
Bachelor’s Thesis Computing Science

A Linear Cryptanalysis of the
DST40 Block Cipher

Quinn Ketelaars
s1039322

June 15, 2023

First supervisor/assessor:
Joan Daemen

Second supervisor:
Shahram Rasoolzadeh

Second assessor:
Bart Mennink

Abstract

We apply the linear cryptanalysis technique to a block cipher called DST40, which is used
as the cryptographic function in an authentication protocol for RFID devices. DST40 is
an unbalanced Feistel cipher with a short key length but a high number of rounds.

We find linear approximations for the cipher by looking at certain selections of bits
in the plaintext and ciphertext, and how the vectors that represent these selections move
through the cipher. We find that with certain choices for these vectors we can achieve as
low as 10 active rounds out of 200 rounds total. This only works for keys that meet some
requirement, which is a quarter of all possible keys.

However, even with a vulnerable key, this attack does not break the cipher, as an
attack that makes use of this linear approximation requires more encryptions for obtaining
challenge-response pairs than exhaustive key search would. We do perform an attack using
this method on a reduced-round version of the cipher, and find that the attack works for
up to 79 rounds of the cipher.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Block ciphers . 4
2.2 Message authentication codes (MAC) . 5

3 Design of DST40 6
3.1 The F function . 7

4 Linear Cryptanalysis 9
4.1 Correlation in the F function . 10
4.2 Mask propagation through DST40 . 12
4.3 Linear approximations . 13
4.4 Full cipher trails . 14
4.5 Key bit parity . 15
4.6 Key restrictions . 15

5 A theoretical attack 16
5.1 Attack description . 16
5.2 Reduced-round variants . 17
5.3 Key search . 18
5.4 Dealing with truncated output . 18

6 Related Work 19
6.1 DST40 analysis . 19
6.2 Linear cryptanalysis . 19

7 Conclusions 20

A Appendix 22
A.1 DST40 code . 22
A.2 Correlation matrices . 23
A.3 Implementation of Algorithm 1 . 24
A.4 Feistel function definitions . 25

1

Chapter 1

Introduction

Radio Frequency IDentification (RFID) is a method of identification which uses elec-
tromagnetic fields to communicate [13]. This is done using radio transponders, which
transmit or receive data such as IDs and challenge-response messages. A collection of
RFID implementations called Passive Keyless Entry and Start (PKES) is used to handle
remotely unlocking, locking and starting vehicles.

PKES systems in cars allow one to both unlock and start their car by simply having the
key (referred to as key fob) in close proximity to the car and pressing a button on the car
itself [14]. This removes the need to take out the key fob for unlocking the car. To ensure
that the one trying to unlock or start the car possesses the key fob, the key fob needs to
be authenticated. This authentication allows for an immobilizer as well, meaning that the
engine will only start when the key fob is authenticated, preventing hot-wiring the car.
Under the assumption that the owner has the key, the owner is identified when the key
fob is authenticated. Numerous protocols have been used to achieve this, including but
not limited to Microchip’s KeeLoq [12] and both Digital Signature Transponder (DST)
and UICE by Texas Instruments [7, 8]. These protocols use a Message Authentication
Code (MAC) to authenticate the key fob. The car and the key fob contain the same
cryptographic key, which they use to compute the output of a cipher, given a challenge.
This output is the MAC. The car sends the challenge to the key fob, after which they
both compute a response. The key fob returns the response and if it is the same as
the response computed by the car, it unlocks or starts. The challenge should always be
randomly chosen.

In these protocols the car transmits its messages in low frequency, which carries the
signal only about 2 meters. This is how the car checks whether the key fob is in proximity.
However, this makes the protocol vulnerable to a relay attack, where an attacker can
amplify the signal coming from the car so that it still reaches the key when it is out of
range, thus unlocking the car [5]. This allows an attacker to unlock and start a car on
a drive way with the key fob inside the house, for example. The effectiveness of this
attack, however, is decreased by the problem that after driving away with the car, the
attacker cannot start the car again without replacing or reconfiguring the PKES system
by physically accessing it.

The relay attack is not the only known vulnerability in these systems, though [4, 6,
15, 16]. Problems include a weak cipher vulnerable to algebraic attacks in the case of
KeeLoq, keys that are too short and therefore do not provide enough security in the
case of DST, and overall poor randomness in the cryptographic keys. Another problem
is that some manufacturers keep their ciphers a trade secret, meaning that ciphers and
their surrounding protocols are not reviewed before they are implemented and distributed.

2

This leads to more vulnerabilities in the final product than necessary, which are likely to
be found by either researchers or real-world attackers [7].

In this thesis we will be looking at the Digital Signature Transponder from Texas
Instruments, specifically the DST40 block cipher. It is used to encrypt given challenges
which serve as the Message Authentication Code. This cipher was first reverse engineered
and cracked using a brute force approach in 2005 [2]. Later, it was shown that a key
could be recovered in seconds using two challenge-response pairs and a 5.4 TB lookup
table containing all keys grouped by the response that the cipher produced given a certain
challenge [16]. The weakness exploited in these two researches was the short key length
of 40 bits. Clearly, it is possible to crack the key because of its length, but it still requires
a lot of computation. Therefore, we aim to provide a cryptanalysis of DST40 and see if
the cipher itself can be broken to reduce the effective key length. More specifically, we
take our research question to be:

Can the DST40 cipher be broken by linear cryptanalysis, such that an advantage is gained
over exhaustive key search?

Linear cryptanalysis is a technique to analyse a cipher by finding linear approximations
to the effect of the cipher and using those to leak key bits. By constructing linear ap-
proximations that hold with a high probability, guesses can be made about the values of
key bits. Linear cryptanalysis was introduced in 1992 by Matsui, using it to break the
FEAL cipher [9]. Later, Matsui successfully used it to break DES, although the attack
still requires too many known plaintexts to be practical [10]. In this thesis we will apply
this technique to the DST40 cipher.

As for the relevance of DST40, it was shown that DST40 is still used in modern cars
like the Tesla Model S, even though the newer DST80 was developed by Texas Instruments
[16]. Since DST80 is based on the same design as DST40 (but with a key length of 80
bits) [15], a linear cryptanalysis of DST40 may also be relevant for DST80.

3

Chapter 2

Preliminaries

As the concept of symmetric key ciphers plays a large role in this analysis, it will be
explained in this chapter.

Symmetric key cryptography refers to encrypted communication where encryption and
decryption is done using the same secret key. Encryption and decryption are handled by
ciphers, of which there are some different categories. Only block ciphers will be presented
here.

The security of a cipher is measured in bits. n bits of security means that the cipher
is distinguishable from a random permutation with a success probability of not greater
than 2−n. In practice, with n bits of security, 2n encryptions are needed to find the secret
key. Optimally, a cipher has as many bits of security as it has bits in the secret key such
that the best possible attack is exhaustive key search, meaning an attacker has to try an
encryption with all possible key values to find the correct one.

2.1 Block ciphers

Block ciphers take a block of data (plaintext) with a fixed size, as well as a key with a
possibly different fixed size, and combine these in some way to produce an output block
(ciphertext). If the cipher repeats the same process of combining blocks and keys, then a
single one of such combinations is called a round. Block ciphers that use multiple rounds
often change the key in a reversible way as well, which is called a key schedule. Block
ciphers always have an inverse, which is used for decryption.

Most important for this thesis is the Feistel structure, because DST40 is built on this
design. In one round, a generic Feistel structure divides the input block into two parts
(usually of equal length). It takes one of those sides and combines it with the key of
that round into some output that is added to the other side of the input block. The two
sides are then swapped. This process repeats for some amount of rounds, after which the
final output block combined is the ciphertext. Decryption is done by following the same
steps, but backwards. So, it swaps the two halves of the encrypted data and then takes
one half, combines it with the corresponding round key and adds that to the other half.
A typical implementation of one round of a Feistel structure is shown in Figure 2.1. A
popular block cipher based on a Feistel structure is DES, which has a 56 bit key and has
16 rounds.

A method one may employ to get information about the key that the cipher uses
without knowing it is to make encryptions with carefully chosen differences in the plaintext
and see what effect this has on the ciphertext. Some vulnerable block ciphers may give
away information about their key in this way. This technique is known as differential

4

Figure 2.1: One Feistel round of encryption (left) and decryption (right)

cryptanalysis. Another popular method to analyze block ciphers is linear cryptanalysis,
which this thesis is about.

2.2 Message authentication codes (MAC)

Message authentication codes may be used to verify that the person or device that is
communicated with has knowledge of a secret key and to make sure that the message is
not altered. This authentication protocol has a verifier on one side and a prover on the
other.

In this case, where there is only one challenge-response pair, the verifier sends a random
challenge to the prover and signs the challenge using a secret key. The prover then also
signs the challenge using the same secret key and sends it back to the verifier. If the
response matches their own signed challenge, the prover’s message is authenticated. The
security of this protocol depends on the security of the method that is used for signing
the challenge. The function for signing the challenge is called the MAC-function.

The output of the MAC-function should always be unpredictable. So, if an attacker
has a MAC-response which was computed using the secret key from the prover for a given
challenge, then the attacker should not be able to derive the MAC-response for another
challenge.

5

Chapter 3

Design of DST40

Although DST40 is a proprietary cipher that was never publicly released, it was reverse
engineered by Bono et al. in 2005 [2]. The cipher is an unbalanced Feistel structure with a
key schedule, and a 40-bit block and key length. In one round of this Feistel structure, the
plaintext is divided into two parts. The left part is 38 bits long and the right part is 2 bits
long. The 38-bit part is combined with the 40-bit round key by applying an F function.
The 2-bit output of this F function is added to the 2-bit part of the plaintext using XOR.
The two parts are then swapped, such that the 2-bit part becomes the left-most section
in the new 38-bit part in the next round.

The plaintext is not divided into parts of equal length like in a regular Feistel structure,
which is why it is called unbalanced. The round schematic is depicted in Figure 3.1, and
the cipher runs for 200 rounds.

Figure 3.1: Schematic of one DST40 round

The key is updated every 3 rounds, starting on the second round. The key register
is a Linear-Feedback Shift Register (LFSR). This LFSR consists of a register in which
all bits shift one position to the right each time the register is updated. On a shift, the
right-most bit will be added to some other bits using XOR, and will wrap around to
become the leftmost bit. In this case, the bits used to XOR the bit wrapping around are
k0, k2, k19, k21, as seen in Figure 3.2. Note that this is a maximum length LFSR, so any
value in the LFSR will only repeat every 240 − 1 shifts (except for the all-0 state) [2].

6

Figure 3.2: Schematic of the key register LFSR

3.1 The F function

The F function takes as input the secret key Ki (with i the round number) and the 38-bit
part of the message and produces 2 bits of output. Although [2] suggests that in the
implementation of DST40 the 2-bit part of the message is part of the input of F , the
given tables show that they have no effect on the output. This makes sense, because the
structure may not be invertible otherwise. Hence, for the sake of clarity, we keep them
separated from the input here (as illustrated in Figure 3.1). The F function is specified
in terms of 7 distinct functions:

• fa and fb take 2 key bits and 3 message (state) bits as input and return one bit.

• fc and fd take 3 key bits and 2 message bits as input and return one bit.

• fe takes 3 key bits and one message bit as input and returns one bit. This is the
function that was specified to take two message bits, but we only look at the one
bit that has an effect on the output.

• g takes 4 bits of input from the f sub-functions and returns one bit.

• h takes 4 bits of input from the g sub-functions and returns 2 bits. The output of
this function is the output of the F function.

The sub-functions are arranged as shown in Figure 3.3. The exact message and key
bits that are given to the f sub-functions are described in the paper that covered its
first analysis [2], in table form. We expand on this by providing the algebraic normal
form (ANF) of the functions. Given that the functions take as input either x4, . . . , x0 or
x3, . . . , x0, the ANF of each function looks like

h =

(
x0x1 + x0x3 + x1x2 + x2x3 + x2 + x3
x0x2 + x0x3 + x1x2 + x1x3 + x1 + x2

)
g = x0x1 + x0x2 + x0 + x1x3 + x1 + x2x3

fa = x0x1x2 + x0x2x3 + x0x3 + x0x4 + x0 + x1x2x4 + x1x3+

x1x4 + x2x3x4 + x2x3 + x2x4 + x2 + x3

fb = x0x2 + x0x4 + x0 + x1x2 + x1x4 + x1 + x2x3 + x2x4+

x3x4 + x4

fc = x0x1x4 + x0x1 + x0x3 + x1x2x4 + x1x2 + x1x3 + x1+

x2x3 + x2 + x3x4 + x3

fd = x0x2 + x0x3 + x0x4 + x0 + x1x2 + x1x3 + x1x4 + x2

fe = x0x2 + x0x3 + x0 + x1x2 + x1x3 + x3

(3.1)

As seen in Figure 3.3, each function appears multiple times. The f functions are numbered
top to bottom as f1, . . . , f16, where f15 and f16 are the defined by fe, and the g functions

7

are numbered top to bottom as g1, . . . , g4. Note that the definition of h is a vector since
h has two output bits. The top row represents the right bit and the bottom row the left
bit. The ANF representations of all functions are given in A.4.

Figure 3.3: The internals of the F function

The F function’s domain is 78 bits in size, consisting of 40 key bits and 38 message
bits, and its image is 2 bits. This means that the image gives 2 bits of information about
the input of the function, which is not meaningful.

Noteworthy is that the function’s output is not uniform. If we generate a random key
and message and compute the result, we get the results in Table 3.1. The same results

Output value Occurrences (%)

00 25%
01 31%
10 19%
11 25%

Table 3.1: Number of occurrences of the output values of F

show up when the key is kept constant and the message is chosen randomly. However,
this is not directly problematic for this cipher, because such a small difference fades over
a span of 200 rounds.

8

Chapter 4

Linear Cryptanalysis

Linear cryptanalysis is a technique that involves trying to construct a linear approximation
to a cipher. It was first successfully applied by M. Matsui to find attacks against FEAL
and DES, with the ability to find a key with less encryptions than exhaustive key search [9,
10]. In practice it comes down to finding so called masks that form linear approximations
that hold with a probability unequal to 1

2 . A linear approximation, in this context, is an
addition of certain bit positions in the plaintext, ciphertext and key such that:⊕

i∈{1,...,40}

Pi ⊕
⊕

j∈{1,...,40}

Ci =
⊕

k∈{1,...,40}

Ki. (4.1)

with P the plaintext, C the ciphertext and K the key, and the indices being bit positions.
The chosen bit positions can be selected using masks. Both the mask and the bit string
can be seen as vectors, and the effect of a mask as a matrix multiplication:m1

...
mn

T

·

p1
...
pn

 =
(
m1 . . . mn

)
·

p1
...
pn

 (4.2)

With aT being the transposition of a. In practice, a 1 in the mask indicates that the bit
at the same index in the data is “active”. For example

1
0
0
1

T

·

0
1
1
1

 = 1 · 0 + 0 · 1 + 0 · 1 + 1 · 1 = 1

The first and last bit are selected to be added. Using the concept of masks, equation 4.1
can then be rewritten to

MT
1 · P ⊕MT

2 · C = MT
3 ·K (4.3)

The goal is to find such masks for linear approximations that have a high correlation with
propagation through the cipher rounds. In general, correlation is a measure of dependence
between data with a coefficient ρ ∈ [−1, 1], where 0 means that the data is independent,
-1 means negative correlation and 1 means positive correlation. Here, the correlation
coefficient is a measure for the amount of inputs and outputs for which the applied masks
produce the same result. A correlation far from 0 corresponds to equation 4.1 holding
with a probability far from 1

2 . In short, we need to find M1,M2 and M3 such that equation
4.3 holds for either more than half or less than half of a set of many different pairs of P
and C.

9

4.1 Correlation in the F function

We can describe the correlation of masks on the input and output of a function in a
correlation matrix. If the input length of the function is n, and the output length m, then
the matrix will be 2m × 2n because there are 2n input masks and 2m output masks. The
indices of the rows are then the numerical representations of the output masks, and the
indices of the columns are the representations of the input masks (eg. for a 4-bit mask,
index 3 represents the mask (0, 0, 1, 1)). All values in the matrix are then correlation
coefficients, with 1 meaning that the masks will always give the same result when applied
to the input and output of the function, −1 means that the results are always opposite and
0 means that the results are equal half of the time. A correlation matrix is a normalization
of a Walsh transform [1], such that

Cf = 2−nWf (4.4)

The Walsh transform is a 2m × 2n matrix [1] that is defined at index (u, v) as

Wu,v =
∑
x∈Fn

2

(−1)uT ·f(x)+vT ·x (4.5)

with u, v, x ∈ Fn
2 . This is the vector space of binary vectors with length n, so the products

in the equation are inner products.
Using this method, we aim to find linear approximations to the F function with high

correlation. This will help to derive the correlations of linear approximations over a
full round of DST40, which we can use in trails for the full cipher. We can calculate the
Walsh matrices for each sub-function of the F function, and therefore also their correlation
matrices. The correlation of a trail through this function is the product of correlations
through the sub-functions. We move backwards from the last function, h:

Ch =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1

2 0 0 1
2 0 0 1

2 0 0 1
2 0 0 0

0 0 0 0 0 1
2

1
2 0 0 −1

2
1
2 0 0 0 0 0

0 0 0 1
2 0 −1

2 0 0 0 0 1
2 0 1

2 0 0 0

 (4.6)

The columns are the input masks 0 to 15 and the rows are the output masks 0 to 3.
The top row in any such Walsh transformation or correlation matrix is trivial, because
the row with index 0 represents the mask that selects nothing from the output, mean-
ing that nothing is selected from the input either. Therefore, the only non-zero value
in the top row is the 1 in the first column. In the rest of the matrix we can see a
couple of non-zero correlations. Recall that h takes its input from four g functions,
meaning that bits with a value of 1 in the input mask represent active output from the
corresponding g function. From Ch it becomes clear that there is no input mask that
selects from only one g function, because the non-zero correlations occur at the input
masks (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0). However, all out-
put masks have only 4 out of these 6 possible input masks. Then for g:

Cg =

(
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

2 0 1
2 0 0 0 0 1

2 0 −1
2 0 0 0

)
(4.7)

For g it also holds that no input mask with a non-zero correlation selects from only one
f function. But, the combinations (0, 1, 1, 0) and (1, 0, 0, 1) now do not occur. The full
correlation matrices of fa to fe, which include masks over key bits, can be found in A.2.

10

The functions fa to fe depend on state bits and key bits. The key bits can be treated
as constant which allows the correlation matrices of these functions to be simplified. The
key is not altered by the Feistel structure after all, only by the key schedule. If masks for
certain fixed key values are highly correlated, those key bits may be a passable guess for
the linear approximation of the cipher. fa and fb depend on two key bits and three state
bits, so we have four 2 × 8 correlation matrices. We look at the non-trivial rows (so the
output mask is 1) for each key value and set out the values of the key bits against the
values of the input mask in Table 4.1. Because all correlation values in the first column
are non-zero, we can conclude that fa and fb are unbalanced. An unbalanced function
has non-zero correlations for combinations of all-zero input masks and non-zero output
masks. These values are interesting, because they are a “dead end” in a trail, since a
mask stops propagating through the cipher when it becomes all-zero.

function key bits 000 001 010 011 100 101 110 111

fa 00 −1
4

1
4

1
4 −1

4
1
4

3
4 −1

4
1
4

01 1
4 −1

4 −3
4 −1

4 −1
4

1
4 −1

4
1
4

10 1
4

1
4

3
4 −1

4 −1
4 −1

4
1
4

1
4

11 −1
4 −1

4 −1
4 −1

4
1
4 −3

4
1
4

1
4

fb 00 1
2 0 0 1

2 −1
2 0 0 1

2
01 −1

2 0 0 1
2

1
2 0 0 1

2
10 −1

2 0 0 1
2 −1

2 0 0 −1
2

00 1
2 0 0 1

2
1
2 0 0 −1

2

Table 4.1: Correlation coefficients of input masks for fa and fb for fixed key bits

The functions fc and fd depend on three key bits and two state bits, so we get eight
2× 4 matrices. fe depends on only one state bit, so it has eight 2× 2 matrices. We again
use a table form to give the correlation coefficients in Table 4.2. The tables show that fc
and fe are unbalanced as well, for certain key bits. Given these correlation values, the
correlation of an approximation for the F function can be determined.

function key bits 00 01 10 11

fc 000 1
2 −1

2
1
2

1
2

001 −1
2 −1

2 −1
2

1
2

010 −1
2 −1

2
1
2 −1

2
011 1

2 −1
2 −1

2 −1
2

100 0 0 1 0
101 0 0 −1 0
110 0 1 0 0
111 0 1 0 0

fd 000 0 1 0 0
001 0 0 −1 0
010 0 0 1 0
011 0 −1 0 0
100 0 0 1 0
101 0 −1 0 0
110 0 1 0 0
111 0 0 −1 0

function key bits 0 1

fe 000 0 1
001 0 1
010 1 0
011 −1 0
100 −1 0
101 1 0
110 0 −1
111 0 −1

Table 4.2: Correlation coefficients of input masks for fc, fd and fe for fixed key bits

11

4.2 Mask propagation through DST40

When looking at the propagation of masks through a cipher round, we start from the
output of a cipher round and work our way up to the input. When a mask propagates
through XOR, it does not change. Consider a mask m, and the equation

x⊕ y = z

Then a mask operating on z will also operate on x and y. Because of the distributivity
of matrix multiplication, we can see that:

mT · z = mT · (x⊕ y) = mT · x⊕mT · y

When a mask propagates through duplication, there will be two different masks on the
other end. m1 and m2 are masks, and

x 7→ (x1, x2), x1 = x2

Then an addition of the masks exists before the duplication:

mT
1 · x1 ⊕mT

2 · x2 = mT
1 · x⊕mT

2 · x = (mT
1 ⊕mT

2) · x = (m1 ⊕m2)
T · x

Using these principles, we can set a mask at the output of a round of DST40 and derive
what the input mask looks like. This allows us to compute the correlation of a linear
approximation over a single round. Consider A||C||B as the output mask, where x||y is
the concatenation. Suppose that at the XOR we have x⊕ y = z, and A is the mask over
z. Then the masks for x and y are also A:

AT · z = AT · (x⊕ y) = AT · x⊕AT · y

If we have x 7→ (x, x) at the duplication, the mask C||B at the output of the round
and the mask E||D at the input of the F function. Then the mask over x before the
duplication is (C ⊕ E)||(B ⊕D):

(C||B)T · x⊕ (E||D)T · x = ((C||B)T ⊕ (E||D)T) · x
= ((C||B)⊕ (E||D))T · x
= ((C ⊕ E)||(B ⊕D))T · x

The input mask is then (C⊕E)||(B⊕D)||A and the output mask is A||C||B, as visualised
in Figure 4.1. We denote the function F with the input key K as FK . A, C and E are
2 bits long and B and D are 36 bits long. We note the correlation over the F function,
which is equal to that of the function FK . We can conclude that the correlation of this
linear approximation is given by

CFK
((C ⊕ E)||(B ⊕D)||A, A||C||B) = CFK

(E||D, A) (4.8)

This is the correlation matrix of the (n,m)-function FK , with n = 38 and m = 2 in the
case of DST40’s function. This will be further defined in 4.1. The correlation of a trail of
single round linear approximations over n rounds is then

Ctotal =
n∏

i=1

CFKi
(Ei||Di, Ai) (4.9)

with Ai, Di and Ei masks for round i.

12

Figure 4.1: Mask propagation in DST40

4.3 Linear approximations

First, we look for good linear approximations over a single round. We write the masks as
bit strings. There is one trivial approximation in which the output mask is 0, leading to
CFK

(0, 0) = 1. For the other values of the output mask A from Figure 4.1 the approxima-
tion has a correlation of less than 1. Take the mask A to be 11, and take any of the four
choices for the input mask, for example 1100. Then the correlation of this approximation
is

Ch(1100, 11) =
1

2
Then there are two g functions with a non-zero output mask: g1 and g2. For both of these
we choose input from fc and fd, such that

Cg1(0011, 1) = Cg2(0011, 1) = −
1

2

For these fc and fd functions (f3, f4, f7, f8) the correlations can be chosen to be 1 (or −1)
for certain key bits. For example, choosing the key bits to be 110 and the input mask to
be 01 for all of these functions leads to

Cfc(01, 1) = Cfd(01, 1) = 1

The correlation of the linear approximation over FK is then

CFK
(11110000, 11) =

1

2
· (−1

2
· 1 · 1) · (−1

2
· 1 · 1) = 2−3 (4.10)

The mask E||D = 11110000 is derived from the definitions of f3, f4, f7, f8 with the input
mask 01 for each of them. This is a linear approximation with a maximal correlation,
since it is composed of the approximations with maximal correlations of each component
function. Approximations with correlation 2−3 similarly exist for A = 01 and A = 10.
This is a large value, but has an exponential increase with each round. For instance, with
on average a quarter of rounds for which CFK

(0, 0) = 1 (since A = 00 about 25% of times
on average), a linear approximation would have correlation

Cn = (2−3)150 · 150 = 2−450 (4.11)

So, a different approach is needed.

13

4.4 Full cipher trails

With the knowledge of mask propagation and correlation in a single round, we can extend
to the full cipher. The 200 rounds can be divided into active and inactive rounds. When
the mask A from Figure 4.1 is 0, such that the mask E||D is also 0 with CFK

(E||D,A) =
CFK

(0, 0) = 1, the F function has no effect on the mask over the state, so the round is
called inactive. When A is non-zero, the round is called active.

The goal is to find a mask at the start of the first round and one at the end of the
last round that have high correlation. Since the cipher has 200 rounds, finding any masks
with (relatively) high correlation requires approximations with high correlation for active
rounds, as well as a lot of inactive rounds.

Since A is only 2 bits long, analyzing the three non-zero values is quite trivial. We
again write the masks as bit strings. Take A = 11. Then we have Ch(0011, 11) = 1

2 .
For the g and f functions we use the numbering from Chapter 3 and [2]. The active g
functions are then g3 and g4, for which we choose different trails:

g3 : Cg3(1100, 1) = −1
2 leads to an active fa (f9) and fb (f10). For these we choose

Cfa(000, 1) = ±1
4 and Cfb(000, 1) = ±

1
2 .

g4 : Cg4(0011, 1)) = 1
2 leads to two active fe’s (f15 and f16). For both we choose

Cfe(0, 1) = ±1.

We come back later to the negative values as they will play a role, but for now we keep
the result positive. Note that this has an input mask equal to zero, while the output mask
is non-zero, so this is a previously mentioned dead end. The correlation is

CFK
(E||D,A) = CFK

(0, 11) =
1

2
(−1

2
· −1

4
· 1
2
)(
1

2
· 1 · 1) = 2−6 (4.12)

With this, the absolute minimum number of active rounds can be achieved because, since
E||D is always all zero, the mask is never changed by the F function. This implies that
B and C do not change in a single round, which also holds for A. The state is shifted by
two bits each round, so if the masks are never changed in a single round, the mask is in
the same position after every 40/2 = 20 rounds of the cipher. By taking A = 11 and B
and C all zero, there is only one active round every 20 rounds for 10 active rounds total.
That one active round has correlation 2−6, so over the complete 200 round cipher, there
is a correlation such that

X = 0000000000000000000000000000000000000011

Y = 0000000000000000000000000000000000000011

Ctotal(X,Y) =
200∏
i=1

CFKi
(Ei||Di, Ai) = (2−6)10 · 1190 = 2−60

(4.13)

Similarly, for the other possible mask values for A we find

CFK
(E||D,A) = CFK

(0, 01) = −1

2
(−1

2
· 1
4
· 1
2
)(
1

2
· 1 · 1) = 2−6

CFK
(E||D,A) = CFK

(0, 10) =
1

2
(−1

2
· −1

4
· 1
2
)(
1

2
· 1 · 1) = 2−6

(4.14)

So, a round correlation of ±2−6 can be achieved for all non-zero output masks, as well as
a correlation of ±2−60 for the full cipher approximation.

14

4.5 Key bit parity

Lastly, we express the sign of the correlation values for the fa, fb and fe functions. As
can be seen in the correlation tables, the sign is determined by the key bits. Hence, the
correlation over the functions can be written as a function of the key bits. Let k0, k1, k2
denote single key bits used in the function. Then

Cfa(000, 1) =
1

4
· (−1)k0+k1+1

Cfb(000, 1) =
1

2
· (−1)k0+k1

Cfe(0, 1) = 1 · (−1)k0+k2 k2||k1||k0 ̸∈ {000, 001, 110, 111}

(4.15)

By making the round correlations dependant on these functions, only the signs of the
correlations depend on key bits. So, knowledge of the key bits reveals the sign of the
correlation value. Conversely, knowledge of the sign of the correlation can give some
information about the key bits. Since each function depends on 2 bits, only the parity
can be derived. That means that it can be derived whether k0⊕k1 = 0 or k0⊕k1 = 1, for
example. By looking up the exact function input, we can determine the key bit positions
as well (except we use a 0-based index here) [2]. The total round correlation for each
non-zero mask, as a function of key bits, is then

Cf (0, 01) =
1

2
(−1

2
· Cf1(000, 1) · Cf2(000, 1))(

1

2
· Cf15(0, 1) · Cf16(0, 1))

= −2−6 · (−1)k39+k38+k31+k30+k17+k16+k1+k0+1

Cf (0, 10) =
1

2
(−1

2
· Cf5(000, 1) · Cf6(000, 1))(

1

2
· Cf15(0, 1) · Cf16(0, 1))

= −2−6 · (−1)k37+k36+k29+k28+k17+k16+k1+k0+1

Cf (0, 11) =
1

2
(−1

2
· Cf9(000, 1) · Cf10(000, 1))(

1

2
· Cf15(0, 1) · Cf16(0, 1))

= −2−6 · (−1)k35+k34+k27+k26+k17+k16+k1+k0+1

(4.16)

Note that we make different choices of mask trails for different output masks, because
that way more different key bits are covered. We only change the choice of one of the
active g functions, so the correlation is still 2−6. When the sum of the key bits is 0, −26 is
multiplied by −1 due to the +1 term in the exponent, so then the correlation is positive.

Of course, these additions key bit positions can be seen as masks, which brings us
back to the basic premise of linear cryptanalysis, as we now have all the values for the
equation

MT
1 · P ⊕MT

2 · C = MT
3 ·K

along with three combinations of M1,M2 and M3 such that the equation holds more than
or less than 50% of the time for the full cipher based on the sign of the correlation.

4.6 Key restrictions

However, for the function fe we noted that with key bits k0, k1, k2 it holds that Cfe(0, 1) =
1 · (−1)k0+k2 with the restriction that k2||k1||k0 ̸∈ {000, 001, 110, 111}. This is equivalent
to k1 ̸= k2. This means that the linear approximation given by the trail we constructed
only has a correlation of ±2−6 if the requirement that k17 ̸= k9 ∧ k16 ̸= k8 is met.
Otherwise, if either k17 = k9 or k16 = k8, the correlation will be 0. This requirement is
met by 240 · 12 ·

1
2 = 238 keys, a quarter of the key space.

15

Chapter 5

A theoretical attack

Using the masks and correlations given in the previous chapter, a theoretical attack on the
DST40 cipher can be described. The attack is theoretical because the correlation of the
trail we found is only 2−60, whereas the probability of guessing a key is 2−40. Nonetheless,
the linear approximation that was found in the previous chapter is extendable to an attack.

5.1 Attack description

In the previous chapter we found three sets of three masks that fit the equation

MT
1 · P ⊕MT

2 · C = MT
3 ·K

such that it holds more than half of the time with positive correlation and less than half
of the time with negative correlation. The masks are fully written out in Table 5.1 as bit
strings. We will assume that the key satisfies k17 ̸= k9 ∧ k16 ̸= k8.

M1 = 0000000000000000000000000000000000000001
M2 = 0000000000000000000000000000000000000001
M3 = 1100000011000000000000110000000000000011

M1 = 0000000000000000000000000000000000000010
M2 = 0000000000000000000000000000000000000010
M3 = 0011000000110000000000110000000000000011

M1 = 0000000000000000000000000000000000000011
M2 = 0000000000000000000000000000000000000011
M3 = 0000110000001100000000110000000000000011

Table 5.1: Three sets of masks that fit equation 4.3 with a correlation of 2−60

The idea of an attack using these masks is to generate many plaintext-ciphertext pairs
and check for each pair whether MT

1 · Pi = MT
2 ·Ci. If this happens in more than half of

the cases, we guess that the sign of our mask correlation is positive, and if it happens in
less than half the cases we guess that the sign is negative. This gives away MT

3 ·K, or
the parity of the selected key bits. After this, we perform an exhaustive key search, but
we can ignore all the keys that do not have the same parity on the selected bits that we
found. So, the key space is effectively reduced. Because we have three sets of masks, with
different selected key bits, we can reduce the effective key space further by repeating the
process. This corresponds to Matsui’s first algorithm for linear cryptanalysis on DES [10].
Each equation reduces the key space for the exhaustive key search by one bit, meaning

16

that with three equations the key space is reduced to 237. We present an algorithm for
the attack in this case.

Algorithm 1 The linear approximation attack

N ← the number of plaintext-ciphertext pairs
for Pi ∈ {P1, . . . , PN}, Ci ∈ {C1, . . . , CN} do

Pi ← random 40-bit challenge
Ci ← EncK(Pi) ▷ EncK here is DST40 encryption

end for
T ← 0
M1,M2,M3 ← masks found using linear cryptanalysis
for i ∈ {1, . . . , N} do

if MT
1 · Pi = MT

2 · Ci then
T ← T + 1

end if
end for
if T > N/2 then

guess← 1 ▷ guess MT
3 ·K = 1

else
guess← 0 ▷ guess MT

3 ·K = 0
end if

The more plaintext-ciphertext pairs we have, the higher the chance of success. Matsui
shows that the success rate of this algorithm is given by∫ ∞

−2
√
N |p− 1

2
|

1√
2π

exp
x2

2
dx (5.1)

[10], with p the probability that the linear equation holds. This |p − 1
2 | corresponds to

|12Ctotal|, which means that for a successful guess for the linear approximation 99.8% of
times, we need N = 2|p− 1

2 |
−2 = 8|Ctotal|−2 plaintext-ciphertext pairs.

5.2 Reduced-round variants

Clearly, an amount of plaintext-ciphertext pairs in the order of 8 · |2−60|−2 = 2123 for a
good success probability is not feasible, because there are only 240 plaintext-ciphertext
pairs with a block length of 40 bits, and it is a lot more expensive than exhaustive key
search. However, we can apply the attack to a variant of DST40 with less rounds.

Suppose we have a DST40 cipher with only 20 rounds. We use the same sets of masks
given in Table 5.1, since the number of rounds is only divided by 10. For a good success
probability we take N = 8|Ctotal|−2 = 215 plaintext-ciphertext pairs and apply Algorithm
1 for each set of masks. A Python implementation is used for executing Algorithm 1 for
each linear approximation, which is given in A.3.

The attack will be effective as long as N < 239, because with regular exhaustive
key search the key will be found in 239 encryptions on average. Rewriting results in
|Ctotal| > 2−18 which corresponds to 3 active rounds, since 1 in every 20 rounds has a
correlation of 2−6, and the other 19 have correlation 1. So, it works for at least 3 ·20 = 60
rounds, but the following 19 rounds will have a correlation of 1 as well. Therefore, the
linear approximation attack works on this cipher if it has up to 79 rounds.

17

5.3 Key search

Using Algorithm 1 for each linear approximation we find three values for the key bit
sums, which leaves an exhaustive key search to be done over 237 keys. Preferably, this
is implemented in a faster language than Python, like C++. The existing DST40 C++
implementation can easily be extended to run inside a for-loop. This loop can then be
parallelized using OpenMP. This is done by simply adding the line:

#pragma omp parallel for

and compiling with g++ and the flag -fopenmp. This leads to a parallel implementation
that can run at least 10 million 20-round DST40 encryptions per second on a laptop with
an AMD Ryzen 5 3550H at 3.4 GHz. Hence, running all 237 encryptions would take
approximately 3.7 hours on a machine with these properties.

5.4 Dealing with truncated output

In Chapter 3 it was described that only the 24 right-most bits of the output register
are used for the MAC response. This means that if an attacker is eavesdropping the
communication, the output of the cipher will look like 24 bits, rather than 40. This is
why two challenge response pairs are needed in the exhaustive key search phase after
Algorithm 1. One pair will limit the key candidates to 216 possibilities, and the second
pair will narrow that down to one key.

This truncation, however, is no problem for the linear cryptanalysis method in this
specific case. The ciphertext masks can be chosen such that they select none of the left-
most 16 bits of the output, so they are not relevant in the attack before the exhautive
key search phase.

18

Chapter 6

Related Work

This research takes the concept of linear cryptanalysis and applies it to the DST40 block
cipher. This chapter discusses some related work on both of these topics. Note that so
far, no papers on cryptanalysis of the DST40 cipher itself have been published.

6.1 DST40 analysis

DST40 was first reverse engineered in 2005 using a black-box approach [2]. The team used
an Evaluation kit from the same manufacturer as the DST chips, Texas Instruments, to
program the chips with chosen keys and messages. Using this method, they were able
to completely reverse engineer the cipher. They then implemented the cipher themselves
and were able to crack any 40-bit key by simply brute-forcing it using 16 FPGA’s, which
took less than an hour. Lastly, they simulated a DST device using their implementation
and a cracked key.

In 2019 another group analyzed DST chips and optimized the attack to only take
seconds [16]. They stored a lookup table with all combinations of plaintext and ciphertext
pairs on a 6 TB hard drive. After setting up communication with the DST chip themselves
using an Arduino, they implemented a proof of concept and demonstrated it on the Tesla
Model S. A theoretical car-only attack was also proposed, but deemed infeasible.

6.2 Linear cryptanalysis

After the differential cryptanalysis method, linear cryptanalysis was first applied in 1992
to successfully break the FEAL cipher [9], and later to “break” DES as well [10] [11].
However, these papers try to find indices such that the equation 4.1 holds with a proba-
bility unequal to 1

2 , or ϵ = |p−
1
2 | > 0, without describing the process in terms of masks

and correlations. Just like DST40, DES is a block cipher based off of a Feistel structure,
except DES is balanced and has a longer key length.

Some time later, a method using masks and correlations was developed for the design
of block ciphers [3]. This is the method that is used in this thesis.

19

Chapter 7

Conclusions

DST40 serves as a MAC-function in a challenge-response protocol for Keyless Entry and
Start systems in vehicles. It is a block cipher based on a Feistel structure with a block
and key length of 40 bits. The two sides of the Feistel structure are unequal in length in
DST40, with the left side being 38 bits long and the right side being 2 bits long. The key
schedule is a Linear-Feedback Shift Register that updates every three rounds. The cipher
runs for 200 rounds.

By applying the linear cryptanalysis technique we have found masks at the input and
output of the F function, that form a linear approximation over one cipher round with a
correlation of 2−3. Moreover, we have found masks for which a dead end occurs in the trail
with a correlation of 2−6, meaning that the input mask of a round can be all-zero while
the output mask is not. This leads to a linear approximation with a non-zero correlation,
in which the mask is unaltered by the F function. With this, a trail can be constructed
with only one active round in every twenty. For the full 200-round cipher this implies
that there exist linear approximations with correlation 2−60. However, this only works
for a quarter of all possible keys, due to a restriction of some key bit values in the trail of
the linear approximation.

We conclude that this does not allow for a feasible attack on the cipher, because more
than 2120 challenge-response pairs are needed to perform an attack on the cipher using a
linear approximation, which is far too much to be feasible. And even if that were feasible,
only 240 challenge-response pairs exist due to the 40-bit block length of the cipher.

Nonetheless, the results do show the possibility of an attack, so we demonstrate the
linear approximation attack on a reduced-round variant. For a 20-round version of DST40,
we have three linear approximations with a correlation of 2−6 each. We set a fixed key
and generate 215 challenge-response pairs. Using these linear approximations, we can
derive the sum of three sets of key bits. The key space can then be limited to keys which
satisfy the three sums of bit positions, effectively reducing the key space to 237. We show
that the linear approximation attack works for the DST40 cipher with up to 79 rounds.
Lastly, we show that brute-forcing the key in the reduced key space takes under 4 hours
with very limited hardware.

20

Bibliography

[1] P. Guillot B. Dravie J. Parriaux. “Matrix representations of vectorial boolean func-
tions and eigenanalysis”. In: HAL (2016).

[2] SC. Bono. “Security Analysis of a Cryptographically-Enabled RFID Device”. In:
14th USENIX Security Symposium (2005).

[3] J. Daemen. “Cipher and Hash Function Design Strategies based on linear and dif-
ferential cryptanalysis”. PhD thesis. 1995.

[4] T. Eisenbarth. Physical Cryptanalysis of KeeLoq Code Hopping Applications.

[5] A. Francillon. Relay Attacks on Passive Keyless Entry and Start Systems in Modern
Cars.

[6] S. Indesteege. A Practical Attack on KeeLoq.

[7] U. Kaiser. “Digital Signature Transponder”. In: RFID Security (2008).

[8] U. Kaiser. “UICE: A High-Performance Cryptographic Module for SoC and RFID
Applications”. In: Cryptology ePrint Archive, Paper 2007/258 (2007).

[9] A. Yamagishi M. Matsui. “A new method for known plaintext attack of FEAL
cipher”. In: Advances in Cryptology (1992).

[10] M. Matsui. “Linear cryptanalysis method for DES cipher”. In: Advances in Cryp-
tology (1993).

[11] M. Matsui. “The first experimental cryptanalysis of the data encryption standard”.
In: Advances in Cryptology (1994).

[12] Microchip. An Introduction to KeeLoq Code Hopping.

[13] Radio-frequency identification. https://en.wikipedia.org/wiki/Radio-frequency identification.

[14] Remote Keyless System. https://en.wikipedia.org/wiki/Remote keyless system.

[15] L. Wouters. “Dismantling DST80-based Immobiliser Systems”. In: IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2020 (2020).

[16] L. Wouters. “Passive Keyless Entry and Start Systems in Modern Supercars”. In:
IACR Transactions on Cryptographic Hardware and Embedded Systems 2019 (2019).

21

Appendix A

Appendix

A.1 DST40 code

The DST40 software implementation in C++. The functions are wrapped in a class which
is prepared for C linkage. This is compiled to a shared library, which allows the C++
implementation of the DST40 class to be used in (for example) a Python script.

1 #include "f-boxes.cpp"

2

3 using namespace std;

4

5 typedef unsigned long long ull;

6

7 class DST40 {

8 public:

9 void round_key(bitset<SIZE>& key, int round_number);

10 void feistel_round(bitset<SIZE>& x, bitset<SIZE>& key);

11 ull dst40(ull x, ull key, int rounds);

12 };

13

14 void DST40::round_key(bitset<SIZE>& key, int round_number) {

15 if (round_number % 3 == 2) {

16 bool k39 = (key[0] ^ key[2] ^ key[19] ^ key[21]);

17 key >>= 1;

18 key.set(39, k39);

19 }

20 }

21

22 void DST40::feistel_round(bitset<SIZE>& x, bitset<SIZE>& key) {

23 bitset<SIZE> temp {f(x, key)};

24 short r_bits = (x[1] << 1) | (x[0]);

25 temp ^= r_bits;

26 x >>= 2;

27 x.set(38, temp[0]);

28 x.set(39, temp[1]);

29 }

30

31 ull DST40::dst40(ull x_temp, ull k_temp, int rounds) {

32 bitset<SIZE> x {x_temp};

33 bitset<SIZE> key {k_temp};

34 for (int i = 1; i <= rounds; i++) {

35 feistel_round(x, key);

36 round_key(key, i);

37 }

38 return x.to_ullong();

22

39 }

40

41 extern "C" {

42 DST40* DST40_new() {

43 return new DST40();

44 }

45 void DST40_run(DST40* dst40, ull& x, ull k, int rounds) {

46 ull res = dst40 -> dst40(x, k, rounds);

47 x = res;

48 }

49 }

A.2 Correlation matrices

The f sub-functions’ correlations (transposed for readability):

Cfa =

1 0
0 0
0 0
0 −1

4
0 0
0 0
0 0
0 1

4
0 0
0 1

4
0 1

2
0 0
0 0
0 1

4
0 0
0 0
0 0
0 0
0 −1

4
0 0
0 0
0 1

2
0 −1

4
0 0
0 −1

4
0 0
0 0
0 0
0 1

4
0 0
0 0
0 0

Cfb =

1 0
0 0
0 0
0 1

2
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 −1

2
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 1

2
0 1

2
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Cfc =

1 0
0 0
0 0
0 0
0 0
0 0
0 1

2
0 0
0 0
0 −1

4
0 0
0 1

4
0 1

4
0 0
0 1

4
0 0
0 0
0 −1

2
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 1

4
0 0
0 1

4
0 1

4
0 0
0 −1

4
0 0

Cfd =

1 0
0 0
0 0
0 0
0 0
0 1

2
0 1

2
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 1

2
0 −1

2
0 0
0 0
0 0
0 0
0 0

Cfe =

1 0
0 0
0 0
0 0
0 0
0 1

2
0 −1

2
0 0
0 0
0 1

2
0 1

2
0 0
0 0
0 0
0 0
0 0

(A.1)

23

A.3 Implementation of Algorithm 1

The Python 3 implementation of the attack described in Chapter 5. The DST40 encryp-
tions are done using the shared library export from A.1.

1 from ctypes import cdll, c_ulonglong, c_int, byref

2 import random

3

4 SIZE = 40

5 LIB = cdll.LoadLibrary('./dst40.so')

6 KEY = 0x7f537a1329

7

8 class DST40(object):

9 def __init__(self):

10 self.obj = LIB.DST40_new()

11

12 def dst40(self, x, key, rounds=200):

13 result = c_ulonglong(x)

14 LIB.DST40_run(self.obj, byref(result), c_ulonglong(key), c_int(rounds))

15 return result.value

16

17 def mask(m, x):

18 return bin(m & x).count('1') % 2

19

20 dst = DST40()

21 rounds = 20

22 n = 2**15

23

24 def lin(txt_mask, cpr_mask):

25 t = 0

26 for i in range(n):

27 plaintext = random.getrandbits(SIZE)

28 ciphertext = dst.dst40(plaintext, KEY, rounds)

29 m1p = mask(txt_mask, plaintext)

30 m2c = mask(cpr_mask, ciphertext)

31 if m1p == m2c: t += 1

32

33 guess = 0

34 if (t > n/2): guess = 1

35 return guess

36

37 txt_mask01 = 0x0000000001

38 txt_mask10 = 0x0000000002

39 txt_mask11 = 0x0000000003

40 cpr_mask01 = 0x0000000001

41 cpr_mask10 = 0x0000000002

42 cpr_mask11 = 0x0000000003

43 key_mask01 = 0xc0c0030003

44 key_mask10 = 0x3030030003

45 key_mask11 = 0x0c0c030003

46

47 guess01 = lin(txt_mask01, cpr_mask01)

48 guess10 = lin(txt_mask10, cpr_mask10)

49 guess11 = lin(txt_mask11, cpr_mask11)

50

51 print("actual 01 =", mask(key_mask01, KEY), "guess 01 =", guess01)

52 print("actual 10 =", mask(key_mask10, KEY), "guess 10 =", guess10)

53 print("actual 11 =", mask(key_mask11, KEY), "guess 11 =", guess11)

24

A.4 Feistel function definitions

The indices of x and k start at 1 from the least significant bit.

F (X,K) = h(g1, g2, g3, g4)

h =

(
g4g3 + g4g1 + g3g2 + g2g1 + g2 + g1
g4g2 + g4g1 + g3g2 + g3g1 + g3 + g2

)

g1 = f4f3 + f4f2 + f4 + f3f1 + f3 + f2f1

g2 = f8f7 + f8f6 + f8 + f7f5 + f7 + f6f5

g3 = f12f11 + f12f10 + f12 + f11f9 + f11 + f10f9

g4 = f16f15 + f16f14 + f16 + f15f13 + f15 + f14f13

f1 = x24x32x40 + x24x40k32 + x24k32 + x24k40 + x24 + x32x40k40 + x32k32+

x32k40 + x40k32k40 + x40k32 + x40k40 + x40 + k32

f2 = x23x39 + x23k39 + x23 + x31x39 + x31k39 + x31 + x39k31 + x39k39 + k31k39 + k39

f3 = x8x16k24 + x8x16 + x8k16 + x16k8k24 + x16k8 + x16k16 + x16 + k8k16 + k8+

k16k24 + k16

f4 = x7k7 + x7k15 + x7k23 + x7 + x15k7 + x15k15 + x15k23 + k7

f5 = x22x30x38 + x22x38k30 + x22k30 + x22k38 + x22 + x30x38k38 + x30k30+

x30k38 + x38k30k38 + x38k30 + x38k38 + x38 + k30

f6 = x21x37 + x21k37 + x21 + x29x37 + x29k37 + x29 + x37k29 + x37k37 + k29k37 + k37

f7 = x6x14k22 + x6x14 + x6k14 + x14k6k22 + x14k6 + x14k14 + x14 + k6k14 + k6+

k14k22 + k14

f8 = x5k5 + x5k13 + x5k21 + x5 + x13k5 + x13k13 + x13k21 + k5

f9 = x20x28x36 + x20x36k28 + x20k28 + x20k36 + x20 + x28x36k36 + x28k28+

x28k36 + x36k28k36 + x36k28 + x36k36 + x36 + k28

f10 = x19x35 + x19k35 + x19 + x27x35 + x27k35 + x27 + x35k27 + x35k35 + k27k35 + k35

f11 = x4x12k20 + x4x12 + x4k12 + x12k4k20 + x12k4 + x12k12 + x12 + k4k12 + k4+

k12k20 + k12

f12 = x3k3 + x3k11 + x3k19 + x3 + x11k3 + x11k11 + x11k19 + k3

f13 = x18x26x34 + x18x34k26 + x18k26 + x18k34 + x18 + x26x34k34 + x26k26+

x26k34 + x34k26k34 + x34k26 + x34k34 + x34 + k26

f14 = x17x33 + x17k33 + x17 + x25x33 + x25k33 + x25 + x33k25 + x33k33 + k25k33 + k33

f15 = x10k10 + x10k18 + x10 + k2k10 + k2k18 + k18

f16 = x9k9 + x9k17 + x9 + k1k9 + k1k17 + k17

25

