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Abstract
Session types allow us to encode channel-based communication protocols on the type level. This way,
we can perform static analysis on communication, e.g. to ensure deadlock-freedom. Since protocols
are stateful, we need to add state to the type system. For this, linear types can be used.

MPGV is a (theoretical) multiparty communication language using linear types to ensure protocol
adherence. However, no implementation has been made before. One of the main challenges for writing
an implementation is making the MPGV typing rules more computable, and to remove the need for
unnecessary type annotations. This thesis presents MPGVR, an implementation of the MPGV
language. MPGVR uses an algorithmic translation of the typing rules and uses bidirectional type
checking to solve both problems.

Other contributions described in this thesis include several practical extensions to MPGV, and a
formalisation for shadowing variables in typing judgements.
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Artifact

The MPGVR implementation can be found at [22].
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Chapter 1.

Introduction

Concurrency is one of the many tools in a programmer’s toolbox. From modelling asynchronous
tasks to increasing performance, concurrency shows up everywhere. With the amount of cores in
CPUs steadily increasing [19] and CPU frequency stagnating over the last years, we see that utilising
multiple threads is becoming more and more important.

However, managing shared resources and thread communication without introducing problems like
race conditions and deadlocks remains a tough problem to solve. High-level constructions such as
(mutex) locks and message passing simplify communication to make the process less error-prone.

In this thesis, we focus on (channeled) message passing systems. Many languages have libraries for
channel-based communication. For example, take a look at Rust’s mpsc channels1:

1 use std :: sync :: mpsc :: channel ;
2 use std :: thread ;
3

4 let (tx , rx) = channel <u32 >();
5

6 thread :: spawn(move || {
7 tx.send (7106412) . unwrap ();
8 });
9

10 assert_eq !( rx.recv (). unwrap (), 7106412) ;

In this example, we first create a channel (line 4) with two endpoints. Each thread will use one of
these endpoints. We then create a thread (line 6) that uses tx to send a number (line 7). The main
thread then uses rx to receive this number (line 10), checking that it is correct.

With channels, there are a few points at which the construction can fail:

(a) Messages are sent with a type the receiver does not expect;

(b) Messages are sent in the wrong order;

(c) The channel is still being used when its resources have already been released;

(d) Messages are not being sent, leading to a deadlock on the receiving side.

To show how languages could solve these problems, we consider the Rust language again. It solves
problem (a) by making the channel typed; only one type of value can be sent over the channel, meaning
that the receiver knows what to expect. It also solves problem (c) because Rust has strict ownership
rules; once a channel is freed, the compiler can verify whether it will not be used again. Problem (b)
may occur, if you are sending two values of the same type. When using different types, however, you’ll
have to use two separate channels (because of the hardcoded type on a channel). In that case, the
receiver can simply control the order of receiving messages by deciding when to consume from each
channel. However, problem (d) still exists. Rust allows a variable to not be used, meaning we can
write something like this:

1Example inspired by the documentation: https://doc.rust-lang.org/std/sync/mpsc/index.html
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11 use std :: sync :: mpsc :: channel ;
12 use std :: thread ;
13

14 let (tx , rx) = channel <u32 >()
15

16 thread :: spawn(move || {
17 // we have forgot to send something
18 });
19

20 assert_eq !( rx.recv (). unwrap (), 7106412) ;

Now, the main thread will be deadlocked.

We see that types and ownership rules are promising constructs to fix certain channel problems with.
But, can we solve more problems than just (a) and (c)? To find the answer, we will look into the field
of session types. This is a field where channeled communication is encoded into types, such that we
can derive certain guarantees from them.

The groundwork for session types was laid by Honda et al. [7, 8], where a process-calculus was
introduced for channel-based communication. In this calculus, two parties could communicate over
a bidirectional channel, and communication was encoded using dual types. With dual types, one
side A can define how they will communicate with B, and from that B can derive how they should
communicate with A.

For example, suppose A wishes to ask B whether a number is even. A could use a channel with type
!N. ?B. End. This indicates that A wishes to send their natural number to B, then receive a boolean
result from B, and then stop communication. This means that side B must receive this natural
number, and return a boolean. Therefore, we can swap each send and receive operation to get the
dual type ?N. !B. End. From this we see that problems (a) and (b) are solved by these session types,
like in Rust — for (b) again assuming messages use enough different types.

From this work by Honda et al., two branches have spawned. Gay and Vasconcelos lifted session
types into the world of λ-calculi [5, 6], allowing use of session types in functional programs. They
introduced the linearity constraint on channels. This means that channels must be used exactly once.
By returning new channels on every send and receive action, we guarantee that we never forget to
send a message, since this newly returned channel must be used. As an example, our is-even function
could be written like this:

1 isEven :: ?N. !B. End -> ()
2 isEven c = let (n, c) = receive c in -- c gets shadowed to type !B. End
3 let c = send (n % 2 == 0) c in -- c gets shadowed to type End
4 close c -- returns ()

The calculus by Gay and Vasconcelos supports sending and receiving of any arbitrary type. This
includes lists like List[N], other channels like !N. End or any combination like List[!List[N]. End]. In
contrast, the session types by Honda et al. needed separate constructions for sending basic values and
sending channels.

Walder later formalised the calculus by Gay and Vasconcelos, turning it into the “GV” language [23].
One of the main changes is to the construction of new threads. This was changed because the original
thread creation construction by Gay and Vasconcelos was not deadlock-free. Wadler proved that the
GV language, using this new construction, is actually deadlock-free — which is a significant result,
since it means that session types can also solve problem (d).

Another branch of session types is that of multiparty session types (MPST), where Honda et al.
extended the two-party process-calculus to support an arbitrary amount of parties [9, 10]. This is
done by generalising the dual types into a system of global and local types. Now, communication as
a whole is encoded into a global type; it states which participants send/receive what to/from whom.
from this global type, local types can be generated that can tell a participant what to do. For example,
suppose we have a participant 0, who lets participant 1 add to a number and have participant 2 check

5 / 72



if the result is even, after which participant 2 sends that result back to participant 0. This could be
encoded as

[0->1]N. [1->2]N. [2->0]B. End.

The local types can then be generated:

A : ![1]Nat. ?[2]B. End

B : ?[0]Nat. ![2]N. End

C : ?[1]Nat. ![0]B. End

These global types help ensure deadlock-freedom in this language. However, because of the way
threads are spawned in MPST, deadlock-freedom is only guaranteed if there is only one session/global
type active at once. This means that we cannot allow dynamic thread creation. This is in contrast to
GV, where we can create as many two-party sessions as we like.

Recently, the MPGV language was introduced [12]. As the name might suggest, this language com-
bines the two session type branches to introduce a multiparty deadlock-free λ-calculus. It accomplishes
this by extending the GV language with the global and local type constructs from Honda et al. MPGV
notably allows for dynamic thread creation, like GV, effectively removing the deficit present in MPST.
MPGV is a significant discovery, since it means that the different theory on session types is compatible
with eachother. As an example, we show how we could write MPGV code for the multiparty process
described earlier2:

1 gtype GT = [0 ->1]N. [1 ->2]N. [2 ->0]B. End
2

3 let funB :: GT |1 -> ()
4 = \c. -- c has type ?[1]N. ![2]N. End
5 n = c. receive (); -- c gets shadowed to type ![2]N. End
6 c.send(n + 3); -- c gets shadowed to type End
7 c.close () -- returns ()
8

9 let funC :: GT |2 -> ()
10 = \c. -- c has type ?[2]N. ![0]B. End
11 n = c. receive (); -- c gets shadowed to type ![0]B. End
12 c.send(n % 2 == 0); -- c gets shadowed to type End
13 c.close () -- returns ()
14

15 print
16 -- c has type ![1]N. ?[2]B. End
17 let c = fork <GT >(c. funB c, c. funC c) in
18 c.send (7106412) ; -- c gets shadowed to type ?[2]B. End
19 isEven = c. receive (); -- c gets shadowed to type End
20 c. close (); -- closes c, discards ()
21 isEven -- the isEven result is printed

There has been effort in the programming sphere to develop software implementing these various
session type constructions. Many libraries are based on GV [4, 13, 14], and there exist implementations
of MPST [15]. (For more discussion on these implementations, see chapter 6.) However, before this
thesis, there did not exist an implementation of MPGV yet.

This thesis introduces MPGVR (short for MPGV REPL), an implementation for MPGV. For this
implementation, we have three goals:

• It must be fully compatible with the original operational semantics of MPGV by Jacobs et al.;

• The type checker must implement all safety guarantees of MPGV;

• The mathematical syntax must be translated into an ASCII syntax that a typical programmer
may expect.

In the process of meeting these goals, the following contributions have been made:
2A proper introduction to the MPGV syntax can be found in chapter 2.
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• A parser, type checker and interpreter for MPGV has been written. All features of the language
have been implemented, apart from recursive typing. This is left as future work. Notable
features of MPGV that have been implemented are linear typing, global and local types, and
type projection.

• The bidirectional typing strategy from Dunfield and Krishnaswami [3] has been used in the
MPGV type checker, using the algorithmic type checking principles from Advanced Topics in
Types and Programming Languages [18]. This strategy has been shown to work on a range of
examples. Bidirectional typing eliminates many of the type annotations otherwise needed to
typecheck an MPGV program.

• Syntactic changes to the MPGV language have been made to make it easier to write programs
with. Notable changes are adding more concise channel operations akin to Haskell’s do-notation,
and adding concise syntax for local types where only one type of value is always (“choicelessly”)
sent.

• MPGV has been extended to work as a REPL. This feature gives rise to embeddability, which
distinguishes this implementation from most other session type systems, which are often designed
as libraries.

• A formalisation is made that allows adding shadowing to typing judgements and operational
semantics with no extra effort compared to assuming Barendregt’s Variable Convention [2, 20,
21]. This formalisation is used in the implementation.

This thesis is divided into the following chapters:

• In chapter 2, we go over the syntax of the MPGV language by way of showing code snippets.
These snippets also show the features and usability of the language.

• In chapter 3, we go over neccessary background information one needs, in order to understand
the inner workings of the interpreter described later. This information includes formal type
checking of unrestricted lambda calculi (3.1), linear lambda calculi (3.2), and a mix of both
calculi (3.3). We also formalise the concept of shadowing (3.4) and introduce bidirectional type
checking for algorithmic typing (3.5).

• In chapter 4, we talk about the formalisations of MPGV, first formally introducing the syn-
tax (4.1). Then, we go over the design choices and difficulties with translating regular typing
rules into algorithmic ones (4.2). Lastly, we do the same, but this time translating the algorith-
mic rules into bidirectional ones (4.3).

• In chapter 5, we talk about the implementation details of MPGVR. First, we describe the
monads used (5.1). Then, we explain design choices and difficulties writing a type checker for
MPGV (5.2), based on the bidirectional typing rules. After that, we do the same talking about
designing the interpreter (5.3), based on the operational semantics. We also briefly talk about
the parser (5.4). Lastly, we explain the design choices and difficulties designing a REPL for
MPGV (5.5).

• Chapters 6 and 7 are for related work and the conclusion, respectively.

• Appendix A contains an exhaustive list of all different typing rules and operational semantics
related to MPGV.

• Appendix B contains a formal grammar of MPGVR, which is what the parser implements.
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Chapter 2.

MPGV by example

To introduce the MPGV language, and the syntax of MPGVR, this chapter provides a range of code
examples. Some examples come from related work, and show that a translation from these examples
into working MPGVR code is possible. The “round trip add” examples in section 2.2 are from
Multiparty GV [12], and the “two buyers” example in section 2.4 is from Multiparty Asynchronous
Session Types [9].

2.1. Factorial
Since MPGV is a functional language, let us start with a classic example: the factorial function.

1 let fac :: N -> N =
2 rec fac n.
3 if n > 0 then
4 n * fac (n - 1)
5 else
6 1

As you can see, we have defined fac as a recursive function, using the rec f x. e construction. A
recursive function is the same as a regular lambda function \x. e, except for the f variable that allows
the function to call itself. The type of this function is N -> N, which indicates a function that transforms
a natural number into another natural number. Note that subtraction rounds negative results back
to zero, since we use natural numbers.

2.2. Round trip add
We use this section to introduce MPGV’s deadlock-free concurrency system. To start, we must define
a communication protocol using so-called global types. If communication can be encoded into a global
type, it will be deadlock-free.

A global type is a series of steps, that state what value to send from which thread to which other
thread. Concretely, they follow the pattern [p->q]T.GT, where p and q are participants, T is the type
of data to send, and GT is another global type, which holds the next step(s) in the communication.
Communication ends at the global type End.

For some basic examples using concurrency, we look at those written in the Multiparty GV paper [12].
Consider a program that sends a number to various threads. Each thread adds to the received number,
then sends the result to another thread. We start at the main thread, and end at the main thread,
where we print the result.

To encode this communication between three threads, we make the following global type:
1 -- Send a number around in a circle
2 gtype GT = [0 ->1]N. [1 ->2]N. [2 ->0]N. End
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Thread 1 can then be modeled as a function that takes a communication endpoint – a channel – and
performs its side of the communication according to the global type:

1 -- Thread that adds 3 to the number
2 let f1 :: GT |1 -> () =
3 \c.
4 n = c. receive [0](); -- ?[0]N. ![2]N. End
5 c.send [2](n+3); -- ![2]N. End
6 c.close () -- End

The types used here are called local types. They are types that encode communication from the
perspective of one participant. This is in contrast to global types, which oversee communication of all
participants.

A local type either receives from (?[p]T.LT), or sends to (![p]T.LT) participant p a value of type T, to
then continue with local type LT. Like with global types, communication ends at End. To generate
a local perspective from a global type, the projection operation GT|p is provided. In the case of this
example, we would get

GT|0 = ![1]N. ?[2]N. End ,

GT|1 = ?[0]N. ![2]N. End ,

GT|2 = ?[1]N. ![0]N. End .

Every time a local operation is called, like receive, the used channel “changes” type, as indicated by
the comments. In reality, since variables are immutable, the variable does not change type, but a new
variable with the same name gets created; the syntax used here is just syntactic sugar to keep the
code concise. For the full specification of this syntactic sugar, check the grammar in appendix B.

Formally, local operations take the channel as an argument, and then return a new channel that
contains the next steps of the communication. We can then use shadowing to get the illusion of
change. For example, the syntax c.send[2](n+3); ... gets translated into the operation let c=send[2](

c,n+3) in .... We use this “monadic” shorthand in the examples, since it is more concise, and mimics
Haskell’s do-notation.

We can now finish the program, adding participant 2 and participant 0 – the main thread:
1 -- Thread that adds 4 to the number
2 let f2 :: GT |2 -> () =
3 \c.
4 n = c. receive [1](); -- ?[1]N. ![0]N. End
5 c.send [0](n -4); -- ![0]N. End
6 c.close () -- End
7

8 -- Main thread
9 print

10 let c = fork <GT >(c. f1 c, c. f2 c) in
11 c.send [1](99) ; -- ![1]N. ?[2]N. End
12 n = c. receive [2](); -- ?[2]N. End
13 c. close (); -- End
14 n

The program will print 106 onto the screen when run.

Here, the fork operation takes a global type, which indicates how communication between threads will
flow. It also takes a list of expressions that indicate channels 1 to n respectively. For example, the
part c. f1 c is the first argument, so is about participant 1. The c. part gives a name to the channel
for participant 1, and the f1 c part is an expression using the channel, returning unit. The channel
returned from the fork expression is the one for participant 0, the ‘main thread’.
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2.2.1. A note on linearity in communication

In MPGV, all channels are linear. This means that they must be used exactly once in an expression.
The linearity therefore ensures that every step of the communication gets used, and gets used only
once. For a detailled introduction to linearity, see chapter 3.

The communication operations also must exactly match the current step in the local type of the
channel argument. For example, a send[p] operation is only valid if used with a channel that is
supposed to send something in that step to participant p. In other words, the channel’s type is of the
form ![p]T. LT where T is a type and LT is a local type. Likewise, channels in a receive[p] operation
are of the form ?[p]T. LT.

If a program gets through the type checker, we can therefore guarantee that the program will not get
a runtime error, and will run deadlock-free, since threads execute exactly according to the specified
global types.

However, deadlock-free communication does not necessarily imply progress — the notion that commu-
nication is guaranteed to continue. Namely, we can still create an infinite loop, for example using the
expression rec f::N->N x::N. f x. This not only stops the thread, but also the flow of communication
with that thread, meaning that some receive operations may become blocked indefinitely.

2.2.2. Making a factory

Two of the participants in the previous example look very similar. Just as done in Multiparty GV [12],
we can generalise them into a factory function:

1 -- Receive number from thread 0,
2 -- add n to the number ,
3 -- then send it to thread 1
4 let add :: N -> ?[0]N. ![1]N. End -> () =
5 \n. \c.
6 m = c. receive [0](); -- ?[0]N. ![1]N. End
7 c.send [1](m+n); -- ![1]N. End
8 c.close () -- End

Here we designate participant 0 as the thread we receive from, and participant 1 as the thread we
send to. We also now first take a parameter n, which is the amount we will add to the number in the
round trip.

However, we now have a problem. We have previously said that the program must match the used
types exactly, but this local type doesn’t match any of the two we need — we need one that receives
from 0 and sends to 2, and one that receives from 1 and sends to 0. For this, the redirect[p->q]

operation is provided. It tells a channel that, whenever used later, it must use a different participant
q whenever we encounter a mention of participant p.

The idea behind this, is that it doesn’t matter what thread runs the steps of a certain participant,
as long as it gets the full package. We need to get all the steps, since we later introduce branching
communication paths. In that case, we need to know what choice was made, and since we have the
full package, we will be notified of the choice made.

To show how redirection works in practice, we give an implementation of the main thread with the
new add factory:

1 -- Main thread
2 print
3 let c = fork <GT >(
4 c. add 3 redirect [1 ->2](c), -- ?[0]N. ![2]N. End
5 c. add 4 redirect [0 ->1, 1->0](c) -- ?[1]N. ![0]N. End
6 ) in
7 c.send [1](99) ; -- ![1]N. ?[2]N. End
8 n = c. receive [2](); -- ?[2]N. End
9 c. close (); -- End
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10 n

Now on line 4, c has local type ?[0]N. ![2]N. End. The redirection returns a new channel, which now
mentions participant 1 instead of participant 2. This makes the channel conform exactly with the type
of add; all communication meant for add-participant 1 now gets correctly sent to the second thread.

The redirection on line 5 is analogous, but requires two redirections. They are written inside of one
redirect operation, since the participants must switch. If we were to do this in two operations, we
would override a participant, which is not what we want.

2.2.3. Channel passing

We send any kind of value over channels at any time. This includes channels themselves. To illustrate
this feature, we come back to the simple round trip:

1 -- Send a number around in a circle
2 gtype GT = [0 ->1]N. [1 ->2]N. [2 ->0]N. End

In the new scenario — again an example from Multiparty GV [12] — the main thread is lazy, and
doesn’t want to come up with a number to send around. It only wants to create the other threads,
and then receive a result. Therefore, we will make another thread that will perform all necessary
communication:

1 -- Delegate main round -trip thread , send back result
2 gtype GT ’ = [0 ->1](![1] N. ?[2]N. End). [1 ->0]N. End
3

4 let g :: GT ’|1 -> () =
5 \d.
6 c = d. receive [0](); -- d: ?[0]( GT |0). ![0]N. End
7 c.send [1](99) ; -- c: ![1]N. ?[2]N. End
8 n = c. receive [2](); -- c: ?[2]N. End
9 c.close (); -- c: End

10 d.send [0](n); -- d: ![0]N. End
11 d.close () -- d: End

The new global type states that we first send the main thread channel, and then send back a result.
The new function participates in this communication using channel d. It receives the main thread
channel as c, sends a number on it, receives one, then relays the result back.

Lastly, we write a new main thread:
1 -- Main thread
2 print
3 let c = fork <GT >(c. f1 c, c. f2 c) in
4 let d = fork <GT ’>(d. g d) in
5 d.send [1](c); -- ![1]( GT |0). ?[1]N. End
6 n = d. receive [1](); -- ?[1]N. End
7 d. close (); -- End
8 n

Note that the linearity requirement of c is still satisfied. The send operation on the main thread
consumes the channel, and the corresponding receive in g reintroduces the channel. This has effectively
‘moved’ the linearity between threads.

2.3. A note on type inference
Note that we have annotated functions with their types. This is necessary, since MPGVR does
not have full type inference and thus needs some help deducing certain types. However, not every-
thing needs to be annotated; the bidirectional typing present in the implementation eliminates many
annotations.
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Bidirectional typing is a strategy where types can be inferred, as long as it can be fully derived from an
already annotated or inferred type. So for example, annotating a function with its type will eliminate
the need to separately annotate the argument or body. Vice versa, annotating the argument and body
eliminates the need to annotate the function. It is recommended to place annotations in top-level let-
definitions (not let-in-bindings), since most other types can be derived from those annotations. For
the full details of this typing strategy, read chapter 4.

2.4. Choice
The last examples introduces algebraic data types and enums. These types can be unpacked using
the match operation. These allow you to do case-distinction on a type based on a label.

2.4.1. Basic examples

We can introduce a “maybe number” using the type {Just: N; Nothing: ()}. Now we can make values
like <Just: 2> or <Nothing: ()>.

To use these types, we can prescribe expressions to execute for each label. In the “maybe number”
case, it would look like this:

1 match maybeNumber with {
2 Just : n. doSomethingWithTheNumber ;
3 Nothing : _. doSomethingWithNothing
4 }

The _ variable name has no special meaning; it is just a convention where we indicate to not care
about the value – in the example above, we know it is a unit anyways. Of course, this convention does
not apply to linear variables, because they have to be used.

The expressions in all branches must return the same type of value, so that the full match-expression
can get that return type.

As a more advanced match-example, we consider weekdays:
1 type WeekDay = {
2 Mon:();
3 Tue:();
4 Wed:();
5 Thu:();
6 Fri:();
7 Sat:();
8 Sun:()
9 }

10

11 let nextDay :: WeekDay -> WeekDay =
12 \d.
13 match d with {
14 Mon:_. <Tue:()>;
15 Tue:_. <Wed:()>;
16 Wed:_. <Thu:()>;
17 Thu:_. <Fri:()>;
18 Fri:_. <Sat:()>;
19 Sat:_. <Sun:()>;
20 Sun:_. <Mon:()>
21 }

We first make an alias WeekDay for the weekday type. In this example, none of the weekdays hold any
further data, so just contain unit. Then the nextDay function will return the weekday after the given
one (wrapping around after Sunday).

Note that MPGVR does not support recursive types as of yet. This means that definitions like type

T = ... can only use type names defined earlier. These type definitions are also not nominal. If two
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types are the same in terms of content, e.g. type A = () and type B = (), they are seen as the same
time. This is in contrast to nominal type systems, where two differently named types are always seen
as different. Therefore, the type definitions can better be seen as type “aliases”. We leave it to future
work to implement recursive and nominal types.

2.4.2. Two buyers

We can also have choice in the context of concurrency. In this context, the label doesn’t just distinguish
between the value sent, but also between the communication steps to execute.

So now we go to a scenario where two buyers want to buy something together. This is an example
from Multiparty Asynchronous Session Types [9].

1 -- Seller : 0
2 -- Buyer A: 1
3 -- Buyer B: 2
4 gtype GT = [1 ->0]N -- Item id
5 . [0 ->1]N -- Price
6 . [0 ->2]N -- Price
7 . [1 ->2]N -- Contribution
8 . [2 ->0]{ -- Can A and B buy together ?
9 Yes: (). [0 ->2]N -- Date of delivery

10 . End;
11 No : (). End
12 }

Buyer A tells the seller what they want to buy. The seller then tells both the price. Buyer A puts
in some money, and then buyer B decides if they have enough – with that contribution – to buy the
item.

The seller is modeled as follows:
1 let seller :: GT |0 -> () =
2 \c.
3 item = c. receive [1]() ;
4 c.send [1](2 * item); -- Cost is twice the item id in this example
5 c.send [2](2 * item); -- Cost is twice the item id in this example
6 match c. receive [2]() with {
7 Yes: x. let (_, c) = x in
8 c.send [2](0) ; -- Date may vary
9 c. close ();

10 No : x. let (_, c) = x in
11 c. close ()
12 }

To keep things simple, we assume the item has a price of twice the id (in euros), and the date has
unix timestamp 0.

The receive function returns a value-channel pair (v, c), which we unpack after matching. Note that
the type of the received channel differs based on which choice we receive, as stated in the global type.

The rest of the program is relatively easy, so we will give it now:
1 let buyerA :: GT |1 -> () =
2 \c.
3 c.send [0](5) ; -- Buy item 5
4 cost = c. receive [0]() ; -- Note that cost remains unused
5 c.send [2](6) ; -- A contributes 6 ( euros)
6 c.close ()
7

8 let buyerB :: GT |2 -> () =
9 \c.

10 cost = c. receive [0]() ;
11 contribA = c. receive [1]();
12 if contribA + 8 >= cost then -- B contributes 8 ( euros)
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13 c.send [0]( Yes , ()); -- We can buy the item
14 date = c. receive [0]();
15 c. close ()
16 else
17 c.send [0]( No, ()); -- We cannot afford the item
18 c. close ()
19

20 print
21 let c = fork <GT >(c. buyerA c, c. buyerB c) in
22 seller c

Try to follow the execution of the program. It prints unit when it is done.

In this model, buyer A contributes 6 euros, and buyer B is willing to contribute 10 euros. When we
run the program, buyer B will therefore say “yes”, since the total contribution of 14 euros is more
than the price of 10 euros.

Consistency

There is one catch to this type of branching: all participants whose behaviour differs in certain
branches, must either be the sender or recipient of the label that chooses the branch. This is because
they are the only two participants who know about the choice made. Consider the global type from
the above example, notably the following part:

1 [2 ->0]{
2 Yes: N . [0 ->2]N. End;
3 No : (). End
4 }

If participant 2 sends a Yes value to participant 0, we send the delivery date back. Otherwise, we
do nothing. The behaviour for participants 0 and 2 differs based on the choice made, but both are
involved with the decision making. Participant 1 is not involved, but its behaviour is consistent; in
both cases, participant 1 does nothing.

To show a type which is inconsistent and thus does not type check, we try to send the delivery date
to participant 1 as well:

1 [2 ->0]{
2 Yes: N . [0 ->1]N. [0 ->2]N. End;
3 No : (). End
4 }

the behaviour of particiant 1 is now different in both branches, but participant 1 is not involved in
the decision. Always sending a delivery date (possibly some error number when there’s no delivery)
to participant 1 fixes the consistency again:

1 [2 ->0]{
2 Yes: N . [0 ->1]N. [0 ->2]N. End;
3 No : (). [0 ->1]N. End
4 }
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Chapter 3.

Background

In this chapter, we familiarise ourselves with linearity, typing rules, type checkers and shadowing. We
introduce these concepts my means of the simply-typed lambda calculus. Notation is mainly based on
Bidirectional Typing, Multiparty GV and Advanced Topics in Types and Programming Languages [3,
12, 18, respectively]. There are also elements taken from the Haskell and Rust programming languages.

To make definitions and explanations less verbose, we introduce some variable conventions [2, 20, 21].
These are implied assumptions on the type of a variable/symbol. For example, any variable using
the symbol e is an expression. Of course, depending on the language we are talking about (lambda
calculus, MPGV, etc.), the set Expr of all expressions can contain different values; these values are
also left implied. If we talk about multiple different expressions, we could annotate the symbols. For
example, e1 and e′ are still (possibly different) expressions.

In section 3.1, we recall the simply-typed lambda calculus, and introduce typing rules for it. After
that, in section 3.2, we introduce linearity — variables must be used exactly once — by introducing
a linear variant of the lambda calculus. Then, in section 3.3, we analyse how we can mix linear
with non-linear variables, by combining concepts from the previous two lambda calculi into a mixed
calculus. Content in these sections is heavily inspired by Advanced Topics in Types and Programming
Languages [18].

Section 3.4 introduces shadowing — the act of temporarily overriding a variable with a more “local”
value. Here we also describe a formalisation to add shadowing to algorithmic typing judgements.
Lastly, in section 3.5, we bidirectionalise the typing rules of the mixed calculus to show how we can
remove a lot of type annotations. For this, we make use of a bidirectionalisation recipe described in
Bidirectional Typing [3].

We introduce shadowing late, for a good reason. Namely, when checking if an expression is well-
typed, accounting for shadowing is non-trivial. It is especially so when combined with linearity, which
introduces lifetime constraints. Until then, expressions will only be well-defined if they do not shadow
variables. This restriction is also formalised using variable conventions.

Some exercises are given throughout this chapter. They serve as a guide, and are not required to
understand this chapter. They are, however, recommended for those not familiar with the material.
They can be seen as critical questions on the material, that will not only help with understanding the
material, but also make one question the material on a critical level.
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3.1. Simply-typed lambda calculus
Recall the simply-typed lambda calculus, which we denote with λ. For now, we use the most minimal
definition of the lambda calculus, the syntax for which can be seen below. The syntax is based on
the syntax used by Jacobs et al. [12], with some elements taken from Advanced Topics in Types and
Programming Languages [18].

i, j ∈ N, x, y ∈ Var

τ ∈ Type ::= αi | τ → τ

e ∈ Expr ::= x | λxτ . e | e e

The types τ are either type variables or single-argument functions respectively, and the expressions
e are either variables, single-argument functions or single-argument function application respectively.
Every type variable is distinct, so αi = αj if and only if i = j. Note that bounded variables are
annotated with their type, so that we don’t have to perform type inference. This makes defining the
typing rules easier.

The syntax is given using a recursive definition. Therefore, we can visualise types and expressions as
trees. Then, αi is a leaf type, and the τ → τ is a branch type. Likewise, x is a leaf expression, and
λxτ . e and e e are branch expressions.

We would like to derive rules, to check if a λ-expression is well-typed. Part of these well-typed
requirements are that variables are within scope. Since there can be free variables in an expression,
we must evaluate with respect to an initial context, which should hold bindings for these free variables.
We now formally define these contexts.

Definition 3.1.1. Γ ∈ Context is a context, which is a map of variable-type bindings. Formally,
Γ ⊆ Var× Type, such that for x ∈ Var there is at most one τ ∈ Type with (x, τ) ∈ Γ.

We see that a context behaves much like a function. Therefore, we define a sensible operator for this.

Definition 3.1.2. The indexing operator ␣(␣) : Context×Var→ Type ∪ {Nothing} is defined by

Γ(x) =

{
τ if there is a binding (x, τ) ∈ Γ;
Nothing otherwise.

Remark. This operator is well-defined because there is at most one binding per variable. That means
we can say:

Γ(x) = τ ⇐⇒ (x, τ) ∈ Γ.

We also need a way to merge two (local) contexts together into a bigger (more global) context. This
is governed by the union operator.

Definition 3.1.3. We define the (partial function) context union ␣∪␣ : Context×Context→ Context
as a regular set union. However, contexts with conflicting variable-type bindings may not be joined
together, in order for the union to be a closed operation. In other words, Γ1 ∪Γ2 is well-defined if and
only if there are no x, τ1, τ2 with τ1 6= τ2 such that Γ1(x) = τ1 and Γ2(x) = τ2.

Now we can describe precisely when an expression is considered to be well-typed, and what its type
is supposed to be. We do this by looking at each individual expression category separately:

• Given a context Γ, a (variable) expression x is well-typed with type τ if and only if Γ(x) = τ ;

• Given a context Γ, an expresison λxτ1 . e is well-typed with function type τ1 → τ2 if and only
if e can be evaluated to have the return type τ2, with respect to the context Γ and the extra
binding (x, τ1);
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• Given a context Γ, an expression e1 e2 is well-typed with the return type τ2 if and only if e1 can
be evaluated to have the function type τ1 → τ2, and e2 can be evaluated to have the argument
type τ1, both with respect to the context Γ.

Below, we show some examples of expressions and whether they are well-typed according to these
constraints. Parentheses are given for clarity on the order of operations; they serve no further purpose.

Expression Well-typed
λxα0 . x yes

λxα0→α1 . (x y) if Γ(y) = α0

λxα0 . (x y) no: x is not a function
(λxα0 . x) (λyα1 . y) no: argument type mismatch
λxα0 . (λxα0 . x) not well-defined: shadows x

Exercise 3.1.4. (a) Verify that (λxα0→α0 . x y) (λxα0 . x) is well-typed with respect to the context
{(y, α0)}.

(b) Explain why (λxα0→α1 . x y) (λxα0 . x) is not well-typed, regardless of context.

3.1.1. Typing rules

We have already stated when an expression is considered to be well-typed, but we can formalise this
using typing rules. This formalisation allows us to reason more rigorously about typing of expressions,
and can make it more clear how to translate the rules into a type checking program. To start this off,
we define the typing judgement.

Definition 3.1.5. A typing judgement Γ `λ e : τ is a predicate that states whether a λ-expression e
can be evaluated to have type τ with respect to the context Γ, only by using the corresponding typing
rules as valid deductions.

Remark. This typing judgement is also defined for other languages and calculi, not just for λ. The
language used in the judgement is denoted with a subscript. For example, the language λ+ (defined
later) uses the judgement Γ `λ+ e : τ .

The notation may remind one of the logical notation T ` ϕ, which states if the formula ϕ can be
proven to be true, only by using the assumptions in the theory T and the logical deduction rules.
Typing rules are consistent with logical notation, in that we also use deduction rule notation to define
the formal typing rules. The notation (and related notation about e.g. contexts) is used in many other
works [3, 12, 18]. This is what the rules look like:

(varλ)
Γ ∪ {(x, τ)} `λ x : τ

Γ ∪ {(x, τ1)} `λ e : τ2 (funcλ)Γ `λ λxτ1 . e : τ1 → τ2

Γ `λ e1 : τ1 → τ2 Γ `λ e2 : τ1 (appλ)Γ `λ e1 e2 : τ2

To read these typing rules, first look at the bottom. There we see the form of the expression that we
wish to derive the type of, and we see the form that the context must have. Then, look at the top to
see further requirements that we must satisfy. Note that in these deduction rules a lot of assumptions
are made on the forms of variables. For example, we may only use the appλ rule if e1 yields specifically
a function type. In the end, if the rule we want to use is well-defined, the type in the bottom will flow
right out.

As you can see, the three rules correspond nicely with the three different expression forms from the
syntax (variables, functions and function application). Therefore, we can make proof trees that follows
the form of an expression, which shows that its typing judgement holds. So we can call the rule on
variables a leaf rule, and the other two rules branch rules.
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Exercise 3.1.6. Compare the formal typing rules with the informal description given earlier.

Exercise 3.1.7. Draw a proof-tree that deduces the type of the expression in exercise 3.1.4(a).

Note that the the rule funcλ has an implicit assumption: that Γ(x) = Nothing. This is to satisfy the
variable convention, namely that x is a new variable with respect to the scope. This convention is
also implicit in the previous examples.

Also note that the previous exercise implies that there is at most one type τ for which a typing
judgement Γ `λ e : τ holds. In other words, the typing rules allow us to deduce unique types for
expressions. We prove this fact later in the section.

3.1.2. Extending the calculus

The lambda calculus λ is a very minimal calculus. It is not well-suited for practical applications. This
could make the typing rules still feel a bit abstract. Therefore, to get more comfortable with them, we
now consider a more involved and practical example. Below, we show an extended version of λ, which
we call λ+. This calculus adds support for natural numbers, pairs and if-then-else statements. In if-
then-else statements, the true-branch is taken whenever we get a positive integer, and the false-branch
is taken whenever we get 0.

i, j, n ∈ N, x, y ∈ Var

τ ∈ Type ::= αi | τ → τ | N | τ × τ

e ∈ Expr ::= x | λxτ . e | e e | n | (e, e) | if e then e else e

Before we give the extension of the typing rules for this new calculus, we first note one important re-
quirement: the result type in both branches of an if-then-else statement must be the same. Otherwise,
we cannot give the if-then-else statement a proper result type.

Keeping this constraint in mind, we give the new typing rules. These extend the typing rules in 3.1.1,
which remain the same in λ+.

(natλ+)
Γ `λ+ n : N

Γ `λ+ e1 : τ1 Γ `λ+ e2 : τ2 (pairλ+)
Γ `λ+ (e1, e2) : τ1 × τ2

Γ `λ+ e1 : N Γ `λ+ e2 : τ Γ `λ+ e3 : τ (if-then-elseλ+)
Γ `λ+ if e1 then e2 else e3 : τ

Exercise 3.1.8. Describe these new typing rules informally, but precisely.

Exercise 3.1.9. Add the arithmetic operations + and − to the calculus, by adding to the existing
syntax and typing rules.

3.1.3. Type checker

With a good grasp of the typing rules, we return to the minimal calculus λ. We wish to create an
algorithmic type checker, that follows the typing rules in 3.1.1. This type checker can be written in
a programming language, like Haskell. However, for purposes of this document, we define one using
pure mathematical functions, since we are all familiar with those.

Instead of seeing the typing judgement as a predicate, we can see it as a function on the expression
and context, returning either a type if we can derive one, or Error if we cannot. This interpretation
will form the basis of our type checker.
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Definition 3.1.10. The function checkλ : Expr × Context → Type ∪ {Error} is a type checking
function; in other words, checkλ (e,Γ) = τ if we give the return type τ to the expression e, with
respect to the context Γ, and checkλ (e,Γ) = Error if we declare the expression to not be well-typed,
again with respect to the context Γ.

Remark. The type checking function, just like the typing judgement, is not limited to just λ. The
language is a parameter to the function.

A way of implementing checkλ is given below. Note that this function is well-defined; it does not
have multiple solutions for a given input. This is because the function is defined inductively on the
construction of the expression.

checkλ (x,Γ) = Γ(x)

checkλ (λxτ1 . e,Γ) =

{
τ1 → τ2 if check (e,Γ ∪ {(x, τ1)}) = τ2;
Error otherwise.

checkλ (e1 e2,Γ) =

{
τ2 if checkλ (e1,Γ) = τ1 → τ2 and checkλ (e2,Γ) = τ1;
Error otherwise.

The goal of this implementation is to coincide with the typing judgements. This is proven in the
following theorem.

Theorem 3.1.11 (check implements the rules of λ). We have the equivalence

checkλ (e,Γ) = τ ⇐⇒ Γ `λ e : τ.

Corollary 3.1.12 (check only accepts λ). The above theorem implies that

checkλ (e,Γ) = Error ⇐⇒ ¬(Γ `λ e : τ) for any τ ,

or in other words, that the type checking function and the typing rules have the same idea of what is
well-typed and what is not.

Corollary 3.1.13 (type uniqueness). Another observation we can draw from this theorem is that a
typing judgement Γ `λ e : τ for an expression e and context Γ holds for at most one type. Therefore,
in both the type checker and typing rules, we can talk about the type of an expression.

Proof. We prove the theorem for each expression category individually, and use induction on the
construction of the expression.

• Firstly, the base case is for variable-expressions x.

(=⇒) Assume that checkλ (x,Γ) = τ . Then Γ(x) = τ , so there is a binding (x, τ) ∈ Γ. Therefore,
the typing rule varλ satisfies its singular assumption, because Γ = Γ ∪ {(x, τ)}, such that Γ `λ
x : τ .

(⇐=) Assume that Γ `λ x : τ . In the typing rule varλ, we see that there is one assumption
made. This is that the context must contain a binding for x, specifically the binding (x, τ). This
means that Γ(x) = τ , by definition of the indexing operator. Therefore, checkλ (x,Γ) = τ .

• We now prove the theorem for function-expressions λxτ1 . e. For this, we have the induction
hypothesis checkλ (e,Γ) = τ ⇐⇒ Γ `λ e : τ for all contexts Γ and types τ .

(=⇒) Assume that check (λxτ1 . e,Γ) = τ . Then we may write τ = τ1 → τ2, by definition. Again
by definition, we see that checkλ (e,Γ ∪ {(x, τ1)}) = τ2 holds. From the induction hypothesis,
it now follows that Γ ∪ {(x, τ1)} `λ e : τ2. It is now clear that the rule funcλ gives us that
Γ ` λxτ1 . e : τ1 → τ2.
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(⇐=) Assume that Γ ` λxτ1 . e : τ . Then we may write τ = τ1 → τ2, by definition of
the rule funcλ. Again by definition, we see that Γ ∪ {(x, τ1)} `λ e : τ2 holds. From the
induction hypothesis, it now follows that checkλ (e,Γ ∪ {(x, τ1)}) = τ2. It is now clear that
check (λxτ1 . e,Γ) = τ1 → τ2.

• Lastly, we prove the theorem for application-expressions e1 e2. For this, we have the induction
hypotheses checkλ (e1,Γ) = τ ⇐⇒ Γ `λ e1 : τ , and checkλ (e2,Γ) = τ ⇐⇒ Γ `λ e2 : τ for all
contexts Γ and types τ .

(=⇒) Assume that check (e1 e2,Γ) = τ2. Then checkλ (e1,Γ) = τ1 → τ2 and checkλ (e2,Γ) = τ1
hold by definition. From the induction hypotheses, it now follows that Γ `λ e1 : τ1 → τ2 and
that Γ `λ e2 : τ1. It is now clear that the rule appλ gives us that Γ `λ e1 e2 : τ2.

(⇐=) Assume that Γ `λ e1 e2 : τ2. By definition of the rule appλ, we see that Γ `λ e1 : τ1 → τ2
and that Γ `λ e2 : τ1 hold. From the induction hypotheses, it now follows that checkλ (e1,Γ) =
τ1 → τ2 and checkλ (e2,Γ) = τ1. It is now clear that check (e1 e2,Γ) = τ2.

�

Exercise 3.1.14. Extend the type checking function to λ+. Verify (no formal proof needed) that an
analog of the theorem holds in λ+ as well.
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3.2. Linear lambda calculus
Now that we are familiar with typing rules and type checkers, we indroduce linearity; it is a require-
ment on a variable that it must be used exactly once in an expression. When a variable has the
linearity requirement, we call it a linear variable. Variables that don’t have this requirement are
called unrestricted, or copy. The term “copy” is taken from the Copy1 trait in the Rust programing
language.

We explain linearity again by means of a lambda calculus. In this case, we present a variant of the
lambda calculus that is fully linear, which we call λ1. Apart from notation, the syntax is the same
as with λ. The 1 is taken from Haskell’s linear function extension2. Like in the previous section, we
start by showing this new notation. The notational change isn’t strictly necessary for this section, but
makes it easier to draw parallels with a mixed lambda calculus later on.

i, j ∈ N, x, y ∈ Var

τ ∈ Type ::= α1
i | τ ( τ

e ∈ Expr ::= x | λ1xτ . e | e e

An expression in λ1 still follows the typing rules of λ, but adds the linearity requirement to all (sub)ex-
pressions. We illustrate this new requirement with some examples:

Expression Well-typed
x if Γ(x) 6= Nothing

λ1xα1
0
. x yes

λ1xα1
0(α1

0
. (λ1yα1

0
. x y) yes

λ1xα1
0
. (λ1yα1

0
. x) no: y is unused

λ1xα1
0((α1

0(α1
0)
. (λ1yα1

0
. (x y) y) no: y is used twice

3.2.1. Regular typing rules

Before we give typing rules for this calculus, we need a strategy for how we ensure that variables
satisfy the linearity requirement. We split this strategy into two steps:

(a) ensure that no variables are unused;

(b) ensure that variables cannot be used more than once.

If we implement both strategies into the typing rules, we have implemented linearity. To start off, we
implement the first strategy by means of a predicate.

Definition 3.2.1. On contexts in linear systems, we define a notion of disjointness. We say Γ1 ⊥ Γ2,
i.e. that the contexts are disjoint, if and only if no variable has a binding in both contexts. In other
words, Γ1 ⊥ Γ2 whenever Γ1(x) 6= Nothing =⇒ Γ2(x) = Nothing for all variables x. We also write
Γ = Γ1 ⊥ Γ2 to indicate that Γ is a disjoint partition of Γ1 and Γ2, i.e. Γ = Γ1 ∪ Γ2 and Γ1 ⊥ Γ2.

Remark. When we introduce the mixed lambda calculus later on, we need a slightly different notion
of disjointness. In that system, contexts are only disjoint with respect to linear variables in them, not
with respect to copy variables.

Corollary 3.2.2. By definition, Γ1 ⊥ Γ2 implies that the operation Γ1 ∪ Γ2 is well-defined. From
Γ1 ⊥ Γ2 it also follows that (x, τ) ∈ Γ1 ∪ Γ2 implies exactly one of (x, τ) ∈ Γ1 or (x, τ) ∈ Γ2.

Using this notion of disjointness, we can implement the typing rules for λ1:
1https://doc.rust-lang.org/std/marker/trait.Copy.html
2https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/linear_types.html
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(varreg
1 )

{(x, τ)} `1 x : τ

Γ ∪ {(x, τ1)} `1 e : τ2 (funcreg
1 )

Γ `1 λ1xτ1 . e : τ1 ( τ2

Γ1 ⊥ Γ2 Γ1 `1 e1 : τ1 ( τ2 Γ2 `1 e2 : τ1 (appreg
1 )

Γ1 ∪ Γ2 `1 e1 e2 : τ2

Note that for readability, we shorted the language name λ1 down to just 1. The varreg
1 rule is different

from the varλ rule, in that this new rule requires the context to consist of only one variable. This is to
ensure that no variables are left unused; if there were another variable inside of the context, it won’t
be used up, since varreg

1 is a leaf rule that only consumes one variable. Since there are no other leaf
rules, this ensures property (a), that no variables are unused.

The other change is made in the appreg
1 . This is the only branch rule that splits the expression into

more than one subexpression, so it introduces the opportunity for variables to be put inside both
subexpressions. The requirement that the context be partitioned into two disjoint parts, ensures that
each variable moves to exactly one subexpression (see Corollary 3.2.2). Since this is the only branch
rule that splits an expression into more than one subexpression, property (b) — that no variables are
used more than once — is also satisfied.

Since these two changes are just restrictions added onto the typing rules for λ, one could consider λ1

a sort-of “subset” of λ, since every well-typed expression in λ1 is also well-typed in λ. We will talk
in-depth about this observation in the next section.

Exercise 3.2.3. (a) Give a proof tree for the third example, showing that the type of the expression
is (α1

0 ( α1
0) ( α1

0 .

(b) Show that the other examples give the correct result with the formal typing rules (i.e. whether
they’re considered well-typed or not).

3.2.2. Algorithmic typing rules

As with λ, we wish to create a type checking algorithm, that can compute types of expressions.
However, we realise that there is one issue when translating the typing rules into an algorithm: how
do we split the context into two? Which variables should go where?

One way to solve this problem is to try all possible combinations of split contexts, and take whatever
works (and error if no combination works). However, this is error-prone and inefficient. The route
that we take, is to translate these regular typing rules into algorithmic typing rules, and then derive
a type checker from these new rules.

The algorithmic typing rules have no notion of splitting contexts, and instead opts to weave3 one
context through the type derivation, adding to and removing variables from it throughout the process.
This leaves a (modified) context as a result. Figure 3.1 schematically shows the difference between
the two notions. This weaving notion removes the need to guess, making the process less error-prone
and more efficient.

Note that the algorithmic process has a resulting context. This means that the process does not check
if variables from the initial context have actually been used up. This linearity check has to be done
separately if needed.

Definition 3.2.4. An algorithmic typing judgement Γ1 `λ e : τ a Γ2 is a predicate that states
whether a λ-expression can be evaluated to have type τ with respect to the context Γ1, leaving Γ2 as
the resulting context, only by using the corresponding typing rules as valid deductions.

3Advanced Topics in Types and Programming Languages describes this process using input and output contexts [18]
instead.
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Figure 3.1: Type checking by means of splitting contexts (left) versus type checking by means of
weaving contexts (right).

Definition 3.2.5. Let Γ− x denote the context in which variable x was removed, i.e.

Γ− x :=

{
Γ \ {(x, τ)} if Γ(x) = τ ;
Γ if Γ(x) = Nothing.

Below, we show the algorithmic typing rules for λ1. We note the important differences:

• In the rule varalg
1 , we check if a type for the variable exists in the context (as usual), and then

assign that type if it exists. The resulting context is one where the binding is removed, since we
may not use the same variable more than once.

• In the rule funcalg
1 , the resulting context is the one from the subexpression. However, this context

may not have the variable x anymore, since it must be used in the subexpression e.

• In the rule appalg
1 , we see how the context Γ1 “weaves” through the subexpressions via Γ2 into Γ3.

This ensures that no variable is used more than once; if e1 uses a variable, it will be inaccessible
to e2, since it’s been removed once we get to Γ2.

Γ(x) = τ
(varalg

1 )
Γ `1 x : τ a Γ− x

Γ1 ∪ {(x, τ1)} `1 e : τ2 a Γ2 Γ2(x) = Nothing
(funcalg

1 )
Γ1 `1 λ1xτ1 . e : τ1 ( τ2 a Γ2

Γ1 `1 e1 : τ1 ( τ2 a Γ2 Γ2 `1 e2 : τ1 a Γ3 (appalg
M )

Γ1 `1 e1 e2 : τ2 a Γ3

Exercise 3.2.6. Using the algorithmic rules, give a proof tree for the third example in ??, showing
that the type of the expression is (α1

0 ( α1
0) ( α1

0 . Use the context {(a, α1
1)} as the initial context.

Show that the resulting context is then “unchanged”, i.e. still {(a, α1
1)}.

From the typing rules, we make an interesting observation: we only “consume” variables from the
context in the varreg

1 rule. Therefore, if there is a variable x in the initial context, and the expression
does not have this variable, the variable will remain in the resulting context. We formalise this
observation in the following lemma:

Lemma 3.2.7 (unused variables are not removed). For a variable x and an expression e not using x,
and for all types τx, we have that

Γ1 `1 e : τ a Γ2 ⇐⇒ Γ1 ∪ (x, τx) `1 e : τ a Γ2 ∪ (x, τx).

23 / 72



We now have left to show that the algorithmic typing rules still have the same idea of what is well-
typed. To do this, we prove the following theorem:

Theorem 3.2.8. The regular and algorithmic typing rules for λ1 have the same notion of well-typing.
More formally,

Γ `1 e : τ ⇐⇒ Γ `1 e : τ a ∅.

Proof. We use induction on the construction of the expression e:

• Firstly, the base case is for variable-expressions x.

(=⇒) Assume that Γ `1 x : τ . Then, we know that Γ is of the form {(x, τ)} using rule varreg
1 .

Therefore, Γ \ (x, τ) = ∅, so rule varalg
1 implies that Γ `1 x : τ a ∅ holds.

(⇐=) Assume that Γ `1 x : τ a ∅. We know that rule varalg
1 holds, and since Γ \ (x, τ) = ∅ only

when Γ = {(x, τ)}, rule varreg
1 holds such that Γ `λ x : τ holds.

• We now prove the theorem for function-expressions λ1xτ1 . e. For this, we have the induction
hypothesis Γ `1 e : τ ⇐⇒ Γ `1 e : τ a ∅ for all contexts Γ and types τ .

(=⇒) Assume that Γ `1 λ1xτ1 . e : τ1 ( τ2. Using rule funcreg
1 , we know that Γ∪(x, τ1) `1 e : τ2.

The induction hypothesis then lets us conclude Γ∪(x, τ1) `1 e : τ2 a ∅. Since the resulting context
is empty, is notably doesn’t contain x. Therefore, funcalg

1 implies that Γ `1 λ1xτ1 . e : τ1 ( τ2 a ∅
holds.

(⇐=) Assume that Γ `1 λ1xτ1 . e : τ1 ( τ2 a ∅. Using rule funcalg
1 , we know that Γ ∪ (x, τ1) `1

e : τ2 a ∅. The induction hypothesis then lets us conclude Γ∪ (x, τ1) `1 e : τ2. Therefore, funcreg
1

implies that Γ `1 λ1xτ1 . e : τ1 ( τ2 holds.

• Lastly, we prove the theorem for application-expressions e1 e2. For this, we have the induction
hypotheses Γ `1 e1 : τ ⇐⇒ Γ `1 e1 : τ a ∅ and Γ `1 e2 : τ ⇐⇒ Γ `1 e2 : τ a ∅ for all contexts
Γ and types τ .

(=⇒) Assume that Γ `1 e1 e2 : τ2. Using rule appreg
1 , we know that Γ = Γ1 ⊥ Γ3 such that

Γ1 `1 e1 : τ1 ( τ2 and Γ2 `1 e2 : τ1. The first induction hypothesis and lemma Theorem 3.2.7
then let us first conclude Γ `1 e1 : τ1 ( τ2 a Γ2. The second induction hypothesis then implies
that Γ2 `1 e2 : τ1 a ∅. Therefore, funcalg

1 implies that Γ `1 e1 e2 : τ2 a ∅ holds.

(⇐=) Assume that Γ `1 e1 e2 : τ2 a ∅. Using rule appalg
1 , we know that there is a Γ2 such that

Γ `1 e1 : τ1 ( τ2 a Γ2 and Γ2 `1 e2 : τ1 a ∅. Let Γ1 be the context such that Γ = Γ1 ⊥ Γ2.
The induction hypotheses and lemma Theorem 3.2.7 then let us conclude Γ1 `1 e1 : τ1 ( τ2.
The second induction hypothesis then implies that Γ2 `1 e2 : τ1. Therefore, funcreg

1 implies that
Γ `1 e1 e2 : τ2 holds.

�

3.2.3. Type checker

Now that we have the algorithmic typing rules, creating a type checking function is rather uneventful.
The one major change we need to make, is to the definition of the type checking function, to support
context weaving.

Definition 3.2.9. The function checkλ : Expr × Context → (Type × Context) ∪ {Error} is an algo-
rithmic type checking function for the given language λ; in other words, checkλ (e,Γ1) = (τ,Γ2) if we
give the return type τ and resulting context Γ2 to the expression e, with respect to the initial context
Γ1. We say that check (e,Γ1) = Error if we declare the expression to not be well-typed, again with
respect to the initial context Γ1.
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With this definition, we show the type checking function for λ1:

check1 (x,Γ) =

{
(τ,Γ \ (x, τ)) if Γ(x) = τ ;
Error otherwise.

check1 (λ
1xτ1 . e,Γ1) =

{
(τ1 ( τ2,Γ2) if check1 (e,Γ1 ∪ {(x, τ1)}) = (τ2,Γ2) and Γ2(x) = Nothing;
Error otherwise.

check1 (e1 e2,Γ1) =

{
(τ2,Γ3) if check1 (e1,Γ1) = (τ1 ( τ2,Γ2) and check1 (e2,Γ2) = (τ1,Γ3);
Error otherwise.

It is easy to see that this type checking function is “analogous” to the algorithmic typing rules. For
the sake of completeness, we will give the formal theorem. However, since we are already familiar with
what a proof to such a theorem looks like, and such proof is rather tedious, we leave out the proof;
there are enough parallels between the typing rules and the type checking function that it is already
quite evident. Also note that we have analogous corollaries to this theorem as in the previous section.

Theorem 3.2.10 (check implements the rules of λ1). We have the equivalence

check1 (e,Γ1) = (τ,Γ2) ⇐⇒ Γ1 `1 e : τ a Γ2.
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3.3. Mixed lambda calculus

The last language we introduce in this part is the mixed lambda calculus λb. (The “b” is supposed
to be read like a “linearity boolean”.) It combines both the copy constructions from λ and linear
constructions from λ1. We give the syntax for this language, and some examples. It is precisely the
combination of the previous languages’ syntaxes.

i, j ∈ N, x, y ∈ Var

τ ::= αi | α1
i | τ → τ | τ ( τ

e ::= x | λxτ . e | λ1xτ . e | e e

Expression Well-typed
x if Γ(x) 6= Nothing

λxα0 . x yes
λxα0→α1 . (x y) if Γ(y) = α0

λ1xα0 . (x y) no: x is not a function
(λxα0 . x) (λyα1 . y) no: argument type mismatch

λ1xα1
0
. x yes

λxα0(α0 . (λ
1yα0 . x y) yes

λ1xα1
0
. (λyα1

0
. x) no: y is unused

λ1xα1
0
. (λyα0 . x) yes

λxα1
0→(α1

0→α1
0)
. (λyα1

0
. (x y) y) no: y is used twice

The two kinds of types from λ are the copy types, and those from λ1 are the linear types.

A function expression may use more (free) variables than just its argument variable. If such a variable
is linear, the function expression must be linear as well. This is to prevent the variable being used
more than once, if the function is called more than once. The argument variable being linear does
not induce any problems with copy functions. This is because on every call, we supply a new linear
variable.

3.3.1. Regular typing rules

Before we get to the typing rules, we must first create a few predicates on contexts, and then extend
the notion of context disjointness.

Definition 3.3.1. We define two predicates on types and contexts. Let copy(τ) if τ is a copy type,
and let linear(τ) if τ is a linear type. Let copy(Γ) if Γ contains only copy bindings, i.e. Γ(x) = τ =⇒
copy(τ) for all x. Let linear(Γ) if Γ contains only linear bindings, i.e. Γ(x) = τ =⇒ linear(τ) for all
x.

Definition 3.3.2. Let Γ(1) be the linear part of the context Γ, and Γ(0) be the copy part of the
context. In other words, they are contexts such that linear(Γ(1)), copy(Γ(0)) and Γ = Γ(1) ∪ Γ(0).

Definition 3.3.3. We extend the notion of context disjointness to work with copy types as well as
linear types. We define Γ1 ⊥ Γ2 whenever Γ1(1) ⊥ Γ2(1), using the previous notion of disjointness for
linear languages. In other words, disjointness is not affected by copy variables; they may appear in
both contexts.

Using these definitions, we can define the typing rules, which can be found below. They mix the
behaviours of both previous languages, while taking care of the interactions described earlier.

• The varreg
b rule requires the corresponding variable to be either copy, or the only linear variable

in the context.
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• The func copyreg
b rule handles the copy functions. It requires that no linear variables (other than

the argument variable) exist in the context. The rest is like the function rule from λ.

• The func linearreg
b rule handles the linear functions. It has no further restrictions, since the

function itself is linear already.

• The appreg
b rule handles function application. Because of how we defined context disjointness in

mixed languages, this rule now nicely combines both behaviours.

copy(Γ \ {(x, τ)}) (varreg
b )

Γ ∪ {(x, τ)} `b x : τ

copy(Γ) Γ ∪ {(x, τ1)} `b e : τ2 (func copyreg
b )

Γ `b λxτ1 . e : τ1 → τ2

Γ ∪ {(x, τ1)} `b e : τ2 (func linearreg
b )

Γ `b λ1xτ1 . e : τ1 ( τ2

Γ1 ⊥ Γ2 Γ1 `b e1 : τ1 ( τ2 Γ2 `b e2 : τ1 (appreg
b )

Γ1 ∪ Γ2 `b e1 e2 : τ2

Exercise 3.3.4. Write down proof trees for the examples that are well-typed. Decide yourself which
context is needed to get a correct derivation.

We can now formalise a very interesting property about the lambda calculi we defined, namely that
λ1 is the “smallest” language, and λ is the “biggest” language.

Definition 3.3.5. Let e be an expression in λb, and τ be a type in λb. Then e(1) and τ (1) are the
corresponding expression and type in λ1 where all copy constructions have been replaced by equivalent
linear constructions. For example, a copy function λxτ . e is transformed into λ1xτ (1) . e(1). Likewise,
e(0) and τ (0) are the corresponding expression and type in λ where all linear constructions have been
replaced by equivalent copy constructions. Equivalent operations on contexts – Γ(1) and Γ(0) – also
exist.

Theorem 3.3.6 (λ1 ≤ λb ≤ λ). For e, τ and Γ in λb, we have

Γ(1) `1 e(1) : τ (1) =⇒ Γ `b e : τ

and
Γ `b e : τ =⇒ Γ(0) `λ e(0) : τ (0).

Proof. This relation follows from the fact that the typing rules of λb are designed to be more permissive
than those of λ1. In other words, all linear derivations in λ1 may also be made in λb. Likewise, the
rules of λ are more permissive than those of λb, by design. This is because linear derivations are just
copy derivations with more restrictions, and transforming to λ removes those restrictions. �

3.3.2. Algorithmic typing rules

Before we can define the algorithmic typing rules, we make an operator. This operator helps us decide
whether a function argument has been used correctly; if a function argument is linear, it must not be
in the resulting context anymore. If the function argument is copy, there is no restriction.

Definition 3.3.7. Let used(x,Γ) if a variable has been “used up” correctly. That is, if either Γ(x) =
Nothing, or if Γ(x) = τ such that copy(τ).

We now define the algorithmic typing rules. For clarity, the rule for variables is split into two.

Γ(x) = τ copy(τ)
(var copyalg

b )
Γ `b x : τ a Γ

27 / 72



Γ(x) = τ linear(τ)
(var linearalg

b )
Γ `b x : τ a Γ− x

Γ1(0) ∪ (x, τ1) `b e : τ2 a Γ2 used(x,Γ2) (func copyalg
b )

Γ1 `b λxτ1 . e : τ1 → τ2 a Γ1

Γ1 ∪ {(x, τ1)} `b e : τ2 a Γ2 used(x,Γ2) (func linearalg
b )

Γ1 `b λ1xτ1 . e : τ1 ( τ2 a Γ2 − x

Γ1 `b e1 : τ a Γ2 τ ∈ {τ1 → τ2, τ1 ( τ2} Γ2 `b e2 : τ1 a Γ3 (appalg
b )

Γ1 `b e1 e2 : τ2 a Γ3

There is one important note in the func copyalg
b rule. The rule ends with the resulting context Γ1.

This is because a copy expression does not remove (free) variables from the context. Therefore, Γ2 is
just Γ1(0) ∪ (x, τ1), so having Γ1 as resulting context is not a mistake.

Exercise 3.3.8. Write down proof trees for the examples that are well-typed, this time using the
algorithmic typing rules. Decide yourself which initial context is needed to get a correct derivation,
and show what resulting context this yields.

Like in the previous section, the regular and algorithmic typing rules have the same notion of well-
typing. We formalise this with a theorem, but will leave a proof to the reader, since it goes by the
same line as the proof in Theorem 3.2.8.

Theorem 3.3.9. The regular and algorithmic typing rules for λb have the same notion of well-typing.
More formally,

Γ `b e : τ ⇐⇒ Γ `b e : τ a Γ(0).

Now we can also state a useful corollary.

Corollary 3.3.10 (λ1 ≤ λb ≤ λ for algorithmic typing). For e, τ and Γ in λb, we have
Γ(1) `1 e(1) : τ (1) a ∅ =⇒ Γ `b e : τ a Γ(0)

and
Γ `b e : τ a Γ(0) =⇒ Γ(0) `λ e(0) : τ (0).

Proof. A direct consequence of the previous theorems. �

3.3.3. Type checker

We end the section with the algorithmic type checking function for λb, and some theorems related to
it. Since proofs in this subsection are analogous to proofs seen earlier, we will not give any proofs for
the following theorems. We encourage you to look at the theorems, however, and see if you agree with
them.

The type checker can be found below:

checkb (x,Γ) =


(τ,Γ) if Γ(x) = τ and copy(τ);
(τ,Γ \ (x, τ)) otherwise, if Γ(x) = τ ;
Error otherwise.

checkb (λxτ1 . e,Γ1) =

{
(τ1 → τ2,Γ1) if checkb (e,Γ1(0) ∪ {(x, τ1)}) = (τ2,Γ2) and used(x,Γ2);
Error otherwise.

checkb (λ
1xτ1 . e,Γ1) =

{
(τ1 ( τ2,Γ2) if checkb (e,Γ1 ∪ {(x, τ1)}) = (τ2,Γ2) and used(x,Γ2);
Error otherwise.

checkb (e1 e2,Γ1) =

(τ2,Γ3)
if checkb (e1,Γ1) = (τ,Γ2), τ ∈ {τ1 → τ2, τ1 ( τ2}

and checkb (e2,Γ2) = (τ1,Γ3);
Error otherwise.
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Now we give the usual equivalence theorem and the “subset” corollary for type checking:

Theorem 3.3.11 (check implements the rules of λb). We have the equivalence

checkb (e,Γ1) = (τ,Γ2) ⇐⇒ Γ1 `b e : τ a Γ2.

Corollary 3.3.12 (λ1 ≤ λb ≤ λ for type checking functions). For e, τ and Γ in λb, we have

check1 (e
(1),Γ(1)) = (τ (1), ∅) =⇒ checkb (e,Γ) = (τ,Γ(0))

and
checkb (e,Γ) = (τ,Γ(0)) =⇒ checkλ (e

(0),Γ(0)) = τ (0).
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3.4. Shadowing

In the last sections, we have assumed Barendregt’s Variable Convention [2, 20, 21]. However, when
writing programs, this is an impractical convention. We would instead like to shadow variables,
without affecting the semantics of the typing rules. Shadowing a variable x into type τ consists of the
following steps, assuming we start with context Γ1:

(a) take note of the previous type of x, if it exists;

(b) let Γ1(x) := τ ;

(c) run the scope in which x is shadowed, yielding Γ2;

(d) if τ is linear, ensure that Γ2(x) = Nothing;

(e) restore the previous state of x, as remembered in step (a).

Step (d) is integral; it ensures that step (e) does not accidentally delete a linear variable from the
context. Below we provide some examples for when an expression should be considered well-typed,
assuming we may shadow now.

Expression Well-typed
λxα0 . x yes

λxα0 . (λxα0 . x) yes
λxα0 . (λxα1 . x) yes
λxα0 . (λxα1

0
. x) yes

λxα1
0
. (λxα0 . x) no: linear variable unused

λxα1
0
. (λxα0 . x) x no: argument type mismatch

λxα1
0
. (λxα1

0
. x) x yes

Figure 3.2: Examples of λb-expressions where shadowing is allowed, evaluated with initial context Γ.

Let us now create notation that formalises these steps:

Definition 3.4.1. Let Γ← (x, τ) set a variable x to type τ in the context Γ. Formally, the operation
Γ← (x, τ) yields the context (Γ− x) ∪ {(x, τ)}. We may also set a variable to Nothing instead of τ ,
in which case the operation yields the context Γ− x.

Definition 3.4.2. Given an algorithmic typing judgement Γ1 ` e : τ a Γ2, let Γ1 | x : τx ` e : τ a Γ2

be an equivalent judgement where x is shadowed with type τx, i.e.

Γ1 | x : τx ` e : τ a Γ2 ⇐⇒ ∃Γ3 [Γ1 ← (x, τx) ` e : τ a Γ3

∧ used(x,Γ3)

∧ Γ2 = Γ3 ← (x,Γ1(x))].

Since shadowing is only really an issue in type checking implementations, we do not create a shadowing
judgement for regular typing rules.

We can also generalise this shadowing notation to an entire context, instead of just one variable
binding:

Definition 3.4.3. Given an algorithmic typing judgement Γ1 ` e : τ a Γ2, let Γ1 | Γ ` e : τ a Γ2 be
an equivalent judgement where all variables in Γ are shadowed with their respective types. Formally,
if (x1, τ1), . . . , (xn, τn) are all bindings in Γ, we get

Γ1 | Γ ` e : τ a Γ2 ⇐⇒ ∃Γ3 [Γ1 ← (x1, τ1)← . . .← (xn, τn) ` e : τ a Γ3

∧ ∀1≤i≤n[used(xi,Γ3)]

∧ Γ2 = Γ3 ← (x,Γ1(x1))← . . .← (xn,Γ1(xn))].
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Remark. Instead of writing the context Γ in the above definition, we may also write out a list of
bindings. This gives us the notation Γ1 | x1 : τ1 | · · · | xn : τn ` e : τ a Γ2.

3.4.1. Using shadowing

We now modify the function rules of λb — since they introduce variables — to support shadowing,
and show that this change does not affect the semantics of the language.

Γ1(0) | x : τ1 `b e : τ2 a Γ2 (func copy shadowalg
b )

Γ1 `b λxτ1 . e : τ1 → τ2 a Γ1

Γ1 | x : τ1 `b e : τ2 a Γ2 (func linear shadowalg
b )

Γ1 `b λ1xτ1 . e : τ1 ( τ2 a Γ2

As you may see, the rules are more concise than the original rules func copyalg
b and func linearalg

b .
This is because the shadowing operator takes care of the “used” constraint and variable restoration
(for the linear rule).

The following theorem relates the typing rules of λb with shadowing to those without shadowing.

Theorem 3.4.4 (shadowing acts like α-renaming). Let ex be an expression in which at some point
x is shadowed. Let e be the same expression as ex, but where the shadowed parts of x have been
replaced by (formally known as α-renamed to) a new variable y, such that no shadowing takes place
anymore. Then, we get the equivalence Γ1 `b ex : τ a Γ2 ⇐⇒ Γ1 `b e : τ a Γ2, where the former
judgement uses the shadowing rules, and the latter judgement uses the original rules.

Exercise 3.4.5. Try to prove this theorem using induction on the construction of the expression, like
in previous proofs.
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3.5. Bidirectional type checking
At the moment, we have required type annotations for function arguments. However, in some situa-
tions the argument type can be inferred. We would like to create new typing rules, so that argument
types can be inferred.

In more complex languages, there could be more places where type annotations are required, yet can
be inferred. The strategy we present in this section is independent of the place in the language where
the problem lies, so it can provide inference for more than just function argument types.

Let us start off by extending the syntax of λb with optional type argument type annotations x : τ
and expression type annotations e : τ . Only one function type is needed – the copy function – since
annotations will allow us to “downgrade” a copy function to a linear function if needed. This is
formally called “subsumption”, and will be explained later.

i, j ∈ N, x, y ∈ Var

τ ::= αi | α1
i | τ → τ | τ ( τ

χ ::= x | x : τ

e ::= e : τ | x | λχ. e | e e

Below we provide some examples for this new syntax:

Expression Well-typed Inference
λx : α0. x yes -
λx. x no: cannot infer type of x -

(λy. y) x yes y 7→ Γ(x)
x : τ if Γ(x) = τ -

(λy. y) x yes y 7→ Γ(x)
((λy. y) x) : τ if Γ(x) = τ y 7→ Γ(x)
(λx. x) : τ → τ yes x 7→ τ
(λx. x) : τ ( τ yes: copy function can be used exactly once x 7→ τ

((λx. x) : τ ( τ) : τ → τ no: linear function may not become copy -
(λx : τ ( τ. x) (x : τ → τ) yes: copy argument can be used exactly once -
(λx : τ → τ. x) (x : τ ( τ) no: linear argument may not become copy -

The fourth to last and second to last examples show subsumption in action. It is integral to making
the type checking work for this syntax. Without it, any benign type mismatch during type checking
could mess up the process. Subsumption allows us to talk in terms of properties, instead of concrete
types: if we need to type check a linear function, we don’t need a concrete linear type, but just a type
that can work with the linearity requirements.

3.5.1. The recipe

In Bidirectional Typing [3], the problem of unnecessary type annotations is solved by separating
inference/calculation from checking/verifying. There, typing rules specify if the rule is trying to infer
the type of the expression, or whether they’re testing an expression against an already known type.
This allows the typing rules to go for the easier checking step, whenever there is enough (redundant)
information to know the type beforehand, which could remove the need for some annotations.

We introduce these two separated concepts as typing judgements. The notation is the same as in
Bidirectional Typing, but has been adapted for algorithmic typing.

Definition 3.5.1. Let Γ1 ` e ⇒ τ a Γ2 be an inferring typing judgement, and Γ1 ` e ⇐ τ a Γ2 be a
checking typing judgement.
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Definition 3.5.2. Let τ1 <: τ2 (τ1 subsumes τ2) if τ1 can “act like” τ2. This operator is reflexive
and transitive.

Remark. For λb, exactly the following subsumptions hold:

• τ <: τ , because of reflexivity;

• τ2 → τ3 <: τ1 ( τ4 whenever τ1 <: τ2 and τ3 <: τ4. Namely, for an expression of type
τ2 → τ3 to act like τ1 ( τ4, we must allow arguments of type τ1, which can act like τ2. This
yields us type τ3, which can then act like τ4.

Exercise 3.5.3. Convince yourself that the subsumption relation is indeed transitive for λb.

The two basic typing rules are about switching between checking and inference. Type annotations let
expressions be type checked using the more permissive checking rule. Subsumption allows a checking
rule to use infer-only rules (and verify that the inferred type is compatible). These basic rules can be
formulated for a lot of languages, but below, we provide them for λb:

Γ1 `b e ⇐ τ a Γ2 (annobi
b )

Γ1 `b e : τ ⇒ τ a Γ2

Γ1 `b e ⇒ τ1 a Γ2 τ1 <: τ2 (subsumesbi
b )

Γ1 `b e ⇐ τ2 a Γ2

To transform algorithmic typing rules into bidirectional typing rules, we use the “recipe” described in
Bidirectional Typing [3]. This recipe can be summarised as follows:

(a) Inference judgements may be seen as partial functions taking an initial context and an expression,
yielding a type and a resulting context;

(b) Checking judgements may be seen as partial functions taking an initial context, expression and
type, yielding a resulting context;

(c) Suppose Γ1 ` e : τ a Γ2 is at the conclusion of the algorithmic typing rule we wish to transform.
As stated above, we interpret this conclusion as a function;

(d) This conclusion function computes the resulting context (and possibly the type) using the
premise of the typing rule. For this, the typing judgements in the premise are computed in
a certain order;

(e) Each typing judgement in the premise of the typing rule may be transformed into either an
inference or a checking rule. If the type of such judgement can be computed from all current
inputs (including its initial context and expression), the judgement becomes a checking rule.
Otherwise, the judgement becomes an inference rule, giving the type as input for any next
judgements. The resulting context also becomes an input for any next judgements;

(f) If the conclusion function can be computed without the type τ , this computation becomes an
inference rule;

(g) If adding τ as an input gives rise to a sufficiently “alternative” computation, this new computa-
tion becomes a checking rule.

If we look at the two basic rules from a bit earlier, these conform with the recipe: the annotation rule
annobi

b has τ as input, since it’s part of the input expression e : τ . Therefore, the premise can use a
checking rule, and we can always infer for the conclusion. A checking version would make no sense,
since we have the subsumption rule.

The subsumption rule subsumesbi
b cannot get an inference version, since we do not know what type τ2

to subsume to. The existing checking version makes sense, since τ1 is not known from the input, so
must be inferred.

The reason why step (g) requires the computation to be sufficiently ‘alternative’, is because for many
checking rules, if they fail, we can just try the corresponding inference rule (if it exists) via the
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subsumption rule; so even without an explicit checking rule, checking is always at least as strong as
inferring.

Also, in most cases you would expect that the checking rule can type check strictly more cases than
the inference rule, since we have more information available. So in a type cheker, failure during a
checking rule often means you can abort, so that checking the inference rule via subsumption is not
necessary. In some cases, however, the “alternative” checking computation is not strictly stronger
than the inference computation. There are not a lot of these cases, and throughout this thesis, we will
explicitly mention cases that do not adhere to this principle.

3.5.2. Bidirectionalising λb

If the recipe sounds a bit abstract, do not worry, for in this subsection, we will give a concrete example.
Namely, we will be creating bidirectional typing rules for λb. We start with the simplest rules, those
for variables.

Γ(x) = τ copy(τ)
(var copybi

b )
Γ `b x ⇒ τ a Γ

Γ(x) = τ linear(τ)
(var linearbi

b )
Γ `b x ⇒ τ a Γ− x

These rules are the same as var copyalg
b and var linearalg

b , but written as inference rules instead of
algorithmic rules. This is because the type to infer is stored in the initial context Γ. There are no
more efficient cases where the rule could work without τ being inside of this context, so a checking
rule is skipped.

Now as for the function rules func copyalg
b and func linearalg

b , they do get both inference and checking
rules. We start with the inference rules:

Γ1(0) | x : τ1 `b e ⇒ τ2 a Γ2 (func copy⇒bi
b )

Γ1 `b λx : τ1. e ⇒ τ1 → τ2 a Γ1

Γ1 | x : τ1 `b e ⇒ τ2 a Γ2 (func linear⇒bi
b )

Γ1 `b λ1x : τ1. e ⇒ τ1 ( τ2 a Γ2

In this case, we need argument type annotations to figure out τ1, and must use an infer rule to compute
τ2. Now for the checking rules:

Γ1(0) | x : τ1 `b e ⇐ τ2 a Γ2 τ ∈ {τ1 → τ2, τ1 ( τ2} (func copy⇐bi
b )

Γ1 `b λx. e ⇐ τ a Γ1

Γ1 | x : τ1 `b e ⇐ τ2 a Γ2 (func linear⇐bi
b )

Γ1 `b λ1x. e ⇐ τ1 ( τ2 a Γ2

Since both τ1 and τ2 are known now from the input type, we can omit both the argument type
annotation and use a checking rule in the premises. Both changes are significant — the former
because a change in syntax is significant, and the latter because checking rules are more permissive
because of subsumption – which is why we defined these checking versions.

In the rule func copy⇐bi
b , τ may be both bopy or linear. This is much like the subsumption rule, but

we need to state this explicitly since subsumption doesn’t go from checking rule to checking rule.

Lastly, we get to function application:

Γ1 `b e1 ⇒ τ a Γ2 τ ∈ {τ1 → τ2, τ1 ( τ2} Γ2 `b e2 ⇐ τ1 a Γ3 (app⇒bi
b )

Γ1 `b e1 e2 ⇒ τ2 a Γ3

Γ1 `b e2 ⇒ τ1 a Γ2 Γ2 `b e1 ⇐ τ1 ( τ2 a Γ3 (app⇐bi
b )

Γ1 `b e1 e2 ⇐ τ2 a Γ3
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The inference rule requires the function expression e1 to be inferred. If e2 were to be inferred instead,
we would not get info about τ2. In the checking rule, we do know τ2 now, so we can switch which
subexpression needs to be inferred now.

Note that a type checker should be careful with this checking rule, since this is a rule that breaks the
principle of checking being strictly stronger than inference. Namely, in most cases a failing checking
rule implies that the inference rule will also fail. However, this is not the case with function application,
as defined here. If the checking rule fails because e2 can only be checked, we might still be able to
type check using the inference rule and subsumption rule.

Exercise 3.5.4. In the checking rules for function, we disallow argument type annotations. We could
add rules, or change the existing rules, so that argument type annotations are still allowed (and thus
serve as a ‘sanity check’ in the checking rule). What would these rules look like?

To link the bidirectional and algorithmic rules together, we have two theorems:

Theorem 3.5.5 (soundness). Suppose e1 is an expression with argument type annotations in all
possible places, and e2 is the same expression, without any other type annotations. Then we get that
Γ1 `b e1 ⇐ τ a Γ2 implies Γ1 `b e2 : τ a Γ2.

Theorem 3.5.6 (completeness). Suppose e is an expression with argument type annotations in all
possible places and no other type annotations. Then Γ1 `b e : τ a Γ2 implies Γ1 `b e ⇒ τ a Γ2.
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Chapter 4.

Algorithmic MPGV typing rules

In this chapter, we build algorithmic, and then bidirectional typing rules for the MPGV language.
For this, we base ourselves on the definitions in Multiparty GV [12]. These bidirectional rules form
the basis of the interpreter, which is described in chapter 5.

In section 4.1, we recall the syntax of MPGV, and describe changes made. In section 4.2, we use the
regular typing rules and the strategies from the background (chapter 3) to derive algorithmic typing
rules. Some intricacies in and changes to the regular typing rules will also be touched upon. Lastly,
in section 4.3, we use the algorithmic typing rules and the bidirecionalisation recipe from section 3.5
to derive bidirectional typing rules.
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4.1. Recalling the syntax
Before we can talk about typing rules, we must know the formal syntax of the MPGV language.
Below, we present the syntax and variable conventions for MPGV as used throughout this thesis. To
get familiar with the syntax, we encourage to compare it with the code examples in Chapter 2; the
syntax used in the interpreter is virtually identical to the formal mathematical syntax.

i, j ∈ N, x, y, f ∈ Var, l, l′ ∈ Label, I ⊆ Label, p, q ∈ Part, π : Part ⇀ Part

τ ∈ Type ::= 1 | B | N | {l : τ}l∈I | τ × τ | τ → τ | τ ( τ | L
L ∈ LType ::= ![p]τ. L | ?[p]τ. L | ![p]{l : τ. L}l∈I | ?[p]{l : τ. L}l∈I | End
G ∈ GType ::= [p→ p]τ. G | [p→ p]{l : τ. G}l∈I | End

� ∈ BinOp ::= + | - | * | / | == | /= | < | <= | > | >= | && | ||

e ∈ Expr ::= () | n | x | not e | e� e | (e, e) | 〈l : e〉τ | λxτ . e | λ1xτ . e | rec fτ xτ . e | e e |
let x = e in e | let (x, x) = e in e |match e with {l : x 7→ e}l∈I |
if e then e else e | fork〈G〉(x 7→ e, . . .) | send[p](e, e) | send[p](e, l, e) |
receive[p](e) | redirectL[π](e) | close(e)

Note that this syntax slightly differs from that used in Multiparty GV [12]:

• Many expressions have gotten required type annotations, so that the algorithmic typing rules
can be computable. An example of this is 〈l : e〉τ , which originally was written as just 〈l : e〉.
Notably, functions get a 1 annotation to indicate linearity, and the fork-operation requires a
global type, from which local types for each channel are derived.

• The language has been formally expanded with binary operations and boolean-related construc-
tions, like if-statements and a boolean type B. The examples used in Multiparty GV imply
that they exist, so for completeness sake, we formally define them. These additions follow the
same semantics as related syntactic elements in the Haskell language. Most notably, the logical
operations && and || are short-circuiting.

• The labeled type is written differently in this thesis to make it more consistent with local type
notations, and to increase clarity, especially when written in type annotations. Multiparty GV
has the notation

∑
l∈I. τ , whereas we use the set notation {l : τ}l∈I .

• We allow both labeled and unlabeled sending/receiving of values. Unlabeled sending is not
possible in Multiparty GV, but it would be a very practical feature. To make the interpreter more
user-friendly, we formalised the concept of unlabeled sending/receiving, so that the interpreter
does not need “syntactic sugar” for this.

Regular typing rules for most of the MPGV language were defined in Multiparty GV [12]. For a
complete overview of the regular typing rules, however, we refer to the appendix, section A.1. In this
appendix, we also slightly modified the existing typing rules, so they work with the syntactical changes
described earlier. The biggest changes are made to the function rules func copyreg

M and func linearreg
M

(where the rule for linear functions now requires the function to be linearly annotated), and to the
fork rule forkreg

M (where the consistency-check is omitted since it’s implied from the used global type).
The rules from the appendix will be the main rules “reference”, which we use to derive the algorithmic
and bidirectional typing rules in this chapter.
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4.2. Algorithmic typing rules
We assume familiarity with the content presented in the background, chapter 3. This way, we can
focus more closely on MPGV-specific parts of the typing rules, without re-explaining typing rules
shared by many lambda-calculi, and strategies like shadowing described earlier. Just like with the
regular typing rules, a full overview of the algorithmic typing rules can be found in section A.2.

4.2.1. Basic lambda calculus

MPGV shares many elements of the mixed lambda calculus λb from section 3.3. Therefore, the
var copyalg

M , var linearalg
M , func copyalg

M , func linearalg
M and appalg

M rules should be self-explanatory.

The language also has some constants: the unit (), two booleans True and False and natural numbers
n. These are not linear, and always have the same type — 1, B and N respectively. Therefore, these
translate much like the rule for copy variables. We present the translation below:

copy(Γ)
(const.reg

M )
Γ `M constant : type

(const.alg
M )

Γ `M constant : type a Γ

The rules used above are schemas, meaning that they define a range of similar typing rules. Which
exact rules they define are mentioned near the schema’s definition in the appendix.

The language also has pairs, and arithmetic operations on natural numbers. Their algorithmic rules
— pairalg

M and arith.alg
M — are similar to the appalg

M rule, in that they follow the general strategy for
translating binary operations. Recall the general strategy from Figure 3.1.

Recall that MPGV has recursive functions. The regular typing rule for recursive functions is:

copy(Γ) Γ ∪ {(f, τ1 → τ2), (x, τ1)} `M e : τ2 (recreg
M )

Γ `M rec fτ1→τ2 xτ1 . e : τ1 → τ2

In this rule, we add two variables to the function body, one being the recursive function invocation,
and the other being the function argument. In terms of typing rules, it is not that much different from
the copy function rule func copyalg

M , so the translation should be fairly evident:

Γ1(0) | f : τ1 → τ2 | x : τ1 `M e : τ2 a Γ2 (recalg
M )

Γ1 `M rec fτ1→τ2 xτ1 . e : τ1 → τ2 a Γ1

Lastly, MPGV has let-expressions, which create variables and break up pairs. Those rules — let varalg
M

and let pairalg
M — are akin to the function rule func linearalg

M .

4.2.2. Booleans

For boolean logic, we have the if-statement and various logical operations. We start with translating
the if-statement:

Γ1 ⊥ Γ2 Γ1 `M e1 : B Γ2 `M e2 : τ Γ2 `M e3 : τ (ifreg
M )

Γ1 ∪ Γ2 `M if e1 then e2 else e3 : τ

Γ1 `M e1 : B a Γ2 Γ2 `M e2 : τ a Γ3 Γ2 `M e3 : τ a Γ3 (ifalg
M )

Γ1 `M if e1 then e2 else e3 : τ a Γ3

Note that the input and output contexts to both branches must be the same, to ensure that linear
variables are used deterministically. In the regular rule, this was accomplished with just the input
context being the same.

The other rules again follow the general strategy. These are the notalg
M , comp.alg

M , orderalg
M and logicalg

M

rules. Note that for the rule logicalg
M also uses the strategy from copy functions to ensure that the
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second subexpression to logical AND and logical OR is copy. The reason it must be copy, is because
the operation may short-circuit and thus may sometimes skip evaluating the second expression. If
that expression were linear, this destroys the guarantee that linear variables are used exactly once.

The comparison and ordering rules are limited to certain types. We define these using the following
predicates:

Definition 4.2.1. A type τ is equality comparable (eqComp(τ)) whenever it is of type 1, N or B, or
whenever it is a pair τ1 × τ2 of equality comparable types τ1 and τ2, or whenever it is a labeled type
{l : τl}l∈I of equality comparable types τl. Other types are not equality comparable, most notably
function types.

Definition 4.2.2. A type τ is orderable (orderable(τ)) whenever it is of type N, or whenever it is a
pair τ1 × τ2 of orderable types τ1 and τ2. Other types are not orderable.

The reason functions are excluded is because checking for equality depends on one’s view point.
Should functions be syntactically equal, or syntactically equal apart from variable naming, or should
they just be semantically equal? How would we check for semantic equivalence? By not having them
be comparable, we eliminate this issue.

The orderable types are natural numbers and (nested) pairs of natural numbers, because we can apply
a lexicographical ordering using the standard mathematical ordering on natural numbers.

4.2.3. Choice

As seen in section 2.4, MPGV supports labeled expressions and labeled types. Using the match-
statement, we then get a system analogous to switch-statements in popular languages like C++. The
two relevant typing rules are presented below:

Γ `M e : τl l ∈ I (choicereg
M )

Γ `M 〈l : e〉{l′: τl′}l′∈I
: {l′ : τl′}l′∈I

Γ1 ⊥ Γ2 Γ1 `M e : {l : τl}l∈I ∀l∈I [Γ2 ∪ {(xl, τl)} `M el : τ ] (matchreg
M )

Γ1 ∪ Γ2 `M match e with {l : xl 7→ el}l∈I : τ

Note that the match-rule requires the set of labels to be non-empty. If it were empty, the expression
would not be able to return a value when running it through the interpreter, and it would have to
either error or wait indefinitely. We made this choice to ensure that the interpreter has the least
amount of runtime errors possible (which are hard to debug), and catches most errors at the time of
type checking instead (which are easier to debug). The rules in Multiparty GV [12] do support empty
label sets, however.

The translation to algorithmic typing rules is as follows:

Γ1 `M e : τl a Γ2 l ∈ I
(choicealg

M )
Γ1 `M 〈l : e〉{l′: τl′}l′∈I

: {l′ : τl′}l′∈I a Γ2

Γ1 `M e : {l : τl}l∈I a Γ2 ∀l∈I [Γ2 | xl : τl `M el : τ a Γ3] (matchalg
M )

Γ1 `M match e with {l : xl 7→ el}l∈I : τ a Γ3

The choice rule translation is nothing special, apart from the type annotation. This is so that a type
checker knows what other labels to add to the returned type. The match rule, however, is a bit more
complex. Just as with if-statements, all branches must result in the same output context, given the
same input context. Also, we have variable shadowing in each branch to take care of. The match-rule
translation is a direct result of those if-statement and shadowing strategies.
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4.2.4. Concurrency

Now we get to the novel part of MPGV: its concurrency support. We start off chronologically with
the fork-rule, which is arguably the most complex one. The regular rule is as follows:

Γ1 ⊥ · · · ⊥ Γn participants(G) ⊆ {0, . . . , n} ∀1≤i≤n[Γi ∪ {(xi, G ↓ i)} `M ei : 1]
(forkreg

M )
Γ1 ∪ · · · ∪ Γn `M fork〈G〉(x1 7→ e1, . . . , xn 7→ en) : G ↓ 0

It differs from that in Multiparty GV. Namely, instead of having a consistency check between local
types, we use the global type to derive a set of consistent local typesG ↓ i using the projection operator.
A detailed specification of the operator can be found in Multiparty GV [12], but for this chapter, it
is enough to know that the projection of G onto a participant i returns a local type describing the
global type from the participant’s perspective.

Because we have a global typeG, we have to verify that all participants inG have corresponding expres-
sions (participant 0 needs no expression, since its channel is the return value of the fork-expression).
Each such expression ei should use the given channel argument (the one that has the projected local
type) and then return unit.

The translation to algorithmic rules is now analogous to the function rule translations:

participants(G) ⊆ {0, . . . , n} ∀1≤i≤n[Γi | xi : G ↓ i `M ei : 1 a Γi+1] (forkalg
M )

Γ1 `M fork〈G〉(x1 7→ e1, . . . , xn 7→ en) : G ↓ 0 a Γn+1

The (un)labeled sending and receiving rules — send l.alg
M , send unl.alg

M , recv. l.alg
M and recv. unl.alg

M —
look like a lot because of the large types, but it is very self-explanatory. Sending is akin to a binary
operation like arithmetic, and receiving akin to a unary operation like a labeled expression.

The close-operation closealg
M is also trivial. Note that the type of this operation is 1, which is consistent

with what the fork-operation wants as a return-value to the subexpresisons.

Lastly, the redirect-operation was not trivial to translate. Namely, look at the regular typing rule:

Γ `M e : π(L)
(redirectreg

M )
Γ `M redirectL[π](e) : L

In Multiparty GV [12], the rule does not have a local type annotation in the redirect-expression. For
a type checker, type checking for a computed type π(L) is not possible, so instead e yields a type
L′. Returning π−1(L′), however, is not a good idea. Namely, the redirection need not be injective.
Therefore, we need the returned local type as a type annotation, so that we can compute the type that
e should have. So now, the following rule can indeed be named “algorithmic”, since a type checker
would be able to compute the return type:

Γ1 `M e : π(L) a Γ2 (redirectalg
M )

Γ1 `M redirectL[π](e) : L a Γ2
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4.3. Bidirectional typing rules
The bidirectionalisation of the algorithmic typing rules will be based on the recipe as described in
section 3.5. The goal of the bidirecionalisation is to reduce the amount of type annotations necessary,
and to generalise type annotations for any expression. Therefore, we present some modifications to
the MPGV syntax (changes are uncoloured):

χ ∈ AnnoVar ::= x | x : τ

e ∈ Expr ::= e : τ | () | n | x | not e | e� e | (e, e) | 〈l : e〉 | λχ. e | rec χ x. e | e e |
let x = e in e | let (x, x) = e in e |match e with {l : χ 7→ e} |
if e then e else e | fork〈G〉(x 7→ e, . . .) | send[p](e, e) | send[p](e, l, e) |
receive[p](e) | redirect[π](e) | close(e)

The first change is the addition of a new variable χ — the annotatable variable. This variable indicates
either a normal variable x, or an annotated variable x : τ . The second change is the removal of most
type annotations, adding general expression annotation syntax, and the use of annotatable variables
in expressions.

We also redefine subsumption, to add support for pairs and labeled types. A labeled type acts like
another, if they provide a subset of the functionality of the labeled type it acts like; they may not add
functionality compared to the labeled type it acts like. Pairs subsume whenever its contents subsume
pairwise. Function subsumption is like in the background section. Sending/receiving is like labeled
type subsumption, in that a subset of the functionality must be provided, and nothing more. Lastly,
types that are equal should also subsume eachother.

Definition 4.3.1. Subsumption for MPGV is formally defined as follows:

Description Case Condition
labeled types {l : τl}l∈I <: {l : τ ′l}l∈I′ if I ⊆ I ′ and ∀l∈I [τl <: τ ′l ]

pairs τ1 × τ2 <: τ ′1 × τ ′2 if τ1 <: τ ′1 and τ2 <: τ ′2
linear functions τ1 ( τ2 <: τ ′1 ( τ ′2 if τ ′1 <: τ1 and τ2 <: τ ′2
function mix τ1 → τ2 <: τ ′1 ( τ ′2 if τ ′1 <: τ1 and τ2 <: τ ′2
copy functions τ1 → τ2 <: τ ′1 → τ ′2 if τ ′1 <: τ1 and τ2 <: τ ′2
labeled send ![p]{l : τl. Ll}l∈I <: ![p]{l : τ ′l . L

′
l}l∈I′ if I ⊆ I ′, ∀l∈I [τl <: τ ′l ∧ Ll <: L′

l]
unlabeled send ![p]τ. L <: ![p]τ ′. L′ if τ <: τ ′ and L <: L′

labeled receive ?[p]{l : τl. Ll}l∈I <: ?[p]{l : τ ′l . L
′
l}l∈I′ if I ⊆ I ′, ∀l∈I [τl <: τ ′l ∧ Ll <: L′

l]
unlabeled receive ?[p]τ. L <: ?[p]τ ′. L′ if τ <: τ ′ and L <: L′

general equality τ <: τ always

4.3.1. Basic lambda calculus

Annotation and subsumption rules annobi
M and subsumesbi

M are provided for MPGV. These can be
found in the overview in section A.3 The rules var copybi

M , var linearbi
M , func⇒bi

M , func⇐bi
M , app⇒bi

M and
app⇐bi

M are similar to the lambda calculus described in section 3.5.

However, the function rules now allow annotatable variables, instead of only unannotated variables:

Γ1 | x : τ1 `M e ⇒ τ2 a Γ2 τ =
{

τ1 → τ2 if Γ1 = Γ2;
τ1 ( τ2 otherwise.

(func⇒bi
M )

Γ1 `M λx : τ1. e ⇒ τ a Γ2

τx = useAnno(τ1, χ) Γ1 | x : τx `M e ⇐ τ2 a Γ2 τ =
{

τ1 ( τ2 if Γ1 6= Γ2;
τ1 ( τ2 or τ1 → τ2 otherwise.

(func⇐bi
M )

Γ1 `M λχ. e ⇐ τ a Γ2

In essence, these rules present the solution to exercise 3.5.4. To define these rules, we make use of the
following operation:
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Definition 4.3.2. Let the partial function useAnno(τ, χ) restrict the given type by the annotatable
variable. If the annotatable variable is of the form x, we do nothing. If of the form x : τx, then τ must
act like τx. In other words, we have:

useAnno(τ, χ) :=

{
τx if χ = x : τx and τ <: τx

τ if χ = x

We have this consistency check because of the following philosophy: type annotations are like asser-
tions, so should always tell the truth. If we know a certain type annotation is wrong, we must abort
type checking, which is why we have the subsumption check. The reason we return τx instead of τ in
the top case, is because again, type annotations must tell the truth. We do not want accidentally to
use some property of τ , even though we state that the argument should only behave like τx.

Also note in the checking rule for functions, that we allow the variable to be annotated. This seems
redundant, since we have that case already in the inference rule, but it ensures that we can still
typecheck a function with an annotatable variable, even when its body can only be checked, and not
inferred.

Recursive function rules rec⇒bi
M and rec⇐bi

M can always check the body, since the full function type is
always available, either through the function variable annotation or through the checking input.

Constants can always be inferred, so the translation to const.bi
M is evident. Likewise, the rule arith.bi

M

only needs an inference variation (and can even use checking in the premise), since we know they only
work on natural numbers.

Pairs need two variants: one inference variant pair⇒bi
M where both subexpressions must also be inferred,

and one checking variant pair⇐bi
M where both subexpresisons can be checked.

Likewise, let-expressions also have two variants — let var⇒bi
M and let var⇐bi

M for single variables,
and let pair⇒bi

M and let pair⇐bi
M for variable pairs. However, here we need to always infer the first

expression, since this information cannot be retrieved from the output type. Let-expressions do not
use annotatable variables in the binding, because we can already put type annotations on the first
expression. Adding support for annotatable variables there would thus be redundant, and increase
complexity of the ruleset.

4.3.2. Booleans

The if-statements if 1⇒bi
M , if 2⇒bi

M and if⇐bi
M are trivial, but have two inference rules. This is because

we only need to infer one of the branches, and can then use the result to check the other branch.
However, we don’t know which of the two branches may infer, so we have one rule per possibility.

The comparison and ordering rules comp. 1bi
M , comp. 2bi

M , order 1bi
M and order 2bi

M have the same situation
with inference. However, they do not need a checking rule, since they always return the type B, so
each category only has the two inference rules.

The logic rule logicbi
M is virtually identical to the arithmetic rule arith.bi

M , and the not-rule notbi
M has

the same concept, but is a unary operation instead of a binary one.

4.3.3. Choice

The bidirectionalisation of the labeled types into choice⇒bi
M and choice⇐bi

M is simple; it is a like the
pair rules, but using one subexpression instead of two.

However, the match rules are the complete opposite. They are arguably the most complex rules in
this chapter, so we go through them slowly, one by one. Recall the algorithmic match rule:

Γ1 `M e : {l : τl}l∈I a Γ2 ∀l∈I [Γ2 | xl : τl `M el : τ a Γ3] (matchalg
M )

Γ1 `M match e with {l : xl 7→ el}l∈I : τ a Γ3
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We start off with the simplest translation, a checking match with variable annotations in every case:

Γ1 `M e ⇐ {l : τl}l∈I a Γ2 ∀l∈I [Γ2 | xl : τl `M el ⇐ τ a Γ3] (match anno⇐bi
M )

Γ1 `M match e with {l : (xl : τl) 7→ el}l∈I ⇐ τ a Γ3

To get to an inference rule, we must get the type τ from one of the cases. Therefore, the inference
rule picks one such case arbitrarily to infer (premise 1), and then checks the other cases against the
inferred type chosen in premise 3 (read the premises in reading order):

{l′} ⊆ I

Γ2 | xl′ : τl′ `M el′ ⇒ τ a Γ3

Γ1 `M e ⇐ {l : τl}l∈I a Γ2

∀l∈I\{l′}[Γ2 | xl : τl `M el ⇐ τ a Γ3]
(match anno⇒bi

M )
Γ1 `M match e with {l : (xl : τl) 7→ el}l∈I ⇒ τ a Γ3

We now go back to the checking rule, but for match-expressions that may not be annotated in each
case. The rule has five premises:

Γ1 `M e ⇒ {l : τ ′l}l∈I′ a Γ2

∀l∈I′ [τl = useAnno(τ ′l , χl)] ∀l∈I\I′ [χl = xl : τl]

I ′ ⊆ I

∀l∈I [Γ2 | xl : τl `M el ⇐ τ a Γ3]
(match⇐bi

M )
Γ1 `M match e with {l : χl 7→ el}l∈I ⇐ τ a Γ3

In this rule, we cannot be sure that we have all the information to check e with. Therefore, we must
infer it now (premise 1), and then verify that the returned type is consistent with the set of labels I
(premise 2) and with any type annotations (premise 3). For cases/labels whose argument types are
not in the inferred type, we must retrieve the type from the annotated variable (premise 4). Checking
the return types for each case is the same as in other rules (premise 5).
Lastly, we get the corresponding inference rule, which is the same as the checking rule, but – just
as the fully annotated inference rule – where one case gets arbitrarily chosen (premise 2) and gets
inferred (premise 5) to get type τ :

Γ1 `M e ⇒ {l : τ ′l}l∈I′ a Γ2

∀l∈I\I′ [χl = xl : τl]

{l′} ⊆ I I ′ ⊆ I

Γ2 | xl′ : τl′ `M el′ ⇒ τ a Γ3

∀l∈I′ [τl = useAnno(τ ′l , χl)]

∀l∈I\{l′}[Γ2 | xl : τl `M el ⇐ τ a Γ3]
(match⇒bi

M )
Γ1 `M match e with {l : χl 7→ el}l∈I ⇒ τ a Γ3

4.3.4. Concurrency

There is only one fork rule forkbi
M , since full type information is always available due to the global type annotation.

The receive rules recv. l.⇒bi
M , recv. l.⇐bi

M , recv. unl.⇒bi
M and recv. unl.⇐bi

M are much like the rules for labeled
types.

The send rules send l.⇒bi
M , send l.⇐bi

M , send unl.⇒bi
M and send unl.⇐bi

M uses the same strategy as in the function
application rules. Namely, in the send rules, the checking versions are sufficiently alternative to the inference
versions, but are not strictly stronger.

The close rule closebi
M is a trivial rule.

Lastly, redirection is tricky again. Recall the algorithmic redirection rule:

Γ1 `M e : π(L) a Γ2 (redirectalg
M )

Γ1 `M redirectL[π](e) : L a Γ2

Here, we needed the local type annotation because π is not injective, meaning it does not necessarily have an
inverse π−1. However, for bidirectional typing, we can make two rules, one inference rule for when π is injective,
and one checking rule for when it might not:

Γ1 `M e ⇒ L a Γ2 injective(π)
(redirect⇒bi

M )
Γ1 `M redirect[π](e) ⇒ π−1(L) a Γ2

Γ1 `M e ⇐ π(L) a Γ2 (redirect⇐bi
M )

Γ1 `M redirect[π](e) ⇐ L a Γ2
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Chapter 5.

Implementation details of MPGVR

In this chapter, we focus on the design of MPGVR. For the full source code, see [22]. Firstly, in section 5.1
we discuss some core dependencies on which the program is built. These include monads from MTL and from
monad-par, and a custom Store monad based on MTL’s State monad.

Then, we look at how the type checker is implemented in section 5.2. For this, the bidirectional typing rules
and corresponding code snippets are put together, to show how they are translated. In this section, we also
concern ourselves with some of the intricacies, like choosing when to do subsumption.

In section 5.3 we look at the implementation of the interpreter. Since the code style is much like the type
checker, we focus less on showing how the operational semantics are translated, and more on how the MPGV
concurrency is implemented.

Parsing is discussed in section 5.4. The parser uses a custom parser combinator, and implements the grammar
from appendix B.

Lastly, the REPL combines all parts of the implementation, which is discussed in section 5.5. Here, the script
syntax is discussed, and we show that this syntax does not break MPGV semantics. Also, differences between
running user input and running scripts are explained.
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5.1. Monads
Before we look at the MPGV implementation, we must become familiar with the framework on which the
implementation is built. The core of the framework consists of the following monad systems:

• the common MonadError system from MTL, for error handling;

• a custom MonadStore system, for holding the context and evaluation state of an MPGV program;

• the ParIVar and ParFuture systems from monad-par [16], for concurrency.

5.1.1. The MTL
The Monad Transformer Library (MTL) is a popular Haskell library1 that implements some common monad
transformers, like Except/ExceptT, and provides a framework for one to write their own monad transformers.
The MPGV interpreter uses this library extensively.

In fact, the custom Store monad (and related types and functions) are nothing more but a specialised version
of MTL’s State features. The API of the Store monad therefore also tries to resemble that of State. The type
of state that Store holds is fixed to the following type:

1 type StoreContents c = (Map Var ( Value c), Map Var Type , Map TypeName Type , Map
TypeName GType )

From left to right, the state holds evaluation information (values of variables), context information (types of
variables), type aliases and global type aliases. Here, the type variable c holds channel data, i.e. holds data on
communication between threads. We made it a type variable for abstraction reasons. This way, the monad has
no dependency on the concurrency model used, which improves versatility and maintainability.

The reason we made a Store monad, and didn’t just wrap around the existing State monad, is to make sure
the store can be added to any already stateful computation. This means no change to the content structure of
the existing State is needed.

5.1.2. monad-par
For concurrency, we use the monad-par library2 by Marlow et al. [16] This library uses monads to allow
concurrent programming. Just like MTL, the library provides type classes for its monads, e.g. ParIVar and
ParFuture.

After functions are forked within the monad, communication can be done through single-use channels, for which
monad-par uses the type name IVar. One thread may send a value over this channel variable, and then another
thread — accessing the same channel variable — may receive from it. After that, the channel is closed.

However, in MPGV we may send and receive many different values over the same channel. To go around this
restriction of monad-par, we introduce the following types:

1 newtype IVarChain c = IVarChain (IVar ( Value c, Maybe Label , IVarChain c))
2

3 data Channel = Channel {
4 sendChannels :: Map Participant ( IVarChain Channel ),
5 receiveChannels :: Map Participant ( IVarChain Channel )
6 }

The Channel type is the monad-par-specific channel type used throughout the interpreter. As you can see, each
Channel holds many IVars, two for each other participant — one for sending, one for receiving.

The IVarChain type is a recursive wrapper for an IVar, allowing for many values to be both sent and received. In
order to send an MPGV value (which has type Value c) through an IVarChain, first the IVar in it is extracted.
After this, a specific value must be sent through this IVar, as described by its type argument (Value c, Maybe
Label, IVarChain c). Respectively, this is a tuple of the value we want to send, the label chosen (only if we
did labeled sending), and a newly created IVar from which to perform a new send operation. The receiver of
this value must then take note of the new IVar, and use that one to perform the next receive operation with.

1As of publication of this thesis, the project can be found at https://github.com/haskell/mtl.
2As of publication of this thesis, the project can be found at https://github.com/simonmar/monad-par.
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Note that not every value can be sent through an IVar. Sendable values must be instances of NFData (normal
form data), which are values that can be forced to evaluate strictly. This ensures that computation is always
done in the correct thread. The Value, Channel and the IVarChain types are all instances of this, to ensure that
we can send MPGV values, including MPGV channels themselves.

Even though IVar channels are bidirectional, we must have a separate map for send-channels and one for receive-
channels. This is because in MPGV, two threads can send data to eachother at the same time. Therefore, they
could both be using the same channel variable for sending, which breaks the chain. By separating the channel
chains into these two maps, we ensure that one thread will always be in charge of sending, and thus extending
the chain, and that one keeps reading/receiving from that chain.
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5.2. Type checker
The type checker implements the bidirectional typing rules from appendix A. This is accomplished through two
functions, which mimic the checking and inference typing judgements specifically:

1 checkExpressionType :: ( MonadStore c m, MonadError String m) => Expression -> Type ->
m ()

1 typeofExpression :: ( MonadStore c m, MonadError String m) => Expression -> m Type

In the checking function, we want the type to check against, and we return unit on success, or an error describing
what constraint failed. In the inference function, the type is returned instead — or an error if a constraint
failed. During type checking, there is no need yet for parallelism, so we do not require a concurrency monad
here.

To get familiar with the checker, consider the following code snippets and their corresponding bidirectional
typing rules:

1 typeofExpression (ENot e) = checkExpressionType e TBool >> return TBool
2

3 typeofExpression ( EAnno e t) = checkExpressionType e t >> return t
4

5 typeofExpression EUnit = return TUnit
6

7 typeofExpression ( EBool _) = return TBool
8

9 typeofExpression (ENat _) = return TNat
10

11 typeofExpression (EVar x) = do
12 mt <- lookupType x
13 case mt of
14 Nothing -> throwError $ " Undefined variable " ++ show x
15 Just t -> do
16 cond <- typeIsCopy t
17 if cond then
18 return t

Γ1 `M e ⇐ τ a Γ2 (annobi
M )

Γ1 `M e : τ ⇒ τ a Γ2

Γ(x) = τ copy(τ)
(var copybi

M )
Γ `M x ⇒ τ a Γ

(const.bi
M )

Γ `M constant ⇒ type a Γ

Γ(x) = τ linear(τ)
(var linearbi

M )
Γ `M x ⇒ τ a Γ− x

The annotation code forwards the given type to the checking function, as per the semantics of annobi
M .

The rule const.bi
M is not implemented as a schema, but is instead implemented explicitly for each instance. We

did this for efficiency (no need for lookup tables or storing data in the expression itself) and to ensure that
nobody can accidentally create a schema instantiation that shouldn’t be instantiated.

The variable rules var copybi
M and var linearbi

M are implemented as one function, since the code does a case-
distinction on the form of the input expression. Failure of the variable lookup from lookupType corresponds
with failure of the constraint Γ(x) = τ . Since there are no other rules for expressions of the form x, on failure
we may throw an error stating the variable could not be found. On success, we check whether the type is copy
or linear, and modify the context according to the corresponding typing rules, before returning the type.

Thanks to Haskell’s monadic notation, the functions read very sequentially, just as we have to do with the
bidirectional typing rules. Therefore, most of the inference and checking code should be clear, especially when
having the typing rules on hand.

5.2.1. Intricacies
Even though the checking and inference functions look innocent, there is a lot that must happen to properly
translate the bidirectional typing rules into code. A lot of problems have to do with structural differences.
Therefore, we abstract them away by writing utility functions that fix the differences between the typing rules
and the code. In this subsection, we explain the most important and non-evident functions.
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Subsumption
The subsumption rule is implemented as the following function:

1 checkExpressionTypeViaTypeof :: ( MonadStore c m, MonadError String m) => Expression
-> Type -> m ()

2 checkExpressionTypeViaTypeof e t2 = do
3 t1 <- typeofExpression e
4 cond <- subsumes t1 t2
5 if cond then
6 return ()
7 else
8 throwError $ " Expected type " ++ show t2 ++ ", got type " ++ show t1

Γ1 `M e ⇒ τ1 a Γ2 τ1 <: τ2 (subsumesbi
M )

Γ1 `M e ⇐ τ2 a Γ2

There is nothing particularly interesting about the snippet itself, but the circumstances in which the function
is used is the tricky part. Namely, with the typing rules, subsumption can be applied on every checking step.
However, it would make no sense to try and perform subsumption every time a checking step fails, since for
most rules, a failing checking step implies a failing inference step.

This is why we have subsumption as a separate function. We use this function in two scenarios during type
checking. One scenario is when there is no checking rule, and we must use subsumption to get to the inference
rule:

1 checkExpressionType e t = checkExpressionTypeViaTypeof e t

The other scenario is during rules like app⇐bi
M , where we may have to try both checking and inferring:

1 checkExpressionType e@(EApp e1 e2) t2 = checkFallbackTypeof
2 ( wrapError "In function argument " ( typeofExpression e2))
3 (\ t1 -> checkExpressionType e1 $ TFunc False t1 t2)
4 e t2

Γ1 `M e2 ⇒ τ1 a Γ2 Γ2 `M e1 ⇐ τ1 ( τ2 a Γ3 (app⇐bi
M )

Γ1 `M e1 e2 ⇐ τ2 a Γ3

In that case, we must first determine whether the inference of the subargument works (line 2). If it works, we
can continue checking, using the inferred result (line 3). If the initial inference doesn’t work, we must forward to
the inference rule instead. If the inference rule fails as well, we still return the original error from the checking
step, to show the user that a checking step can be performed. This can be seen in the function that generalises
this procedure:

1 checkFallbackTypeof :: ( MonadStore c m, MonadError String m)
2 => m a -> (a -> m ()) -> Expression -> Type -> m ()
3 checkFallbackTypeof f g e t = do
4 ea <- ( Right <$> f)
5 ‘catchError ‘ ( return . Left)
6 case ea of
7 Right a -> g a
8 Left err -> checkExpressionTypeViaTypeof e t
9 ‘catchError ‘ const ( throwError err)

Shadowing
Shadowing a variable requires a complex set of steps. Below, we show both the code and the mathematical
equivalence from definition 3.4.2.

1 shadowVarType :: ( MonadStore c m, MonadError String m) => Var -> Maybe Type -> m a ->
m a

2 shadowVarType x t f = do
3 t’ <- lookupType x
4 alterType x t
5 a <- f
6 cond <- used x
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7 if cond then do
8 alterType x t’
9 return a

10 else
11 throwError $ " Linear variable " ++ show x ++ " has not been used"
12 where
13 used :: ( MonadStore c m, MonadError String m) => Var -> m Bool
14 used x = do
15 mt <- lookupType x
16 case mt of
17 Just t -> typeIsCopy t
18 Nothing -> return True

Γ1 | x : τx ` e : τ a Γ2 ⇐⇒ ∃Γ3 [Γ1 ← (x, τx) ` e : τ a Γ3

∧ used(x,Γ3)

∧ Γ2 = Γ3 ← (x,Γ1(x))].

The function requires a Maybe Type, since a value of Nothing means to remove the variable temporarily. This is
to keep consistency with the alterType function used, which acts like the ← operator. The variable f holds the
deduction to execute while the variable is shadowed.

This function is one in the family of “wrapper” functions. Another wrapper used is for error handling, to show
which subexpression(s) we went into. The best example to show how these wrappers are used is in the single
variable let-expression:

1 checkExpressionType ( ELetVar x e1 e2) t2 = do
2 t1 <- wrapError "In let - binding " $ typeofExpression e1
3 wrapError "In let -body" . shadowVarType x (Just t1) $ checkExpressionType e2 t2

Γ1 `M e1 ⇒ τ1 a Γ2 Γ2 | x : τ1 `M e2 ⇐ τ2 a Γ3 (let var⇐bi
M )

Γ1 `M let x = e1 in e2 ⇐ τ2 a Γ3

Type aliases
For convenience, the interpreter supports type aliases, much like a non-recursive version of Haskell’s type
keyword. The interpreter also allows computation of local type through projection of a global type. However,
these features are not supported by the typing rules. Therefore, we have to apply some kind of conversion step.
We have done this using the following function:

1 expandType :: ( MonadStore c m, MonadError String m) => Type -> m Type
2 expandType (TName tn ) = getNamedType tn >>= expandType
3 expandType ( TLocal ( LTName tn )) = getNamedLType tn >>= expandType . TLocal
4 expandType ( TLocal ( LTProject gt p)) = TLocal <$> projectGType p gt
5 expandType t = return t

This function looks at any type names or projections, and puts the type into weak head normal form, i.e. a form
where the first constructor is not a type name or projection, but where any subtypes may still contain them.
Then, any time we must perform pattern matching on a type that may not be in weak head normal form yet,
we first have to put it in weak head normal form using this function.

The reason we don’t expand the entire type and its subtypes in one go, is it can quickly become inefficient if done
too often; we would have to check the entire tree each time, since we don’t know if there’s an unexpanded part
somewhere. Also, using a weak head normal form, error messages can then use type names as much as possible,
since they haven’t been removed from the type yet. With this we follow Alexandrescu’s recommendation [1],
ensuring that we don’t get an error message fiasco like with C++ template errors.

Note that getNamedType and getNamedLType may return another type alias or projection, so we must recursively
expand. The projectGType function on the other hand does return a type in weak head normal form.

5.2.2. Closing remarks
The type checker has been shown to work as expected for a number of example cases. In fact, all examples from
chapter 2 get through the type checker, and return the correct values without any runtime errors. However,
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this does not consistute as a formal proof. A full proof that the type checker has been implemented correctly
is left to future work. Therefore, we give it as a conjecture.

Conjecture 5.2.1. The MPGV type checker is sound and complete with respect to the bidirectional typing
rules.
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5.3. Interpreter
The interpreter is based around the following function that evaluates an expression:

1 evaluateExpression :: (PC. ParIVar P.IVar m, PC. ParFuture P.IVar m, MonadStore Channel
m)

2 => Expression -> m ( Value Channel )

This function requires concurrency functionality, and access to the variable store.

Notably, this function does not use the Except monad. This is because error handling within a concurrently
running process is rather tricky to do, and may have to work very differently depending on how the concurrency
monad is implemented. For example, aborting processes in a coroutine environment is much easier than when
each concurrent function is a separate process.

For the interpreter, this means that any runtime error will abort the entire program. However, this is not a
major issue, since the typechecker is supposed to catch most cases where a runtime error is thrown. The one
exception to this is division-by-zero errors.

We now show some basic cases that this function evaluates:
1 evaluateExpression (ENot e) = do
2 v <- evaluateExpression e
3 case v of
4 VBool b -> return . VBool $ not b
5 _ -> error $ " Expected boolean value in logical NOT , got value " ++ show v
6

7 evaluateExpression (EAnno e _) = evaluateExpression e
8

9 evaluateExpression EUnit = return VUnit
10

11 evaluateExpression (EBool b) = return $ VBool b
12

13 evaluateExpression (ENat n) = return $ VNat n
14

15 evaluateExpression (EVar x) = do
16 mv <- lookupValue x
17 case mv of
18 Nothing -> error $ " Undefined variable " ++ show x
19 Just v -> return v

E `M e 7→ b (notM)
E `M not e 7→ ¬b

(constM)
E `M constant 7→ value

E `M e 7→ v (annoM)
E `M e : τ 7→ v

E(x) = v
(varM)

E `M x 7→ v

Note that the operational semantics do not have an output evaluation. This is because now we are not concerned
with linearity anymore; the type checker already ensures that linear variables are not used twice. Therefore,
no case within evaluateExpression shall indudce a net change in the store — of course shadowing modifies the
store, but changes are reverted later.

On the topic of shadowing, it is again implemented with a wrapper function:
1 shadowVarValue :: (PC. ParIVar P.IVar m, PC. ParFuture P.IVar m, MonadStore Channel m)
2 => Var -> Maybe ( Value Channel ) -> m a -> m a
3 shadowVarValue x v f = do
4 v’ <- lookupValue x
5 alterValue x v
6 a <- f
7 alterValue x v’
8 return a

For the interpreter, we also have a conjecture on the correctness:

Conjecture 5.3.1. The MPGV interpreter is sound and complete with respect to the operational semantics.
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5.3.1. Concurrency
Concurrency-related operations are done whenever a fork-, send-, receive-, redirect- or close-expression is being
evaluated. These functions implement MPGV-style concurrency by making specific calls to the monad-par
monad.

Recall the channel datatype:
1 newtype IVarChain c = IVarChain (IVar ( Value c, Maybe Label , IVarChain c))
2

3 data Channel = Channel {
4 sendChannels :: Map Participant ( IVarChain Channel ),
5 receiveChannels :: Map Participant ( IVarChain Channel )
6 }

For forking, first we create maps of IVar channels, wrapped in an IVarChain to make them multi-use. These
values will fill the sendChannels part for each thread’s MPGV channel. Then, each value is copied into the
receiving counterpart, filling the receiveChannels. Lastly, the actual threads are created, using the following
helper function:

1 spawnThread sends receives p (x, e) = PC.fork $ do
2 alterValue x . Just $ makeChannel sends receives p
3 v <- evaluateExpression e
4 case v of
5 VUnit -> return ()
6 _ -> error $ " Expected to return unit at end of thread , received " ++

show v

Whenever a thread is forked, monad-par will take the current Store and copy it over to the forked thread. Upon
completion of the thread, the Store is discarded. This is done by making Store part of the SplittableState
class. With these semantics, stores are easy to work with during concurrency and are deterministic. Note that
this is another major reason for the operational semantics to not have an output context; if it had one, the
semantics of discarding the State would become problematic.

Sending and receiving goes in the fashion described before: the sending side continues the IVarChain, and the
receiving side consumes part of the chain. So for the sending part, we have:

1 i’ <- IVarChain <$> PC.new
2 PC.put i (v, ml , i’)
3 return $ VChannel ( Channel (Map. insert p’ i’ sends ) receives ) r

And for the receiving part, we have:
1 (v, ml , i ’) <- PC.get i
2 let channel = VChannel ( Channel sends (Map. insert p’ i’ receives )) r
3 case ml of
4 Just l -> return . VChoice l $ VPair v channel
5 Nothing -> return $ VPair v channel

Notable variable names are p’, the (possibly redirected) participant, and i’, the continuation of the IVarChain.
In both snippets, we must modify the channel so that it contains the proper continuation of the IVarChain.

For redirect, we simply add the given redirection to the existing one in the channel. We must take care, however,
to prioritise redirections from the given mapping.

Lastly, closing is extremely simple: we can just evaluate the expression, then return unit. This is beacuse
checking that a thread ends with unit is part of fork’s responsibility, and can be seen in its helper function. The
actual closing of the threads is done automatically by monad-par once the helper function completes.
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5.4. Parser
The parser is implemented using a custom parser combinator Parser. This parser tries to go through all possible
parsing combinations. Once it found a combination that transforms all parts of the string into a syntactically
correct MPGV program, it returns said program. If instead it couldn’t find any combination, an error is
returned for the combination that came furthest. The reason behind this, is that the combination that came
furthest is most likely to be the intended combination.

Just like with the type checker, errors may be wrapped to display more contextual information. Also, the
position from which parsing could not go further is displayed with the error whenever possible, to give a better
idea of the syntax mistake made.

As an example of how the combinator works, consider the Type parser:
1 pType , pType2 , pType3 :: Bool -> Parser Type
2

3 pType withTypeNames = ( TFunc False <$> pType2 withTypeNames <* pStringToken " -%" <*>
pType withTypeNames )

4 <|> ( TFunc True <$> pType2 withTypeNames <* pStringToken "->" <*>
pType withTypeNames )

5 <|> pType2 withTypeNames
6

7 pType2 withTypeNames = pFoldl ( pType3 withTypeNames ) [("*", TPair)]
8

9 pType3 withTypeNames = ( TUnit <$ pStringToken "()")
10 <|> ( TBool <$ pStringToken "B")
11 <|> (TNat <$ pStringToken "N")
12 <|> ( TChoice <$> pMatch ((,) <$> pLabelToken <* pStringToken ":"

<*> pType withTypeNames ))
13 <|> ( TLocal <$> pLType False withTypeNames )
14 -- Must come after TLocal so as to allow global type

projections with type names
15 <|> (if withTypeNames then TName <$> pTypeNameToken else pError "

Invalid type")
16 <|> pParenToken ( pType withTypeNames )
17 <|> pError " Invalid type"

This code follows the MPGV grammar as described in appendix B. To ensure that the parser doesn’t end up in
an infinite loop, and to allow for operator precedences, we have multiple parsing layers. Each layer implements
different operations on the same precedence level, and consumes subtypes on a lower level. Only the last layer
may loop back to the first layer.

For function types (see lines 3 and 4), the parser combinator can already evaluate in the correct order. When
parsing pairs, however, the combinator goes in the wrong direction. For this, the pFoldl parser exists, which
implements a foldl-like parsing operation on a set of binary expressions. In this case, the only binary expression
on this layer is the pair expression. The implementation of this parser can be seen below:

1 pFoldl :: Parser a -> [( String , a -> a -> a)] -> Parser a
2 pFoldl p binOps = do
3 base <- p
4 others <- many . asum . map (\(i, (op , _)) -> (,) i <$ pStringToken op <*> p) $ zip

[0..] binOps
5 return $ foldl (\ e1 (i, e2) -> (snd $ binOps !! i) e1 e2) base others

What this function does, is first parse an expression of a lower level. After that, it must read one of the binary
operation tokens, and then read another lower level expression. After parsing as many as possible, we can fold
them together in the correct direction by applying foldl with the correct binary operation constructors. An
example of this parser can be seen in the first expression layer:

1 pExpression = pFoldl pExpression2 [("&&", EAnd), ("||", EOr)]
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5.5. REPL
The REPL ties the whole implementation together, by performing parsing, type checking and interpreting in a
constant interactive loop. The REPL can parse both individual lines of user input and entire script files. For
this, some new syntax is introduced.

5.5.1. Metacommands
A user can type certain metacommands into the interface. These commands give information about the state
of the REPL, or allow the user to perform special actions. For example, .sv shows the values of all variables
in the store. The command .q quits the program. If there are still linear variables in play, the interpreter will
display a warning asking if you really want to quit. The command .t e shows the type of the expression e,
without performing evaluation of e. Notably, it also undoes any changes made to the store during said type
checking. For a full list of commands, use .h.

5.5.2. Script syntax
The script syntax, used for both user input and for scripts, is described in appendix B. This syntax consists
of printing, variable assignment, type aliasing and script loading functionalities. For convenience, the relevant
part of the appendix is given below:

1 -- S ::= ; script
2 -- SL ; ending statement
3 -- SL\nS ; intermediate statement
4 --
5 -- SL ::= ; script line
6 -- print e ; printed expression
7 -- e ; printed expression (only in REPL)
8 -- let ax=e ; variable assignment
9 -- ax=e ; variable assignment (only in REPL)

10 -- type TN=T ; type alias (type names disallowed in T)
11 -- gtype TN=GT ; global type alias (type names disallowed in GT)
12 -- import "s" ; load script at the given path (no escape codes

allowed )

Printing
To evaluate an expression e and print its value, you can use print e. For this, it is required that e does not
return a linear value. Without the restriction, the REPL could be consuming an important linear variable, like
a channel.

Chaining individual print statements together can be modeled with the existing MPGV syntax. Namely, the
code

1 print e1
2 print e2

can be modeled as the expression
1 let unusedVariable = e1 in e2

where the value of unusedVariable is printed to the screen after evaluating e1. From the typing rule of let-
expressions, we see that evaluating e1 can be done before knowing about e2. Therefore, the program can be
read and evaluated statement-by-statement.

Γ1 `M e1 ⇒ τ1 a Γ2 Γ2 | x : τ1 `M e2 ⇐ τ2 a Γ3 (let var⇐bi
M )

Γ1 `M let x = e1 in e2 ⇐ τ2 a Γ3

When evaluating user input in the REPL, the print keyword may be omitted. The reason it is required in
scripts is because it resolves ambiguity between a print-statement and function application. Since user input is
parsed on a per-statement basis, this ambiguity does not exist for user input.
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Variable assignment
In order to work with variables, the syntax let x = e or let x::T = e is used. In this case, e may return a linear
value. Namely, the linear value can be used up by placing the corresponding variable into later statements. This
type of statement can also be modeled using existing MPGV syntax by using let-in-expressions, but where the
variable may be used. Just as with printing, the let keyword may be omitted when evaluating user input, but
not when evaluating scripts.

Type aliasing
The statements type TN = T and gtype TN = GT introduce type aliases. These aliases can then be used in later
expressions. Since these are just aliases, MPGV semantics are not changed, because the type checker can just
expand the types whenever needed. Type aliases may not be redefined, however, to ensure that lazy expansion
of type aliases in previous expressions does not suddenly expand to the wrong newly created definition. The
exception to this is when the type alias is redefined to exactly the same type. This is done to make it possible
to import scripts that have type aliases multiple times, without getting a redefinition-error. To summarise, we
have the following behaviour:

1 type CustomType = N->N -- OK, initial definition
2 type CustomType = N->N -- OK, redefinition to same type
3 type CustomType = N -%N -- ERROR , redefinition to different type

Script loading
To load the contents of a script, and execute them as if the script were typed out straight into the REPL, the
import "some/path" syntax is used. This is much like the #include "some/path" syntax used in languages like
C and C++, except here the script is expanded at runtime instead of at compile time. So we immediately see
that loading scripts this way doesn’t break the guarantees of MPGV. Namely, loading scripts is nothing more
than if the script contents were placed inline at the import-statement instead, forming a bigger script.

5.5.3. Error handling
To allow for exceptions to be handled in the REPL during parsing and type checking, the following helper
function is used:

1 withPrintError :: ( ParIVar IVar m, MonadStore Channel m, MonadIO m)
2 => StoreT Channel ( Except String ) a -> (a -> m ()) -> m () -> m ()
3 withPrintError m f g = do
4 s <- getStore
5 case runExcept $ runStoreT m s of
6 Left e -> do
7 printError e
8 g
9 Right (a, s ’) -> do

10 putStore s’
11 f a

This function runs in the same monad as the interpreter, but creates an environment with a store and with
error handling, in which the type checker and parser can be run. The store is moved to the new environment.
The function m is the monadic function to run within said environment. If the function throws an error, we
print the error to the screen and continue with executing g. If the function returns a value a successfully, we
update the store and execute f a.

5.5.4. Cleanup
When going from interpreting statements to type checking new statements, we must perform cleanup. This
is because the interpreter does not effectively change the store, meaning that linear variables are not removed
when used. However, we would like the .sv command to only show linear variables that may still be used.
Therefore, we look at what variables get deleted during type checking of an expression, and remove those after
interpreting the corresponding expression. This is not a problem when executing scripts, since they get type
checked in one go before being evaluated in one go. However, when evaluating user input, we cannot do this.
Therefore, the REPL contains this code for evaluating statements from user input:
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1 AScriptLine str -> withPrintError
2 ( liftEither $ parseEval ( pScriptLine True) str)
3 (\ sl -> checkScriptLine sl
4 (\sl ’ -> do
5 runScriptLine sl ’
6 ts <- getTypes
7 -- Make sure we remove variables that have been thrown away
8 -- during type checking , but haven ’t during evaluation
9 modifyValues $ (flip Map. intersection ) ts

10 repl)
11 repl)
12 repl

Here, we first parse the input, going back to the REPL on error. Otherwise, we check the type of the statement,
again going to the REPL on error. Otherwise, we evaluate the statement, collect the list of variables that still
exist after type checking, and mirror that list on the interpreter side.
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Chapter 6.

Related work

Session type systems There exist many different implementations for session types, each with different
features. Below, we show a table comparing a variety of session type systems with our MPGV implementation.

in paper — [17] [4] [13] [15] [11] [14]
name MPGV AlgST Exceptional GV Rusty Variation MultiCrusty Gradual GV Priority Sesh

written in/for Haskell Haskell Links Rust Rust — Linear Haskell
implementation interpreted interpreted library library library — library
type inference bidirectional bidirectional inherited inherited inherited — inherited

channel typing linear linear linear affine affine linear, gradual linear
deadlock-free X × X X X × X
multiparty X × × × X × ×
cancellation × × X X X × X
dynamic threads X X X X × X X

In the next paragraphs, we describe some of these entries in more detail, and explain parts that may be unclear.

AlgST and bidirectional typing The AlgST implementation [17] is most similar to our MPGV im-
plementation. It is also written in Haskell, implements a session type system, and uses bidirectional type
checking. However, it uses binary session types (opposed to multiparty session types), and the kind of session
type framework is different.

AlgST introduces session types based on algebraic protocols. It is an effort to create concise syntax for recursive
session types, like exists with parameterised algebraic datatypes. For example, suppose we wish to make a
protocol where we send an arbitrary amount of natural numbers. In AlgST, it would be written as protocol
RecN = End | Cons N RecN. This is similar to how you would write a List type in Haskell. On the other hand,
in MPGV you would write gtype RecN = [0->1]{end:(). End; cons:N. RecN}1. Since MPGV’s syntax shares
similarities with Haskell, such algebraic protocol syntax could be an interesting addition to the language.

Our implementation uses a bidirectionalisation recipe that allows for inference and checking rules of the same
expression type (see section 3.5). The reason for this, is that checking rules can sometimes take different routes
than inference rules can. Having these different routes increases the expressivity of the type system, and enables
us to remove many more annotations.

On the other hand, AlgST only implements part of the recipe; only inference rules are provided, the exception
being the subsumption rule. This means that the typing rules allow for subsumption to occur, but that
annotations are still required in all places; only in checking rules do we get enough type information to omit
annotations. To give a better idea of where this places AlgST’s type checking, consider the following example:

1 let copyFunc :: () -> () = \u. u
2 let f :: (() -% ()) -> () = \ linFunc . linFunc ()
3 print f copyFunc

Recall that -% indicates a linear function. In MPGV, this code would type check, since (1) the argument types
in copyFunc and f can be inferred from the function’s types, and (2) since subsumption allows copy functions to
be passed as linear arguments. However, in AlgST, only (2) is implemented. Therefore, the code will not type
check in AlgST, since the argument types cannot be inferred; they need to be annotated, like this:

1 let copyFunc :: () -> () = \u :: (). u
2 let f :: (() -% ()) -> () = \ linFunc :: () -% (). linFunc ()
3 print f copyFunc

1MPGVR does not currently have recursive types, but this syntax would be the most logical if it were added.
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Now the code will compile with the AlgST strategy, since the code is fully annotated. Note that the bidirectional
strategy used for AlgST still provides value over normal algorithmic typing rules, because of subsumption.
Without subsumption, the above code would still not compile, since f would require a linear function, and
would not accept a copy function.

MultiCrusty and cancellation MultiCrusty [15] is a Rust library implementing AMPST, an affine
multiparty session type calculus [15]. The type checking capabilities therefore are inherited from the Rust
compiler used. The library supports multiparty types, and has an affine type system — instead of a linear one.

An affine type system relaxes the restriction that each variable must be used. This means that channels may
or may not be used, which is an issue for deadlock-free protocols. To combat this issue, MultiCrusty has
“cancellation” systems in place.

Cancellation is a technique where we detect dropped channels and proceed to terminate the protocol safely if
a dropped channel is found. After termination, the threads that are still alive can start a recovery procedure,
for example one where they restart the protocol. Cancellation solves the problem of deadlocks from dropped
channels, since an aborted protocol cannot deadlock.

Aborting the protocol after detecting a dropped channel can be considered a rather crude way of preventing
deadlocks. Preferably, we could provide recovery procedures within the protocol. This way, we have more
scenarios in which we can recover and continue or take an alternative route, without having to restart the entire
protocol or set up a new protocol. MultiCrusty supports this more fine-grained form of recovery, by having
try P catch Q and cancel(c).P constructs in the calculus. Within the library, these are implemented through
the attempt! {...} catch {...} macro and cancel() function. Below, we show some examples of MultiCrusty
cancellation, inspired by the examples in [15].

1 match s.recv () {
2 Ok((v, s)) => M
3 Err(e) => {
4 // Other threads get cancellation

errors when continuing the protocol
5 cancel (s);
6 // Stop this thread
7 panic !(" Error: {:?}" , e)
8 }
9 }

attempt ! {
s.recv ();
get_video (); // Errors

} catch (e) {
//
// Recover this step of the protocol
//

}

Even though MPGV theoretically does not have runtime errors (apart from division-by-zero), having a can-
cellation system in place is useful, and could also be considered an improvement to MPGV. For example, the
operating system may decide to kill a thread, possibly causing the other threads to deadlock. This is a real-world
situation that the theory does not account for. Using this cancellation system would weaken the guarantees of
the language (“the protocol always succeeds”), but in practice could be worth it.

The last row of the table may need some explaining. There can be multiple protocols active at the same time in
MultiCrusty. However, these must be merged into one central spot using the create_fork_interleave! macro.
Therefore, protocols cannot dynamically be run, in contrast to GV-based languages like MPGV.

Gradual GV and gradual types Gradual GV [11] is a calculus that implements gradual linear session
types. These are linear session types, for which the type may be checked at runtime instead of being checked
statically. The motivation behind Gradual GV is that multiple parties can communicate even if one uses a
statically typed language, while the other uses a dynamically typed language[11]; with Gradual GV, one can
switch between static typing and dynamic typing at will.

Concurrency libraries Our MPGV implementation uses the monad-par library for concurrency. How-
ever, there are many more ways to do concurrency in Haskell. We now elaborate on why we made the choice
for monad-par.

One important feature of monad-par is that we can choose the type of thread scheduling to use. Depending on
the work done with the MPGV implementation, this choice can become very valuable. For example, one might
choose to play with deterministic scheduling and its consequences over non-deterministic scheduling.

When using a system like MVar for message passing and the Control.Concurrent’s forkIO for spawning threads,
we lose the ability to provide our own scheduling. The async library also suffers from this issue.
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With Control.Parallel, we do get the benefit of multiple scheduling strategies. However, this library only
provides basic parallelism. To make the implementation support message passing, we need full concurrency.
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Chapter 7.

Conclusion

In this thesis, we introduced an implementation of the MPGV language. This language was devised by Jacobs
et al. [12], and unifies two major branches of session types: GV [5, 6, 23] for deadlock freedom, and MPST [9,
10] for multiparty session types.

The implementation is written in Haskell, and includes parser, type checking and interpreter modules. The
code is based on the algorithmic formalisations described in this thesis. As seen in chapter 5, many parallels
can be drawn between these formalisations and the actual code written. Of course, this correspondence does
not automatically make the code correct, but it does make it easier to verify the correctness of the code. Formal
verification is part of future work (see section 7.1).

A notable formalisation implemented is the algorithmic shadowing structure from section 3.4. The formalisation
distills the necessary steps needed to shadow a variable, and combines these steps seamlessly with the algorithmic
judgements. This reduces the chance of errors made during shadowing.

The bidirectional typing recipe from Dunfield and Krishnaswami. [3] has proven useful as well. As seen in
section 4.3, translation of MPGV’s regular typing rules — as described in [12] — into algorithmic bidirectional
rules succeeded. It has eliminated the need for many annotations, and generalised the different annotations;
these resulting annotation-expressions and annotatable variables provide a much more powerful and flexible
way to provide annotations to an MPGV program.

Certain syntactical improvements have been made to the MPGV language, compared to the original specifica-
tion in [12]. These have been showcased in chapter 2, together with a translation from mathematical syntax
into ASCII syntax. The most notable of these improvements include shorthand syntax for channel operations
(e.g. c.send(1)) and unlabeled sending and receiving (e.g. !N. End as opposed to !{Label: N. End}). Some of
these changes were able to be defined in terms of the original specification. Others have been added to the
language by means of new typing rules and operational semantics.

It was also possible to write a REPL environment. This same environment also allows MPGV to function
as an embedded language; one can manage the environment, including variables and calls to scripts, all from
within their own Haskell code by hooking into provided monads.
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7.1. Future work

Recursive types The implementation conforms with nearly all the specifications as laid out by Jacobs et
al. [12] However, the feature of recursive types is still missing. It is left as future work since this feature requires
major changes to certain existing systems.

The most notable change needed is that comparison between types becomes non-trivial. Bookkeeping needs to
be added to prevent infinite loops during comparisons such as equality and subsumption.

Once recursive types are added, type aliases may want to be reworked as well, to support references to types
defined later, allowing for cyclic definitions. Such feature may require the choice to make types nominal, i.e. two
types with the same implementation but different names are not equal anymore. One may want to implement
AlgST’s syntax for types, since it supports recursive and nominal types. [17]

Verification The MPGV implementation was verified by means of examples, some of which can be seen in
chapter 2. However, formal verification of soundness and completeness of the typing rules — for example by
means of a proof assistant — has yet to be done. As a baseline, the Coq code from [12] that formalises the
MPGV language can be used.

Also, the effeciency of the type checker has not been thouroughly tested. The fact that the examples compile
in reasonable time implies that the interpreter is fairly efficient. However, there may be certain combinations
in which the time to type check the code might not scale well. This should be analysed, and any deficiencies
should be corrected in the typing rules, to ensure that MPGV can be practically type checked.

Error handling Lastly, error handling is still lacking in the implementation. When parsing and type check-
ing error, this can be recovered from. However, runtime errors of MPGV code make the whole implementation
abort. This is not a major issue, since due to the safety guarantees from type checking there shouldn’t be many
runtime errors. The only one that can originate from inside of MPGV itself is division-by-zero; any other errors
come from components like the operating system, for example during thread spawning. One might want to fix
this problem by implementing cancellation, as done in related languages [4, 13, 15].

Convenience features Another feature to add is to allow for participant names like “Alice” and “Bob”
instead of numeric identifiers like 0 and 1. It was used in the examples by Jacobs et al. [12] to increase readability.

The syntax for match-clauses and fork-clauses is cumbersome. Namely, suppose we have a function that imple-
ments one of the participants to fork:

1 let f :: SomeChannel -> () =
2 \c.
3 do something ;
4 c.close ()

Then, the fork-clause must accept the parameter like this: fork<GT>(c. f c). We would much rather accept
functions, though, so that we can type fork<GT>(f), and then by extension allow writing them inline as fork<
GT>(\c. do something; c.close()).
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Chapter A.

Typing rules of MPGV

A.1. Regular typing rules

Leaves

copy(Γ)
(varreg

M )
Γ ∪ {(x, τ)} `M x : τ

For the constant/type pairs ((),1), (True,B) and (False,B), and for natural number constants (n,N), we derive
typing rules according to the following schema:

copy(Γ)
(const.reg

M )
Γ `M constant : type

Boolean logic

Γ1 ⊥ Γ2 Γ1 `M e1 : B Γ2 `M e2 : τ Γ2 `M e3 : τ (ifreg
M )

Γ1 ∪ Γ2 `M if e1 then e2 else e3 : τ

Γ `M e : B (notreg
M )

Γ `M not e : B

For the binary comparison operations == and /=, we derive typing rules according to the following schema
(replace � with the operation):

Γ1 ⊥ Γ2 Γ1 `M e1 : τ Γ2 `M e2 : τ eqComp(τ)
(comp.reg

M )
Γ1 ∪ Γ2 `M e1 � e2 : B

For the binary ordering operations <, <=, > and >=, we derive typing rules according to the following schema
(replace � with the operation):

Γ1 ⊥ Γ2 Γ1 `M e1 : τ Γ2 `M e2 : τ orderable(τ)
(orderreg

M )
Γ1 ∪ Γ2 `M e1 � e2 : B

For the binary logic operations && and ||, we derive typing rules according to the following schema (replace �
with the operation):

Γ `M e1 : B Γ(0) `M e2 : B
(logicreg

M )
Γ `M e1 � e2 : B

Functions

copy(Γ) Γ ∪ {(x, τ1)} `M e : τ2 (func copyreg
M )

Γ `M λxτ1 . e : τ1 → τ2

Γ ∪ {(x, τ1)} `M e : τ2 (func linearreg
M )

Γ `M λ1xτ1 . e : τ1 ( τ2

copy(Γ) Γ ∪ {(f, τ1 → τ2), (x, τ1)} `M e : τ2 (recreg
M )

Γ `M rec fτ1→τ2 xτ1 . e : τ1 → τ2

Γ1 ⊥ Γ2 Γ1 `M e1 : τ τ ∈ {τ1 → τ2, τ1 ( τ2} Γ2 `M e2 : τ1 (appreg
M )

Γ1 ∪ Γ2 `M e1 e2 : τ2
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Pairs

Γ1 ⊥ Γ2 Γ1 `M e1 : τ1 Γ2 `M e2 : τ2 (pairreg
M )

Γ1 ∪ Γ2 `M (e1, e2) : τ1 × τ2

Γ1 ⊥ Γ2 Γ1 `M e1 : τ1 × τ2 Γ2 ∪ {(x1, τ1), (x2, τ2)} `M e2 : τ3 (let pairreg
M )

Γ1 ∪ Γ2 `M let (x1, x2) = e1 in e2 : τ3

Choice

Γ `M e : τl l ∈ I (choicereg
M )

Γ `M 〈l : e〉{l′: τl′}l′∈I
: {l′ : τl′}l′∈I

Γ1 ⊥ Γ2 Γ1 `M e : {l : τl}l∈I ∀l∈I [Γ2 ∪ {(xl, τl)} `M el : τ ] (matchreg
M )

Γ1 ∪ Γ2 `M match e with {l : xl 7→ el}l∈I : τ

Concurrency

Γ1 ⊥ · · · ⊥ Γn participants(G) ⊆ {0, . . . , n} ∀1≤i≤n[Γi ∪ {(xi, G ↓ i)} `M ei : 1]
(forkreg

M )
Γ1 ∪ · · · ∪ Γn `M fork〈G〉(x1 7→ e1, . . . , xn 7→ en) : G ↓ 0

Γ1 ⊥ Γ2 Γ1 `M e1 : ![p]{l′ : τl′ . Ll′}l′∈I l ∈ I Γ2 `M e2 : τl (send l.reg
M )

Γ1 ∪ Γ2 `M send[p](e1, l, e2) : Ll

Γ1 ⊥ Γ2 Γ1 `M e1 : ![p]τ. L Γ2 `M e2 : τ
(send unl.reg

M )
Γ1 ∪ Γ2 `M send[p](e1, e2) : L

Γ `M e : ?[p]{l : τl. Ll}l∈I (recv. l.reg
M )

Γ `M receive[p](e) : {l : τl × Ll}l∈I

Γ `M e : π(L)
(redirectreg

M )
Γ `M redirectL[π](e) : L

Γ `M e : ?[p]τ. L
(recv. unl.reg

M )
Γ `M receive[p](e) : τ × L

Γ `M e : End (closereg
M )

Γ `M close(e) : 1

Other

Γ1 ⊥ Γ2 Γ1 `M e1 : τ1 Γ2 ∪ {(x, τ1)} `M e2 : τ2 (let varreg
M )

Γ1 ∪ Γ2 `M let x = e1 in e2 : τ2

For the binary arithmetic operations +, -, * and /, we derive typing rules according to the following schema
(replace � with the operation):

Γ1 ⊥ Γ2 Γ1 `M e1 : N Γ2 `M e2 : N (arith.reg
M )

Γ1 ∪ Γ2 `M e1 � e2 : N

A.2. Algorithmic typing rules

Leaves

Γ(x) = τ copy(τ)
(var copyalg

M )
Γ `M x : τ a Γ

Γ(x) = τ linear(τ)
(var linearalg

M )
Γ `M x : τ a Γ− x

For the constant/type pairs ((),1), (True,B) and (False,B), and for natural number constants (n,N), we derive
typing rules according to the following schema:

(const.alg
M )

Γ `M constant : type a Γ

65 / 72



Boolean logic

Γ1 `M e1 : B a Γ2 Γ2 `M e2 : τ a Γ3 Γ2 `M e3 : τ a Γ3 (ifalg
M )

Γ1 `M if e1 then e2 else e3 : τ a Γ3

Γ1 `M e : B a Γ2 (notalg
M )

Γ1 `M not e : B a Γ2

For the binary comparison operations == and /=, we derive typing rules according to the following schema
(replace � with the operation):

Γ1 `M e1 : τ a Γ2 Γ2 `M e2 : τ a Γ3 eqComp(τ)
(comp.alg

M )
Γ1 `M e1 � e2 : B a Γ3

For the binary ordering operations <, <=, > and >=, we derive typing rules according to the following schema
(replace � with the operation):

Γ1 `M e1 : τ a Γ2 Γ2 `M e2 : τ a Γ3 orderable(τ)
(orderalg

M )
Γ1 `M e1 � e2 : B a Γ3

For the binary logic operations && and ||, we derive typing rules according to the following schema (replace �
with the operation):

Γ1 `M e1 : B a Γ2 Γ2(0) `M e2 : B a Γ3 (logicalg
M )

Γ1 `M e1 � e2 : B a Γ2

Functions

Γ1(0) | x : τ1 `M e : τ2 a Γ2 (func copyalg
M )

Γ1 `M λxτ1 . e : τ1 → τ2 a Γ1

Γ1 | x : τ1 `M e : τ2 a Γ2 (func linearalg
M )

Γ1 `M λ1xτ1 . e : τ1 ( τ2 a Γ2

Γ1(0) | f : τ1 → τ2 | x : τ1 `M e : τ2 a Γ2 (recalg
M )

Γ1 `M rec fτ1→τ2 xτ1 . e : τ1 → τ2 a Γ1

Γ1 `M e1 : τ a Γ2 τ ∈ {τ1 → τ2, τ1 ( τ2} Γ2 `M e2 : τ1 a Γ3 (appalg
M )

Γ1 `M e1 e2 : τ2 a Γ3

Pairs

Γ1 `M e1 : τ1 a Γ2 Γ2 `M e2 : τ2 a Γ3 (pairalg
M )

Γ1 `M (e1, e2) : τ1 × τ2 a Γ3

Γ1 `M e1 : τ1 × τ2 a Γ2 Γ2 | x1 : τ1 | x2 : τ2 `M e2 : τ3 a Γ3 (let pairalg
M )

Γ1 `M let (x1, x2) = e1 in e2 : τ3 a Γ3

Choice

Γ1 `M e : τl a Γ2 l ∈ I
(choicealg

M )
Γ1 `M 〈l : e〉{l′: τl′}l′∈I

: {l′ : τl′}l′∈I a Γ2

Γ1 `M e : {l : τl}l∈I a Γ2 ∀l∈I [Γ2 | xl : τl `M el : τ a Γ3] (matchalg
M )

Γ1 `M match e with {l : xl 7→ el}l∈I : τ a Γ3
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Concurrency

participants(G) ⊆ {0, . . . , n} ∀1≤i≤n[Γi | xi : G ↓ i `M ei : 1 a Γi+1] (forkalg
M )

Γ1 `M fork〈G〉(x1 7→ e1, . . . , xn 7→ en) : G ↓ 0 a Γn+1

Γ1 `M e1 : ![p]{l′ : τl′ . Ll′}l′∈I a Γ2 l ∈ I Γ2 `M e2 : τl a Γ3 (send l.alg
M )

Γ1 `M send[p](e1, l, e2) : Ll a Γ3

Γ1 `M e1 : ![p]τ. L a Γ2 Γ2 `M e2 : τ a Γ3 (send unl.alg
M )

Γ1 `M send[p](e1, e2) : L a Γ3

Γ1 `M e : ?[p]{l : τl. Ll}l∈I a Γ2 (recv. l.alg
M )

Γ1 `M receive[p](e) : {l : τl × Ll}l∈I a Γ2

Γ1 `M e : ?[p]τ. L a Γ2 (recv. unl.alg
M )

Γ1 `M receive[p](e) : τ × L a Γ2

Γ1 `M e : π(L) a Γ2 (redirectalg
M )

Γ1 `M redirectL[π](e) : L a Γ2

Γ1 `M e : End a Γ2 (closealg
M )

Γ1 `M close(e) : 1 a Γ2

Other

Γ1 `M e1 : τ1 a Γ2 Γ2 | x : τ1 `M e2 : τ2 a Γ3 (let varalg
M )

Γ1 `M let x = e1 in e2 : τ2 a Γ3

For the binary arithmetic operations +, -, * and /, we derive typing rules according to the following schema
(replace � with the operation):

Γ1 `M e1 : N a Γ2 Γ2 `M e2 : N a Γ3 (arith.alg
M )

Γ1 `M e1 � e2 : N a Γ3

A.3. Bidirectional typing rules

Basic rules

Γ1 `M e ⇐ τ a Γ2 (annobi
M )

Γ1 `M e : τ ⇒ τ a Γ2

Γ1 `M e ⇒ τ1 a Γ2 τ1 <: τ2 (subsumesbi
M )

Γ1 `M e ⇐ τ2 a Γ2

Leaves

Γ(x) = τ copy(τ)
(var copybi

M )
Γ `M x ⇒ τ a Γ

Γ(x) = τ linear(τ)
(var linearbi

M )
Γ `M x ⇒ τ a Γ− x

For the constant/type pairs ((),1), (True,B) and (False,B), and for natural number constants (n,N), we derive
typing rules according to the following schema:

(const.bi
M )

Γ `M constant ⇒ type a Γ

Boolean logic

Γ1 `M e1 ⇐ B a Γ2 Γ2 `M e2 ⇒ τ a Γ3 Γ2 `M e3 ⇐ τ a Γ3 (if 1⇒bi
M )

Γ1 `M if e1 then e2 else e3 ⇒ τ a Γ3

Γ1 `M e1 ⇐ B a Γ2 Γ2 `M e3 ⇒ τ a Γ3 Γ2 `M e2 ⇐ τ a Γ3 (if 2⇒bi
M )

Γ1 `M if e1 then e2 else e3 ⇒ τ a Γ3

Γ1 `M e1 ⇐ B a Γ2 Γ2 `M e2 ⇐ τ a Γ3 Γ2 `M e3 ⇐ τ a Γ3 (if⇐bi
M )

Γ1 `M if e1 then e2 else e3 ⇐ τ a Γ3

Γ1 `M e ⇐ B a Γ2 (notalg
M )

Γ1 `M not e ⇒ B a Γ2
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For the binary comparison operations == and /=, we derive typing rules according to the following two schemas
(replace � with the operation):

Γ1 `M e1 ⇒ τ a Γ2 Γ2 `M e2 ⇐ τ a Γ3 eqComp(τ)
(comp. 1bi

M )
Γ1 `M e1 � e2 ⇒ B a Γ3

Γ1 `M e2 ⇒ τ a Γ2 Γ2 `M e1 ⇐ τ a Γ3 eqComp(τ)
(comp. 2bi

M )
Γ1 `M e1 � e2 ⇒ B a Γ3

For the binary ordering operations <, <=, > and >=, we derive typing rules according to the following two schemas
(replace � with the operation):

Γ1 `M e1 ⇒ τ a Γ2 Γ2 `M e2 ⇐ τ a Γ3 orderable(τ)
(order 1bi

M )
Γ1 `M e1 � e2 ⇒ B a Γ3

Γ1 `M e2 ⇒ τ a Γ2 Γ2 `M e1 ⇐ τ a Γ3 orderable(τ)
(order 2bi

M )
Γ1 `M e1 � e2 ⇒ B a Γ3

For the binary logic operations && and ||, we derive typing rules according to the following schema (replace �
with the operation):

Γ1 `M e1 ⇐ B a Γ2 Γ2(0) `M e2 ⇐ B a Γ3 (logicbi
M )

Γ1 `M e1 � e2 ⇒ B a Γ2

Functions

Γ1 | x : τ1 `M e ⇒ τ2 a Γ2 τ =
{

τ1 → τ2 if Γ1 = Γ2;
τ1 ( τ2 otherwise.

(func⇒bi
M )

Γ1 `M λx : τ1. e ⇒ τ a Γ2

τx = useAnno(τ1, χ) Γ1 | x : τx `M e ⇐ τ2 a Γ2 τ =
{

τ1 ( τ2 if Γ1 6= Γ2;
τ1 ( τ2 or τ1 → τ2 otherwise.

(func⇐bi
M )

Γ1 `M λχ. e ⇐ τ a Γ2

Γ1(0) | f : τ1 → τ2 | x : τ1 `M e ⇐ τ2 a Γ2 (rec⇒bi
M )

Γ1 `M rec (f : τ1 → τ2) x. e ⇒ τ1 → τ2 a Γ1

τx → τ ′2 = useAnno(τ1 → τ2, χ) Γ1(0) | f : τx → τ ′2 | x : τx `M e ⇐ τ2 a Γ2 (rec⇐bi
M )

Γ1 `M rec χ x. e ⇐ τ1 → τ2 a Γ1

Γ1 `M e1 ⇒ τ a Γ2 τ ∈ {τ1 → τ2, τ1 ( τ2} Γ2 `M e2 ⇐ τ1 a Γ3 (app⇒bi
M )

Γ1 `M e1 e2 ⇒ τ2 a Γ3

Γ1 `M e2 ⇒ τ1 a Γ2 Γ2 `M e1 ⇐ τ1 ( τ2 a Γ3 (app⇐bi
M )

Γ1 `M e1 e2 ⇐ τ2 a Γ3

Pairs

Γ1 `M e1 ⇒ τ1 a Γ2 Γ2 `M e2 ⇒ τ2 a Γ3 (pair⇒bi
M )

Γ1 `M (e1, e2) ⇒ τ1 × τ2 a Γ3

Γ1 `M e1 ⇐ τ1 a Γ2 Γ2 `M e2 ⇐ τ2 a Γ3 (pair⇐bi
M )

Γ1 `M (e1, e2) ⇐ τ1 × τ2 a Γ3

Γ1 `M e ⇒ τ1 × τ2 a Γ2 Γ2 | x1 : τ1 | x2 : τ2 `M e2 ⇒ τ3 a Γ3 (let pair⇒bi
M )

Γ1 `M let (x1, x2) = e1 in e2 ⇒ τ3 a Γ3

Γ1 `M e ⇒ τ1 × τ2 a Γ2 Γ2 | x1 : τ1 | x2 : τ2 `M e2 ⇐ τ3 a Γ3 (let pair⇐bi
M )

Γ1 `M let (x1, x2) = e1 in e2 ⇐ τ3 a Γ3

Choice
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Γ1 `M e ⇒ τ a Γ2 (choice⇒bi
M )

Γ1 `M 〈l : e〉 ⇒ {l′ : τ}l′∈{l} a Γ2

l ∈ I Γ1 `M e ⇐ τl a Γ2 (choice⇐bi
M )

Γ1 `M 〈l : e〉 ⇐ {l′ : τl′}l′∈I a Γ2

Γ1 `M e ⇒ {l : τ ′l}l∈I′ a Γ2

∀l∈I\I′ [χl = xl : τl]

{l′} ⊆ I I ′ ⊆ I

Γ2 | xl′ : τl′ `M el′ ⇒ τ a Γ3

∀l∈I′ [τl = useAnno(τ ′l , χl)]

∀l∈I\{l′}[Γ2 | xl : τl `M el ⇐ τ a Γ3]
(match⇒bi

M )
Γ1 `M match e with {l : χl 7→ el}l∈I ⇒ τ a Γ3

Γ1 `M e ⇒ {l : τ ′l}l∈I′ a Γ2

∀l∈I′ [τl = useAnno(τ ′l , χl)] ∀l∈I\I′ [χl = xl : τl]

I ′ ⊆ I

∀l∈I [Γ2 | xl : τl `M el ⇐ τ a Γ3]
(match⇐bi

M )
Γ1 `M match e with {l : χl 7→ el}l∈I ⇐ τ a Γ3

{l′} ⊆ I

Γ2 | xl′ : τl′ `M el′ ⇒ τ a Γ3

Γ1 `M e ⇐ {l : τl}l∈I a Γ2

∀l∈I\{l′}[Γ2 | xl : τl `M el ⇐ τ a Γ3]
(match anno⇒bi

M )
Γ1 `M match e with {l : (xl : τl) 7→ el}l∈I ⇒ τ a Γ3

Γ1 `M e ⇐ {l : τl}l∈I a Γ2 ∀l∈I [Γ2 | xl : τl `M el ⇐ τ a Γ3] (match anno⇐bi
M )

Γ1 `M match e with {l : (xl : τl) 7→ el}l∈I ⇐ τ a Γ3

Concurrency

participants(G) ⊆ {0, . . . , n} ∀1≤i≤n[Γi | xi : G ↓ i `M ei ⇐ 1 a Γi+1] (forkbi
M )

Γ1 `M fork〈G〉(x1 7→ e1, . . . , xn 7→ en) ⇒ G ↓ 0 a Γn+1

Γ1 `M e1 ⇒ ![p]{l′ : τl′ . Ll′}l′∈I a Γ2 l ∈ I Γ2 `M e2 ⇐ τl a Γ3 (send l.⇒bi
M )

Γ1 `M send[p](e1, l, e2) ⇒ Ll a Γ3

Γ1 `M e2 ⇒ τ a Γ2 Γ2 `M e1 ⇐ ![p]{l : τ. L} a Γ3 (send l.⇐bi
M )

Γ1 `M send[p](e1, l, e2) ⇐ L a Γ3

Γ1 `M e1 ⇒ ![p]τ. L a Γ2 Γ2 `M e2 ⇐ τ a Γ3 (send unl.⇒bi
M )

Γ1 `M send[p](e1, e2) ⇒ L a Γ3

Γ1 `M e2 ⇒ τ a Γ2 Γ2 `M e1 ⇐ ![p]τ. L a Γ3 (send unl.⇐bi
M )

Γ1 `M send[p](e1, e2) ⇐ L a Γ3

Γ1 `M e ⇒ ?[p]{l : τl. Ll}l∈I a Γ2 (recv. l.⇒bi
M )

Γ1 `M receive[p](e) ⇒ {l : τl × Ll}l∈I a Γ2

Γ1 `M e ⇐ ?[p]{l : τl. Ll}l∈I a Γ2 (recv. l.⇐bi
M )

Γ1 `M receive[p](e) ⇐ {l : τl × Ll}l∈I a Γ2
Γ1 `M e ⇒ ?[p]τ. L a Γ2 (recv. unl.⇒bi

M )
Γ1 `M receive[p](e) ⇒ τ × L a Γ2

Γ1 `M e ⇒ L a Γ2 injective(π)
(redirect⇒bi

M )
Γ1 `M redirect[π](e) ⇒ π−1(L) a Γ2

Γ1 `M e ⇐ ?[p]τ. L a Γ2 (recv. unl.⇐bi
M )

Γ1 `M receive[p](e) ⇐ τ × L a Γ2

Γ1 `M e ⇐ π(L) a Γ2 (redirect⇐bi
M )

Γ1 `M redirect[π](e) ⇐ L a Γ2

Γ1 `M e ⇐ End a Γ2 (closebi
M )

Γ1 `M close(e) ⇒ 1 a Γ2

Other

Γ1 `M e1 ⇒ τ1 a Γ2 Γ2 | x : τ1 `M e2 ⇒ τ2 a Γ3 (let var⇒bi
M )

Γ1 `M let x = e1 in e2 ⇒ τ2 a Γ3

Γ1 `M e1 ⇒ τ1 a Γ2 Γ2 | x : τ1 `M e2 ⇐ τ2 a Γ3 (let var⇐bi
M )

Γ1 `M let x = e1 in e2 ⇐ τ2 a Γ3

For the binary arithmetic operations +, -, * and /, we derive typing rules according to the following schema
(replace � with the operation):

Γ1 `M e1 ⇐ N a Γ2 Γ2 `M e2 ⇐ N a Γ3 (arith.bi
M )

Γ1 `M e1 � e2 ⇒ N a Γ3
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Chapter B.

MPGVR grammar

This grammar description is taken from the source code of MPGVR [22]:
1 -- -----------------------------------------------
2 -- MPGVR grammar
3 -- -----------------------------------------------
4 -- Whitespace is implicit in this grammar ,
5 -- and allowed between any two tokens .
6 -- Comments (c) can be placed anywhere where whitespace is allowed .
7 --
8 -- Variables (x), labels (l) and type names (TN) may only use the characters a-z, A-Z

, 0-9, ’ and _.
9 -- Variables must start with one of a-z or _.

10 -- Labels and type names must start with one of A-Z.
11 -- Variables may be shadowed .
12 --
13 -- Natural numbers are indicated by the letter n.
14 -- Participants are also natural numbers , and are indicated by the letter p.
15 -- Single -line strings of text are indicated by the letter s.
16 --
17 -- Reserved words are:
18 -- B, close , else , False , fork , gtype , import , if , in , let , match , N,
19 -- not , print , rec , receive , redirect , send , then , True , type , with
20 --
21 -- c ::= ; comment
22 -- --s\n ; single line comment
23 --
24 -- ax ::= ; annotatable variables
25 -- x ; variable
26 -- x::T ; variable with type annotation
27 --
28 -- C ::= ; contexts
29 -- [x:T, ...] ; variable -type binding
30 --
31 -- E ::= ; evaluations
32 -- [x:v, ...] ; variable - value binding
33 --
34 -- r ::= ; partial redirection function
35 -- p->p, ... ; redirect participants
36 --
37 -- e ::= ; expressions ( precedence 1 ( lowest ), binds (e.e).e)
38 -- e&&e2 ; logical AND
39 -- e||e2 ; logical OR
40 -- e2 ; other expression
41 -- e2 ::= ; expressions ( precedence 2, binds (e.e).e)
42 -- e2 == e3 ; equality comparison
43 -- e2 /= e3 ; inequality comparison
44 -- e2 <= e3 ; less -than -or -equal -to comparison
45 -- e2 >= e3 ; greater -than -or -equal -to comparison
46 -- e2 <e3 ; less -than comparison
47 -- e2 >e3 ; greater -than comparison
48 -- e3 ; other expression
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49 -- e3 ::= ; expressions ( precedence 3, binds (e.e).e)
50 -- e3+e4 ; addition
51 -- e3 -e4 ; proper subtraction
52 -- e4 ; other expression
53 -- e4 ::= ; expressions ( precedence 4, binds (e.e).e)
54 -- e4*e5 ; multiplication
55 -- e4/e5 ; division
56 -- e5 ; other expression
57 -- e5 ::= ; expressions ( precedence 5, binds (e.e).e)
58 -- e5 e6 ; function application
59 -- e6 ; other expression
60 -- e6 ::= ; expressions ( precedence 6 ( highest ))
61 -- e7 ::T ; expression with type annotation
62 -- not e7 ; logical NOT
63 -- e7 ; other expression
64 -- e7 ::= ; expression ( unambiguous )
65 -- x ; bounded variable
66 -- () ; unit
67 -- True ; boolean TRUE
68 -- False ; boolean FALSE
69 -- n ; natural number
70 -- (e,e) ; pair
71 -- <l:e> ; labeled expression
72 -- \ax.e ; function
73 -- rec ax x.e ; recursive function
74 -- fork <GT >(x.e, ...) ; fork with global type annotation
75 -- send[p](e, e) ; send message
76 -- send[p](e, l, e) ; send message with choice
77 -- receive [p](e) ; receive message
78 -- close(e) ; close channel
79 -- redirect [r](e) ; redirect participants
80 -- let x=e in e ; let - binding (var)
81 -- let (x,x)=e in e ; let - binding (pair)
82 -- if e then e else e ; if -then -else
83 -- match e with {l:ax.e; ...} ; label matching
84 -- (e) ; encapsulation
85 --
86 -- v ::= ; values
87 -- () ; unit
88 -- True ; boolean TRUE
89 -- False ; boolean FALSE
90 -- n ; natural number
91 -- (v,v) ; pair
92 -- <l:v> ; labeled value
93 -- \x.e E ; function with evaluation
94 -- rec x x.e E ; recursive function with evaluation
95 -- #[p/n,r] ; channel (as part. no. and part. count)
96 -- (v) ; encapsulation
97 --
98 -- T ::= ; types ( precedence 1 ( lowest ), binds e.(e.e))
99 -- T2 -%T ; linear function

100 -- T2 ->T ; unrestricted function
101 -- T2 ; other type
102 -- T2 ::= ; types ( precedence 2 ( highest ), binds (e.e).e)
103 -- T2*T3 ; pair
104 -- T3 ; other type
105 -- T3 ::= ; types ( unambiguous )
106 -- () ; unit
107 -- B ; boolean
108 -- N ; natural number
109 -- {l:T; ...} ; labeled type
110 -- LT ; local type
111 -- TN ; type name ( disallowed sometimes )
112 -- (T) ; encapsulation
113 --
114 -- LT ::= ; local types
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115 -- ![p]T.LT ; send - action
116 -- ?[p]T.LT ; receive - action
117 -- ![p]{l:T.LT; ...} ; send - action with choice / match type
118 -- ?[p]{l:T.LT; ...} ; receive - action with choice / match type
119 -- GT|n ; projection of global type to participant
120 -- End ; end
121 -- TN ; (local ) type name ( disallowed sometimes )
122 --
123 -- GT ::= ; global types
124 -- [p->p]T.GT ; action
125 -- [p->p]{l:T.GT; ...} ; action with choice / match type
126 -- End ; end
127 -- TN ; ( global ) type name ( disallowed sometimes )
128 --
129 -- S ::= ; script
130 -- SL ; ending statement
131 -- SL\nS ; intermediate statement
132 --
133 -- SL ::= ; script line
134 -- print e ; printed expression
135 -- e ; printed expression (only in REPL)
136 -- let ax=e ; variable assignment
137 -- ax=e ; variable assignment (only in REPL)
138 -- type TN=T ; type alias (type names disallowed in T)
139 -- gtype TN=GT ; global type alias (type names disallowed in GT)
140 -- import "s" ; load script at the given path (no escape codes

allowed )
141 --
142 -- Alternative notation for expressions on channels is as follows ,
143 -- where x is a channel variable , and y is a variable :
144 -- x.send[p](e ’) -> send[p](x, e ’)
145 -- x.send[p](e ’); e -> let x=send[p](x, e ’) in e
146 -- x.send[p](l, e ’) -> send[p](x, l, e ’)
147 -- x.send[p](l, e ’); e -> let x=send[p](x, l, e’) in e
148 -- x. receive [p]() -> receive [p](x)
149 -- y=x. receive [p](); e -> let (y,x)= receive [p](x) in e
150 -- x. close () -> close (x)
151 -- x. close (); e -> let x=close (x) in e
152 -- x. redirect [r]() -> redirect [r](x)
153 -- x. redirect [r](); e -> let x= redirect [r](x) in e
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