we are fuzzing, and
would thus require a separate tool in order to do this. Unfortunately, AFLNet does not
have an automated way of minimizing crashes.

Reproducibility. The AFLNet setup we made for this thesis directly ran in a virtual
machine without using containers. The setup-script for AFLNet provided in Appendix
E and the setup-scripts for the OPC UA implementations we tested with AFLNet in
Appendix D should allow for the experiments to be accurately reproducible on other
machines in the future. However, they have only been tested on Ubuntu 20.04, and do
not work on Ubuntu 22.10 or higher without further modifications. Containerizing the
AFLNet setup should resolve the dependency on a specific operating system version.

Extensibility. Unlike the Boofuzz experiment performed in Chapter 4, where we
can build and install the SUTs with few modifications, AFLNet requires us to build
the SUTs with instrumentation enabled, such that AFLNet can retrieve direct feedback
from the SUT as explained in Section 2.2.4.

For the three implementations we tested in this chapter, this proved to be simple,
as this could be done by changing the compiler to afl-clang-fast(++). However, it is
an additional step that needs to be performed. Furthermore, the instrumentation that
has to be added to the SUT is only compatible with C and C++ programs. This limits
the number of OPC UA implementations we can test. Performing grey-box fuzzing with
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different tooling on other implementations has been left as future work and is further
discussed in Section 6.5.

Performance. The performance of AFLNet on the tested OPC UA implementations
resulted in roughly 8 executions per second per core. This is a large improvement over
the 1 execution per second average that was achieved during the Boofuzz experiment as
shown in Section 4.6.

The capability of AFL and AFLNet to fuzz in parallel increased this performance
even more, by roughly the number of cores the system has, thus achieving results of
up to 64 executions per second. Parallel fuzzing requires that the SUT each AFLNet
instance fuzzes uses a different port. As described in Section 5.2, we achieved this by
modifying the source code of the SUT to either add a parameter to configure the server
port, or to make different binaries with different hard-coded ports.

While the latter method is simpler, it does not allow for scalability should a larger
system be used in the future. As shown in Section 5.2.4, parallel fuzzing requires us to
run a separate command for each instance of AFLNet we want to run. This once again
gives issues with scalability. While fuzzing like this is feasible for the 8-core system we
used, automating this would result in improved scalability, allowing us to re-run these
experiments more easily on systems with higher core-counts.

Unlike Boofuzz, AFLNet does not have a fixed number of testcases. Instead, AFLNet
tries to find and explore any path it finds given it has unlimited time, prioritizing more
interesting paths first. This means that AFLNet does not stop by itself. We limited the
time for open62541 to 48 hours and the time for the legacy OPC UA ANSI-C Stack and
FreeOpcUa to 24 hours.
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6 Future Work

In this chapter, we discuss ideas for future work on fuzzing OPC UA implementations.

6.1 Message timeouts

As discussed in the results of the Boofuzz experiment in Section 4.5, Boofuzz used 5
second timeouts for both sending and receiving messages from the SUT. These timeouts
are used to ensure that these messages properly arrive at their destination. However, it is
likely that these delays can be decreased significantly without resulting in any degraded
results. AFLNet, for example, fuzzed open62541 using a maximum receiving timeout of
about 0.2 seconds.

6.2 Fuzzing more OPC UA message types

In section Section 2.3.3, we discussed the nine message types that the Boofuzz setup by
BSI fuzzes. Furthermore, in Section 4.2 for black-box fuzzing and Section 5.2.3 for grey-
box fuzzing, we discuss the state coverage of the inputs of both methods. By comparing
these with the list of session sets the OPC UA specification contains, we find that there
are multiple session sets and corresponding message types we have not fuzzed completely.
Service sets we did not completely fuzz include the NodeManagement, Attribute and
Subscription service sets.

6.3 Fuzzing more OPC UA implementations

In this thesis, we only fuzzed the OPC UA implementations listed in Section 3.4. We
limited ourselves to only fuzz open source OPC UA implementations. However, as has
been documented by Erba et al. [8], many more open source OPC UA implementations
exist.

Most OPC UA implementations we tested were easy to setup and configure for
fuzzing. For these OPC UA implementations, it was simple to modify their configu-
rations to disable encryption and build them with either sanitizers or instrumentation
when needed. We discovered that some implementations, such as S20PC [27], do not
have a simple toggle or setting to disable this and would require more work in order to
make them suitable for fuzzing.

It is very likely that more OPC UA implementations will be developed in the future.
Furthermore, if we would also consider closed source and commercial implementations,
the number of potential OPC UA implementations would increase drastically.

6.4 Improving performance of network-based fuzzing

We only used network based fuzzers in both experiments we performed. However, the
network communication that needs to happen between the fuzzer and the SUT intro-
duces a high amount of latency. In order to improve fuzzing performance, the SUT
could be rewritten to read from local files instead of network sockets.

6.5 Using different fuzzers

As described in Section 2.2, various types of fuzzing exist. Furthermore, there are many
different tools that use different methods to perform fuzzing. As such, these tools might
achieve different levels of coverage, which could allow us to find more bugs. Other tools
might also result in performance improvements compared to Boofuzz and AFLNet.
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An interesting fuzzer to consider is SGFuzz[1]. The authors of SGFuzz claim that it
covers code of the SUT X times faster than AFLNet. However, SGFuzz is newer and
less widely used than AFLNet. Furthermore, the documentation of SGFuzz appears to
be less clear than that of AFLNet. It is likely that it is more difficult to set-up SGFuzz,
but the potential performance increase makes it interesting to consider.

We have also seen that some fuzzers have limitations on which programs they can
fuzz. For example, AFL and AFLNet are only able to instrument C and C-+ binaries,
which limits the number of potential SUTs we can fuzz. For AFL, various forks exist
that allow it to function with programs written in other languages, such as sharpfuzz2°
for C# and Kelenci?” for Java.

6.6 Improving code coverage

During our research, we mainly compared Boofuzz and AFLNet based on performance
metrics and the number of reproducible crashes they found. A different method to
compare the efficiency of different fuzzers is to measure the code coverage provided by
the fuzzers on each OPC UA implementation.

Furthermore, it is very likely that the example server applications provided with
the OPC UA implementations we fuzzed do not give access to the full feature set of the
OPC UA implementation. By measuring code coverage on the OPC UA implementation
itself, we are able to determine how much of the implementation’s code can be covered
by the fuzzer. Using the found code coverage, modifications or extensions can be made
to the fuzzed example server to give the fuzzer access to more code of the SUT, which
should in turn improve the efficiency of the fuzzer.

26nttps://github.com/Metalnem/sharpfuzz
2"https://github.com/isstac/kelinci
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7 Conclusions

In this thesis, we aimed to answer the research question How do we effectively fuzz open
source implementations of the OPC UA protocol?. We performed fuzzing on 7 OPC
UA implementations using the black-box fuzzer Boofuzz using an setup based on one by
BSI and fuzzed 3 C/C++ OPC UA implementations using the grey-box fuzzer AFLNet.
We found that in this thesis, grey-box fuzzing OPC UA implementations using AFLNet
was more effective than black-box fuzzing using Boofuzz. We consider some differences
between Boofuzz and AFLNet that led us to this conclusion:

e Setup. In Section 4.2, we found that the setup made by BSI was simple to setup
and reset due to the usage of Python scripts which set up Docker containers for
fuzzing. However, this setup also made it more difficult to debug any errors that
occurred. The AFLNet setup we made does not use any Docker containers, which
could potentially make it harder to setup on different systems. We found that out
of the two implementations, the documentation of AFLNet was slightly clearer,
with AFLNet itself often presenting steps that could be taken to solve a problem
as described in Section 5.2.4. Boofuzz, on the other hand, would require us to
search through their official documentation to do this. Finally, we found that the
tooling of AFLNet was much better, as it has a clear command line interface, has
support for parallel fuzzing and can easily replay crashes trough aflnet-replay.

¢ Reproducibility. The Boofuzz setup by BSI had several problems with repro-
ducibility, as can be seen in Section 4.5. For node-opcua, we had to fix mismatched
version numbers in the installation script to ensure the example server could run
in the fuzzing container. We could not get the .NET Standard Stack to run at all
due to dependency errors. With the setup of the AFLNet experiments described
in Section 5.2.2, we ensured to hard-code all versions and aimed to make the type
of system we can install it on as clear as possible. A future step could be setting
up Docker containers to perform AFLNet fuzzing in.

e Extensibility. The Boofuzz setup is simple to extend. Adding support for a new
OPC UA implementation can be done by adding an installation script for this
OPC UA implementatino to the setup, as described in section Section 4.3. This
script downloads, compiles and copies the server binary to the correct path so
Boofuzz can use it. AFLNet, on the other hand, requires us to build the OPC UA
implementations with instrumentation, which was described in Section 5.2.2. Fur-
thermore, AFLNet is limited to C/C++ binaries, limiting the amount of testable
OPC UA implementations. The input message- and state-grammar of Boofuzz,
on the other hand, is more difficult to extend compared to AFLNet, where we
can add new input seeds by capturing different kinds of communication between
a client and a server when we want to test different kinds of messages. For both
Boofuzz and AFLNet, it is important that the fuzzed OPC UA implementations
have encryption and other configuration settings such as session limits disabled.

e Performance. In general, fuzzing a binary over network sockets introduces a
large performance overhead. The performance from the Boofuzz setup was very
bad, varying between 2 and 0.5 executions per second depending on the tested
OPC UA implementation, as shown in Section 4.5. A lot of test-cases from Boo-
fuzz hit Boofuzzes timeout of exactly 10 seconds, which caused this low fuzzing
performance. In comparison, AFLNet was much faster, as can be seen in Sec-
tion 5.3. In the worst case, each core fuzzed the SUTs with roughly 8 executions
per second. Because we ran AFLNet in parallel on eight cores, this resulted in 64
executions per second in total.
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No reproducible crashes were found using Boofuzz, while AFLNet found three types
of reproducible crashes, as described in Section 5.4. Two crashes were found in FreeOpcUa,
and one crash was found in the legacy ANSI-C OPC UA implementation:

e The crash we found in the legacy ANSI-C OPC UA implementation was caused by
incorrectly checked parameters to the string comparison function strncmp, causing
a crash when one of the strings was set to null via user input.

e One crash found in FreeOpcUa only occurred in low memory situations. In high
memory situations, the same input caused the server to run into an infinite loop,
causing high CPU usage, but did not prevent new connections until a connection
limit was hit.

e The second crash found in FreeOpcUa occurred because of an uncaught exception
that occurred when a buffer of size 0 was requested, which was possible by setting
the size variable within an OPC UA message header to 8. Since FreeOpcUa sub-
tracts this number from the header size which is also 8, this resulted in FreeOpcUa
trying create a buffer of size 0, throwing an error and crashing the OPC UA im-
plementation.

37



References

(1]

2]

3]

4]

5]

[6]

7]

18]

19]

[10]

[11]

[12]

Jinsheng Ba, Marcel B6hme, Zahra Mirzamomen, and Abhik Roychoudhury. “State-
ful Greybox Fuzzing”. In: 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, Aug. 2022, pp. 3255-3272. 1sBN: 978-1-
939133-31-1. URL: https://www.usenix.org/conference/usenixsecurity22/
presentation/ba.

Pavel Cheremushkin. Practical example of fuzzzing OPC UA applications. Kasper-
sky Lab ICS CERT, 2020. URL: https://ics-cert.kaspersky.com/publications/
reports/2020/10/19/practical-example-of-fuzzing-opc-ua-applications/.

Pavel Cheremushkin and Sergey Temnikov. OPC UA security analysis. Kaspersky
Lab ICS CERT, 2018. URL: https://ics-cert.kaspersky.com/publications/
reports/2018/05/10/opc-ua-security-analysis/.

Markus Dahlmanns, Johannes Lohmoller, Ina Berenice Fink, Jan Pennekamp,
Klaus Wehrle, and Martin Henze. “Easing the Conscience with OPC UA: An
Internet-Wide Study on Insecure Deployments”. In: Proceedings of the ACM Inter-
net Measurement Conference. IMC ’20. Virtual Event, USA: ACM, 2020, pp. 101-
110. poI: 10.1145/3419394 .3423666.

Damm, Gappmeier, Zugfil, P16b, Fiat, and Stortkuhl. OPC UA Security Anal-
ysis*®. Bundesamt fiir Sicherheit in der Informationstechnik, 2017. URL: https:
//www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/
OPCUA/QOPCUA . html.

Cristian Daniele, Seyed Behnam Andarzian, and Erik Poll. Fuzzers for stateful
systems: Survey and Research Directions. 2023. DOI: 10 . 48550/ ARXIV . 2301 .
02490.

Johannes vom Dorp, Sven Merschjohann, David Meier, Florian Patzer, Markus
Karch, and Christian Haas. OPC UA Security Analysis®®. Bundesamt fiir Sicher-
heit in der Informationstechnik, 2022. URL: https://www.bsi.bund.de/SharedDocs/
Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA_2022_EN.pdf.

Alessandro Erba, Anne Miiller, and Nils Ole Tippenhauer. “Security Analysis of
Vendor Implementations of the OPC UA Protocol for Industrial Control Systems”.
In: Proceedings of the 4th Workshop on CPS & IoT Security and Privacy. CPSIoT-
Sec '22. Los Angeles, CA, USA: ACM, 2022, pp. 1-13. po1: 10.1145/3560826 .
3563380.

Eclipse Foundation. Eclipse Milo. OPC UA Implementation. URL: https://www.
eclipse.org/milo (visited on May 21, 2023).
OPC Foundation. OPC UA ANSIC! The official UA ANSI-C Stack and Sample

Applications from the OPC Foundation. OPC UA Implementation. URL: http:
//opcfoundation.github.io/UA-AnsiC-Legacy (visited on May 22, 2023).

OPC Foundation. OPC Unified Architecture .NET Standard. OPC UA Implemen-
tation. URL: https://github.com/0PCFoundation/UA- .NETStandard (visited
on May 21, 2023).

FreeOpcUa. python-opcua. OPC UA Implementation. URL: https://github. com/
FreeOpcUa/python-opcua (visited on May 21, 2023).

28German version of report from 2017 retrieved from https://www . bsi . bund . de / SharedDocs /
Downloads/DE/BSI/Publikationen/Studien/0PCUA/OPCUA.pdf

29German version of report from 2022 retrieved from https://www . bsi . bund . de / SharedDocs /
Downloads/DE/BSI/Publikationen/Studien/0PCUA/OPCUA_2022.html

38


https://www.usenix.org/conference/usenixsecurity22/presentation/ba
https://www.usenix.org/conference/usenixsecurity22/presentation/ba
https://ics-cert.kaspersky.com/publications/reports/2020/10/19/practical-example-of-fuzzing-opc-ua-applications/
https://ics-cert.kaspersky.com/publications/reports/2020/10/19/practical-example-of-fuzzing-opc-ua-applications/
https://ics-cert.kaspersky.com/publications/reports/2018/05/10/opc-ua-security-analysis/
https://ics-cert.kaspersky.com/publications/reports/2018/05/10/opc-ua-security-analysis/
https://doi.org/10.1145/3419394.3423666
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA.html
https://doi.org/10.48550/ARXIV.2301.02490
https://doi.org/10.48550/ARXIV.2301.02490
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA_2022_EN.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/OPCUA/OPCUA_2022_EN.pdf
https://doi.org/10.1145/3560826.3563380
https://doi.org/10.1145/3560826.3563380
https://www.eclipse.org/milo
https://www.eclipse.org/milo
http://opcfoundation.github.io/UA-AnsiC-Legacy
http://opcfoundation.github.io/UA-AnsiC-Legacy
https://github.com/OPCFoundation/UA-.NETStandard
https://github.com/FreeOpcUa/python-opcua
https://github.com/FreeOpcUa/python-opcua
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/OPCUA/OPCUA.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/OPCUA/OPCUA.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/OPCUA/OPCUA_2022.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/OPCUA/OPCUA_2022.html

[13] FreeOpcUA: Open Source C++ OPC-UA Server and Client Library. OPC UA
Implementation. URL: https://github.com/FreeOpcUa/freeopcua (visited on
Aug. 6, 2023).

atrice odelrola. uzzing: ackK, I't7 an clence . 1n: ommun. .
14] Patrice Godefroid. “Fuzzing: Hack, A d Science”. In: C ACM 63.2
(Jan. 2020), pp. 70-76. DOI: 10.1145/3363824.

[15] Aki Helin. Radamsa. URL: https://gitlab.com/akihe/radamsa (visited on
Apr. 13, 2023).

[16] Sam Hocevar. zzuf. 2007. URL: http://caca.zoy.org/wiki/zzuf (visited on
Mar. 7, 2023).

[17] Valentin J.M. Maneés, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. “The Art, Science, and Engineer-
ing of Fuzzing: A Survey”. In: IEEFE Transactions on Software Engineering 47.11
(2021), pp. 2312-2331. DOIL: 10.1109/TSE.2019.2946563.

[18] Nikolas Miihlbauer, Erkin Kirdan, Marc-Oliver Pahl, and Georg Carle. “Open-
Source OPC UA Security and Scalability”. In: 2020 25th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA). Vol. 1. 2020,
pPp- 262-269. DOI: 10.1109/ETFA46521.2020.9212091.

[19] node-opcua. OPC UA Implementation. URL: https://node-opcua.github. io
(visited on May 21, 2023).

[20] open62541. OPC UA Implementation. URL: https://www.open62541 . org (visited
on May 21, 2023).

[21] Peach Fuzzer. 2004. URL: https://gitlab . com/peachtech/peach- fuzzer -
community (visited on May 10, 2023).

[22] Joshua Pereyda. boofuzz. URL: https://github. com/jtpereyda/boofuzz (visited
on Apr. 1, 2023).

[23] Van-Thuan Pham, Marcel Bohme, and Abhik Roychoudhury. “AFLNET: A Grey-
box Fuzzer for Network Protocols”. In: 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST). 2020, pp. 460—465. DOL:
10.1109/1CST46399.2020.00062.

[24] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov.
“AddressSanitizer: A Fast Address Sanity Checker”. In: 2012 USENIX Annual
Technical Conference (USENIX ATC 12). Boston, MA: USENIX Association,
June 2012, pp. 309-318. 1SBN: 978931971935.

[25] Konstantin Serebryany and Timur Iskhodzhanov. “ThreadSanitizer: Data Race
Detection in Practice”. In: Proceedings of the Workshop on Binary Instrumentation
and Applications. WBIA ’09. New York, New York, USA: ACM, 2009, pp. 62-71.
DOI: 10.1145/1791194.1791203.

[26] Evgeniy Stepanov and Konstantin Serebryany. “MemorySanitizer: Fast detector of
uninitialized memory use in C++". In: 2015 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). 2015, pp. 46-55. DOI: 10.1109/
CG0.2015.7054186.

[27] Systerel. S20PC. OPC UA Implementation. URL: https://www.s2opc.com (vis-
ited on May 21, 2023).

[28] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. “Schedul-
ing Black-Box Mutational Fuzzing”. In: Proceedings of the 2013 ACM SIGSAC

Conference on Computer €& Communications Security. CCS '13. Berlin, Germany:
ACM, 2013, pp. 511-522. DOI: 10.1145/2508859. 2516736.

39


https://github.com/FreeOpcUa/freeopcua
https://doi.org/10.1145/3363824
https://gitlab.com/akihe/radamsa
http://caca.zoy.org/wiki/zzuf
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/ETFA46521.2020.9212091
https://node-opcua.github.io
https://www.open62541.org
https://gitlab.com/peachtech/peach-fuzzer-community
https://gitlab.com/peachtech/peach-fuzzer-community
https://github.com/jtpereyda/boofuzz
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1109/CGO.2015.7054186
https://doi.org/10.1109/CGO.2015.7054186
https://www.s2opc.com
https://doi.org/10.1145/2508859.2516736

[29] Yingchao Yu, Zuoning Chen, Shuitao Gan, and Xiaofeng Wang. “SGPFuzzer: A
State-Driven Smart Graybox Protocol Fuzzer for Network Protocol Implementa-
tions”. In: IEEE Access 8 (2020), pp. 198668-198678. DOI: 10.1109/ACCESS.2020.
3025037.

[30] Michal Zalewski. Technical "whitepaper” for afl-fuzz. Tech. rep. URL: https://
lcamtuf.coredump.cx/afl/technical_details.txt.

40


https://doi.org/10.1109/ACCESS.2020.3025037
https://doi.org/10.1109/ACCESS.2020.3025037
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

Glossary

ASAN AddressSanitizer.

ICS Industrial Control Systems.

MSAN MemorySanitizer.

OPC UA Open Platform Communications Unified Architecture.
SUT System Under Test.

TSAN ThreadSanitizer.

UBSAN UndefinedBehaviorSanitizer.
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Appendices

Appendix A OPC UA message structures

This appendix contains several examples with diagrams for how OPC UA messages are
structured. Section Section A.l1 contains information about the string type used by
OPC UA and section Section A.2 contains examples of message types OPC UA uses to
initiate connections.

A.1 Types

The OPC UA specification lists several built in types that can be used within messages3°.
The types that are relevant to the messages that we fuzzed are listed in this section.
A.1.1 String type

The table in Figure 14 contains the structure of the string type.

Ulnt32 Byte[Length]

Length | UTF-8 encoded characters

Figure 14: String type structure

A.2 Connection protocol

Connection protocol messages®' are responsible for initiating a communication channel
between an OPC UA client and server.

A.2.1 Message header

The OPC UA message header, as described in section 7.1.2.2 of the OPC UA spec-
ification®?, is prefixed to all messages sent by the OPC UA protocol. Note that the
MessageSize field contains the message size including the 8 bytes of the header. The
table in Figure 15 contains the structure for message headers.

Byte[3] Byte[1] Ulnt32

MessageType | Reserved = F | MessageSize | Message

Figure 15: Message header structure

30nttps://reference.opcfoundation.org/Core/Part6/v105/docs/5.2 (OPC UA Binary)

3lhttps://reference.opcfoundation.org/Core/Part6/v105/docs/7.1 (OPC UA Connection Proto-
col)

32https://reference.opcfoundation.org/Core/Part6/v105/docs/7.1.2.2 (Message Header)
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A.2.2 Hello message

The hello message is sent from the client to the server in order to initiate a connection.
It contains several fields which state the capabilities of the client, such as the sizes of
the send and receive buffers. The table in Figure 16 contains the packet structure of the
Hello message (HEL).

Ulnt32 Ulnt32 Ulnt32 Ulnt32 Ulnt32 String

’ Header ProtocolVersion | ReceiveBufferSize SendBufferSize MaxMessageSize MaxChunkCount EndpointUrl

Figure 16: Hello message packet structure

A.2.3 Error message

OPC UA error messages, as shown in section 7.1.2.5 of the OPC UA specification??,
contain a status code and an optional reason. A list of valid status codes can be found
in section A.2 of the OPC UA specification®*. The table in Figure 17 contains the
structure of the error message (ERR).

Ulnt32  String

Header | Error | Reason

Figure 17: Error message packet structure

33nttps://reference.opcfoundation.org/Core/Part6/v105/docs/7.1.2.5 (Error Message)
34https://reference.opcfoundation. org/Core/Part6/v105/docs/A.2 (Status Codes)
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Appendix B Building OPC UA implementations for
Boofuzz

This appendix contains the install.sh scripts used to build several OPC UA imple-
mentations in the black-box fuzzing experiments performed in Chapter 4. Instructions
on how to use these scripts to add support for new implementations to BSI’s Boofuzz
setup can be found in Section 4.3.

B.1 Legacy OPC UA ANSI-C Stack

This script assumes that the source code of the legacy OPC UA ANSI-C Stack is present
in targets/legacy-stack/UA-AnsiC-Legacy-1.04.342.

#!/usr/bin/env bash

# Install dependencies
apt—get update && apt—get install libssl—dev cmake —y

cd targets/legacy—stack /UA-AnsiC—Legacy —1.04.342

# Build legacy OPC UA ANSI-C stack
mkdir build

cd build

cmake

cmake —build

Create symbolic link to target (example server)

od ofoiffen)

In —s targets/legacy—stack /UA-AnsiC—Legacy —1.04.342/build /bin/AnsiCServer /opt/
app/target
exit 0

B.2 FreeOpcUa

#!/usr/bin/env bash

# Clone repository

git clone https://github.com/freeopcua/freeopcua.git
cd freeopcua

git checkout 6eac097

# Install cmake
apt—get update && apt—get install cmake —y

# Install dependencies using apt—get command listed in debian.soft
sed —i ’s/libmbedtls—dev/libmbedtls—dev —y/g’ debian.soft # Add —y to the end
of apt—get command

./ debian.soft

# Build freeopcua
mkdir build

cd build

cmake

make

# Copy example server
cp bin/example server /opt/app/target

ed .. /../

exit O

44




OO0 Uk W

© 00Uk W

=
N = O

—
w

Appendix C Building OPC UA implementations for
AFLNet

This appendix contains the scripts we used to build several OPC UA implementations
with instrumentation for usage with AFLNet in the grey-box fuzzing experiments per-
formed in Chapter 5.

C.1 open62541

#!/bin /sh

# Install APT packages
apt—get install cmake —y

Remove previous repository
rm —r open62541

# Clone repository and check out specific commit
git clone https://github.com/open62541/open62541.git
cd open62541

git checkout 46d0395

git submodule update —init —recursive

# Copy modified server ctt.c that allows for anonymous authentication
cp ../server ctt.c examples

# Build open62541 with examples

AFL_HARDEN=1 cmake —DCMAKE C COMPILER=afl —clang —fast —DCMAKE CXX COMPILER=afl —
clang—fast++ —DBUILD SHARED_ LIBS=ON —DUA_BUILD EXAMPLES=ON
DUA_ENABLE ENCRYPTION=OFF ../ open62541

make —j1

make install

# Copy server and build client

cd ..

cp open62541/bin/examples/server ctt .

afl —clang—fast —std=c99 —DUA ARCHITECTURE POSIX client anonymous.c —lopen62541
—o client _anonymous

C.2 Legacy OPC UA ANSI-C Stack

This script assumes that the source code of the legacy OPC UA ANSI-C Stack is present
in UA-AnsiC-Legacy-1.04.342.

#!/usr/bin/env bash

Install dependencies
apt—get update && apt—get install libssl—dev cmake —y

cd UA-AnsiC—Legacy —1.04.342

# Build legacy OPC UA ANSI-C stack

mkdir build

cd build

export AFL_ HARDEN=1

cmake —DCMAKE C COMPILER=afl —clang —fast —DCMAKE CXX COMPILER=afl —clang—fast++

Cmake; A—build
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C.3 FreeOpcUa

#!/bin /sh

# Install cmake
apt—get update && apt—get install cmake —y

# Clone repository

git clone https://github.com/freeopcua/freeopcua.git
cd freeopcua

git checkout 6eac097

# Install dependencies using apt—get command listed in debian.soft
sed —i ’s/libmbedtls—dev/libmbedtls—dev —y/g’ debian.soft # Add —y to the end
of apt—get command

./ debian.soft

# Build freeopcua

mkdir build

cd build

AFL_HARDEN=1 cmake —DCMAKE C COMPILER=afl —clang—fast —DCMAKE CXX COMPILER=afl —
clang—fast4++

make
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Appendix D Modifying AFLNet for fuzzing OPC UA

This appendix contains the source code of several modifications we made to AFLNet
to make it support the OPC UA standard for the AFLNet experiment described in

Chapter 5.

D.1 Extracting requests

The following function has been added to aflnet.c:

region_tx extract_requests opcua(unsigned charx buf,
unsigned intx* region count ref)

{
char *xmem;
unsigned int byte count = O0;
unsigned int mem_count = O0;
unsigned int mem _size = 1024;
unsigned int region count = 0;

region_t *regions = NULL;
mem=(char x)ck alloc(mem_size) ;

unsigned int cur_ start = 0;
unsigned int cur_end = 0;
while (byte_ count < buf_ size) {
memcpy (&mem|[mem _count|, buf + byte count++, 1);

unsigned int buf_size,

Check if region is at least 8 bytes (OPC UA header size)

if (mem_count >= 8) {
Bytes: 1—3: message type
Byte 4: chunk type
Bytes 5—8: message size
Extract message size from header
u32 message size = (u32)mem|[4] << 0 |
(u32)mem|[5] << 8 |
(u32)mem|[6] << 16 |
(u32)mem|[7] << 24;

Skip the payload, removing the OPC UA header
unsigned int bytes to skip = message size — 8;

unsigned int temp_count = 0;

(8) from the message size

while ((byte count < buf_ size) && (temp_ count < bytes to_skip)) {

byte count-++;
cur _end++;
temp count+-+;

}

if (byte_count < buf_size) {
byte count——;
cur _end——;

Create one region
region count-+4;

regions = (region t =*)ck realloc(regions, region count % sizeof(region t)
regions [region count 1].start _byte = cur_start;

regions [region count — 1].end byte = cur_end;

regions [region count — 1].state sequence = NULL;

regions [region_count — 1].state count = 0;

Check if the last byte has been reached
if (cur_end < buf size — 1) {

mem_count — 0;
cur_start = cur_end + 1;
cur_end = cur_start;
}
} else {
mem__count—++;
Cur_cnd++;

Check if the last byte has been reached
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if (cur_end = buf_ size — 1) {
region count--+;

regions = (region_t x)ck_ realloc(regions, region_ count % sizeof(
region_t));
regions [region count — 1].start byte = cur_start;
regions [region count — 1].end byte = cur_end;
regions [region count — 1].state sequence = NULL;
regions [region count — 1].state count = 0;
break;
}
if (mem count = mem _size) {
mem _size = mem _size x 2;

mem=(char >i=)<;k_1featlloc(mem7 mem_size);

}
}

if (mem) ck_free(mem);

if ((region_ count =— 0) && (buf_size > 0)) {
regions = (region_t x*)ck realloc(regions, sizeof(region_ t));
regions [0].start _byte = 0;
regions [0].end byte = buf_ size — 1;
regions [0].state sequence = NULL;
regions [0].state count = 0;

region count = 1;

}

*region _count ref = region_count;
return regions;

D.2 Extracting response codes

The following function has been added to aflnet.c:

unsigned intx extract response_ codes opcua(unsigned charx buf, unsigned int
buf_ size, unsigned int* state count ref)
{

char #*mem;

unsigned int byte_ count = O0;
unsigned int mem_count = O0;

unsigned int mem_size = 1024;
unsigned char message type;

unsigned int *state sequence — NULL;
unsigned int state_count = O0;

mem=(char x)ck alloc(mem_size) ;

//Add initial state
statc_countJrJr;

state sequence = (unsigned int x*)ck_ realloc(state sequence, state count x
sizeof (unsigned int));
state sequence[state count — 1] = 0;

while (byte_ count < buf_ size) {
memcpy (&mem|[mem count|, buf 4+ byte count++, 1);

if (mem_count >= 8) {
Bytes 0—2: message type
Byte 3: chunk type
Bytes 4—-7: message size
Bytes 8—11: error number

if ((mem[0] = "E’) && (mem|[1] == 'R’) && (mem[2] =— 'R’)) {
If message type is ERR, we use the second byte from error code (
endianness swapped), as this value has the most variance.
message type = mem[10];
} else { / If message is not an ERR, interpret it as status code 0x00
message type = 0x00;
}

Extract message size from header
u32 message size = (u32)mem[4] << 0 |
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(u32)mem|[5] << 8 |
(u32)mem|[6] << 16 |
(u32)mem|[7] << 24;

Skip the payload, removing the OPC UA header (8) from the

message size

unsigned int bytes to skip = message size — 8;
unsigned int temp count = O;
while ((byte count < buf_ size) && (temp_ count < bytes to_skip)) {

byte_count++;
temp_count++;

¥
if (byte_count < buf_ size) {
byte count——;
Add response code to array
unsigned int message code = message_type;
state count+-+;
state sequence = (unsigned int *)ck realloc(state sequence,
sizeof (unsigned int));
state sequence[state count — 1] = message_ code;
mem_count = 0;
} else {
mem__count—++;
if (mem_count = mem_size) {
mem _size = mem _size * 2;
mem=(char x)ck realloc(mem, mem _size);
¥
}
if (mem) ck_free (mem);
*stateicountiref = state_count;
return state sequence;

state_count =

D.3 Adding OPCUA option to the tooling

afl-fuzz.c
The following code adds OPCUA as an option to AFLNet’s protocol parameter -P:

}

else if (!stremp(optarg, "OPCUA")) {

extract requests = &extract_ requests opcua;
extract response_codes = &extract response_ codes_opcua;
else {

aflnet-replay.c
The following code adds OPCUA as an option in aflnet-replay:

else if

(!'strcmp (argv[2], "OPCUA")) extract_ response codes = &

extract response_ codes opcua;
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Appendix E Installing AFLNet

This appendix contains the script used to install AFLNet on a virtual machine run-
ning Ubuntu 20.04. It is assumed that the modified source files aflnet.h, aflnet.c,
aflnet-replay.c and afl-fuzz.c described in Appendix D are present in the same
folder as the installation script in this appendix.

#!/bin /sh

# Install dependencies
sudo apt—get install git make llvm—dev clang graphviz—dev libgraphviz—dev
libcap—dev —y

# Clone repository

git clone https://github.com/aflnet/aflnet.git aflnet
cd aflnet

git checkout 213c9cf

# Copy modified AFLNet source code
cp ../{aflnet.h,aflnet.c,aflnet—replay.c,afl—fuzz.c}

# Build AFLNet
make clean all

export LLVM CONFIG=llvm—config —10
cd llvm_mode
make

# Export environment variables
cd ../..

export AFLNET=$(pwd)/aflnet
export WORKDIR=$ (pwd)

export PATH=$PATH:$AFLNET
export AFL PATH=$AFLNET
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