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Abstract

When working with integer arrays, sizes per element are typically limited to the size of a byte
or multiple bytes, a byte being 8 bits in total. When using booleans, where only one bit is
needed to signify true or false, a byte is typically stored, which means that 8 times as much
memory is used as is actually needed.

This causes two problems. One is obvious, namely that more memory is used than is actually
needed. The other is the fact that memory reading and writing is often multiple magnitudes
slower than performing operations on the data, resulting in operation speed being heavily
reliant on how much data can be fit into a given amount of memory.

This paper researches dense storage of integer arrays, both of booleans and larger integers
such as of 2 bits, and tries various tricks to bundle reads from and writes to the same address
in memory in order to save time. In theory, huge performance gains of up to 8 times should be
possible as long as the operations are done efficiently, because up to 8 times as little memory
is needed.

As it turns out, obtaining this performance is not as easy as expected, since in most scenarios
more than just plain iteration over arrays needs to be done, in which case memory speed
becomes less relevant, and operations need to be properly optimized to even achieve performance
identical to a standard implementation.

However, by using clever techniques it definitely is possible to achieve performance close to
that of a standard implementation, and in some specific scenarios even achieve a noticeable
performance improvement. This shows that dense integer storage is a viable way to save
memory without losing time, so it is worth exploring in areas where this may be relevant,
such as in neural networks, where several papers have already found that using integers rather
than floating point numbers does not come at any cost.
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Chapter 1

Introduction

There is an ongoing hype in neural network-related research around using smaller floating-point
numbers and even integers in network training, which is fuelled by the desire to reduce the
storage size of neural networks, as well as to improve performance due to the improved data
throughput because of smaller data. And not just in the field of neural networks, but in the
broader space of computing, there has always been an interest in saving memory wherever
possible, since storage can be expensive or even unavailable, and in the business world time
equals money, so shrinking memory, which results in more throughout, can save a lot of
money. This desire for a reduced memory footprint has inspired this paper to research using
non-typical-sized integers in arrays, particularly in the C language, since they offer a way
to reduce memory usage and produce code that can greatly outperform traditional arrays,
because up to 8 times as little memory needs to be processed.

To elaborate, an array of booleans only needs a single bit per element, but due to hardware
design, each boolean is stored as a byte, i.e. eight bits. For this paper, I create a series of C
functions that can allocate and alter arrays that only use the amount of bits per element that
the user needs, using data shifting and masking to store and retrieve values.

By doing this, the amount of memory used can be significantly reduced, and by using some clever
mechanisms, certain operations can be executed in bulk, which has the potential to achieve
performance similar to or even better than when using traditional arrays. This paper will
discuss why and how such operations are implemented, and compare the performance between
these functions and their traditional counterpart, to see how useful such an implementation is.
In areas where memory is limited, this has the potential to greatly free up space, and if it
could achieve better or similar performance, it can be appealing to a much larger audience.
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Chapter 2

Notation

Throughout this document, I am using several notations for operations or number representa-
tion:

• x2 where x ∈ {0, 1}∗ means that the number x is not in decimal, but rather in binary
notation. For instance, 1012 means the number 5 (1 · 4 + 0 · 2 + 1 · 1).

• x‖y means x concatenated with y. For instance, 1012‖0102 = 1010102. Keep in mind
that 0 = 02 and 1 = 12, so it can happen that 0‖10012 is used, which is equal to 02‖10012.

• xn
2 where x ∈ {0, 1} means the digit x repeated n times in binary. For instance, 15

2
means 111112 which is 31. Note that x is always a single digit, so something like
013

2 = 01112 = 7. I avoid this concise notation though due to its confusing appearance,
and instead use 0||13

2 = 01112.

• x� y and x� y mimic the bitwise shifts in C. x� y means x shifted y bits to the left,
and x� y means x shifted y bits to the right. Both these operations use zeroes to fill
in new bits. For instance:

3� 2 = 112 � 2 = 11002 = 12

34� 3 = 1000102 � 3 = 1002 = 4

• x & y and x | y represent bitwise AND and OR respectively. For instance:

6 & 12 = 01102 & 10102 = 00102 = 2

6 | 12 = 01102 | 10102 = 11102 = 14

• ∼ x is the bitwise NOT operation. For instance:

∼ 6 = ∼ 01102 = 10012 = 9

In several places, "little-endian" is mentioned, which specifies in which order the bytes (not bits)
of integer types larger than a single byte are stored in memory by the computer. Little-endian
means that the bytes are stored in ascending order from least significant bits (the bits that
have the smallest value) to most significant bits (the bits that have the highest value). The
bits within a byte itself are always ordered most significant bit leftmost, and least significant
rightmost.
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For instance, the 32-bit integer 00000000 00001111 11110000 11111111 is stored as follows in
little-endian: address a = 11111111, a + 1 = 11110000, a + 2 = 00001111, a + 3 = 00000000. In
contrast, in big-endian, the same number is stored as follows: a = 00000000, a + 1 = 00001111,
a + 2 = 11110000, a + 3 = 11111111.
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Chapter 3

The Traditional Way

In C, C++, Rust, Java, Python, and most other languages, the smallest usable unit is the
byte, which is 8 bits in total. This has been the case for a long time, because most if not all
common computers, from desktops to smartphones, read from and write to memory using
addresses that each store exactly one byte, no more, no less. Making it possible to address
individual bits directly can increase the complexity and power consumption of hardware, so it
was decided that memory is only accessible on a per-byte basis.

If fewer than 8 bits are needed per element, a byte is used. In many scenarios, this is no issue,
since often only a handful of those elements are used and the time or storage saved by using
fewer bits is negligible in such scenarios. However, when working with large arrays of such
data, the amount of redundant memory becomes much more significant. Take booleans for
instance. These are either true or false, which are represented as 1 and 0 in binary. This in
theory only needs 1 bit, but in reality booleans are usually stored as a byte, which is 8 bits. 7
out of 8 of these bits, or 87.5%, is redundant! On top of that, given that memory is relatively
slow compared to how fast processors work, the speed of computations can be significantly
reduced by having such large amounts of extra data.

Quite clearly, it is worth investigating just how fast a compact storage method can become, to
see if if it’s feasible to use. In theory it should be possible to achieve performance up to 8
times as fast, but it will depend on the way the data is processed.
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Chapter 4

Compact Storage

4.1 Memory layout
We first need to define the way in which numbers are stored in memory. Values within a byte
are stored in ascending order from least significant bit to most significant bit, where bytes
with lower indices contain the first values of the array, and higher-index bytes contain values
later in the array. For instance, suppose each number requires three bits, and we have an
array of 10 elements. This would look like the following:

Where numbers 0 through 9 are the indices of the values stored in the array.

There is reason why having bytes in this order is useful, apart from it being the most straight-
forward. Most modern computers store numbers in memory in little-endian form. If an integer
type of more than a single byte is used in code, these bytes are aligned so that the lowest
address contains the least significant bits. Suppose we interpreted this array as a 32-bit integer
(uint32_t), it would become the following integer:

As can be seen, numbers that were previously spread across bytes, are now correctly aligned.
Because of this, obtaining and updating values in arrays with more than 8 bits per number can
be done by treating arrays as 16, 32, or 64 bit integer arrays, instead of having to construct
and destruct values from or to individual bytes, which can greatly improve performance.

The vast majority of computers today are little-endian, and so the focus of this thesis is on
that memory layout. The code will not work for big-endian computers. For those computers,
an option could be to handle bytes in reverse, so that bytes containing the lower-index values
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are at a higher address, and the end of the vector is at a lower address. But that is more
complex, and useful in very few to no scenarios.

4.2 Allocating arrays
In order to find the number of bytes required to represent an array, we need to know the bits
required per number, and the total number of elements in the array.

For the sake of simplicity, the following definitions are for arrays with bpn ≤ 8, and reads
and writes from and to ax produce and require 8 bit integers. How the same can be done for
bpn ≤ 64, along with accompanying definitions, will be discussed in section 4.5.

The total number of bits required is calculated as follows:

b = bpn ·
D∏

d=1
nd (4.1)

Where b is the total number of bits, bpn is the amount of bits per number, D is the di-
mensionality (amount of dimensions) of the array, and ni is the size of dimension i of the
array.

The C language (and most, if not all, other programming languages) can only represent arrays
using bytes, so we need to transform this bit count into bytes in order to allocate arrays.
To obtain the fewest amount of bytes required, the number of bits needs to divided by 8
(fractional, not integer division, so we obtain a fractional result), and rounded up:

B = db÷ 8e

However, as in section 4.1 we discussed being able to treat the data as arrays of not just 8, but
also 16, 32, and 64 bit integers, in order to improve performance. When reading or writing
at the end of the array, this can cause problems, since using the above calculation of b, the
number of bits allocated may not be a multiple of one of the above integer sizes, and thus
reading and/or writing at the end of the array may go out of bounds.

To prevent this, there are two options:

• Treat the entire array as 64-bit integers, and the last few bytes as 8-bit integers. This
ensures that the minimum amount of memory is actually used.

• Allocate slightly more bytes so that B is a multiple of 8, which makes it possible to treat
the entire array as one consisting of 64-bit integers without reading or writing out of
bounds.

The problem with the former option is that it requires significantly more code while only
saving up to 7 bytes. So, I decided to always allocate a multiple of 8 bytes, to benefit from
the reduced code at the cost of a small amount of redundant data.

The calculation of B then becomes:

B = db÷ 64e · 8 (4.2)
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As an example, suppose we want a two-dimensional array of 3-bit integers, with twenty rows
and ten columns. The number of bits required is calculated as follows:

b = 3 ·
2∏

d=1
nd = 3 · 20 · 10 = 600

The number of bytes required then becomes:

B = d600÷ 64e · 8 = d9.375e · 8 = 10 · 8 = 80

In comparison, using an entire byte per number would require 20 · 10 = 200 bytes, which
means that this compact storage’s memory footprint is only 40% of a regular array’s.

4.3 Obtaining values
We take the example from before to determine how to obtain individual values, and assign
some random values:

Figure 4.1: Array memory layout

Suppose we want to obtain the value at position 3 in this array, whose value is, for the
purpose of this example, conveniently stored entirely in a single byte. We make the following
definitions:

• a is the array

• ai is the byte at position i in a. So there are 4 values for ai: a0 up to and including a3.

• va
j is the value in a at position j. This is the actual 3-bit value, not the raw byte at the
given position. So there are a total of 10 values for va

j : va
0 up to and including va

9 .

To obtain va
3 , we need to first determine two things: which byte the element is located in (i in

ai), and which bit the element starts at.

Luckily, this can be done using simple calculations. We first multiply the index by the number
of bits per element to obtain the absolute bit position:

pi = i · bpn (4.3)

To split this into a byte and bit index, we have two definitions:

pB
i = pi � 3 (= bpi/8c) (4.4)
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pb
i = pi & 1112 (= pi mod 8) (4.5)

Where pB
i is the byte index, and pb

i is the bit index (within the byte).

Back to the example, for position 3 this gives:

p3 = 3 · 3 = 9
pB

3 = 9� 3 = 10012 � 3 = 1
pb

3 = 9 & 1112 = 10012 & 1112 = 00012 = 1

This means that va
3 is located in byte 1, starting at bit 1, which can be visually confirmed in

figure 4.1. (va
2 takes up one bit in byte 1, so the value va

3 , that comes right after, starts at bit
1.)

Next, we need to shift the value of byte 1 to the right, so that a3 starts at bit 0, and then the
final result needs to be masked so that the bits not belonging to a3 (in this case, a4 and a5)
are set to zero:

va
i = (apB

i
� pb

i) & ma

Where apB
i
is the byte in array a at position pB

i and ma is a mask which sets all bits above
bpn to 0, which can be calculated as follows:

ma = 1bpna
2 (4.6)

In the case of 3-bit values, this becomes 13
2 = 1112.

In the example from before, suppose a1 = 010101012. I use underlines here to indicate which
parts remain after the operation that they’re involved in, for clarity.

va
3 = (010101012 � 1) & 1112 = 01010102 & 1112 = 0102 = 2

Figure 4.2: Location of va
3

Now suppose that we want to obtain va
5 . For this, we still obtain the byte and bit in the same

way:

p5 = 5 · 3 = 15
pB

5 = 15� 3 = 11112 � 3 = 1
pb

5 = 15 & 1112 = 11112 & 1112 = 01112 = 7
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However, we can see in figure 4.1 that the value is now spread across two bytes. To determine
whether this is the case programmatically, we use the following condition:

pb
i + bpn > 8 (4.7)

If this holds, we need to combine the lower bits (in ai) with the higher bits (in ai+1) of this
number. The shifting of the lower byte is still performed like before, but this needs to be
combined with the data in ai+1. We do this by shifting the higher byte to the left by 8− pb

i

bits, because this is the number of bits that the value occupies in ai; after this number of bits
the part stored in ai+1 starts. Finally, we can mask in the same way to obtain the following
formula:

va
i = ((apB

i
� pb

i) | (apB
i +1 � (8− pb

i))) & ma

Suppose a1 = 010101012 like before, and a2 = 111111112. Then (again, underlines for clarity):

va
5 = ((010101012 � 7) | (111111112 � (8− 7))) & 1112

= (000000002 | (111111112 � (8− 7))) & 1112

= (000000002 | (111111112 � 1)) & 1112

= (000000002 | 111111102) & 1112

= 111111102 & 1112

= 1102

Figure 4.3: Location of va
5

To make a general definition for va
i , we combine the two cases above to arrive at:

va
i =

(apB
i
� pb

i) & ma if pb
i + bpn ≤ 8

((apB
i
� pb

i) | (apB
i +1 � (8− pb

i))) & ma otherwise
(4.8)

4.4 Setting values
Setting values works similarly to obtaining values. We define i at the to-be-updated position,
and v as the new value. First, we obtain pB

i and pb
i in the same way as before.

We then need to perform two steps to update apB
3
:
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1. Mask out the existing byte apB
3
, so that bits used by the value are set properly, but other

bits remain unchanged. We can generate this mask as follows:

(a) Take ma;

(b) Shift to pb
i . This makes it so all bits occupied by va

i are 1, and the rest are 0;

(c) Invert, so that 1s and 0s are swapped.

Then this mask can be AND-ed with the byte currently in the array:

apB
i

& (∼ (ma � pb
i))

2. Mask and shift the new value to pb
i . We can do this by AND-ing the value with the

mask, and then shifting to the left by pb:

(v & ma)� pb
i

Finally, we combine these using an OR to obtain:

apB
i

:= (apB
i

& (∼ (ma � pb
i))) | ((v & ma)� pb

i) (4.9)

In the example from before, suppose we want to set va
3 to 5 (= 1012):

Figure 4.4: Assigning to va
3

With a1 = 01010101, we get:

apB
3

:= (apB
3

& (∼ (ma � pb
3))) | ((v & ma)� pb

3)
:= (01010101 & (∼ (1112 � 1))) | ((1012 & 1112)� 1)
:= (01010101 & (∼ 000011102)) | (1012 � 1)
:= (01010101 & 111100012) | 10102

:= 01010001 | 10102

:= 01011011

In some cases, we need to update apB
3 +1 as well. Condition 4.7 is used again to see whether

the value is spread across bytes. If this holds, the update of apB
3
needs no changing, but apB

3 +1
must now also be updated. This consists of two steps:
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1. Mask out the existing byte, which sets the bits occupied by va
i to zero:

apB
i +1 & (∼ (ma � (8− pb

i)))

2. Shift the new value to the correct position:

(v & ma)� (8− pb
i)

Now combine these to obtain:

apB
i +1 := (apB

i +1 & (∼ (ma � (8− pb
i)))) | ((v & ma)� (8− pb

i)) (4.10)

In the example, suppose we want to set the value at position 5 to 1 (= 0012):

Figure 4.5: Assigning to va
5

We get:

apB
5

:= (apB
5

& (∼ (ma � pb
5))) | ((v & ma)� pb

5)
:= (010110112 & (∼ (1112 � 7))) | ((0012 & 1112)� 7)
:= (010110112 & (∼ 100000002)) | (0012 � 7)
:= (010110112 & 011111112) | 100000002

:= 010110112 | 100000002

:= 110110112

apB
5 +1 := (apB

5 +1 & (∼ (ma � (8− pb
5)))) | ((v & ma)� (8− pb

5))
:= (111111112 & (∼ (1112 � (8− 7)))) | ((0012 & 1112)� (8− 7))
:= (111111112 & (∼ 000000112)) | (0012 � (8− 7))
:= (111111112 & 111111002) | 002

:= 111111002 | 002

:= 111111002
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4.5 Values using more than 8 bits
The functions explained in the previous sections are for arrays with bpn ≤ 8. They can be
generalized to arrays with elements of up to 16, 32 or 64 bits as follows.

For the following combinations:

• (bits, shiftB, maskb) = (8, 3, 1112)

• (bits, shiftB, maskb) = (16, 4, 11112)

• (bits, shiftB, maskb) = (32, 5, 111112)

• (bits, shiftB, maskb) = (64, 6, 1111112)

We define:

pB
i = pi � shiftB (= bpi/bitsc) (4.11)
pb

i = pi & maskb (= pi mod bits) (4.12)

ax now treats array a as an array of bits bits, so reading produces an integer of 8, 16, 32 or 64
bits rather than just 8, and the same goes for writing.

Now, to read a value:

va
i =

(apB
i
� pb

i) & ma if pb
i + bpna ≤ bits

((apB
i
� pb

i) | (apB
i +1 � (bits− pb

i))) & ma otherwise
(4.13)

And to write a value:

apB
i +1 := (apB

i +1 & (∼ (ma � (bits− pb
i)))) | ((v & ma)� (bits− pb

i)) (4.14)
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Chapter 5

Batch Operations

When working with large datasets, it is very common to perform similar or identical operations
on (parts of) the entire dataset at once. Rather than doing so on a per-element basis, with
some clever techniques it’s possible to bundle multiple reads or writes into fewer operations,
which depending on the task at hand could improve performance by quite a lot. Therefore,
the project also defines several functions for manipulating and reading (parts of) an array.

5.1 Filling with a single value
The first of these functions fills a (sub)array with a single constant value c. This is done
efficiently in repeated 64-bit steps, however for simplicity it will be explained using 8-bit steps.
We define the function:

bulk_fill(a, i, j, c) (5.1)
where a is the target array, i is the starting position (inclusive), j is the ending position
(exclusive), and c is the value to insert.

First, an 8-bit number f0 is generated, which is repeatedly filled with c from LSB (Least
Significant Bit = the rightmost) to MSB (Most Significant Bit = the leftmost). This produces
an integer where all values in byte 0 of the array are c. Suppose we want to fill our example
array (with bpn = 3) in range [4, 9) with value 6 = 1102. We get:

f0 = 101101102 (= (10‖110‖110)2)

Which can be seen in byte 0 in the following image:

Figure 5.1: Array filled with 6

We also store two integers:
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• h is the value of pb
i for i the highest index for which pB

i = 0 (i = 2, pb
i = 6 in this case).

We can calculate this using:

h = b7/bpnc · bpn (= 7− (7 MOD bpn) (5.2)

The reason 7 is used instead of 8, is because when bpn divides 8, 8 MOD bpn = 0, and
so the highest index returned is 8, but that is already part of the next byte. By using 7,
we obtain the value that comes at the end of f0, and is still (partially) in f0.

• s the number of bits that this highest-located value is missing in a0:

s = h + bpn− 8 (5.3)

which is 9− 8 = 1 in this case.

To see what this means, suppose we want to know f1. Since in a0 the highest value is 102
(and thus it is missing a 1, which is stored in a1), the missing 1 will be stored at position 0 in
a1, and the value after that starts at position 1 in a1 (highlighted in bold below):

f1 = 011011012 (= (0‖110‖110‖1)2)

The highest located value va
j in f1 is now missing 2 bits (there’s only 0 in f1), which means

that in f2 the value va
j+1 is stored at bit position 2 (highlighted in bold):

f2 = 110110102 (= (110‖110‖10)2)

In f3, this would logically become 3, however since each value is only 3 bits, the lowest value
in there is stored between [0, 3), so the lowest located value is at bit 0, which is 3 MOD 3:

f3 = 101101102 (= (10‖110‖110)2)

This s value therefore denotes the shift in offset from fn to fn+1.

If we want to calculate fn for a given pb
i , we determine the position of the value with the

lowest pb that starts within the current byte:

opB
i

= pb
i MOD bpn (5.4)

In the example, our starting index is 4, which produces:

p4 = 4 · 3 = 12
pB

4 = 12� 3 = 1
pB

4 = 12 & 7 = 4
opB

4
= 4 MOD 3 = 1 (which is pB

3 )

To obtain fn, we need to generate a value like f0, however this time rotated (not shifted) to
position on. To obtain the bits left of on, we left-shift f0 by on. To obtain the bits right of on,
we right-shift f0 by (h− on). This makes:

fn = (f0 � on) | (f0 � (h− on)) (5.5)
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In the example, this gives:

f1 = (101101102 � 1) | (101101102 � (6− 1))
= 011011002 | 000001012

= 011011012

This indeed matches f1 from figure 5.1!

To calculate on+1, we add s modulo bpn to on:

on+1 = (on + s) MOD bpn (5.6)

Since s < bpn (because the shift in each 64-bit step is always smaller than the size of the
elements) and on < bpn (because of the MOD requirement), the result of the addition in on+1
above will always be < (2 · bpn), and so this MOD operation can be simplified with a check for
≥ bpn and a single subtraction. This is important for performance, since the MOD operation
is computationally expensive, and a single comparison and subtraction are not.

We distinguish between two cases.

If pB
i < pB

j , apB
i
and apB

j
need to only partially be modified, and retain the unchanged values:

aq :=


(fq & (18

2 � pb
i)) | (aq & (18

2 � (8− pb
i)) for q = pB

i

fq for pB
i < q < pB

j

(aq & (18
2 � pb

j)) | (fq & (18
2 � (8− pb

j)) for q = pB
j

(5.7)

Otherwise (if pB
i = pB

j ), both values before and after the range need to be retained:

apB
i

:= (fpB
i

& m′) | (apB
i

& (∼ m′))
where m′ = (18

2 � pb
i ) & (18

2 � (8 − pB
j ))

(5.8)

In the example, suppose (a1, a2, a3) = (ABCDEFGH2, IJKLMNOP2, QRSTUV WX2):

a1 := (011011012 & 111100002) | (ABCDEFGH2 & 000011112)
= 011000002 | 0000EFGH2

= 0110EFGH2

a2 := 110110112

a3 := (QRSTUV WX2 & 111110002) | (101101102 & 000001112)
= QRSTU0002 | 000001102

= QRSTU1102

If we concatenate these numbers in little-endian order, it can be seen that all values have been
successfully set:

a3‖a2‖a1 = QR STU 110‖110 110 11‖0 110 EFG H2
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5.2 Filling with different values
If an array should be filled with various values instead of a single value, the method of the
previous section cannot be used. Write operations are costly though, so ideally there would be
as few of these as possible when filling a larger (part of an) array. What we can do, is rather
than setting individual elements, we update apB

i
for any values (partially) stored in byte pB

i .
This ensures that each memory address is only written to once, and should provide optimal
memory performance.

We define a function which populates a (sub)array with varying values:

bulk_set(a, i, j, g)

where a is the target array, i is the starting position (inclusive), j is the ending position
(exclusive), and g is a function which takes a position as input and returns the value to put in
that position:

g(i) :: unsigned int

When filling an array in the range [i, j), if pB
i < pB

j , we need to:

• In the first byte, keep the bits < pb
i , and update the rest

• In the intermediate bytes, we can update all bits

• In the last byte, keep the bits ≥ pB
j , and update the rest

We define the following updates:

apB
i

:= (apB
i

& ∼ (18
2 � pb

i)) | (
∑
k∈K

(g(k) & ma)� pB
k )

where K = {k | pB
k

=pB
i ∧ pb

k
≥pb

i}

(5.9)

aq

for q ∈ (pB
i ,pB

j )
:= (

∑
k∈K

(g(k) & ma)� pB
k ) | rq

where K = {k | pB
k

=q}

(5.10)

apB
j

:= (apB
j

& 18
2 � pB

j ) | (
∑
k∈K

(g(k) & ma)� pB
k ) | rpB

j

where K = {k | pB
k

=pB
j ∧ pb

k
<pb

j}

(5.11)

rq above is defined as:

rq =
{

(f(k) & m)� (8− pB
k ) if ∃k : pB

k = q − 1 ∧ pB
k + bpn > 8

0 otherwise
(5.12)

Which is a possible value that starts in byte pB
k − 1 and is partially stored in pB

k . This needs
to be manually added because its origin byte pB

k − 1 is not pB
k , and it needs to be shifted right

rather than left.

In the case that pB
i = pB

j , where both higher and lower bits in the byte need to be retained, a
different update is done:

apB
i

:= (apB
i

& (18
2 � pB

j ) & ∼ (18
2 � pb

i)) | (
∑
k∈K

(f(k) & m)� pB
k )

where K = {k | pB
k

=pB
i }

(5.13)
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5.3 Computing values from two inputs
This function takes two input arrays a and b, and in a given range, computes an output per
element using a given function, and stores it into output array c at a given offset.

This is something that works for a few specific operations, but it is also capable of treating
the entire array as 64-bit integers, rather than individual elements. This means that certain
operations (particularly bitwise and addition) can be done much quicker for datasets with small
integer types, however certain other operations (such as multiplication) are either impossible
or are too complex to be more efficient than element-wise steps.

Suppose we have two input boolean (1-bit) arrays and an output boolean array. Bitwise
operations can be performed by simply performing the tasks on the 64-bit integers, the outcome
of one bitwise operation does not depend on another bit.

It is also possible to perform addition, albeit with some extra steps:

• First, the two 64-bit integers are added together.

• In order to prevent a resulting value from an addition from overflowing into the next
element, an additional redundant bit is needed per element. To see this in action, see
the following example:

Suppose we have arrays of two elements, both requiring 3 bits. Without a redundant
bit, we could have the following scenario:

002‖1002‖1002 + 002‖1002‖1002 = 012‖0012‖0002

As can be seen, the additions done here result in a bit being carried to the next element,
which produces unexpected results. By adding a redundant bit to each element, we
would have the following:

01002‖01002 + 01002‖01002 = 10002‖10002

If we then set these extra bits back to 0 by AND-ing it with a mask 01112‖01112, the
redundant bit is restored back to 0:

10002‖10002 & 01112‖01112 = 00002‖00002

It holds that for all additions between two numbers of b bits, at most b + 1 bits are
needed to store the output. We can prove this as follows, by adding the two highest
possible values that can be represented with 3 bits:

1112 + 1112 < 11112

(10002 − 1) + (10002 − 1) < 11112

100002 − 102 < 11112

11102 < 11112
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Which can be generalized to the following:

1b
2 + 1b

2 < 1b+1
2

((1‖0b
2)− 1) + ((1‖0b

2)− 1) < 1b+1
2

(1‖0b+1
2 )− 102 < 1b+1

2
(1b

2‖0) < 1b+1
2

Since (1b+1
2 ) requires b + 1 bits, and the result of the addition is smaller than this value,

the result requires b + 1 bits. And since adding any other two lower values produces a
lower result, the result of any addition between numbers of b bits requires at most b + 1
bits.

This extra bit needs to be included when allocating an array, and the proper mask
should be remembered for operations that will be performed on the array, so that the
redundant bit will always remain 0.

• To make sure numbers spread across bytes are properly added, the carry obtained from
addition needs to be tracked and passed to the next byte. With an initial c = 0, this
can be obtained using the following:

cas+1 :=
{

1 if (va
s > 18

2 − vb
s) ∨ (cas = 1 ∧ va

s + vb
s = 18

2)
0 otherwise

(5.14)

The function has the following parameters: input arrays a and b, output c, offsets ia, ib and
ic, count n, and function g:

g(va
s , vb

s, ms, cas)→ (vc
s, cas+1)

where:

• va
s and vb

s are the input values from a and b, relative to ia and ib.

• vm
s is the number mask at byte offset s. For arrays with no redundant bits per element

(needed for addition), this is simply all 1s. For arrays with redundant bits, this is a mask
where element bits are 1s, and redundant bits are 0s, correctly aligned to the values in
va

s and vb
s.

• ca is the input carry,

• vc
s is the computed value, to be stored in c relative to ic.

• cas+1 is the new carry.

We want make it to when we write to c, we can do so in blocks of 64 bit integers, starting at
bit position 0 within an array index, so that no extra masking needs to be done.

To accomplish this, we need to first process fewer than 64 bits so that the next bit index of c
is at 0. The first step processes 64− pB

ic bits, so that the next step starts at bit 0. From then
on, values can be written to c in repeated 64-bit steps.
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We define oarray
step , which denotes the starting bit index of an array for a given step. For c, this

is simple:

oc
s =

{
pB

ic if s = 0
0 if s > 0

(5.15)

For a and b, the bit indices in the first step are also the starting bits of the operation. After
that, given the fact that in the first step we process 64− oc

0 bits, subsequent steps are this
starting offset plus the number of bits processed, modulo 64.

oa
s =

{
pB

ia if s = 0
(oa

0 + (64− oc
0)) mod 64 if s > 0

(5.16)

ob
s =

{
pB

ib if s = 0
(ob

0 + (64− oc
0)) mod 64 if s > 0

(5.17)

We define the array indices for these updates accordingly:

Bs
a =


pB

ia if s = 0
B0

a + (1 if (oa
0 ≥ oc

0) else 0) if s = 1
B1

a + s− 1 if s > 1
(5.18)

Bs
b =


pB

ib if s = 0
B0

b + (1 if (ob
0 ≥ oc

0) else 0) if s = 1
B1

b + s− 1 if s > 1
(5.19)

Bs
c = pB

ic + s (5.20)

We need to obtain the mask for each array index as well, which is done using the same method
as when filling an array with a single value (although in this example it’s in 64 bits rather
than 8). We create adjusted versions of 5.2 and 5.3:

high = b63/bpnc · bpn (5.21)
shift = high + bpn− 64 (5.22)

Note the use of 63 rather than 64, for the same reason as 7 was used instead of 8.

The value passed to g in the first step repeated sequences of m starting at oc
0. To obtain the

correct mask at step s, we start with offset oc
0, and after that use the shift value to adjust

this offset.

We first define the bit index of the lowest value in the array index of each step:

ls =
{

oc
0 MOD bpn if s = 0

(ls−1 + shift) MOD bpn if s > 0
(5.23)

Then, we can define the initial and subsequent masks:

ms =
{∑b63/bpnc

i=0 (m� (i · bpn)) if s = 0
(m0 � ls) | (m0 � (high− ls)) if s > 0

(5.24)
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Finally, we can define the actual updates.

When Bc
0 < pB

ic+n:

(cBc
s
, cas+1) :=



((cBc
s

& ∼ m(oc
0)) | (x & m(oc

0)), y)
(x, y)=g(ta(s, 64)�oc

0, tb(s, 64)�oc
0, m0, 0)

for s = 0

f(ta(s, 64), tb(s, 64), ms, cas) for 0 < s < pic+n
B −B0

c

((cBc
s

& m(oc
s)) | (x & ∼ m(oc

s)), y)
(x, y)=g(ta(s, pb

ic+n
), tb(s, pb

ic+n
), ms, cas)

for s = pB
ic+n −Bc

0

(5.25)

When Bc
0 = pB

ic+n:
cBc

0
:= (cBc

0
& ∼ (m(oc

0, oc
n))) | (x & m(oc

0, oc
n))

(x, y)=f(ta(s, 64)�oc
0, tb(s, 64)�oc

0, m0, 0)
(5.26)

Where:

m(x) = 164
2 � x (= 164−x

2 ‖ 0x
2)

m(x, y) = (164
2 � x) & (164

2 � (64− y)) (= 064−y
2 ‖ 1y−x

2 ‖ 0x
2)

and

tar(s, n) =
{

arBar
s
� oar

s if oar
s + n ≤ 64

(arBar
s
� oar

s ) | (aBar
s+1
� (64− oar

s )) otherwise

which takes n bits from array ar starting in Bar
s at oar

s , making sure that the first bit starts
at position 0.

5.4 Scanning through arrays
This function scans through (parts of) an array. We define:

scan(a, i, n, g, arg) :: int? (5.27)

Where a is the target array, i is the starting index, n is the number of elements to scan after i,
g is a callback function which processes the elements, and arg is a generic argument passed to
g that can be used to track task-related information. g is defined as follows:

g(i, v, arg) :: (arg′, bool) (5.28)

Where i is the index of the current element, v is its value, and arg is the value passed to
the scan function. If g returns true at any point, the scan function stops and returns the
current element’s index. If g never returns true for any of the processed elements, the function
returns null (meaning nothing), which corresponds to the question mark ? in the return type,
meaning that it’s optionally defined.

This function can be used for a variety of tasks, such as:

• Finding a specific value (where arg could be used to store the value to be found, and
the g function returns true when the value has been found)
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• Calculating a sum (where arg can hold the sum, and the g function always returns
false)

• Finding the number of elements with a certain property, such as odd numbers (where
arg could hold the number of elements)

We define the function:

scan(a, i, n, g, arg) =


null if n = 0
i if n > 0 and res = true

scan(a, i + 1, n− 1, g, arg′) otherwise
where (arg′, res)=g(i,t(a,i,bpna),arg)

(5.29)

Where:

t(ar, i, bits) =

(arpB
i
� pb

i) & mar if pb
i + bits < 64

(arpB
i
� pb

i) | (arpB
i +1 � (64− pb

i)) & mar otherwise
(5.30)

In the code, the values of ar are cached, so that they don’t have to repeatedly be retrieved.
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Chapter 6

C Implementation

Several functions are used to allocate, edit, access, and free arrays, which correspond to the
definitions of previous sections.

6.1 Allocation
The function

ArrayDesc *alloc_desc(uint8_t num_bits, size_t dim, ...)

is used to allocate an array descriptor, which stores information about an array. The data
itself can be allocated using this descriptor.

• num_bits is the number of bits per value

• dim is the dimensionality of the array (= the number of dimensions).

• After this, there are dim size_t arguments, specifying the size of each dimension.

Suppose you want a 3 by 4 matrix, with 5 bits per value. Its descriptor would be allocated
using alloc_desc(5, 2, 3, 4).

In section 5.3 it was discussed that a redundant bit is needed to support addition in batches.
This redundancy can be added with the following function:

ArrayDesc *add_redundancy(ArrayDesc *desc, uint8_t redundant_bits)

which adds a given number of redundant bits to an array descriptor, and returns that same
descriptor, so that it can be coupled as such:

ArrayDesc *desc = add_redundancy(alloc_desc(2, 1, 3), 1);

Which allocates an array of two bits per element, size 3, with 1 redundant bit per element.

The functions

void *malloc_array(ArrayDesc *desc)
void *calloc_array(ArrayDesc *desc)
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are used to allocate a data array corresponding to a given descriptor, using C’s standard
malloc and calloc functions respectively. Its type void *, which is a void pointer, is a
pointer that can directly be treated as any other pointer type, allowing the functions below to
remain generic instead of having to write versions for each integer data type.

The function

void free_desc(ArrayDesc *desc)

is used to free an array descriptor. The standard free(o) function provided in C should not
be used, since the descriptor points to data that also needs to be freed.

6.2 Access
In the family of functions

uint8_t array_get8(const ArrayDesc *desc, const uint8_t *data, size_t index)
uint16_t array_get16(const ArrayDesc *desc, const uint16_t *data, size_t index)
uint32_t array_get32(const ArrayDesc *desc, const uint32_t *data, size_t index)
uint64_t array_get64(const ArrayDesc *desc, const uint64_t *data, size_t index)

each returns a single element of the array, however all return different integer types, to fit
a user’s needs. Ideally, the smallest integer type that can hold an element should be used,
so three bits per element should use array_get8, 13 should use array_get16 and so forth.
It is also possible to use the larger functions for smaller datatypes, but this only uses more
memory.

If the array has redundant bits that combined with the element bits is larger than a type, but
without redundancy the elements still fit in the data type (for instance eight bits per element
with one redundant bit), the smaller data type can still be used (in this case array_get8),
since the value fits in this type.

index is a single number. If the array has a higher dimensionality, the following function can
be used to calculate the correct index value for a given position:

size_t get_index(const ArrayDesc *desc, ...)

which accepts the array descriptor, followed by a size_t for each dimension of the array.

Suppose you have a 2-dimensional array, and you want to read the element at position 2, 6.
With a C array, you would use array[2][6]. Instead, you should now use get_index(desc,
2, 6) and pass this to an array_getX or array_setX variant.

The functions

uint8_t array_set8(const ArrayDesc *desc, uint8_t *data, size_t index, uint8_t val)
uint16_t array_set16(const ArrayDesc *desc, uint16_t *data, size_t index, uint16_t val)
uint32_t array_set32(const ArrayDesc *desc, uint32_t *data, size_t index, uint32_t val)
uint64_t array_set64(const ArrayDesc *desc, uint64_t *data, size_t index, uint64_t val)

are all used to set a single element in the array to a given value.
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6.3 Bulk operations
The following functions each have several versions, for various levels of optimization.

A big difference with the get_X and set_X functions from before, is that indices and counts
specified here are multi-dimensional arrays (const size_t *) rather than single size_ts.
This is due to the nature in which the operations work, and provides the best performance.

6.3.1 Filling with one value

The function

void batch_fill(const ArrayDesc *desc, void *data, const size_t *offset, const size_t *count,
uint64_t val)

is used to fill (part of) an array with a specific value, and corresponds to section 5.1.

offset specifies the offset at which to start filling. If this is NULL, it defaults to zero in all
dimensions.
count specifies the number of elements in each dimension to fill. If this is NULL, it defaults to
the array’s size.
val specifies the value to insert

count cannot be NULL if offset is not zero, since then out-of-bounds access occurs.

6.3.2 Filling with varying values

The function

void batch_set(
const ArrayDesc *desc, void *data, const size_t *offset, const size_t *count,
uint64_t (*action)(const size_t *index, void *arg), void *arg

)

is used to fill (part of) an array with dynamically generated values, and corresponds to section
5.2.

• action is a function reference, which is given an index and the originally provided arg,
and should return the desired value for the index.

• arg can be any pointer, and is passed to action. Since C does not support objects, this
is a way of passing context to the action function.

6.3.3 Compute

The function

void batch_op(
const ArrayDesc *dx, const void *x, const size_t *ox,
const ArrayDesc *dy, const void *y, const size_t *oy,
const ArrayDesc *dz, void *z, const size_t *oz,
const size_t *count,
uint64_t (*action)(uint64_t x, uint64_t y, uint64_t *carry, uint64_t mask, void *arg),

void *arg
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)

is used to compute values using two input arrays (x and y), and stores the result in an output
array (z). This corresponds to section 5.3.

The three arrays all need to have the same number of bits (including redundancy). But their
size is allowed to vary, hence why all three need to have their descriptors passed along as well.

• action is a function reference, which is given the x and y value, a reference to a carry
which can be passed on to the next computation (useful for addition), a mask which
should be used to mask the output value, and the arg that was passed to batch_op.

6.3.4 Scan

The function

size_t *batch_scan(
const ArrayDesc *desc, void *data, const size_t *offset, const size_t *count,
bool (*action)(const size_t *index, uint64_t val, void *arg), void *arg

)

is used to scan through a given array, and corresponds to section 5.4. action is called for each
element, and the function stops if action returns true or all elements have been scanned. Note
that unlike in section 5.4, the action function only returns a bool, and the arg parameter is
mutable, which slightly differs from the definition but allows for the same behaviour.

• action is a function reference, which should return true if the scan should stop. It’s
given an index, a val (which is the value at the index), and arg is the pointer originally
provided to bulk_scan.
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Chapter 7

Performance

In order to see the performance cost or benefit of using aforementioned functions, tests have
been set up to compare each function against a regular C implementation.

7.1 Tasks
The following tasks have been set up to focus on the performance of various functions.

• sum: The sum is computed of an array’s elements. This stresses read performance and
can take advantage of the batch_scan function.

• fill: A given array is filled with a single value. This stresses write performance and
can take advantage of the batch_fill function.

• counter: In a given array a, for each index i, ai is assigned the value i (truncated to
fit the number of bits). This stresses write performance and can take advantage of
the batch_set function. This task is designed to mimic the EvenOdd benchmark in C.
Grelck and H. Luyat[1], to see how performance compares.

• xor: Two input arrays a, b and an output array c of identical size are given. For each
index i, ci := ai XOR bi, which is the bitwise XOR function, that per bit produces 1 if
the two input bits differ, and 0 otherwise. This does both reading and writing, and can
test the performance of the batch_op function.

• add: Similar to xor, except additions are performed rather than a bitwise XOR. This
also allocates an extra redundant bit needed for addition, as discussed in section 5.3.

• gauss: This is the most complex benchmark. A window of 11 elements is moved across an
input array. On each window, a simple operation is performed to produce a single output
value. The result is then stored in another array. Since this is a less straight-forward
task, it can make less use of the batch functions, and is used to see what performance
can be accomplished. This task is designed to mimic the Gauss benchmark in C. Grelck
and H. Luyat[1], as another way to compare results to their paper.
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7.2 Optimization levels
Each of these have several variations, to test various levels of optimization:

• standard: A standard implementation, using normal C arrays and corresponding calls.

• compact: A compact implementation, simply replacing the standard opera-
tions with their compact counterpart function. For instance, array[i] becomes
array_get8(descriptor, array, i). This allows for a drop-in replacement for
existing code, but has little room for optimizations.

• dynamic: An implementation using compact array storage, with functions that can
perform tasks in batches over larger chunks of data, which have been described in
chapter 5. Being the most flexible, the functions used in these tests:

1. support multidimensional arrays (any number specified by the user).

2. are generic, in that they have a parameter that is a function that calculates resulting
values (see section 6.3), which prevents having to make a unique version of the
batch function for various use-cases, such as adding. The downside is that there
is less room for the compiler to optimize, and on top of that, more function calls
typically means worse performance.

3. allow the number of bits per element in an array to be specified at run-time.

• generic: An implementation using compact array storage, the same as dynamic.

As opposed to point 3 however, the number of bits per element in an array is this time fixed
at compile-time, which reduces flexibility but allows for more compiler optimizations.

Note that the alloc_desc function described in section 6.1 still takes the num_bits
argument, however this value is simply ignored this time, and completely untouched
during compile-time. The reason it’s still included is to make it easier to compile different
versions of the code, and since internally no code exists relating to the num_bits value,
there is no performance impact from keeping the argument.

• specialized: An implementation similar to generic, but with specialized functions,
so that there is a unique function for the to-be-run tasks (such as gauss, add). This
reduces the number of function calls and keeps more code in one place, which in turn
allows for more optimizations to be done by the compiler.

The downside is that new versions need to compiled of the required function for various
use-cases, but this can be alleviated by turning the function into a #define rather than
a function directly, which means that the function can be generated dynamically, but
still in the end be a single function after compiling.

• optimized: An implementation akin to specialized, that is further optimized so that
only 1-dimensional arrays are supported, replacing offsets’ and counts’ use of const
size_t * with just size_t. This is the version that has the minimum amount of code,
and so should be close to the theoretical optimization limit that can be achieved with
the implementation I made.
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7.3 Sizes
These tests have been performed for:

• arrays of 100 and 100,000 elements, to measure how performance scales with array size.

• arrays with 1, 2, 5, 10 and 11 bits per element, to measure what performance various
bits per element can accomplish.

7.4 Specialized functions
The following functions have been added for the specialized and optimized instances:

Since batch_fill is already specialized, only an optimized version exists:

void batch_fill_opt(const ArrayDesc *desc, void *data, size_t offset, size_t count, uint64_t
val)

There is a specialized along with an optimized version of batch_set for the counter task:

void batch_set_index(
const ArrayDesc *desc, void *data, const size_t *offset, const size_t *count

)
void batch_set_index_opt(

const ArrayDesc *desc, void *data, size_t offset, size_t count
)

There are specialized and optimized versions of batch_op for the xor and add tasks:

void batch_op_xor(
const ArrayDesc *dx, const void *x, const size_t *ox,
const ArrayDesc *dy, const void *y, const size_t *oy,
const ArrayDesc *dz, void *z, const size_t *oz,
const size_t *count

)
void batch_op_add(

const ArrayDesc *dx, const void *x, const size_t *ox,
const ArrayDesc *dy, const void *y, const size_t *oy,
const ArrayDesc *dz, void *z, const size_t *oz,
const size_t *count

)
void batch_op_xor_opt(

const ArrayDesc *dx, const void *x, size_t ox,
const ArrayDesc *dy, const void *y, size_t oy,
const ArrayDesc *dz, void *z, size_t oz,
size_t count

)
void batch_op_add_opt(

const ArrayDesc *dx, const void *x, size_t ox,
const ArrayDesc *dy, const void *y, size_t oy,
const ArrayDesc *dz, void *z, size_t oz,
size_t count

)
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Lastly, for the sum and gauss operations, dedicated functions have been added. The
batch_scan_gauss function doesn’t perform the whole task, but instead is responsible for the
operation performed on a window, and the result is then written to an output array:

uint64_t batch_scan_gauss(
const ArrayDesc *desc, void *data, const size_t *offset, const size_t *count

)
uint64_t batch_scan_sum(

const ArrayDesc *desc, void *data, const size_t *offset, const size_t *count
)
uint64_t batch_scan_gauss_opt(

const ArrayDesc *desc, void *data, size_t offset, size_t count
)
uint64_t batch_scan_sum_opt(

const ArrayDesc *desc, void *data, size_t offset, size_t count
)

7.5 Environment
All tests have been performed on the following hardware:

• Dell XPS 15 9510 (0A61)

• Intel Core i7-11800H (8 cores, 16 threads) @ 2.30GHz

• 2x8GiB of SODIMM DDR4 Synchronous @ 3200MHz (0.3 ns latency)

Running the following system:

• Fedora Linux 35 64-bit (Workstation Edition)

• Linux kernel 5.19.12-100.fc35.x86_64

• KDE Plasma version 5.25.4 (KDE Frameworks version 5.96.0)

• Graphics Platform X11

In order to obtain accurate timings, these benchmarks use CPU time rather than real time.
Real time can be influenced by other processes running on the computer, which makes it
difficult to obtain accurate results not affected by these. CPU time is the time spent by the
program on the processor, which is a much more precise measure of code performance.

Laptops often use frequency scaling to save power, which makes CPU cores perform
slower at times. In order to obtain consistent benchmark results, the command cpupower
frequency-set -g performance has been used to disable this.

The C compiler that was used, gcc, has various compilation optimization levels in order to
try to make a program perform quicker, achieved by removing and simplifying instructions,
while ensuring that the program still behaves the same. These levels go from O0 to O3, where
O0 means no optimization, and O3 means the most optimizations applied. In the real world,
O3 is always used, which is why the tests have been run with O3.
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7.6 Results
In order to obtain an accurate average performance measurement, each task is first run 1000
times as a warm-up, and after that 10,000 executions are done, and the average run-time of
these are taken as the benchmark. Measures have been taken so that on each execution slightly
different data is read and written, so that the program cannot do any unwanted optimization
regarding data re-use.

Figure 7.1: Runtime in seconds (logarithmic), 1-bit elements, size 100

Figure 7.2: Runtime in seconds (logarithmic), 1-bit elements, size 100,000
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Figure 7.3: Runtime in seconds (logarithmic), 2-bit elements, size 100

Figure 7.4: Runtime in seconds (logarithmic), 2-bit elements, size 100,000
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Figure 7.5: Runtime in seconds (logarithmic), 5-bit elements, size 100

Figure 7.6: Runtime in seconds (logarithmic), 5-bit elements, size 100,000
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Figure 7.7: Runtime in seconds (logarithmic), 10-bit elements, size 100

Figure 7.8: Runtime in seconds (logarithmic), 10-bit elements, size 100,000
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Figure 7.9: Runtime in seconds (logarithmic), 11-bit elements, size 100

Figure 7.10: Runtime in seconds (logarithmic), 11-bit elements, size 100,000
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7.6.1 Analysis

Since performance can vary quite a bit, the graphs are shown on a logarithmic scale, so that
each major line differs by a factor of 10. There are ticks on the side of the graphs which show
smaller steps as well.

In some cases, the standard implementation seemed to perform faster in some benchmarks
in higher bit counts, which of course should not be happening. I assume there is some
optimization going on that should not be happening, probably relating to the C compiler
doing repeated tasks faster, but I could not find the cause of it nor prevent it. Therefore, those
results should be taken with a grain of salt, and what should be considered more important is
how the non-standard implementations compare to the same benchmark in lower bit counts.
However, just because some extra optimization is going on, the results are still a very good
indicator of what to expect.

We start by looking at the results for 1-bit arrays:

• Overall, the compact implementation seems slowest, which makes sense considering it’s
not very optimized.

• The dynamic and generic implementations perform equivalently to compact in the sum,
counter and gauss benchmarks. In the rest of the benchmarks, these two implemen-
tations do reach some speed-up, particularly in the fill task. Granted, with smaller
arrays these functions are not as fast as a standard implementation, so the performance
improvement only occurs at larger arrays.

• The performance difference between dynamic and generic is negligible, so there seems to
be no benefit to defining arrays’ number of bits per element at compile-time rather than
run-time. This is good news, because it means that no separate versions of the program
need to be compiled to handle arrays with a different number of bits per element.

• Moving to the specialized implementation, its performance seems much more promising
overall. In the fill and gauss tasks its performance doesn’t differ much from dynamic,
which is because the fill function is already specialized, and gauss cannot be done
with a single function call; related batch functions need to be called for each window
of 11 elements. But the counter and xor tasks are noticeably faster compared to the
generic implementation independent of array size, and sum if quite a bit faster in larger
arrays.

• The optimized function has very similar performance to specialized in the a large
array, but with a smaller array it tends to be a bit faster. This is probably since the
optimized functions don’t need to do as much initialization and dimension tracking as
the other functions need to do. So when the array size is small, the extra time needed for
initialization is more noticeable. Only gauss seems to perform slightly better optimized.
This is likely due to having to call one of the batch functions for each window, and with
less initialization in every call, overall there can be quite some time saved.

With 2-bit arrays, the fill function is still noticeably faster, gauss is a bit slower, and the
rest are on par with a standard implementation. So although it’s slightly worse, it’s still
reasonable to use this compact version without losing much time.
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Moving up to 5-bit arrays, where only 3 bits are saved opposed to an entire byte, performance
is less favourable. sum, counter and xor can still keep up with the standard, but the other
functions are now slower. The reason for this shift is most likely due to the fact that the least
common multiplier of 5 and 8 is 40, which means that a lot of values are spread across bytes
and more data shifting needs to be done when reading and writing.

In 10-bit arrays, xor can keep up with the standard, but the other functions are now noticeably
slower. It seems at higher bit counts, not much time can be saved.

At 11 bits, where again there is not a small common multiplier, performance is also less ideal.
Although interestingly, it’s still very similar to 10-bit arrays. It appears that at this point the
data shifting does not make a big difference. It’s likely that memory throughput is the issue
in this scenario.

7.6.2 Discussion

What can be deducted from these results, is that specialized functions are needed to achieve
performance that is similar to or better than a standard implementation. Using a generic
function often can quite drastically worsen performance, so using those is not recommended
unless performance is not an issue.

In the low bit counts, where the difference in element size between the standard and custom
implementation is largest, the performance is most favourable. With increased bit counts the
time penalty is larger, and there is no real benefit to use such a library if performance matters.
And it is probably smart to stick to numbers that divide byte sizes, such as 1, 2 and possibly
4.

Comparing to the results of C. Grelck and H. Luyat[1], the outcomes are very similar with
matching tasks. Their Gauss test, which stresses read performance, sees identical runtime
between compact and standard implementations. In my gauss version, which is designed to
mimic theirs, the specialized code can reproduce those results. Looking at the outcomes for
my sum function, which also stresses reads, performance of the compact representation again
appears to be very close to the standard in the specialized instance.

Looking at write tasks, my counter function is most similar to their EvenOdd. Both stressing
write performance, at a single core, run-time is always slightly slower in a dense representation.
So in this scenario, results seem on par with that of their paper. But when using the specialized
faster functions fill, xor and add, the dense representation actually saw a noticeable time-
save. This shows that by combining standards reads and writes with such batch operations, it
is possible to save a noticeable amount of time performing integer-related tasks.

38



Chapter 8

Related Work

8.1 Sub-Byte Storage
C. Grelck and H. Luyat[1] have compared performance between traditional 8- and 32-bit
representations for booleans in arrays, and storing booleans on a per-bit basis. Using SaC
(Single Assignment C), they found that on a single core, performance becomes nearly identical
between implementations in read scenarios, and towards 32 cores, the dense implementation
approaches around a 2-fold performance improvement. In write scenarios, performance of
dense arrays is very similar to their sparse counterparts in higher core counts, but single core
performance is 5 to 6 times worse.

The great performance, as mentioned in the paper, is due to caching of data read from memory,
which outweighs the performance loss from having to shift data around for reading and writing.
This shows that there is potential in using dense arrays when used properly, but there still
remains research to be done on more specialized functions, and also on other integer sizes
than one bit.

Klages et al.[2] researched using 4-bit integers in computations, and devised a way to perform
multiplication and addition in a single fused instruction, for multiple values at once using
32-bit registers. With this, they could achieve an effective 5.6 TOPS (Tera Operations Per
Second) on a 4.3 TOPS GPU.

M. Hayes[3] created a way to use conventional paradigms in Fortran-77 to manipulate integers
smaller than a byte without having to worry about the underlying architecture or implemen-
tation. This is a paper from 1986, which shows that interest in compact integer storage has
been around for a long time.

Duncan et al.[4] tackled the problem of storing smaller-than-byte integers in network packets
and communicating them between systems that may differ in architecture. Specifically, their
endianness may differ, which has implications for the internal structure.

These two papers have created ways to make it easier to incorporate smaller-than-byte integers
into everyday code, which shows that interest in the subject has been around for a long time,
and that it’s possible to make an interface in a way that is programmer-friendly.
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8.2 Integers in Neural Networks
Shuang et al.[5] researched using low-bitwidth integers in the training of neural networks.
Traditionally this is done using floating point numbers, and prior research had already been
done into using lower precision numbers, however this paper sought to switch to integers
entirely, which results in comparable accuracy while providing higher energy efficiency. Neural
networks like these could greatly benefit from using a compact integer storage method, since
networks can often contain thousands of nodes, and if data could be saved for each of these,
memory usage could be noticeably reduced. Combine that with specialized functions for
important operations, and similar performance could be achieved with a reduced memory
footprint.

Das et al.[6] also did research into integer training of neural networks, particularly in larger
networks, and saw identical or improved accuracy compared to the state-of-the-art while
providing a 1.8X improvement in end-to-end training throughput.

Maolin et al.[7] did more research on integer storage in neural networks and achieves negligible
accuracy degradation on the MNIST, CIFAR10, and ImageNet datasets compared to using
floating points.

The above three papers show that integers can be used effectively for neural network training,
and show a potential use-case for the results found in this paper. More work needs to be done
surrounding making functions specifically designed for neural-network training, but there is
promise for memory savings without much performance degradation, with there even being
ways to save time.

Trusov et al.[8] made an efficient implementation for quantized 4-bit matrix multiplication.
Quantized integers have been shrunk down compared to normal floating point integers, so
that they consume significantly less memory, and in this case, only 4 bits. It "shows 2.9 times
speedup compared to standard floating-point multiplication and is 1.5 times faster than 8-bit
quantized one".

T. Dettmers and L. Zettlemoyer[9] researched using 3 to 8-bit integer sizes in LLMS, measuring
their zero-shot performance. The conclusion is that 4 bits is almost universally optimal for
total model bits and zero-shot accuracy, which shows that this is the most likely bit size to
use in these networks.
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Chapter 9

Conclusion

Using fewer bits per element in arrays is an interesting topic that can be a very effective way
to save data. Making sure it performs well becomes more difficult as operations increase in
complexity, but it is clear that it’s possible to achieve performance on par with standard
implementations.

What’s more, with the option of special batch operations, such as the fill and batch_op
functions, it’s even possible to save time, even on smaller arrays. So it’s clear that this area
could offer a way to save memory as well as time when working with integer arrays.

Although at larger bit counts it’s not as easy to achieve similar performance, at smaller values
the performance benefit is very noticeable, so focussing on that in future work is recommended.

9.1 Future work
Currently, the generic functions need actions passed along to execute the task at hand. A
mid-ground solution for reducing duplicate code while still having specialized functions, is to
change these from pre-defined functions, to #defines. For instance, the batch_set function
can be changed to:

#define define_batch_set_function(function_name, action) void function_name( \
const ArrayDesc *desc, void *data, const size_t *offset, const size_t *count \

) { \
// ...

and further down, uses of the action function can be replaced with this. This makes a unique
function for each operation, but no intermediate function calls are done, so this can achieve
performance akin to specialized. For instance:

define_batch_set_function(batch_set_index, index)
// Would produce:
void batch_set_index(

const ArrayDesc *desc, void *data, const size_t *offset, const size_t *count
) {
// ...
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What would be interesting to investigate, is a function that could perform the entire gauss
task in one function. It is possible to create an aggregation function, where windows of input
values can be transformed into single output values, that could bundle writes to the output
array together. Such a function could cover the gauss problem, but also a larger collection of
problems, such as local sums and additions. I imagine it with the following signature:

void batch_aggregate(
const ArrayDesc *dx, const void *x, const size_t *ox, const size_t *sx, const size_t *

wsx,
const ArrayDesc *dy, void *y, const size_t *oy, const size_t *sy,
const size_t *window_size, const size_t *count,
uint64_t (*init)(void *arg),
uint64_t (*action)(uint64_t x, uint64_t y, uint64_t value, void *arg),
void *arg

);

Where dx, x and ox have the same role as in other functions, sx is the step size: the distance
between each window’s starting position, and wsx the distance between each element within a
window. window_size specifies the number of steps within a window, init is used to obtain
the starting value for the window, and action is the update step.

I imagine as a dynamic or generic version it might not be able to provide great performance,
but if it was specialized, it might be able to perform even faster than the current non-standard
gauss implementations.
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