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Abstract

The lightweight authenticated encryption scheme Elephant v2 is a NIST
competition candidate. The mode of Elephant is a permutation-based encrypt-
then-MAC construction with three instances. One of these instances, Delir-
ium, uses the Keccak-f permutation. We optimize Delirium for the ARMv7-
M architecture, starting with our own implementation based on the specifi-
cation. We convert our implementation of Elephant v2 into a 32-bit imple-
mentation, which we then try to optimize using ARM instructions. Finally,
we look at alternative Keccak implementations, such as Keccak-p. The final
implementation has an average speedup of 15 over our initial implementation
of Elephant.
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Chapter 1

Introduction

Cryptographic algorithms are key in securing data, therefore it is a goal
of certain organizations and institutes to further improve on these algo-
rithms. There are constantly evolving issues in cryptography due to the
creation/usage of new technology, such as new architectures which will then
require these algorithms to adapt, or to be optimized. Developments in
cryptography are often aimed at getting these algorithms to work univer-
sally across as many devices as possible. One issue with this lies in resource
constraints. Certain devices have less storage, computing power or network-
ing capabilities than other devices.

The National Institute of Standards and Technology (NIST) is a govern-
ment agency in the United States department of Commerce [13]. NIST has
an ongoing project to solicit, evaluate, and standardize newly developed
lightweight algorithms for resource constrained devices where their current
algorithms are not suited. This project is called the NIST Lightweight Cryp-
tography project (NIST LWC). Lightweight cryptography (LWC) is a type
of cryptography with the goal of creating or improving algorithms to be able
to run on some of the most resource constrained devices.

In this thesis, we look at optimizing the NIST candidate Elephant v2 [8] for
the 32-bit resource constrained architecture ARMv7-M. Elephant consists of
three instances, Dumbo, Jumbo, and Delirium. We focus on the Delirium in-
stance, with the goal of making it a more viable option for ARMv7-M.

Firstly, we create our own implementation of Elephant’s Delirium instance
(Ch. 3.1.2) based on the Elephant specification [8]. We use this implemen-
tation as the base for a new 32-bit implementation (Ch. 5), which we use
for further optimization.

Secondly, we look at possible optimization points of the 32-bit implementa-
tion using ARM data processing instructions [2] (Ch. 6).
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Thirdly, we look at existing implementations of the permutation function.
Elephant’s Delirium uses Keccak-f [200] as its permutation function. We
look at three alternative permutations from the eXtended Keccak Code
Package [1], which we use to create three new implementations (Ch. 7).

Finally, we measure the performance of the implementations in ARMv7.
We discuss the results of the measurements and conclude a final implemen-
tation (Ch. 8). With this final implementation and the methods used, we
answer the research question: How can we optimize the cryptographic cipher
Elephant v2 for the ARMv7-M architecture?

Related Work

Besides a RISC-V implementation of Elephant [12], there are no other Ele-
phant implementations optimized for a specific architecture.

Research has been done on implementations of the PRESENT and Fantomas
lightweight block ciphers for an ARMv7-M CPU (Cortex-M3) [11]. There
is research on binary field multiplication in ARMv7 [16], but this is not
relevant to our work.
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Chapter 2

Preliminaries

2.1 Notation

For i ∈ N, let {0, 1}i denote the set of all binary strings with length i and
{0, 1}∗ the set of arbitrarily length strings. For X ∈ {0, 1}∗, we define

X1 . . . Xℓ
n← X

to be the function which partitions X into ℓ = ⌈|X|/n⌉ blocks of n bits, with
the last block appended by trailing zeros.

We denote ⌊x⌋j as the j left-most bits of the bit-string x.

A logical left shift is denoted by x≪ k, and a logical right shift is denoted by
x≫ k. In a logical left/right shift, the bits of x are moved to the left/right
over k positions.

A circular left shift moves each bit of a bit-string left by a specified number
of bits. Every bit that is shifted off one end of the bit-string is reintroduced
at the other end. This is denoted by x ≪ l where x is rotated to the left
over l positions. Respectively, a circular right shift is denoted by x ≫ l
with a rotation of x to the right.

2.2 Linear-Feedback Shift Register

A linear-feedback shift register (LFSR) is used as a pseudorandom pattern
generator to generate a sequence of bits. An LFSR is a circuit with a row
of cells, each containing a bit. This sequence of bits within the cells of the
LFSR is also called the state of the LFSR. Cycling an LFSR is done by
shifting each bit to the cell right of it, with the right-most bit being the
output of the LFSR. The next state of the LFSR is determined by so-called
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taps on certain cells, these taps get XOR’d sequentially with the output bit
of the LFSR. After a cycle to the right of the LFSR, the left-most bit of the
new state is the right-most bit of the previous state. For a cycle to the left,
the new left-most bit is the previous state’s right-most bit.

An example of an 8-bit LFSR with taps on the cells 1,4 and 5 is shown in
Figure 2.1.

0 00 0 0 00 0
1 2 3 40 5 6 7

output sequence

Figure 2.1: An 8-bit LFSR.

2.3 Authenticated Encryption

Authenticated encryption (AE) is a form of encryption which ensures con-
fidentiality and authenticity. Authenticated encryption takes a plaintext, a
key and a header. A header is a piece of context or extra information which
will not get encrypted, meaning there is no insurance of confidentiality on
the header. Encrypting the plaintext results in a ciphertext and authenti-
cation tag, which is a string of bits used to check for modifications of the
encrypted message. Decryption takes the ciphertext, the key, and tag and
header and returns the original plaintext. Associated data (AD) can be used
to check the integrity of the ciphertext or message. This type of encryption
is called authenticated encryption using associated data (AEAD). Associ-
ated data can be any type of information as long as it is present in both
encryption and decryption, it is also described as encryption context. If the
wrong AD is present in decryption, the decryption process fails.

Encryption (enc) takes as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}m,
associated data A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗. Using these inputs,
it outputs a ciphertext C ∈ {0, 1}|M | and tag T ∈ {0, 1}t.

Decryption (dec) takes as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}m,
associated data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}t.
Using these inputs, it outputs a message M ∈ {0, 1}|M | if the corresponding
tag is correct, or a ⊥-sign if it is incorrect.

2.4 Elephant v2

Elephant v2 is a NIST submission by Beyne, Chen, Dobraunig, and Mennink
with the purpose of being a lightweight authenticated encryption scheme [8].
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The mode of Elephant is a permutation-based encrypt-then-MAC construc-
tion with three instances. These instances are: Dumbo, Jumbo, and Delir-
ium. Dumbo and Jumbo use a Spongent permutation, and Delirium uses
the Keccak-f [200] permutation [8]. In this thesis, we focus on the Delirium
instance of Elephant.

2.4.1 Mode

The generic mode of Elephant is the authenticated encryption mode. It
consists of two algorithms, encryption (enc) and decryption (dec) [8].

A depiction of the authenticated encryption mode of Elephant v2, as de-
scribed by the official specification [8], is given in Figure 2.2. The encryption
part (top) pads the message as M1 . . .MℓM

n←M , and the ciphertext equals
C = ⌊C1 . . . CℓM ⌋|M |.
The authentication part (bottom) has the nonce and associated data padded
as A1 . . . AℓA

n← N ||A||1, and ciphertext padded as C1 . . . CℓC
n← C||1.

Figure 2.2: Depiction of Elephant v2

2.4.2 Masking Function

Elephant’s Delirium uses the LFSR φ1 : {0, 1}n → {0, 1}n, which is given
as a F2-linear map [8] where the xi’s correspond to 8-bit words:

(x0, . . . , x24)→ (x1, . . . , x24, x0 ≪ 1⊕ x2 ≪ 1⊕ x13 ≪ 1).

For every cycle of φ1 a circular left shift is done on x0 and x2 and a logical
left shift on x13 of the state. Let φ2 be defined as φ2 = φ1 ⊕ id, P the
permutation function, K the key, and i, j ∈ N. The notation φi

1 or φj
2

means i cycles of φ1 and j cycles of φ2.
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We can then give the masking function:

maski,jK = mask(K, i, j) = φj
2 ◦ φ

i
1 ◦ P (K||0n−k).

If we were to take mask0,1K from the encryption part in Figure 2.2, we can
define it using φ1 and φ2 as follows:

mask0,1K = φ1
2 ◦ φ0

1 ◦ P (K||0n−k) = φ2 ◦ P (K||0n−k).

2.4.3 Keccak Permutation

Keccak is a permutation function designed by Bertoni, Daemen, Peeters,
and Van Assche [5], and chosen as winner of the NIST SHA-3 competition
[14]. The Keccak permutation can be used to construct stream ciphers,
cryptographic hash functions, pseudo random number generators, MACs,
or AEAD algorithms.

Keccak is a family of hash functions based on the sponge construction. In
Keccak a permutation is chosen from a set of seven Keccak-f permutations,
denoted by Keccak-f [b], where b ∈ {25, 50, 100, 200, 400, 800, 1600} is the
width of the permutation [5]. Elephant’s Delirium instance uses the Keccak-
f [200] permutation.

Let X be a 200-bit input, one round of Keccak-f [200] can then be described
as follows:

for i = 1, . . . , 18 do
X ← ι ◦ χ ◦ π ◦ ρ ◦ θ(X)

end for

The five Keccak step functions θ, ρ, π, χ, and ι are defined as:

θ : a[x, y, z]← a[x, y, z]⊕
4⊕

y′=0

a[x− 1, y′, z]⊕
4⊕

y′=0

a[x+ 1, y′, z − 1],

ρ : a[x, y, z]← a[x, y, z + t[x, y]],

π : a[x, y, z]← a[x+ 3y, x, z],

χ : a[x, y, z]← a[x, y, z]⊕ (a[x+ 1, y, z]⊕ 1)a[x+ 2, y, z],

ι : a[x, y, z]← a[x, y, z]⊕RC[i, x, y, z].

Let P : {0, 1}n → {0, 1}n be the n-bit Keccak-f [200] permutation used in
Delirium.
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2.4.4 Encryption

Let x ∈ {0, 1}n and i ≤ n. We give the encryption algorithm of Elephant,
as described by the specification [8], in Algorithm 1 and Figure 2.2.

Algorithm 1 Elephant encryption algorithm enc

Input: (K,N,A,M) ∈ {0, 1}k × {0, 1}m × {0, 1}∗ × {0, 1}∗
Output: (C, T ) ∈ {0, 1}|M | × {0, 1}t

1: M1 . . .MℓM
n←M

2: for i = 1, . . . , ℓM do
3: Ci ←Mi ⊕ P (N ||0n−m ⊕ mask

i−1,1
K )⊕ mask

i−1,1
K

4: C ← ⌊C1 . . . CℓM ⌋|M |

5: A1 . . . AℓA
n← N ||A||1

6: C1 . . . CℓC
n← C||1

7: T ← A1

8: for i = 2, . . . , ℓA do
9: T ← T ⊕ P (Ai ⊕ mask

i−1,0
K )⊕ mask

i−1,0
K

10: for i = 1, . . . , ℓC do
11: T ← T ⊕ P (Ci ⊕ mask

i−1,2
K )⊕ mask

i−1,2
K

12: T ← P (T ⊕ mask
0,0
K )⊕ mask

0,0
K

13: return (C, ⌊T ⌋t)
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2.4.5 Decryption

Let x ∈ {0, 1}n and i ≤ n. We give the decryption algorithm of Elephant,
as described by the specification [8], in Algorithm 1.

Algorithm 2 Elephant decryption algorithm dec

Input: (K,N,A,C, T ) ∈ {0, 1}k × {0, 1}m × {0, 1}∗ × {0, 1}∗ × {0, 1}t
Output: M ∈ {0, 1}|C| or ⊥
1: C1 . . . CℓM

n← C
2: for i = 1, . . . , ℓM do
3: Ci ←Mi ⊕ P (N ||0n−m ⊕ mask

i−1,1
K )⊕ mask

i−1,1
K

4: M ← ⌊M1 . . .MℓM ⌋|C|

5: A1 . . . AℓA
n← N ||A||1

6: C1 . . . CℓC
n← C||1

7: T̄ ← A1

8: for i = 2, . . . , ℓA do
9: T̄ ← T̄ ⊕ P (Ai ⊕ mask

i−1,0
K )⊕ mask

i−1,0
K

10: for i = 1, . . . , ℓC do
11: T̄ ← T̄ ⊕ P (Ci ⊕ mask

i−1,2
K )⊕ mask

i−1,2
K

12: T̄ ← P (T̄ ⊕ mask
0,0
K )⊕ mask

0,0
K

13: return ⌊T̄ ⌋t = T ? M : ⊥

2.5 eXtended Keccak Code Package

The eXtended Keccak Code Package or Xoodoo and Keccak Code Package
(both abbreviated as XKCP) is a collection of open-source implementations
of the cryptographic schemes defined by the Keccak team [1], this includes
the Keccak sponge function family.

The low-level services of XKCP implement the permutations Keccak-f [200
to 1600] and Keccak-p[200 to 1600]. In Keccak-f the number of rounds is
fixed while for Keccak-p this is a parameter, this is denoted by Keccak-p[x, y]
with x the width of the permutation and y the amount of rounds. We focus
on Keccak-f [200] and the closely related Keccak-p[200] where Keccak-p[200,
18] is equivalent to the Keccak-f [200] instance [4].

2.6 Assembly and ARM

Assembly is a low-level programming language where there is a one-to-one
relationship between assembly language instructions and the binary opcode
executed by the core. ARM is an assembly language first designed by Intel
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in 1974 for an 8-bit processor and has been extended to 16, 32, and 64-bit
forms [10].

The ARM instruction set has features not found in some processors, while
at the same time lacking operations found in others. An example of this is
the ROR operation which uses a cyclic shift on a register to the right, which
can be found in ARM but not on some standard processors.

The 32-bit processor architecture ARMv7 was introduced for microcontroller
implementations, with its strength in high-performance. ARMv7-M is one
of the three defined architecture profiles of ARMv7.
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Chapter 3

Byte Implementation

3.1 Implementations

3.1.1 Reference Implementation

The specification of Elephant [8] mentions the implementation of Elephant
implemented by Beyne [7]. This implementation contains six versions, from
which we take elephant200v2 as the reference implementation. The reference
implementation is an implementation of Elephant v2’s Delirium in C99,
using Keccak-f [200] as the permutation function.

3.1.2 Byte Implementation

We created our own implementation of Elephant [9] which we refer to as the
byte implementation. The byte implementation is based on the encryption
and decryption functions given in Algorithm 1 and Algorithm 2, where the
Keccak-f permutation is taken from the reference implementation.

3.2 Comparing Implementations

After writing the byte implementation, we compared it with the reference
implementation. We note certain differences in the implementation and
design choices:

1. The general structure differs between the byte and reference imple-
mentation. This is due to both implementations merging the FOR
loops in the algorithm in different ways.

2. Algorithm 1 described the output of the encryption function as (C, T ) ∈
{0, 1}|M | × {0, 1}t.
The byte implementation outputs two separate buffers for both the
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ciphertext and tag. The reference implementation outputs a single
buffer, which can be described as (CT ) ∈ {0, 1}|M |+t. CT is a con-
catenation of the ciphertext and tag.

3. Certain design choices can cause differences in performance between
the reference and byte implementation. One of these choices is the way
the LFSR cycles are stored. Let LFSRx with x ∈ {prev, curr, next}
denote the last, current, and next LFSR cycle.
The byte implementation copies the states down from LFSRnext to
LFSRprev, it then cycles the LFSR and stores the result in LFSRnext.
The reference implementation cycles the pointers of the buffers. This
results in a decrease in memory copied per cycle, since instead of copy-
ing a state (25 bytes) down, it copies a pointer (8 bytes) down.

3.2.1 Performance

We measure the speedup of our byte implementation over the reference
implementation using the test vector described in Testing and Measurements
(Ch. 4). The result is given in Figure 3.1.
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Figure 3.1: Speedup (y-axis) per testcase (x-axis) of the byte implementation
over the reference implementation.

Figure 3.1 shows an average speedup of 0.992 for our byte implementation,
which is not a significantly worse performance than the official Elephant
implementation. This difference in performance is possibly caused by the
design differences mentioned (Sec. 3.2).

We continue to use the byte implementation as the base for other imple-
mentations and optimizations.
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Chapter 4

Testing and Measurements

In this chapter, we discuss how we did our measurements. We discuss what
our test vectors are, how we ran our test vectors including a test function,
how we dealt with inconsistency in measurements, and in what environment
measurements were done. The reference implementation (Sec. 3.1.1) by
Beyne contains the LWC AEAD KAT 128 96.txt file [7]. This file contains
a 1089 sample long test vector which we use for our measurements. The
message and additional data length in the testcases each range from 0 to 32
bytes, this gives us a total of 1089 testcases in the test vector.

We verify the output of each testcase with the test vector to make sure our
implementation gives an output consistent with the reference implementa-
tion.

4.1 Running the test vectors

To run the test vector, we designed a function named runTests included in
the “my implementation test” file, which we refer to as the test function.
We describe runTests in the appendix (App. A.1).

Let count, repeat ∈ N and input file, output file ∈ {0, 1}∗. The test func-
tion takes the first count-number of tests from the input file (input file).
It then encrypts every testcase in input file repeat-number of times, mean-
while calculating the average encryption time per testcase in microseconds
(µs). Finally, it writes the results to the output file (output file) together
with the average time per encryption, number of correct testcases, and name
of the tested implementation.

We use the results of the test function to compare the average encryption
time per testcase between implementations.
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4.2 Inconsistency in measurements

The average encryption time per testcase is measured in microseconds. Due
to this being an incredibly small measurement unit, it can be affected by
external factors such as processes running in the background of the testing
system. We repeat the encryption on a testcase repeat-number of times to
decrease the inconsistency in results and get a more precise average encryp-
tion time per testcase.

To get consistent measurements, we determine a set value for repeat. As
the value of repeat increases, the overall time it takes to compute the results
increases with it. To find the optimal value for repeat, we conduct a test on
the accuracy of the results.

4.2.1 Accuracy Test

Let repeat ∈ {10, 102, 103, 104, 105} and our testcase be the testcase #1089
of the test vector. This is a test case consisting of a 16 byte key, 12 byte
nonce, 32 byte message, and 32 byte additional data. We run a hundred
tests with repeat-number of encryptions and plotting these as a hundred
data points in a graph. We can compare the spread of these data points to
deduce the accuracy.

Let for each value of repeat: i ∈ {0, . . . , 99}, total timei ∈ R, and yi be
the value of the ith data point as average encryption time per byte, where
total timei is the sum of the encryption time over repeat-number encryp-
tions for data point i. The test vector has varying message and additional
data lengths (mlen and adlen respectively) between testcases, while the key
and nonce stay constant throughout all testcases. Due to this we may as-
sume that the mlen and adlen are the main factors causing a difference in
encryption time from testcase to testcase.

Let average encryption time per byte mean the encryption time for a test-
case divided by the total of the main factors’ lengths (mlen + adlen). We
calculate the average encryption time per byte (µs) for each data point
yi,

yi =
total time

repeat ∗ (mlen+ adlen)
.

The results of this test are given in Figure 4.1.
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Figure 4.1: Results of the accuracy test (Sec. 4.2.1) with the number of
repetitions (x-axis) plotted in the average encryption time per byte in µs
(y-axis).

We conclude from Figure 4.1 that the repeat values of 103 and up have an
accuracy of around one decimal. Due to the time it takes to perform the
tests we take 103 as our repeat value, this gives us a sufficiently accurate
measurement in a reasonable amount of time. However a single outlier can
be seen for this value of repeat in the figure, this could explain certain
outliers in our results.

4.3 Impact of Inputs

As explained in Accuracy Test (Sec. 4.2.1) the main factors causing the dif-
ference in encryption time between testcases are the message length (mlen)
and additional data length (adlen). To explain patterns in the results, we
want to know which of these two factors has the biggest effect on the av-
erage encryption time per byte. We conduct two tests and compare the
results:

4.3.1 Impact Test

Let i, j ∈ {0, . . . , 99}, m test, ad test be two test vectors, xi be the ith

testcase in m test, and yj be the jth testcase in ad test.

Then take for each testcase xi ∈ m test the values: adlen = 32 bytes and
mlen = i bytes. This means we get 100 testcases where adlen remains
constant at 32 bytes while mlen ranges from 0 to 99 bytes.

Similarly, take for each testcase yj ∈ ad test the values: mlen = 32 bytes
and adlen = j bytes. This gives us 100 testcases, where mlen remains
constant while adlen ranges from 0 to 99 bytes.

We use the runTests function (Sec. 4.1) to run the m test and ad test test

16



vectors, we take count = 100 and repeat = 104. The results of the test vec-
tors are plotted in Figure 4.2 in average encryption time per byte (µs).
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Figure 4.2: Results of the Impact Test (Sec. 4.3.1) with the testcases (x-axis)
plotted in the average encryption time per byte in µs (y-axis).

Figure 4.2 shows that m test starts at a lower average encryption time than
the ad test, but ends up at a higher encryption time than ad test. From
this, we can conclude that mlen has a greater effect on the encryption time
than adlen.

4.4 Testing Environment

The testing environment we chose is the Linux distribution Ubuntu, specifi-
cally Ubuntu 64bit version 22.04.01, which we run in a virtual machine. Our
virtual machine of choice is VMWare Workstation 16 [17]. The test system’s
specifications are as follows:

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz

16,0 GB of RAM.

QEMU is a free and open-source emulator. Setting up a simulator for an
ARMv7-M processor, such as an ARM Cortex-M3, to conduct our tests on
falls outside our scope. However, we can use the qemu-user-static package to
directly run ARM executables in our Linux environment.

We install the qemu-user-static package, this allows us to run ARM exe-
cutables directly on Linux. After which we use arm-linux-gnueabihf-gcc -
march=architecture -static -O2 -o obj out *.c to compile our implementation
directly into a 32-bit executable for ARM, where -O2 tells GCC to try to op-
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timize for the target architecture. We run the executable directly on Linux
using the previously mentioned qemu-user-static package.

One issue we ran into while using the QEMU package was that running
an ARMv7-M specific executable gives us an illegal instruction error. While
testing, we use -march=armv7 instead of -march=armv7-m. This means we
run ARM executables using ARMv7 instructions, however our results are
still representative for ARMv7-M.
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Chapter 5

32-Bit Implementation

The first step to optimizing the byte implementation is to transform it into a
32-bit integer implementation, which we refer to as the int implementation.
In this chapter, we explain our reasoning for creating this implementation
and the changes we made.

5.1 Reasoning

Elephant is an authenticated encryption scheme. The Delirium instance
works with blocks of 200 bits (25 bytes) [8]. The masking function (Sec.
2.4.2) computes the mask using several operations on these blocks. We are
interested in seeing if converting these byte blocks into 32-bit integer blocks
gives us a change in performance.

The eXtended Keccak Code Package (XKCP) [1] includes various third-
party implementations of Keccak. One of these implementations is Keccak-p
optimized for ARMv7-M, which we make use of in the optimization of Kec-
cak (Ch. 7). Keccak-p optimized for ARMv7-M is a 32-bit implementation.
This means that it does not fit our byte implementation (Sec. 3.1.2), but it
does fit our 32-bit int implementation.

5.2 Implementation Changes

The first step to creating the int implementation, is to transform the byte
blocks into 32-bit integer blocks. The byte implementation uses, as men-
tioned, byte buffers with a length of 25, we convert these into 7 int long
buffers.
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5.2.1 Converting Buffers

Let bytebuffer ∈ {0, 1}200, intbuffer ∈ {0}224, i ∈ {0, . . . , 24}, j ∈ {0, . . . , 6},
bytei ∈ {0, 1}8, intj ∈ {0, 1}32 where bytei is the ith byte in bytebuffer and
intj is the jth int in intbuffer.

We can fit 4 bytes into a single 32-bit integer by putting the bytes in se-
quence, creating a 32-bit value. Because of this we can fit {byte0, . . ., byte23}
into {int0, . . ., int5}, this leaves us with byte24 which we use as the 8 most
significant bits of int6 followed by 24 trailing zeroes.

A visual representation of this can be seen in Figure 5.1.

g i k m o q s u w yf h j l n p r t v xb da c e

abcd efgh ijkl mnop qrst uvwx y---

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 23 24170

10

bytebuffer

intbuffer
2 3 4 5 6

Figure 5.1: Visual representation of converting a 25 long byte buffer to a 7
long 32-bit integer buffer.

Using this method we convert the block, LFSR, tag, and mask buffers to 7
long 32-bit integer arrays.

5.2.2 The XOR function

The byte implementation defines the block xor function, which takes two
byte buffers and XORs their contents, iterating over the 25 bytes in the
buffer. We define a similar function xor int which XORs the contents of two
int arrays, iterating over the 7 ints in the buffer.

5.3 Results

We measure the speedup of the int implementation over the byte implemen-
tation (Sec. 3.1.2). The methods, environment, and test vector used are
described in Testing and Measurements (Ch. 4). The results of the mea-
surements are plotted in Figure 5.2.
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Figure 5.2: Speedup (y-axis) per testcase (x-axis) of the int implementation
over the byte implementation of Elephant.

Figure 5.2 shows a minor speedup of the int implementation over the byte
implementation. There are obvious spikes both above and below 1, we as-
sume these to be measurements affected by external factors (Sec. 4.2).

There is a visible increase in the speedup of the int implementation as the
testcases progress. To find the cause of this increase in speedup, we look
at specific testcases in the test vector and their encryption time. We plot
the average encryption time (µs) per testcase over 103 encryptions in Figure
5.3.
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Figure 5.3: Average encryption time per testcase (x-axis) for the int imple-
mentation in µs (y-axis).

We look at two specific testcases from the test vector used by the official
Elephant implementation [7]. These are the 33th and 859th testcases.

As mentioned before, the Delirium instance of Elephant uses a block size
of 200 bits [8]. From the 33th testcase and onwards, the message length is
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> 0 bits. This means all testcases after the 33th have at least 1 message
block. From the 859th testcase and onwards, the message length is > 200
bits. This gives us at least 2 message blocks for the 859th testcase and up.
We know from our Impact Test (Sec. 4.3.1) that the message length has a
greater effect on the encryption time than the additional data length.

Figure 5.3 shows a sharp increase in encryption time after both the 33th and
859th testcases. For each message block, the algorithm uses the previously
described xor int function (Sec. 5.2.2) a total of 4 times.

Looking back at the speedup graph (Figure 5.2), we can see that the speedup
increases at around the 33th and the 859th testcases. These are the testcases
where the amount of message blocks increase, meaning an increase in the
usage of the xor int function. We can now assume that as the message length
increases, the speedup of the int implementation from the byte implemen-
tation increases.
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Chapter 6

Optimization Using ARM
Instructions

In this chapter, we discuss ARM-specific optimization methods attempted
on the int implementation (Sec. 5). The ARM instruction set contains in-
structions not found in certain architectures, while at the same time lacking
certain other instructions. We try to reduce the amount of instructions in the
ARM assembly using ARM data-processing instructions. Data-processing
instructions are the fundamental arithmetic and logical operations of the
processor operating on values in the registers [2].

The compiler we use to create our 32-bit ARM executables (Sec. 4.4) makes
an attempt to translate the C code into ARM assembly, it does so with
CPU-specific instructions in mind. We want to know if we can improve this
translation of the implementation in ARM assembly.

To look for improvements, we need to be able to read the ARM executable
code. We can create a readable ARM assembly file from this executable
using arm-none-eabi-objdump, objdump displays the information of object
files [15]. We choose to set the -D flag, this disassembles the executable into
readable ARM assembly.

6.1 Optimization Options

We discuss certain options used to try and optimize the int implementa-
tion, specifically the masking function, in ARM assembly using ARM data
processing instructions [2]. To implement these instructions in our C code,
we use inline assembly. Using the asm keyword, we can embed assembler
instructions within the C implementation. GCC allows for two types of
asm statements, asm with no operands and extended asm with one or more
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operands. For example: Let a ∈ {0, 1}32 be a 32-bit integer, we can imple-
ment the ARM Logical Shift Left (LSL) instruction using inline assembly.
We give an example, in which we shift the integer a over 7 bits to the
left:

__asm__ ("LSL %0, %0, #7" :: "r" (a));.

The documentation for Cortex-M3 (An ARMv7-M CPU) specifies a time
per operation given in clock cycles [3]. It notes that a shift, bit-field, or data
operation takes a single clock cycle to execute. Data operations take 2 clock
cycles if the destination register is the PC register, or 1 clock cycle for other
registers. In ARM, the Program Counter (PC) is a register which stores the
memory address of the next instruction to be executed.

6.1.1 Shift Instructions

The masking function of Elephant (Sec. 2.4.2) uses an LFSR φ1. When
φ1 calculates the least-significant bit of the next state, it uses two circular
left shifts and a single logical left shift. While C defines the ≪ operator
for a logical left shift, it does not define an operator for a circular left shift
≪. This is why the int implementation defines its own function Rotate Left
(ROTL):

uint8_t ROTL(uint8_t a)

{

return (a<<1) | (a>>7);

}.

Looking at the ARM assembly code, we can see that (a≪ 1|a≫ 7) results
in three instructions. These instructions are a Logical Left Shift (LSLS), Bit-
wise OR (ORRS), and a Logical Right Shift (LSRS), all of these instructions
fall into the data processing operations category [3]. Since the destination
register of the operations is not the PC register, we may assume that each
of these operations takes 1 clock cycle to execute.

Another operation included in this list of data processing operations is Ro-
tate Right (ROR), which for a Cortex-M3 CPU takes a single clock cycle as
well. We tried using this ROR operation to replace each use of ROTL using
the following asm inline statement:

uint8_t a;

__asm__ ("LSL %0, %0, #7" :: "r" (a));/

We use a cyclic right shift of 7 bits, since on a byte this would equal a cyclic
left shift of 1 bit. However, due to ARM using 32-bit registers, this cyclic
right shift is not applied on just the byte but on the whole register. A visual
representation of a 1 bit rotate right (ROR) on a 32-bit register is shown in
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Figure 6.1. As shown in Figure 6.1 the right-most bit of the byte is rotated
out of the 8 bit representing the byte.

0 00 0 0 0 0 0 1 0 1 01 0 1

00 0 0 0 0 0 0 1 0 11 1 0 1

Byte

...

...
1 2 3 4 310 3029282726252423225-21

Figure 6.1: A rotate right (ROR) operation used on a 32-bit register con-
taining a byte in little-endian byte order.

ARM does not define a byte-wise rotation, and thus this optimization at-
tempt can not be applied on our current implementation.

6.1.2 Parallel Instructions

Another category of data-processing instructions for ARM is parallel instruc-
tions [2]. We specifically look at parallel add and subtract instructions, such
as byte-wise addition ADD8 or byte-wise subtraction SUB8. Parallel instruc-
tions have variants such as SHADD8, which first uses byte-wise addition and
then halves the result. In certain cases, using these parallel instructions, it
is possible to combine two instructions into a single operation.

Looking at the ARM assembly code, we can see several mentions of UADD8
and UQSUB8 instructions, variants of ADD8 and SUB8. This means the
compiler (Sec. 4.4) already makes use of these instructions when compiling
for ARMv7 where possible.

6.2 ARM Conclusion

We are thus able to see that the compiler (Sec. 4.4) makes use of ARM
specific instructions where possible in the implementation. This means we
are not able to optimize the masking function more than already done by
the compiler using just ARM instructions.
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Chapter 7

Optimization of Keccak

In the previous chapter (Ch. 6) we discussed potential optimizations using
the ARM assembly, mostly aimed at the masking function. We now take a
look at the permutation function, which in the case of the int implementation
(Ch. 5) is Keccak-f [200].

Instead of optimizing Keccak ourselves, we consider existing implementa-
tions and introduce them into the int implementation of Elephant. The
official Keccak site [6] lists several software implementations of Keccak. It is
here that we can also find the eXtended Keccak Code Package (XKCP).

We look for alternatives to Keccak-f [200], one of these is the Keccak-p
permutation. The XKCP contains a reference, compact, and an ARMv7-
M-optimized implementation of Keccak-p[200]. We look into these three
implementations, making comparisons and implementing them into our int
implementation of Elephant. Both the ARMv7-M-optimized and compact
Keccak-p implementations are implemented by Van Keer.

The Keccak-p[200] implementations in the XKCP each define the
KeccakP200 Permute 18rounds function, the output of this function is equiv-
alent to the permutation function included in the original Keccak-f [200] im-
plementation.

7.1 Keccak Comparison

7.1.1 Original Keccak-f and Reference Keccak-p

First we compare the original Keccak-f implementation, used in the official
Elephant implementation [7], with the reference Keccak-p implementation
from the XKCP [1].

Both the original Keccak-f and reference Keccak-p use the same functions
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and variable naming. Elephant’s Keccak-f implementation is based on the
Keccak Team’s Keccak-f implementation. This explains why the Keccak
Team’s Keccak-p implementation has the same design and variables as Ele-
phant’s Keccak-f implementation.

We thus expect both implementations to have a similar performance.

7.1.2 Reference Keccak-p and Compact Keccak-p

Second, we compare the reference and compact Keccak-p implementations
from the XKCP. In this section, we refer to reference Keccak-p as reference
and compact Keccak-p as compact.

We list the following differences:

• The first difference is the amount of function calls used. The reference’s
KeccakP200 Permute 18rounds calls KeccakP200OnWords, which then
calls KeccakP200Round a total of 18 times. Compact immediately
calls the KeccakP200 Permute Nrounds function, which in the function
itself computes n-rounds. For each round of the reference the Kec-
cak steps (Theta, Rho, Pi, Chi, Iota) are called as separate functions,
whereas compact makes no function calls and has the primitives in-
cluded in the function itself.

• The second difference is the usage of the index(x, y) function. Reference
uses the index(x, y) function to compute the index of a certain byte in
the state. The index(x, y) function is defined as follows:

index(x, y) = (((x)%5)+5*((y)%5))

Compact uses a different structure to reference when computing its
rounds. Compact uses a buffer of 5 bytes called BC which is used to
store 5 bytes from the state, and applies all Keccak steps on these
bytes before putting them back into the state. The BC buffer makes
it possible for compact to get rid of the index(x, y) function, reducing
both computations and function calls.

• The third difference is compact’s combination of the Keccak steps Rho
and Pi into Rhopi. Reference’s Rho and Pi use a combined total of
three loops, compact’s Rhopi makes use of the previously mentioned
BC buffer and reduces the number of loops to one.

• The fourth difference is the use of pre-computed values. Compact
uses buffers containing pre-computed values to reduce computations
done in the Keccak steps. An example of this is the KeccakP200 Mod5
buffer. Let x ∈ {0, . . . , 9}, KeccakP200 Mod5 contains the MOD 5
value for each value of x.
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Reference makes regular use of the %5 or MOD 5 operation. By using
the KeccakP200 Mod5 buffer, compact reduces the amount of compu-
tations done in the Keccak steps.

Because of these differences, the overall number of address calls and compu-
tations is reduced in the compact Keccak-p implementation compared to the
Keccak-p implementation. This gives us reason to expect compact Keccak-p
to have a higher performance than reference Keccak-p in our results (Ch.
8).

7.1.3 Reference Keccak-p and ARMv7-M Keccak-p

Third, we compare the reference and ARMv7-M-optimized Keccak-p, we
refer to the latter as ARMv7-M Keccak-p.

Because the ARMv7-M Keccak-p implementation is written in assembly
code, we only mention certain observations we made. One of the differences
observed is that the Keccak steps Rho and Pi are combined into Rhopi, this
is similar to how the compact Keccak-p implementation handles the Keccak
steps (Sec. 7.1.2).

Another difference observed is the size of the values used in the state buffer.
Both the reference and compact implementation convert the state to a buffer
of 8-bit values, whereas the ARMv7-M implementation uses a buffer of
32-bit values. This means that operations can be done on 32 bits of the
state at once, possibly allowing the calculation of the 200-bit state in fewer
steps.

Keeping in mind that the ARMv7-M implementation is specifically opti-
mized for our target architecture, we can expect ARMv7-M Keccak-p to
have a higher performance than reference Keccak-p in our results. Due
to the similarity with the compact implementation, the usage of a 32-bit
value buffer, and usage of ARM instructions, we can expect the ARMv7-
M Keccak-p to have a higher performance than compact Keccak-p in our
results.

7.2 Implementing Keccak-p

We implement each of the three previously mentioned Keccak-p implemen-
tations (reference, compact, ARMv7-M) into our int implementation of Ele-
phant (Ch. 5).

The XKCP contains the files needed to build each implementation in the
repository [1]. In the case of the reference, compact, and ARMv7-M Keccak-
p[200] implementations, this is the header file named KeccakP-200-SnP.h.
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The contents of this file differ between implementations, which means we
have three separate versions of KeccakP-200-SnP.h.

In addition to this, the compact and reference implementations use the
brg endian.h header file designed by Gladman (Acknowledgments in the
XKCP [1]), which determines the byte order of the platform. The brg endian.h
header file is not needed in the ARMv7-M implementation, since it uses the
predetermined little-endian byte order.

We replace the permutation function from the original Keccak-f [200] with
the Keccak-p[200] function KeccakP200 Permute 18rounds. These two func-
tions give an equivalent output when given the same state.

We give three implementations of Elephant, each using a different Keccak-p
implementation as the permutation function. All three of these implemen-
tations are based on the 32-bit int implementation (Ch. 5).

7.2.1 Reference Keccak-p implementation

We create a new implementation based on our int implementation of Ele-
phant, which we refer to as the reference Keccak-p implementation. This im-
plementation of Elephant uses the reference Keccak-p permutation function.
The reference implementation of Keccak-p is similar to the Keccak-f [200]
implementation included in Elephant v2 [7].

7.2.2 Compact Keccak-p implementation

We create a new implementation based on our int implementation of Ele-
phant, which we refer to as the compact Keccak-p implementation. This
implementation of Elephant uses the compact Keccak-p permutation func-
tion. The compact implementation of Keccak-p uses certain methods to
reduce the size, amount of address calls, and computations done in the im-
plementation.

7.2.3 ARMv7-M Keccak-p implementation

We create a new implementation based on our int implementation of Ele-
phant, which we name the ARMv7-M Keccak-p implementation. This im-
plementation of Elephant uses the ARMv7-M Keccak-p permutation func-
tion. The ARMv7-M implementation of Keccak-p is designed using ARM
instructions and techniques.

7.3 Keccak-p Measurements

Using the method and test vector described in Testing Environment (Sec.
4.4), we measure the average encryption time of the reference (Sec. 7.2.1),
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compact (Sec. 7.2.2), and ARMv7-M (Sec. 7.2.3) Keccak-p implementations
of Elephant.

We measure the average encryption time per testcase in microseconds (µs)
and include the measurements of the int implementation (Ch. 5) for com-
parison. These results can be seen in Figure 7.1.

0

10

20

30

40

50

60

70

80

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

5
2

9

5
5

1

5
7

3

5
9

5

6
1

7

6
3

9

6
6

1

6
8

3

7
0

5

7
2

7

7
4

9

7
7

1

7
9

3

8
1

5

8
3

7

8
5

9

8
8

1

9
0

3

9
2

5

9
4

7

9
6

9

9
9

1

1
0

1
3

1
0

3
5

1
0

5
7

1
0

7
9

A
ve

ra
ge

 E
n

cr
yp

ti
o

n
 T

im
e 

(µ
s)

Testcase No.

Int Implementation Reference Keccak-P Compact Keccak-P ARM Keccak-P

Figure 7.1: Average encryption time per testcase (x-axis) for the reference
(Sec. 7.2.1), compact (Sec. 7.2.2), and ARMv7-M (Sec. 7.2.3) Keccak-p im-
plementations of Elephant in µs (y-axis).

By observing the results in Figure 7.1 we can deduce that both the com-
pact and ARMv7-M Keccak-p implementations have a lower encryption time
than both the int Keccak-f and reference Keccak-p implementations. The
ARMv7-M Keccak-p implementation has the highest performance, as ex-
pected from our comparisons (Sec. 7.1).
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Chapter 8

Results

In this chapter, we compare the performance of all the implementations
mentioned. These are the byte (Sec. 3.1.2), int (Ch. 5), Keccak-p Reference
(Sec. 7.2.1), Keccak-p Compact (Sec. 7.2.2), and Keccak-p ARMv7-M (Sec.
7.2.3) implementations.

Using the methods and test vector described in Testing and Measurements
(Sec. 4), we measure the encryption time per testcase in microseconds (µs)
for all previously mentioned implementations. The results of these measure-
ments are given in Figure 8.1.
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Figure 8.1: Average encryption time per testcase (x-axis) for all implemen-
tations in µs (y-axis).

We can put the results from Figure 8.1 into a speedup graph, where the
speedup over the byte implementation is given for each implementation men-
tioned. The speedup for each testcase can be seen in Figure 8.2.
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Figure 8.2: Speedup (y-axis) per testcase (x-axis) of each implementation
over the byte implementation.

In Table 8.1, we give the average encryption time and speedup of the imple-
mentations over all testcases.

Implementation Average Encryption Time (µs) Average Speedup

Byte Implementation 58.2847 1 (reference)

Int Implementation 58.0452 1.0039

Reference Keccak-p 58.3005 0.9999

Compact Keccak-p 28.8663 2.0203

ARMv7-M Keccak-p 3.7815 15.3696

Table 8.1: Average encryption time and speedup per implementation over
all testcases in the test vector.

Although Table 8.1 shows a similar performance for both the byte and int
implementations, we expect the int implementation to have a higher perfor-
mance for longer messages or additional data (Sec. 5.3).

We can conclude from the results in Table 8.1 that the ARMv7-M Keccak-
p implementation is the best performing implementation, with an average
speedup of around 15.37 over our initial implementation (the byte imple-
mentation).

8.1 Final Implementation

Based on the results of each implementation, we take the ARMv7-M Keccak-
p implementation (Sec. 7.2.3) as our final implementation.
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Chapter 9

Conclusions

We conclude that our final implementation of Elephant v2 (Sec. 8.1) is a
successful optimization from the original Elephant v2 implementation. Our
final implementation has a speedup of around 15 over our initial implemen-
tation on the ARMv7 architecture.

Changing Elephant from an 8-bit into a 32-bit implementation is a successful
optimization. The 32-bit implementation has a higher performance for large
input lengths than an 8-bit or byte implementation (Sec. 5.3).

We can now conclude that both the conversion to 32-bit and the use of an al-
ternative permutation function cause a speedup of around 15 over the initial
implementation. This answers our research question: How can we optimize
the cryptographic cipher Elephant v2 for the ARMv7-M architecture?

This concludes our research. Further research could be done by optimizing
the LFSR to work with a 32-bit state, optimizing the other instances of
Elephant, or by porting the implementation to the 64-bit ARMv8 architec-
ture.

In our research, we measured the performance of our implementations as
encryption time in microseconds. In further research, the performance can
be measured in CPU cycles to decrease the amount of outliers in the re-
sults.

The project can be found on GitHub, which includes the final implementa-
tion: https://github.com/noboud/Elephant.
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Appendix A

Appendix

A.1 Testing Algorithm

To describe the runTests algorithm, we define the functions:
read from(i, IF ) is a function that reads the key, nonce, message, additional
data, ciphertext, and tag of the ith testcase from the file IF .
write to(i, enc time, OF ) is a function that writes the encryption time in
microseconds for testcase i to the file OF .
clock() is a function that returns the current time in microseconds.
encryption(M , AD, N , K) is the authenticated encryption function taking
a message, additional data, public nonce, and key resulting in a ciphertext
and tag.

Using these functions, we give the runTests algorithm (Alg. 3).

Algorithm 3 The testing algorithm runTests

Input: count ∈ N, repeat ∈ N, IF ∈ {0, 1}∗, OF ∈ {0, 1}∗

1: test errors← 0
2: for i = 1, . . . , count do
3: K, N, M, AD, C, T ← read from(i, IF )
4: start← clock()
5: for j = 1, . . . , repeat do
6: C ′, T ′ ← encrypt(M, AD, N, K)

7: stop← clock()
8: if (C ̸= C ′) ∨ (T ̸= T ′) then
9: test errors← test errors+ 1

10: enc time← (stop− start)/repeat
11: write to(i, enc time, OF )
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