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Abstract

Markov chains describe stochastic system behaviour and are suitable to
describe the behaviour of a plethora of systems that are subject to random-
ness. Reachability probabilities reflect the probabilities that within these
Markov chains, certain events such as failures occur. By answering reacha-
bility queries, we can therefore compute the probability of e.g. a packet being
lost in a network protocol. Existing approaches for resolving these queries
tend to suffer from scalability issues as the number of states increases. In
this thesis, we propose a new method which is based on the same ideas, but
requires significantly less memory by not storing a transition matrix for the
Markov chain. A prototype implementation of this method achieves compet-
itive results with existing tools like Prism, Storm and Rubicon, suggesting
that matrix-free methods are worth further investigation.
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Chapter 1

Introduction

Model checking Model checking is an important tool for software verifi-
cation. However, many systems deal with uncertainty, including for example
distributed systems (which are subject to potentially unreliable networks),
or any system that relies on randomness. One example of such a system
is the Ethernet protocol, which relies on randomized back-off to deal with
collisions [14]. Because of this, it is often impossible to fully guarantee that a
system is absolutely always behaving as desired, meaning that classic model
checkers are not able to meaningfully verify at least some properties (such
as availability) of such a system.

Probabilistic model checking However, we still expect systems like Eth-
ernet to be reliable. For example, packet loss due to collisions should be
extremely rare on most network configurations, even if it is not possible to
fully avoid it. To verify that this is indeed the case, we can use probabilistic
model checking to determine the probability of e.g. losing a packet when
n devices all want to transmit simultaneously. Probabilistic model checking
works on Markov chains which represent the system [7].

Problem One big concern for probabilistic model checking is scalability:
the ability for model checking tools to deal with very large state spaces.
Conventional probabilistic model checking tools such as Storm [8] store the
full transition matrix for the Markov chain that is being checked, which has
a high cost, both in terms of memory and CPU time. Other tools such as
Rubicon use a different approach based on paths through the Markov chain,
which can be more efficient depending on the problem.

Our solution In this thesis, we propose an alternative method that is sim-
ilar to conventional probabilistic model checkers, but based on computation.
Instead of storing the transition matrix in memory, we calculate its values
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on-the-fly using a successor function. This has the potential to greatly re-
duce memory consumption, and in a system with limited memory bandwidth
also has the potential to be faster.

Outline In Chapter 2, we give precise definitions of Markov chains and the
reachability problems solved by probabilistic model checking tools. Then,
in Chapter 3 we discuss two approaches that we implemented, which we
compare against existing work in Chapter 4. In Chapter 5 we compare
a prototype implementation of our ideas with existing probabilistic model
checkers, and finally in Chapter 6 we conclude with future work.
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Chapter 2

Preliminaries

2.1 Markov chains

A Markov chain is a way of modeling a stochastic process.

Definition 2.1 (Markov chain) A Markov chain is a tupleM = (S, P, ι0),
where S is a set of states, P : S × S → [0, 1] is the transition probability be-
tween two states such that for all states s ∈ S it holds that

∑
s′∈S P (s, s′) = 1,

and ι0 represents the initial probability distribution such that
∑

s∈S ι0(s) = 1
[2].

Transition probability The transition probability P (s, s′) is the chance
that, if we are currently in state s, that in the next step we will be in state
s′.

Transition matrix P is often represented as a matrix (a transition ma-
trix), such that multiplying it with a probability distribution yields the prob-
ability distribution in the next time step.

Visual representation Markov chains can be represented visually in a
directed graph, by using vertices for states and edges for transitions. A good
illustrative example is the Knuth-Yao die [11], which simulates a fair die
with only fair coin flips. The illustration below shows a simplified version
simulating a d3:
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2.1.1 Absorbing Markov chains

A state which cannot be left after it is entered is called an absorbing state.
If every state can reach an absorbing state, then the entire Markov chain is
absorbing. The dice example above is absorbing, as states a to c all enable
us to reach the absorbing states represented by 1 to 3. In an absorbing
Markov chain, the probability of being in an absorbed state approaches (or
even becomes) 1 as time passes, since the other states all have a nonzero
probability of going to one of the absorbing states.

2.1.2 Higher-level Markov chains

Semantic states Markov chains as introduced here do not give any infor-
mation about states s ∈ S. As such, we could assign each state a number,
making S = {1, 2, . . . , |S|}. However, in many cases, each state carries some
sort of semantic meaning. It can therefore be useful to define states not as
simple numbers, but instead to define a set of variables V , with each state
being a mapping V → Z. For example, when representing a board game as
a Markov chain one might take V = {Turn, P layer1, P layer2} where the
variables represent whose turn it is and where each player is located on the
board.

Higher-level successor function P is often dependent on the values of
these variables. Continuing on the board game example, if in a given game
a player can only move if it is their turn, then if we have two states s and s′,
where s(Turn) = 1 and s(Player2) ̸= s′(Player2), we can determine that
P (s, s′) = 0 (depending on the game). This allows us to give P in the form
of a program.

Markov chain description languages There exist languages that are
intended to describe Markov chains in such a way, for example the PRISM
language, which is associated with the PRISM model checker [12] but also
supported by other model checkers such as Storm [8]. In this language,
one defines modules which contain variables (which are bounded integers or
booleans), and commands, which consist of a guard (condition, e.g. Turn =
1) and one or more updates (combinations of probabilities and changed vari-
ables, e.g. 0.25 : Player1’ = Player1 + 4 to have a 25 percent chance
to move player 1 ahead by 4 squares).

2.2 Reachability probability

The reachability probability in a Markov chain is the chance that a certain
state or set of states is reached, either within a number of time steps or at all.
This is essential for verifying properties about a probabilistic process, such
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as the aforementioned dice model. In this thesis, we focus on two variations
of the reachability probability problem.

2.2.1 Indefinite horizon

The reachability probability with an indefinite horizon is the probability that
a state is ever reached. In the die example, this is useful to determine that
the die is fair: 1 through 3 should all have a probability of exactly 1

3 . We
can represent an indefinite horizon reachability problem as follows:

Definition 2.2 (Indefinite horizon reachability problem) An indefinite
horizon reachability problem can be described as a tuple (M, T ) where M
represents a Markov chain and T ⊆ S represents the set of target states. A
solution to the problem consists of a probability p that we ever reach one of
the states in T .

Note that our definition uses a set of states instead of a single state, which
is not strictly necessary, since if we wish to generalize to multiple target
states we can also change the Markov chain to accomplish this. For this,
we could take S′ = S \ T ∪ {t} and P ′ = P except that ∀s ∈ S we set
P ′(s, t) =

∑
s′∈T P (s, s′). Similarly, ι′0 = ι0 except ι′0(t) =

∑
s∈T ι0(s).

2.2.2 Fixed horizon

The reachability with a fixed horizon is the probability that a state is reached
after n timesteps. This is useful for time-sensitive properties. For example
it can be used to determine the probability that the die model terminates
within 5 coinflips.

Definition 2.3 (Fixed horizon reachability problem) A fixed horizon
reachability problem consists of a tuple (M, T, n) where ⟨I, λ, P ⟩ represent a
Markov chain, T ⊆ S represents the set of target states, and n represents
the horizon. A solution consists of the probability p that we are in one of the
states in T after n timesteps.

Definition 2.4 (Bounded horizon reachability problem) A bounded hori-
zon reachability problem consists of a tuple (M, T, l, u) whereM is a Markov
chain, T ⊆ S is the set of target states, l is the lower bound, and u is the
upper bound. A solution consists of the probability p that we are in one of
the states in T after at least l but no more than u timesteps.

Note that the bounded horizon problem generalizes both the fixed horizon
problem as well as the indefinite horizon one. For the first we need to set
l = u, and for the latter we need l = 0 and u =∞.
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Chapter 3

Approaches

This thesis focuses on two approaches to calculate the reachability probabil-
ity in a discrete time Markov chain. We describe these approaches in this
chapter.

3.1 Forward iteration

Idea Forward iteration is an approach that is very suitable for fixed-horizon
problems. It works by recursively calculating probability distributions. Say
that we need to calculate the probability of being in some state s after ex-
actly five timesteps in a Markov chain with an initial distribution ι0 and a
transition matrix P . We can then calculate iota1, the probability distribu-
tion after one step, by calculating ι1 = Pι0 (and in general, ιt+1 = Pιt).
The probability of being in state s after five timesteps can then be looked
up in ι5 by taking the value of the corresponding element, as described in
Algorithm 1. This is then equivalent to the mass of all paths where the 5th
state is s, because Markov chains are not dependent on previous states.

Algorithm 1 Forward iteration method
1: procedure forward(ι0, T , n) ▷ n is the number of timesteps
2: x← ι0 ▷ initialize with initial distribution
3: for i← 1, n do
4: x← iterate(x) ▷ equivalent to x← Px, see Algorithm 2
5: end for
6: p← 0
7: for all s← T do ▷ for every target state
8: p← p+ xs ▷ add its probability to p
9: end for

10: return p
11: end procedure
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Upper bounds Should we wish to calculate the probability of reaching s
after u timesteps or earlier, all that needs to be done is to make the target
state absorbing: when in state s, the only possible successor is s. We can
then take n = u. This works because if we have a Markov chain M and
apply the described transformation to get another Markov chain M ′, and we
have a path through M where state s is first reached after i ≤ u transitions,
then following the same path through M ′ for the first i transitions will bring
us to state s as well, and because it is absorbing we will still be in state s at
time n.

Lower bounds In addition, calculating the probability of reaching s after
at least l timesteps is also possible. For this, we begin by doing l steps in
Markov chain M , and then using the obtained distribution ιl to continue
using the probability function from M ′.

Multiple target states One advantage of this approach is that if we
have multiple target states, we can look up their values individually without
doing the iteration multiple times. This means it is possible to compare
the probabilities for various outcomes, which is useful e.g. if the goal is to
determine fairness.

Reach-avoid properties Furthermore, if states need to be avoided in the
path leading up to a target state, it is possible to exclude these paths from
the solution by making these so-called ‘bad states’ absorbing. Then, if we
have an original Markov chain M and one with absorbing bad states MB,
and a path p through M such that pn = s and pi = b where i < n, the path
pb is identical to p until i, after which it diverges because it stays in b and
as such will not reach s at time n.

Implementation choices There are many possible implementations of
this approach. For example, it is possible to calculate and store the transition
matrix (e.g. as a sparse matrix or MTBDD [4]) and do standard matrix-
vector multiplication. However, doing this is very memory intensive due
to needing to store the entire matrix. Hence, we have chosen to try a novel
approach where we make use of a successor function in the form of a program,
taking in a state and returning a list of possible successor states, essentially
calculating the values in the matrix P on-the-fly.

Variable mapping Doing this does require some way of finding the vari-
ables corresponding to a state. This can be done by using a hashmap or
similar associative data structure, although this does require storing detailed
states in memory. It is also possible to use an invertible function to map
between integers and ‘full’ states, which prevents us from needing to store
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each possible state in detail. We have chosen to do the latter, by creating
functions stateToIndex and indexToState such that if we have integer
variables a ∈ [0 .. A), b ∈ [0 .. B) we associate these with the unique integer
s = aB + b. We can then obtain back a = ⌊s/B⌋ and b = s mod B. We
can then use the integer s as an index into a vector which represents the
probability distribution.

Algorithm 2 Single iteration
1: procedure iterate(ιt)
2: ιt+1 ←

−→
0 ▷ initialize result vector with zeroes

3: for i← 1, n do ▷ n is the size of the vector
4: if ιt,i = 0 then
5: continue ▷ if ιt,i is 0 then line 10 has no effect
6: end if
7: state ← indexToState(i)
8: for all (s, P )← successors(state) do
9: j ← stateToIndex(s)

10: ιt+1,j ← ιt+1,j + P · ιt,i
11: end for
12: end for
13: return ιt+1

14: end procedure

3.1.1 Approximating infinite horizon problems

For absorbing Markov chains that terminate but do not have a fixed hori-
zon, it is possible to use this method to approximate the probability of
terminating by iterating until the chance of absorption is sufficiently high
(e.g. 99.99%). Each outcome is then at least as likely as it is in the final
obtained distribution, and can only be a small amount higher (for example,
0.01% when terminating at 99.99%).

Error When we terminate at 99.99%, we can be sure that if we found
a probability p so far, the true probability is somewhere between p and
p + 0.01%. As such we can minimize the potential error by guessing the
value p+0.005%, as the error in either direction can be at most ϵ = 0.005%
in that case. However, in practice it is likely that p

99.99% will be a closer
approximation as the remaining paths will most likely have a similar distri-
bution as the absorbed paths.

Implementing this method To implement this method, we need to ad-
just Algorithm 1. We remove the parameter n and instead pass the desired
ϵ. On line 3 we can then change the loop to a while which terminates if
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the absorption probability pa =
∑

a←A xa (where A is the set of absorbing
states) is larger than or equal to 100% − 2ϵ. Additionally, as described in
the previous paragraph, it is possible to return a closer approximation than
p, such as p+ 0.5(1− pa) or p

pa
on line 10.

Probability bounds As this approach gives us probability bounds at ev-
ery iteration [p ↓, p ↑] = [p, p + (1 − pa)], this approach is quite suitable for
verifying properties that themselves involve bounds (like “there is at least a
90% chance of X” or “there is at most a 30% chance of Y”), as the termination
condition can be changed to the correct bound. In general, if the property
says that the probability should be between (or outside of) the range [b ↓, b ↑]
then we can terminate if [p ↓, p ↑] is either entirely inside or entirely outside
of [b ↓, b ↑], as we are then know for sure if for our true probability pt it holds
that pt ∈ [b ↓, b ↑].

3.2 Linear system solving

Idea Linear system solving is an approach that is suitable for indefinite-
horizon problems. It works by creating a linear system of equations that
describe the probability of reaching the target state. For example, if we have
a target state st we know that the probability of reaching it from itself Pt

equals 1. If we have another state sa with successors sb and sc, each with
probability 0.5, we know that Pa = 0.5Pb + 0.5Pc.

Matrix generation By enumerating the possible states, we can then gen-
erate a linear system of the form Ax = b, and use any linear system solver
to calculate x, which then represents our probabilities. For a Markov chain
as described in the example above, this system would look something like

−1 0.5 0.5 0

. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 0 1



Pa

Pb

Pc

Pt

 =


0

0

0

1


To generate this matrix, it is necessary to create a mapping from states to
indices, so that we know what column in A corresponds to a state.

Implementation choices Similarly to the forward iteration method, it is
possible to store this matrix in some form. We can then use a traditional
linear system solver (either direct or iterative) to obtain the values for P .
Just like with forward iteration, we have chosen to forego storing the matrix,
instead calculating its values on the fly using a successor function. This does
restrict us to only using iterative solvers, as we cannot directly manipulate
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the values in the matrix anymore. We have chosen to use the Eigen [6]
library which natively supports this approach, called matrix-free solving. To
do this, one has to create a custom matrix type and implement a C++
function that performs matrix-vector multiplication for it, which we have
done as in Algorithm 3. From the iterative solvers available in Eigen, we
have chosen to use BiCGSTAB [16]. We did not evaluate in detail other
available solvers such as IDR(s) [17].

Algorithm 3 Pseudo matrix-vector multiplication
1: procedure matvec(rhs: Vector⟨n⟩)
2: result ← −→0
3: for i← 1, n do
4: state ← indexToState(i)
5: for all (s, P )← successors(state) do
6: j ← stateToIndex(s)
7: resulti ← resulti + P · rhsj
8: end for
9: if state is not absorbing then

10: resulti ← resulti− rhsi
11: end if
12: end for
13: end procedure

Related work Using linear system solving to calculate reachability prob-
abilities is not new, and has been done before, for example in an analysis of
the Game of the Goose [5], and is also used in Storm [8]. However, these use
explicit representations for the matrix, while in our implementation we have
chosen to not directly represent the matrix, and use a matrix-free approach
instead.
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Chapter 4

Related Work

4.1 Storm

Overview Storm [8] is a probabilistic model checker that represents the
current ‘state-of-the-art’. It is implemented in a modular fashion, which
means that it can use different approaches and libraries depending on the
problem at hand. For example, Storm provides different engines. However,
most of these either require storing the model in some form (e.g. as a matrix
or BDD). Its other engines such as expl or abs are highly limited in the
properties they are able to check.

Difference In contrast, this thesis focuses on ways to avoid storing the
model numerically at all, and contains methods centered around a successor
function instead, which give our methods the potential to have large reduc-
tions in memory usage compared to any of the engines available in Storm.
For example, Storm also supports linear system solving, but not doing it
in a matrix-free manner.

4.2 Rubicon

Overview Rubicon [10] represents an alternative method of probabilistic
model checking, which uses the probabilistic inference engine Dice [9]. This
approach is currently limited to fixed-horizon reachability problems. The
way it works is by building up a BDD that represents the paths through a
Markov chain, and then calculating a weighted sum.

Differences This is a completely different approach to what is outlined in
this thesis, but provides an interesting comparison, because Rubicon does
not directly store a numerical representation of the model either, instead
choosing to represent paths. As such it provides another way to avoid storing
the transition matrix.
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4.3 Sound Value Iteration

Overview Sound value iteration [15] is one of the possible approaches to
iteration as done in probabilistic model checkers. It is supported in Storm
[8], and, like other traditional probabilistic model checking techniques [2],
works backwards. However, like the forward iteration method described in
this thesis, it has reliable lower and upper bounds. As such it is quite similar.

Differences Of course, the main difference is the iteration direction. This
difference has consequences in some areas, for example in our iteration step
described in Algorithm 2 the optimization in line 4 is only possible with a
forward approach, as a backward method (like in Algorithm 3) does not allow
us to know in advance if the weight will be zero. Furthermore, our approach
only keeps track of a single vector, while sound value iteration keeps track of
two vectors, one representing the lower bound and the other representing the
difference between the upper and lower bound. On the other hand, sound
value iteration supports Markov decision processes, and we do not know if
it is possible to extend forward iteration to work with this kind of model.
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Chapter 5

Experimental results

In this chapter we will compare a prototype of our described approaches with
some existing probabilistic model checking tools on two problems we believe
are reasonably representative.

5.1 Experimental setup

We will be comparing our prototype (written in C++ and using the Eigen
library [6]) with the following existing model checking tools:

• Storm 1.8.0 (as available on Docker Hub)

• Prism 4.8

• A custom build of Rubicon in combination with Dice as available on
Docker Hub

All testing was performed on a desktop computer with an 8-core 16-thread
AMD Ryzen processor and 32 GiB of system memory running Linux. We
note that Docker containers were run in Podman, which should not affect
performance. For measuring total run-time, we used Hyperfine [13]. This
tool runs a benchmark multiple times and outputs the mean used time
(which is more accurate than a single run), and also outputs CPU time
(which can, for example, be used to determine if there is significant use
of multithreading). Other run-times are extracted from standard output,
which is less precise but gives a global indication of how a tool like Storm
spends its time. Memory measurements are done by looking at the peak
resident set size of the process, which should be reliable as long as swap is
not used by the measured process. Source code and results are also available
at https://github.com/ColonelPhantom/thesis-prototype.
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5.2 Problem A: Factories

The Factories example was introduced in the Rubicon paper [10] as a mo-
tivating example. It involves a probability matrix that is fully dense (which
means storing it sparsely does not save any memory) and highly irregular
(meaning that techniques based on decision diagrams are also not effective).
Because our approaches do not store the matrix, we are hopeful that our
approach performs reasonably well by avoiding the memory bottleneck.

5.2.1 Problem description

The model consists of n factories, that have two possible states: striking
or working. Furthermore, each factory has a unique probability pi to start
striking, as well as a probability qi to go back to work. Because every factory
can go to either state each day, all states can reach all other states which
makes the transition matrix fully dense. The irregularity is caused by all the
values for pi and qi being different. The property for this model we will be
investigating is “what is the probability that all factories are striking at the
same time, within h days” (given as P=? [ F <= h allStrike ]).

5.2.2 Baseline results

As a baseline, we have chosen to use a model with f = 12 and h = 10. We
can then evaluate how different tools perform with this configuration and
how they scale with varying the f and h parameters. Here are the results
for the various tools:

Tool Wall time Memory
Storm (dd) Error (BDD Unique table full)

Storm (hybrid)
Storm (sparse) 5.2 seconds 1020 MB

Prism (sparse, -cuddmaxmem 4g) 49.9 seconds 2403 MB
Rubicon 0.5 seconds 141 MB

Prototype (forward iteration) 0.5 seconds 4 MB

We note that our prototype has the model compiled into it. A practical
implementation would need to compile the model to machine code at run-
time, which would introduce additional overhead. Compiling the prototype
takes around 4 seconds on this machine, but we believe most of that time is
spent compiling code from the Eigen dependency. Additionally we did not
include the time it takes for Rubicon to generate the Dice program. We have
decided to do a more in-depth comparison between our prototype, Storm’s
sparse engine, and Rubicon, to observe how these different approaches scale
with the f and h parameters.
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5.2.3 Varying model size

We will now analyze how our implementation scales with models where f
varies, while keeping a fixed h = 10. f affects the number of states (= 2f )
and transitions (= (2f )2). With f = 15, Storm ran out of memory on this
computer during the model checking phase, despite the presence of a sizable
swap partition. It was killed by the operating system and as such there are
no results. By contrast, the memory usage of our prototype did not exceed
5 MB.

Storm Rubicon Prototype
f Construct Check Total Memory Time Memory Time
12 4.7 s 0.6 s 5.2 s 1020 MB 0.5 s 142 MB 0.5 s
13 18.6 s 2.4 s 21.1 s 3900 MB 1.3 s 272 MB 2.1 s
14 77.1 s 9.6 s 87.1 s 15405 MB 3.2 s 511 MB 8.4 s
15 321.0 s nan s nan s > 32000 MB 8.6 s 766 MB 35.5 s
16 nan s nan s nan s nan MB 26.5 s 1906 MB 176.1 s
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0

50

100

150

200
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im
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nd
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Speed for model checking factories problem with h = 10

Prototype
Storm

Rubicon

5.2.4 Varying horizon size - small model

Keeping f = 12 as in the baseline but increasing the horizon to higher val-
ues, the memory usage stays the same for Storm and our prototype stay but
computation time increases due to needing more iterations. Rubicon does
need more memory because the paths it needs to represent become bigger.
We have tried values h ∈ {10, 20, 40, 80, 160}.
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Storm Rubicon Prototype
h Construction Checking Total time Time Memory Time
10 4.7 s 0.6 s 5.2 s 0.5 s 141MB 0.5 s
20 4.5 s 0.7 s 5.3 s 1.3 s 289MB 1.0 s
40 4.7 s 0.9 s 5.6 s 3.1 s 510MB 2.1 s
80 4.6 s 1.4 s 6 s 7.4 s 781MB 4.3 s
160 4.5 s 2.3 s 7 s 18.1 s 1557MB 8.6 s
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Storm (total)
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We observe that our prototype slows down more than Storm when adding
more iterations, being slower than Storm’s sparse engine in the case where
horizon h = 160 despite the overhead of model construction. In addition,
Rubicon sees by far the biggest negative impact, being the slowest option
above h = 80 and also being the only tool for which memory consumption
grows with h.

5.2.5 Varying horizon size - bigger model

We also tried the above test, but with f increased to 14, as this is the biggest
model that Storm can evaluate on our test machine.

Storm Rubicon Prototype
h Construction Checking Total time Time Memory Time
10 77.0 s 9.6 s 87.4 s 3.3 s 510MB 8.4 s
20 78.5 s 11.6 s 89.6 s 8.6 s 933MB 17.6 s
40 77.1 s 15.2 s 92.4 s 25.2 s 2023MB 36.4 s
80 77.1 s 22.6 s 100.2 s 64.9 s 3726MB 72.9 s
160 78.9 s 37.6 s 115.2 s 188.4 s 7669MB 148.0 s
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We observe that Rubicon still scales the worst of all tools with horizon
size, but it compares less unfavourably than with f = 12. At h = 80 it is
now the fastest tool, beating our prototype. In addition, even at h = 160 its
memory usage (around 8 GB) is now below Storm (which uses nearly 16
GB).

5.2.6 Discussion

We have observed that Storm uses a very large amount of memory for
this problem, severely limiting the maximum model size for this problem.
In addition, its model construction phase also takes a large amount of time.
However, Storm does proceed through model checking quite quickly, making
it a suitable tool for problems with a horizon that is far away. Rubicon is
quite fast with nearby horizons, but still uses significant amounts of memory.

For this problem, our implementation therefore has a strong benefit in
that it uses only a miniscule amount of memory. Runtime is also competi-
tive, being generally worse than Rubicon for small horizons and worse than
Storm for big horizons, but also being the fastest in at least some cases
(such as f = 12, h = 40).

5.3 Problem B: Snakes & Ladders - Termination

Snakes & Ladders is a widely-known board game, for which the amount
of turns has been analyzed before [1]. With probabilistic model checking,
it is also possible to analyze games like this, calculating the probability of
the game being finished after a certain number of turns. Compared to the
Factories problem, storing the transition matrix for this problem is quite
easy, since there are at most six outgoing transitions per state (meaning it is
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very sparse) and only a small amount of possible values, most being either
0 or 1

6 .

5.3.1 Problem description

There is a board with n players, which all start on square 0. The goal is to
reach square 100, the game ends as soon as one player does so, as that player
then wins. Players take turns, and when it is their turn they roll a 6-sided
die. After this, they move ahead by the number of squares indicated. If they
land at the bottom of a ladder after moving, they can climb it, which brings
them to a square closer to 100. If they land at the head of a snake, they
slide down it, which brings them to a square closer to 0. If moving would
bring the player to a square beyond 100, they do not move. For this section,
we calculate the probability of the game ending in h turns: P=? [ F<=h
finished ].

5.3.2 Baseline results

As a baseline, we have chosen the parameters n = 3, h = 80.
Tool Wall time CPU time Memory

Storm (dd) 137.2 s 2024.2 s 3884 MB
Storm (hybrid) 4.6 s 71.4 s 2938 MB
Storm (sparse) 8.3 s 8.2 s 652 MB
Prism (hybrid) 1.9 s 2.4 s 176 MB

Rubicon Out of memory > 32000 MB
Prototype (forward iteration) 1.2 s 1.2 s 28 MB

Prism We observe that Prism performs very well in this benchmark, being
faster than Storm. Storm also puts a much heavier load on the CPU,
making use of all 16 hardware threads for the hybrid and dd engines.

Rubicon Rubicon runs out of memory, likely due to the relatively high
value for h, which we have observed to increase its memory requirements for
the Factories problem.

Prototype Our prototype performs well for this problem, although we do
note that the hand-written successor function is quite well optimized. It is an
open question whether or not an algorithmically generated function (based
on the Prism program we used for the other tools) would perform equally
well. In addition, the memory usage in the prototype is based on a close-to-
optimal index ↔ state mapping, where impossible values for variables are
eliminated. A more naive mapping could result in a higher memory usage.
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In-depth In the coming subsections, we will compare our prototype with
Prism and Storm in more detail, to compare their scaling with n and h.

5.3.3 Extra player

Keeping h = 80 but increasing n to 4 increases memory usage significantly.
Prism and our prototype now use similar amounts of memory, and Storm’s
sparse engine runs out of memory. The hybrid engine does not, but does get
close to the system’s memory limit.

Tool Wall time CPU time Memory
Storm (sparse) Out of memory > 32000 MB
Storm (hybrid) 423.8 s 6763 s 30424 MB
Prism (hybrid) 212.5 s 212.6 s 2651 MB

Prototype (forward iteration) 109.9 s 104.4 s 2693 MB

5.3.4 Varying horizon

For n = 3 we ran some more tests, trying h ∈ {10, 20, 40, 80, 160, 320}.
Memory usage did not change from the baseline, so it is not included here.

h Storm (sparse) Storm (hybrid) Prism (hybrid) Prototype
10 4.8 s 3.2 s 1.2 s 0.0 s
20 5.4 s 4.0 s 1.2 s 0.1 s
40 6.3 s 4.2 s 1.2 s 0.5 s
80 8.3 s 4.7 s 1.9 s 1.2 s
160 12.1 s 5.5 s 3.3 s 2.7 s
320 19.4 s 7.3 s 6.2 s 5.6 s
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All tools scale acceptably, although Storm’s sparse engine scales some-
what worse than the others, while its hybrid engine scales slightly better.

5.4 Problem C: Snakes & Ladders - Winning

With the same Snakes & Ladders game, we can also investigate the winning
probabilities of various players. For this we will be using the property P=?
[ F "win0" ], which is the probability of the first player winning.

5.4.1 Baseline results

For the baseline, we have picked n = 3, and set the tools to iterate until a
relative error of 1e− 6, and for forward iteration an absolute error of 1e− 6
due to not knowing what

Tool Wall time CPU time Memory
Storm (dd) 610 s 8960 s 3884 MB

Storm (hybrid) 5.3 s 82.7 s 3824 MB
Storm (sparse) 6.1 s 6.0 s 1518 MB

Prism (hybrid) -gs 6.2 s 6.6 s 156 MB
Prototype (linear system solving) 11.5 s 11.5 s 72 MB

Prototype (forward iteration) 6.3 s 6.3 s 28 MB

We observe that our prototype has the upper hand in memory usage, and is
competitive in time usage. Forward iteration also performs very well, despite
not being ideal for indefinite horizon problems like this.

5.4.2 Snakes & Snakes

It is possible to reverse all the ladders in the game to turn them into snakes.
This has the effect of making all approaches take more iterations, by slowing
down their convergence. A good linear system solver has the upper hand here
as its number of iterations is not determined by the amount of timesteps until
absorption like with an iterative approach.

Tool Wall time CPU time Memory
Storm (hybrid) 6.6 s 103.5 s 3992 MB
Storm (sparse) 7.4 s 7.4 s 1729 MB

Prism (hybrid) -gs 204 s 204 s 169 MB
Prototype (linear system solving) 13.8 s 13.8 s 72 MB

Prototype (forward iteration) 320.6 s 320.0 s 28 MB

We can see that Prism and forward iteration both suffer massively from
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this adjustment, taking multiple minutes whereas Storm and the solver-
based prototype take just a few more seconds than for the regular game.

5.5 Discussion

In the Factories problem, we have observed a great memory advantage for
our prototype, reducing memory usage by sometimes more than a thousand
times compared to Storm and Rubicon, while remaining competitive in
run-time. For Snakes & Ladders, the memory benefit is less pronounced, as
Prism also achieves a reasonable memory usage. Storm and Rubicon do
however use much more memory. Time usage is once again competitive with
other tools. These good results were however achieved with a reasonably op-
timized successor function, so it remains an open question if an automatically
translated function will also have competitive run-time.
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Chapter 6

Conclusions

In this thesis we have introduced a new approach to probabilistic model
checking using matrix-free approaches, relying on on-the-fly computation of
successor states instead of storing the transition matrix in some way. We also
introduced an approach we call forward iteration, as opposed to the backward
iteration usually employed by model checking tools. Finally, we implemented
and benchmarked a prototype that uses such matrix-free versions of both
forward iteration and linear system solving. We have observed an acceptable
run-time, as well as significant reductions in memory usage, which indicates
that it can be worthwhile to use a computation-oriented approach like this.

6.1 Future work

Prototype to production For this thesis, only a prototype has been
implemented. In order to more fairly and more comprehensively compare the
approaches outlined in this thesis with other methods, it would be necessary
to implement them either as part of an existing model checker (e.g. as an
engine in Storm [8]), or by writing the necessary parts of one (for example
parsing models in an existing format such as JANI [3]). An important part
of this would be translating the model to executable code automatically.

Multithreading The prototype implementation only runs on a single CPU
thread. It should be possible to create a significant speedup, given to-
day’s near-ubiquitous many-core processors. The main loop of the simu-
lated matrix-vector multiplication for the linear system method should triv-
ially parallelize, and the forward iteration method would require some use
of atomics or locking to safely update the result vector but should still be
quite easy to parallelize. Because parallelization is done over states, of which
there are often very many, it could be interesting to look into GPU acceler-
ation using tools such as CUDA, OpenCL or SYCL, as GPUs excel at such
massively parallel problems.

23



Asynchronous forward iteration The forward iteration method cur-
rently iterates all possible states at the same time. An asynchronous variant
that instead only moves forward (some of) the most likely state(s) could be
more efficient for the indefinite horizon case, as it means less work is done
for unlikely states.

Parallel chain isolation Markov chains often work in parallel. In the
given factories example, each factory is introduced as a separate 2-state
Markov chain. The final problem is then taken by combining these into one
big state machine, taking a product of the various states. Similarly, in the
Snakes and Ladders problem, it is possible to view each player as a separate
Markov chain.

However, as these examples do not have interaction between different
actors (Markov chains), it should suffice to model each actor separately, at
least for the forward iteration method. This should lead us to a model space
that is only |A|+ |B|+ |C| states large, rather than |A| · |B| · |C|.

Real-world problems aren’t so nice, and tend to have interaction between
different actors. This happens for example in more complex board games,
like Game of the Goose, which is fully probabilistic just like Snakes and
Ladders, but where players can interact in various ways. However, using the
forward iteration method, we believe that it may be possible to keep some
separation in some cases.
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