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Abstract

In this thesis, we adapt three feature summary methods for survival analysis. Namely, the
Partial Dependence Plot (PDP), Individual Conditional Expectation (ICE) and Accumulated
Local Effects (ALE). These methods belong to the field of "Explainable Artificial Intelligence",
which aims to demystify black-box machine learning models by explaining their inner workings.
The methods are adapted, in order to apply them to the survival setting, by incorporating the
survival probability and notion of time.

Apart from this, we conduct a comparative analysis of the adapted methods in terms of accuracy
and efficiency. The results indicate that the accuracy of PDP and ICE is unaffected by the
degree of feature correlation in the data. In contrast, the accuracy of ALE decreases when there
is moderate to high feature correlation. However, in terms of execution time, ALE demonstrates
better scalability than PDP and ICE.

Keywords Explainable AI, feature summary methods, survival analysis, accuracy, efficiency
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Chapter 1

Introduction

Machine learning plays an increasingly important role in society. For example, the International
Data Corporation (IDC) expects global spending on artificial intelligence to reach $154 billion in
2023, an increase of 26.9% compared to 2022 [2]. In 2026, this number is expected to surpass $300
billion [2]. The primary factor behind this trend is the increasing ability of machine learning
systems to demonstrate superhuman performance [8]. For example, an AI model trained on
X-ray images was able to outperform human radiologists in detecting breast cancer [28].

However, this rise in performance is often achieved through increased model complexity, turning
these systems into so-called "black boxes" [27]. As a result, their inner workings are invisible to
users and even experts cannot fully understand the rationale behind their predictions [5]. This
poses a key issue in the adoption of AI. Particularly in sensitive but critical domains, such as
healthcare, where they could be of great value [27]; in those cases, understanding the reasoning
behind a prediction is crucial, otherwise, it is hard to trust [3]. Furthermore, the General
Data Protection Regulation (GDPR), imposed by the European Parliament in May 2018, forces
algorithmic decision-making to be interpretable: "a data subject has the right to meaningful
information about the logic involved" [1].

A research field that aims to solve this problem is Explainable Artificial Intelligence (XAI). It
focuses on producing more transparent AI while maintaining a high level of performance [3].
Over the last few years, scientific interest in this field has increased. However, this mainly
resulted in the development of numerous interpretability methods [3]. As pointed out by several
literature reviews, there have been few works on evaluating these methods [3, 27, 41]. Therefore,
the need for comparing and thus evaluating these methods arises.

A field where interpretable AI is particularly important is survival analysis. It is concerned
with predicting the time until an event of interest occurs [39]. This is often used in healthcare.
For example, to predict the time until a diagnosis of dementia, relapse into drug addiction or
experiencing a heart attack. However, clinicians are reluctant to use high-performing survival
models as they are often hard to understand and trust [9]. Therefore, more transparent but
worse-performing models are used in practice [37].

One category of interpretability methods that are particularly useful for survival analysis is
’feature summary methods’. These show the importance of each feature in the prediction of
the model [5]. This allows clinicians to understand and trust complex models. Furthermore,
knowing the rationale behind the predictions enables the identification of risk factors. Clinicians
could use this to make screening decisions or to prescribe treatment, while patients could use
the information to adjust their lifestyles [25].
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In this thesis, we aim to bridge the gap between survival analysis and its practical implications.
Therefore, we are going to adapt and compare different feature summary methods for survival
analysis. Our research question is: What are the advantages and disadvantages of different
feature summary methods for survival analysis?

The structure of the thesis is as follows: Chapter 2 presents the necessary theoretical back-
ground to understand this thesis. In Chapter 3, related work is discussed. Chapter 4 provides
the definitions of the adapted feature summary methods for survival analysis. This is followed
by Chapters 5, 6 and 7, which are dedicated to the methodology, setup and results of the exper-
iments. Chapter 8 concludes the thesis by summarising our findings, discussing the limitations
of this study and providing potential directions for future research.
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Chapter 2

Preliminaries

This chapter introduces the theoretical background of this research. More concretely, we discuss
the key concepts of survival analysis, the selected interpretability methods and the challenges of
evaluating interpretability methods.

2.1 Survival Analysis

Survival analysis is concerned with predicting the time until an event of interest occurs [39].
For example, the time until death after the diagnosis of cancer. It uses time-to-event data; each
individual i is represented by a triplet (Xi, δi, yi) describing (1) the observed covariates, (2) a
label indicating whether the event of interest occurred or not (i.e., δi = 1 or δi = 0), and (3) the
observed time until the event [22, 39].

2.1.1 Censoring

The main challenge in survival analysis is the fact that the event of interest may not be observed
for all individuals during the study period. As a result, the survival time may not be known
for each individual. This phenomenon is called censoring [6]. The most common scenario is
right-censoring, which means that the true survival time is larger than the observed survival
time [19]. Figure 2.1 illustrates an example of this.

Figure 2.1: Example of survival data where a black cross indicates the oc-
currence of the event and a red dot indicates right-censoring [39]

Right-censoring happens when an individual does not experience the event during the study
period (e.g. subjects S2 and S5 in Figure 2.1), is lost to follow-up or drops out of the study
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(e.g. subjects S1 and S3) [33]. Therefore, only for individuals who experienced the event during
the study period, the observed time yi indicates the time until the event of interest occurred
(also known as time T) [39]. For censored individuals, yi represents the time until censoring
(also known as time C) [39]. It is important to note that in survival analysis, censoring is often
assumed to be non-informative (i.e. due to reasons unrelated to the study) [35, 39]. In this
research, we also use this assumption.

2.1.2 Survival and Hazard Function

In survival analysis, there are two important quantities: the survival and the hazard function
[11]. The survival function, denoted by S(t), is the probability that the event of interest does
not occur before a specific time t [19]. In other words, [22]

S(t) = P(T > t), 0 < t < ∞ (2.1)

where T is a random variable representing the time until the event of interest. In the sur-
vival function, t = 0 corresponds to a survival probability of 1, since the event of interest has
not occurred for any individual yet [19]. Over time, when t increases, the survival function
monotonically decreases [39].

The hazard function, denoted by h(t), is the risk of experiencing the event of interest at time
t given that no event has occurred before that time [11]. Mathematically, the hazard function
can be defined as [39]

h(t) = lim
∆t→0

P(t ≤ T < t+∆t|T ≥ t)

∆t
. (2.2)

While the survival function decreases over time, the hazard function can have a variety of shapes
[39], as depicted in Figure 2.2. However, the survival and hazard function are closely related.
The hazard function corresponds to the decrease rate of the survival function; the faster the
survival function decreases, the higher the hazard [11]. This is also illustrated in Figure 2.2.
The survival function in Equation (2.1) can be rewritten as

S(t) = exp(−H(t)) (2.3)

where H(t) is the cumulative hazard function defined as H(t) =
∫ t
0 h(u)du [39].

2.1.3 Survival Models

A widely used survival model is the Random Survival Forest (RSF) [20]. It is constructed by
fitting multiple decision trees and aggregating their predictions. Each decision tree is built on a
bootstrap sample of the data and is grown by recursively partitioning the data based on specific
features and splitting rules. At each split, a random subset of predictors is considered and the
best predictor and threshold are chosen to maximise the separation between survival times or
events. This randomisation reduces overfitting and decorrelates the trees in the ensemble.

Another popular survival model is the Cox Proportional Hazards (CPH) [7]. It is constructed
using the Cox partial likelihood function, which combines information from censored and non-
censored individuals. The model relies on the proportional hazards assumption. This states that
the hazard ratio between two individuals, which represents the hazard rate of the first individual
divided by the hazard rate of the second individual, remains constant over time. It implies that
the effect of covariates on the hazard function does not change over time. This is an important
difference with the Random Survival Forest since RSF does not rely on this assumption [20]. As
a result, RSF is able to model time-dependent feature effects, whereas CPH is not.
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Figure 2.2: Relationship between the hazard (left figure) and survival curve
(right figure) for four different cases: a, b, c and d [6]. The figures show
that the hazard function corresponds to the decrease rate of the (logarithm
of the) survival function.

2.2 Interpretability Methods

The goal of interpretability methods is to describe the inner workings of a black-box machine
learning model in a way that is understandable to humans [12]. The category of interpretability
methods we focus on in this research is ’feature summary methods’. These methods produce,
as the name suggests, summary statistics for each feature [5]. This can be a single number per
feature, indicating the importance of the feature on the prediction of the model, or a plot per
feature, visualising how the feature influences the prediction of the model [5]. We focus on the
latter category because visualisation is the easiest way to understand the inner workings of a
machine learning model [3], which is the main goal of interpretability. Furthermore, in survival
analysis, it is more informative to know how, rather than only knowing how much, a feature
affects the prediction of the model.

This subset of interpretability methods can be further divided using the criterion local vs. global
[5]. Local interpretability aims to explain the prediction of a single instance whereas global
interpretability aims to explain the overall behaviour of the machine learning model [5]. We
believe that global interpretability contributes most to developing trust and understanding in
survival models since it enables the identification of population-level rather than instance-level
risk factors and exposes possible discrimination towards certain groups of people. Therefore, in
this research, we focus on global feature summary methods.
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Again, we can make a further division using the criterion intrinsic vs. post hoc [5]. It deter-
mines whether interpretability is achieved through constraints on the complexity of the machine
learning model (intrinsic) or by applying methods that analyse the model after training (post
hoc) [5]. As explained in Chapter 1, putting constraints on the complexity of the model is likely
to decrease its performance.

Therefore, in this research, we selected three popular global post-hoc feature summary visual-
isation methods: the Partial Dependence Plot, Individual Conditional Expectation and Accu-
mulated Local Effects. Each method will be explained in the following sections. In Chapter 4,
we explain how we apply these methods to the survival setting.

2.3 Partial Dependence Plot

The Partial Dependence Plot (PDP) was introduced by Friedman [10] in 2001. It shows the
average marginal effect of one or two features on the prediction of the model, as illustrated in
Figure 2.3 and 2.4. To create a PDP, the value of the feature(s) of interest is changed over
its range and the predicted outcome is observed while keeping all other features constant. The
predicted outcome is a class probability in classification problems and a determined value in
regression [23]. In the following sections, we first explain the computation of a PDP for a single
feature of interest (1D-PDP) and then for two features (2D-PDP).

2.3.1 1D-PDP

To compute the partial dependence plot of a single discrete or continuous feature the set of input
features X is divided into two subsets: the feature of interest (Xj) and the remaining features
(X\j), i.e. Xj ∩X\j = ∅ and Xj ∪X\j = X [10]. Suppose Xj has unique values {x1, x2, ..., xa}
in the data. Then, the Partial Dependence Plot of Xj is computed as follows [15]:

1. Copy the data.

2. For xj ∈ {x1, x2, ..., xa}:

(a) Replace the original value of Xj with constant xj for all data instances.

(b) Compute the vector of predicted values from the modified copy of the data.

(c) Compute the average prediction to obtain f̂j,PDP (xj).

3. Plot the pairs {xj , f̂j,PDP (xj)} for xj ∈ {x1, x2, ..., xa}.

Equation (2.4) parametrizes the overall approach used in 1D-PDP.

f̂j,PDP (xj) =
1

n

n∑
i=1

F̂ (xj , xi,\j) (2.4)

where f̂j,PDP (xj) estimates the average marginal effect of Xj at a given value xj , n is the
number of observations in the data, xi,\j are the original values of the features in X\j for the
ith observation, and F̂ (xj , xi,\j) is the model output for the ith observation where the original
value of Xj is replaced with xj [23].
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Figure 2.3: Example of 1D-PDPs depicting the relationship between the pre-
dicted number of rented bikes and the feature ’Temperature’, ’Humidity’ and
’Wind speed’ respectively [29]. The figures show that higher temperatures
(except above 25 degrees Celsius), lower humidity and lower wind speeds
increase the number of rented bikes.

2.3.2 2D-PDP

A Partial Dependence Plot for two features shows the combined effect of these features on
the prediction of the model [29]. The computation follows a similar procedure to the Partial
Dependence Plot of a single feature. We divide the input features X into three subsets: the first
feature of interest (Xj), the second feature of interest (Xl) and the remaining features (X\{j,l})
[10]. Suppose that Xj has unique values {x1, x2, ..., xa} and Xl has unique values {x1, x2, ..., xb}
in the data. Then, the Partial Dependence Plot of Xj and Xl is computed as follows [15]:

1. Copy the data.

2. For (xj , xl) ∈ { (xja, xlb) | xja ∈ {x1, x2, ..., xa} and xlb ∈ {x1.x2, ..., xb} }:

(a) Replace the original value of Xj with constant xj and the original value of Xl with
constant xl for all data instances.

(b) Compute the vector of predicted values from the modified copy of the data.

(c) Compute the average prediction to obtain f̂{j,l},PDP (xj , xl).

3. Plot {(xj , xl), f̂{j,l},PDP (xj , xl)} for (xj , xl) ∈ { (xja, xlb) | xja ∈ {x1, x2, ..., xa} and xlb ∈
{x1.x2, ..., xb} }.

Equation (2.5) parametrises the overall approach used in 2D-PDP.

f̂{j,l},PDP (xj , xl) =
1

n

n∑
i=1

F̂ (xj , xl, xi,\{j,l}) (2.5)

where f̂{j,l},PDP (xj , xl) estimates the average marginal effect of Xj and Xl at given values xj
and xl respectively, n is the number of observations in the data, xi,\{j,l} are the original values
of the features in X\{j,l} for the ith observation, and F̂ (xj , xl, xi,\{j,l}) is the model output for
the ith observation where the original value of Xj is replaced with xj and the original value of
Xl with xl [23].
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Figure 2.4: Example of 2D-PDP which depicts the relationship between
the features ’Age’ and ’Number of pregnancies’ and the predicted cancer
probability [29]. The figure shows an increase in the predicted cancer risk at
age 45 and older. Furthermore, women below 25 who had 1 or 2 pregnancies
have a lower cancer probability than women who had 0 or more than 2
pregnancies.

For large data sets, often a subset of the unique values of the feature(s) of interest, also referred
to as grid values, is used in 1D-PDP and 2D-PDP [16]. This is also the case for Individual
Conditional Expectation, which will be discussed now.

2.4 Individual Conditional Expectation

Since PDP shows the average marginal effect of one or two features on the prediction of the
model, the complexity of the modelled relationship may be hidden, as illustrated in Figure 2.5
[27].

Figure 2.5: Scatterplot (left figure) and 1D-PDP (right figure) of feature X2

and predicted value Y [13]. The figure shows that PDP incorrectly indicates
that variable X2 does not have an effect on the predicted value of Y .
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To solve this issue, Goldstein et. al [13] introduced Individual Conditional Expectation (ICE).
Rather than displaying the average relationship, ICE graphs the relationship between a feature
and the predicted outcome for each individual instance, as illustrated in Figure 2.6. As a result,
heterogeneity across observations can be identified [23]. However, due to the individual lines,
ICE can only display the relationship for a single feature [29].

Figure 2.6: Example of ICE plots depicting the relationship between the
predicted number of rented bikes and the feature ’Temperature’, ’Humidity’
and ’Wind speed’ respectively [29]

Generating ICE plots is similar to constructing PDP plots for a single feature. The only difference
is that ICE does not take the average of the predicted values (step 2c). Instead, it uses the
predictions of each observation separately to draw the corresponding curve in the ICE plot.
Consequently, 1D-PDP is the average of the lines in an ICE plot, as illustrated by Figure 2.3
and Figure 2.6 [29].

The overall approach of ICE can be parametrized as follows [13]:

f̂i,j,ICE(xj) = F̂ (xj , xi,\j) (2.6)

where f̂i,j,ICE(xj) estimates the marginal effect of feature Xj at a given value xj for observation
i, xi,\j are the original values of the features in X\j for the ith observation, and F̂ (xj , xi,\j) is
the model output for the ith observation where the original value of Xj is replaced with xj .

2.5 Accumulated Local Effects

The Accumulated Local Effects (ALE) was introduced by Apley and Zhu [4] to address another
shortcoming of PDP. Namely that in the case of strongly correlated features, PDP generates
synthetic data instances that are unlikely in reality. For example, as explained by Molnar et al.
[29], imagine a machine learning model that predicts the price of a house based on the number
of rooms and the total size of the living area. Suppose we want to draw the Partial Dependence
Plot depicting the effect of the living area on the price. Then following the calculation of 1D-
PDP, described in section 2.3.1, we would replace the total living area size for all instances by
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- say 20 m2 - even for houses with 10 rooms. However, this is unrealistic as the average room
size would become 2 m2. However, these unrealistic instances are still used in the computation
of the average marginal effect.

To solve this issue, ALE divides the data into intervals. Rather than averaging the predictions
over the marginal distribution, it averages the predictions over the conditional distribution [29].
In other words, it takes the average predicted outcome within an interval (1D-ALE) or cell
(2D-ALE) instead of over the whole range of the feature. This accounts for potential correlation
between features and prevents the generation of unrealistic synthetic data [27]. In the following
sections, we first describe the computation of an ALE plot for a single feature (1D-ALE), as
illustrated in Figure 2.7, and then for two features (2D-ALE), as illustrated in Figure 2.8.

2.5.1 1D-ALE

Similar to 1D-PDP and ICE, the set of input features X is divided into two subsets: the feature
of interest (Xj) and the remaining features (X\j) [4]. Then, the computation of the ALE plot
for Xj consists of several steps. First, the sample range of Xj is partitioned into K intervals.
Then, the uncentered effect of Xj is computed for each observed value x of feature Xj as follows
[4]:

ĝj,ALE(x) =

kj(x)∑
k=1

1

nj(k)

∑
{ixi,j∈Nj(k)}

[F̂ (zk,j , xi,\j)− F̂ (zk−1,j , xi,\j)]. (2.7)

In this formula, kj(x) is the interval of Xj within which x lies (kj(x) ∈ {1, 2, ...,K}), nj(k) is
the number of observations in interval k, Nj(k) is the subset of observations that occur in k,
zk,j and zk−1,j are the upper and lower bound of Xj in k respectively, xi,\j is the value of the
features in X\j for the ith observation in k and F̂ (·) is the trained model.

Figure 2.7: Example of 1D-ALE plots depicting the relationship between the
predicted number of rented bikes and the feature ’Temperature’, ’Humidity’
and ’Wind speed’ respectively [29]. The figures show that the temperature
has the largest effect on the number of rented bikes, followed by humidity
and then wind speed.
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In other words, starting from the right side of the formula, the difference in prediction is cal-
culated by first replacing the value of Xj with the upper bound and then the lower bound of
Xj in the interval. This is the effect feature Xj has for an individual observation in a certain
interval [29]. The sum on the right adds the effects of all instances within an interval. This is
then divided by the number of observations in the interval to obtain the average difference. The
left sum accumulates the average differences across all intervals. For example, the uncentered
effect of a feature value that lies in the third interval is the sum of the effects of the first, second
and third intervals.

Lastly, the uncentered effect ĝj,ALE(xj) is centered to obtain a mean effect of zero:

f̂j,ALE(x) = ĝj,ALE(x)−
1

n

n∑
i=1

ĝj,ALE(xi,j)

= ĝj,ALE(x)−
1

n

K∑
k=1

nj(k)ĝj,ALE(zk,j).

(2.8)

2.5.2 2D-ALE

Similarly to 2D-PDP, the set of input features X is partitioned into three subsets: the first
feature of interest (Xj), the second feature of interest (Xl) and the remaining features (X\{j,l})
[4]. Then, the computation of the ALE plot for the pair of features (Xj , Xl) consists of several
steps. First, both the sample range of Xj and the sample range of Xl is partitioned into K
intervals, creating K2 rectangular cells. Then, the uncentered effect of (Xj , Xl) is computed for
each observed value combination (xj , xl) of (Xj , Xl) as follows [4]:

ĥ{j,l},ALE(xj , xl) =

kj(xj)∑
k=1

kl(xl)∑
m=1

1

n{j,l}(k,m)

∑
{i:xi,{j,l}∈N{j,l}(k,m)}

∆
{j,l}
F̂

(K, k,m;xi,\{j,l}) (2.9)

In this formula, kj(xj) is the interval of Xj within which xj lies, kl(xl) is the interval of Xl within
which xl lies, (k,m) denotes the index of a rectangular cell with k corresponding to the index of
kj(xj) and m corresponding to the index of kl(xl), n{j,l}(k,m) is the number of observations in
(k,m), N{j,l}(k,m) is the subset of observations that occur in (k,m) and ∆

{j,l}
F̂

(K, k,m;xi,\{j,l})
is defined as follows:

∆
{j,l}
F̂

(K, k,m;xi,\{j,l}) = [F̂ (zk,j , zm,l, xi,\{j,l})− F̂ (zk−1,j , zm,l, xi,\{j,l})]

−[F̂ (zk,j , zm−1,l, xi,\{j,l})− F̂ (zk−1,j , zm−1,l, xi,\{j,l})]
(2.10)

where zk,j and zk−1,j are the upper and lower bound of Xj in (k,m) respectively, zm,l and zm−1,l

are the upper and lower bound of Xl in (k,m) respectively, xi,\j is the value of the features in
Xj for the ith observation in (k,m) and F̂ (·) is the fitted model.

In other words, in Equation (2.10) the difference in prediction is calculated by replacing the
original values of Xj and Xl with their lower and upper bounds in the cell. This is the effect
feature Xj and Xl have for an individual observation in a certain cell. Then, in Equation (2.9),
starting from the right side of the formula, the sum adds the effects of all instances within a cell.
This is divided by the number of instances in the cell to obtain the average difference. The two
left sums accumulate the average differences across all cells. For example, the uncentered effect
of feature values that lie in cell (3, 2) is the sum of the effects of cells (1, 1), (1, 2), (2, 1), (2, 2),
(3, 1) and (3, 2).
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An Accumulated Local Effects plot for two features only shows the interaction effect [29]. It
does not include the individual effect of each feature. Therefore, the individual effects of Xj and
Xl are subtracted from the uncentered effect ĥ{j,l},ALE(xj , xl) to obtain ĝ{j,l},ALE(xj , xl):

ĝ{j,l},ALE(xj , xl)

= ĥ{j,l},ALE(xj , xl)−
kj(xj)∑
k=1

1

nj(k)

∑
{i:xi,j∈Nj(k)}

[ĥ{j,l},ALE(zk,j , xi,l)− ĥ{j,l},ALE(zk−1,j , xi,l)]

−
kl(xl)∑
m=1

1

nl(m)

∑
{i:xi,l∈Nl(m)}

[ĥ{j,l},ALE(xi,j , zm,l)− ĥ{j,l},ALE(xi,j , zm−1,l)]

= ĥ{j,l},ALE(xj , xl)−
kj(xj)∑
k=1

1

nj(k)

K∑
m=1

n{j,l}(k,m)[ĥ{j,l},ALE(zk,j , zm,l)− ĥ{j,l},ALE(zk−1,j , zm,l)]

−
kl(xl)∑
m=1

1

nl(m)

K∑
k=1

n{j,l}(k,m)[ĥ{j,l},ALE(zk,j , zm,l)− ĥ{j,l},ALE(zk,j , zm−1,l)].

(2.11)

In this formula, the individual effect of each feature can be computed in two ways. The first
approach computes the difference between the uncentered effect when the value of the feature is
replaced with its upper bound and lower bound in the interval. This is the individual effect of
the feature for a single observation in a certain interval. Then, the effects of all instances within
an interval are added together. This is divided by the number of observations in the interval to
obtain the average difference. Finally, the average difference across all intervals is accumulated.
For example, the individual effect of a feature value that lies in the third interval is the sum of
the individual effects of the feature in the first, second and third intervals.

Figure 2.8: Example of a 2D-ALE plot which depicts the relationship be-
tween the features ’Age’ and ’Number of pregnancies’ and the predicted
cancer probability [29]. The figure shows a low risk of cancer for women
above 22 who had 0 pregnancies and a high risk for women below 22 who
had 3 or more pregnancies.
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Alternatively, the second approach computes the individual effect in each cell separately,
weighted by the number of observations in the cell. Then, the individual effect within an
interval is obtained by adding the individual effects of all the cells within the interval together.
Similarly to the first approach, this is divided by the number of observations in the interval to
obtain the average difference. Then, the average difference across all intervals is accumulated.

Lastly, the centered effect f̂{j,l},ALE(xj , xl) is computed by subtracting the mean of
ĝ{j,l},ALE(xj , xl):

f̂{j,l},ALE(xj , xl) = ĝ{j,l},ALE(xj , xl)−
1

n

n∑
i=1

ĝ{j,l},ALE(xi,j , xi,l)

= ĝ{j,l},ALE(xj , xl)−
1

n

K∑
k=1

K∑
m=1

n{j,l}(k,m)ĝ{j,l},ALE(zk,j , zm,l).

(2.12)

2.6 Evaluation of interpretability

Currently, there is no clear consensus on how to evaluate post-hoc interpretability methods [30].
The main challenge is that there is no ground truth, as the real explanation of the model is not
known [41]. Furthermore, the perceived quality of an explanation is contextual and subjective
as it depends on the type of information users are interested in [41]. The type of explanations
generated by different interpretability methods are also quite divergent [41]. As a result, general
evaluation metrics are hard to formalise [41]. Therefore, determining the right evaluation metrics
for each case is challenging and remains an open problem [27].

However, the community agrees that there are three clear goals interpretability methods should
try to achieve, namely accuracy, efficiency and understandability [5]. In this research, we focus
on two of the three goals, namely accuracy and efficiency. The reason for this choice will be
discussed in more detail in Chapter 3.
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Chapter 3

Related Work

In this chapter, we discuss the body of existing research and literature relating to this study.
We also highlight the knowledge gap we aim to fill and situate our study within the broader
academic context.

A recent study by Krzyziński et al. [24] focused, just like our research, on adapting and
comparing interpretability methods for survival analysis. More concretely, they introduced
SurvSHAP(t), the first time-dependent feature summary method for survival models, and com-
pared it with SurvLIME, an approach based on LIME, adapted for survival models but without
a time dimension. They concluded that SurvSHAP(t) provides a more accurate ranking of
variables than SurvLIME, especially for variables with a time-dependent effect. Since we are
also going to adapt PDP, ICE and ALE for survival analysis, we want to evaluate the meth-
ods based on similar cases. Therefore, our experimental setup is based on this study. However,
SurvSHAP(t) and SurvLIME are local explanation methods; they explain the model’s prediction
for a particular observation. In contrast, the interpretability methods in our research are global;
they provide explanations about the overall behaviour of the model. Therefore, we need to use
different evaluation metrics that are more appropriate for global instead of local interpretability
methods.

Another study by Bakhshi et al. [23] compared PDP, ICE and ALE. However, this was in the
field of Real-Time Risk Assessment (RTRA). They concluded that in the absence of feature
correlation, PDP accompanied by ICE is preferred, whereas in the case of highly-correlated
variables, ALE is a better choice. Unfortunately, these findings were specific to RTRA models
and are not generalisable to survival models. Furthermore, they evaluated the interpretability
methods in terms of understandability for the end-user. However, in this research, we intend to
compare the interpretability methods based on their accuracy and efficiency.

In general, we found that most studies, comparing interpretability methods, focused on local
interpretability methods. For example, comparing local interpretability methods for time series
forecasting models [32], on real-world healthcare data [9], in the field of attack detection [36], or
on binary categorical data [38]. Furthermore, most studies use human-centred evaluation met-
rics. For example, satisfaction with, trust in, or ease of interpretation of provided explanations
[41]. These studies solely focus on evaluating the interaction between interpretability methods
and humans. Even though this is important, they fail to evaluate the interpretability methods
themselves. For example, the accuracy and efficiency of the produced explanations. Moreover,
as previous research suggests, we should be wary of comparing interpretability methods using
merely human evaluations; it implies a strong bias towards simpler explanations which threatens
transparency [18].
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To the best of our knowledge, there exists no comparison of PDP, ICE and ALE for survival
analysis. More importantly, there do not exist implementations of these interpretability methods
that are adapted for survival models. Therefore, in this study, we aim to fill the knowledge gap
by adapting and comparing PDP, ICE and ALE for survival analysis. Furthermore, unlike most
previous research, we are going to compare the interpretability methods based on their accuracy
and efficiency using non-human-centred evaluation metrics.
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Chapter 4

Adapting PDP, ICE and ALE

As discussed in Chapter 2, the selected feature summary methods cannot be applied to survival
models directly. Therefore, this chapter discusses the required changes for the survival setting
and provides the definitions of the adapted methods. We only highlight the changes made in
comparison to the definitions provided in Chapter 2. The complete implementations of the
adapted methods can be found in Appendix A.

4.1 Required Changes

The main issue with existing implementations, such as the Partial Dependence and Individ-
ual Conditional Expectation plots from scikit-learn1, is that they only allow the predicted
outcome to be a class probability (for classification) through the predict_proba() method
or a determined value (for regression) through the predict() method. However, in sur-
vival analysis, the predicted outcome is survival probability S(t), which is obtained using the
predict_survival_function() method. Therefore, we need to incorporate this into the defi-
nition of the feature summary methods.

Additionally, the distinction between the survival probability and the ’normal’ class probability
is rooted in the concept of time. Unlike the fixed class probability, an individual’s survival
probability can vary over time. Consequently, the influence of features may also differ over time.
Hence, we need to incorporate the notion of time into the definition of the feature summary
methods.

4.2 Partial Dependence Plot

4.2.1 1D-PDP

The Partial Dependence Plot for a single feature is adapted as follows:

f̂j,PDP (t, xj) =
1

n

n∑
i=1

Ŝ(t|xj , xi,\j) (4.1)

where f̂j,PDP (t, xj) estimates the average marginal effect of Xj at a given value xj and now
also a given time t. Furthermore, Ŝ(t|xj , xi,\j) is the survival probability at time t for the ith
observation where the original value of Xj is replaced with xj .

1https://scikit-learn.org/stable/modules/partial_dependence.html
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4.2.2 2D-PDP

Similarly, the Partial Dependence Plot for two features is adapted:

f̂{j,l},PDP (t, xj , xl) =
1

n

n∑
i=1

Ŝ(t|xj , xl, xi,\{j,l}) (4.2)

such that f̂{j,l},PDP (t, xj , xl) estimates the average marginal effect of Xj and Xl at given values xj
and xl respectively and given time t. Furthermore, Ŝ(t|xj , xl, xi,\{j,l}) is the survival probability
at time t for the ith observation where the original value of Xj is replaced with xj and the
original value of Xl is replaced with xl.

4.3 Individual Conditional Expectation

The definition of the Individual Conditional Expectation becomes:

f̂i,j,ICE(t, xj) = Ŝ(t|xj , xi,\j) (4.3)

where f̂i,j,ICE(t, xj) estimates the marginal effect of feature Xj at a given value xj and time t
for observation i.

4.4 Accumulated Local Effects

4.4.1 1D-ALE

In the computation of an ALE plot for a single feature, the uncentered effect is now computed
at a specific time t as follows:

ĝj,ALE(t, xj) =

kj(xj)∑
k=1

1

nj(k)

∑
{i:xi,j∈Nj(k)}

[Ŝ(t|zk,j , xi,\j)− Ŝ(t|zk−1,j , xi,\j)] (4.4)

where Ŝ(t|zk,j , xi,\j) and Ŝ(t|zk−1,j , xi,\j) are the survival probability for the ith observation at
time t where the original value of Xj is replaced with the upper bound zk,j and lower bound
zk−1,j of Xj in k respectively.

Furthermore, the computation of the centred effect becomes:

f̂j,ALE(t, xj) = ĝj,ALE(t, xj)−
1

n

n∑
i=1

ĝj,ALE(t, xi,j)

= ĝj,ALE(t, xj)−
1

n

K∑
k=1

nj(k)ĝj,ALE(t, zk,j).

(4.5)

such that f̂j,ALE(t, xj) and ĝj,ALE(t, ·) now also include the notion of time.

4.4.2 2D-ALE

Similarly, the computation of the uncentered effect of a pair of features is computed at a specific
time t:

ĥ{j,l},ALE(t, xj , xl) =

kj(xj)∑
k=1

kl(xl)∑
m=1

1

n{j,l}(k,m)

∑
{i:xi,{j,l}∈N{j,l}(k,m)}

∆
{j,l}
Ŝ

(t,K, k,m;xi,\{j,l}) (4.6)
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such that ∆
{j,l}
Ŝ

(t,K, k,m;xi,\{j,l}) is defined as follows:

∆
{j,l}
Ŝ

(t,K, k,m;xi,\{j,l}) = [Ŝ(t|zk,j , zm,l, xi,\{j,l})− Ŝ(t|zk−1,j , zm,l, xi,\{j,l})]

−[Ŝ(t|zk,j , zm−1,l, xi,\{j,l})− Ŝ(t|zk−1,j , zm−1,l, xi,\{j,l})].
(4.7)

where Ŝ(t|zk,j , zm,l, xi,\{j,l}), Ŝ(t|zk−1,j , zm,l, xi,\{j,l}), Ŝ(t|zk,j , zm−1,l, xi,\{j,l}) and
Ŝ(t|zk−1,j , zm−1,l, xi,\{j,l}) are the survival probability for the ith observation at time t
where the original value of Xj is replaced with its lower bound zk−1,j or upper bound zk,j in
interval k and the original value of Xl is replaced with its lower bound zm−1,l or upper bound
zm,l in interval m.

Furthermore, the subtraction of the individual effect of each feature changes:

ĝ{j,l},ALE(t, xj , xl)

= ĥ{j,l},ALE(t, xj , xl)−
kj(xj)∑
k=1

1

nj(k)

∑
{i:xi,j∈Nj(k)}

[ĥ{j,l},ALE(t, zk,j , xi,l)− ĥ{j,l},ALE(t, zk−1,j , xi,l)]

−
kl(xl)∑
m=1

1

nl(m)

∑
{i:xi,l∈Nl(m)}

[ĥ{j,l},ALE(t, xi,j , zm,l)− ĥ{j,l},ALE(t, xi,j , zm−1,l)]

= ĥ{j,l},ALE(t, xj , xl)−
kj(xj)∑
k=1

1

nj(k)

K∑
m=1

n{j,l}(k,m)[ĥ{j,l},ALE(t, zk,j , zm,l)− ĥ{j,l},ALE(t, zk−1,j , zm,l)]

−
kl(xl)∑
m=1

1

nl(m)

K∑
k=1

n{j,l}(k,m)[ĥ{j,l},ALE(t, zk,j , zm,l)− ĥ{j,l},ALE(t, zk,j , zm−1,l)].

(4.8)

such that ĝ{j,l},ALE(t, xj , xl) and ĥ{j,l},ALE(t, ·, ·) are computed at a specific time t.

Lastly, the computation of the centred effect becomes:

f̂{j,l},ALE(t, xj , xl) = ĝ{j,l},ALE(t, xj , xl)−
1

n

n∑
i=1

ĝ{j,l},ALE(t, xi,j , xi,l)

= ĝ{j,l},ALE(t, xj , xl)−
1

n

K∑
k=1

K∑
m=1

n{j,l}(k,m)ĝ{j,l},ALE(t, zk,j , zm,l).

(4.9)

such that f̂{j,l},ALE(t, xj , xl) and ĝ{j,l},ALE(t, ·, ·) now also include the notion of time.
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Chapter 5

Methodology

In this chapter, we discuss the methodology for comparing the adapted interpretability methods.
We focus on accuracy and efficiency since these are two main goals of interpretability, as discussed
in Chapter 2. First, we outline the methodology for comparing the accuracy of the methods.
Then, we continue with the methodology for comparing their efficiency.

5.1 Accuracy

As explained in Chapter 2, there is no consensus on how to evaluate the accuracy of interpretabil-
ity methods. However, in Chapter 3 we discussed that it is important to use non-human-centred
evaluation metrics to prevent a strong bias towards simpler explanations as this threatens trans-
parency. Therefore, we selected three evaluation metrics [24, 31] that allow us to evaluate the
global interpretability methods without the involvement of humans, namely the ranking plot,
faithfulness and monotonicity metric. Prior to discussing these metrics, it is necessary to explain
two other concepts, namely the Brier score and feature importance weights, as they are used in
the evaluation.

5.1.1 Brier Score

When evaluating the accuracy of the interpretability methods, it is important to take the accu-
racy of the underlying survival model into account. A well-known approach to evaluate survival
models is the weighted Brier score for right-censored data. It estimates the accuracy of a survival
model at a specific time t by computing the mean squared error [14]:

BSc(t) =


1
n

∑n
i=1

(0−Ŝ(t,xi))
2

Ĝ(yi)
if yi ≤ t ∧ δi = 1

1
n

∑n
i=1

(1−Ŝ(t,xi))
2

Ĝ(t)
if yi > t

(5.1)

where Ŝ(t, xi) is the predicted survival probability of instance i with covariates xi at time t, yi
is the observed time of instance i until the event of interest or censoring, δi indicates whether
instance i experienced the event of interest or not (i.e. δi = 1 or δi = 0) and Ĝ(t) is the
Kaplan-Meier estimate [21] of the censoring distribution.

The overall accuracy of a survival model over a specific time interval tmin ≤ t ≤ tmax can be
calculated with the integrated Brier score, which is defined as [14]:

IBS =

∫ tmax

tmin

BSc(t) dw(t) (5.2)
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where w(t) is the weighting function defined as w(t) = t
tmax

.

The Brier score and integrated Brier score are implemented in scikit-survival [34], an open-
source Python package for time-to-event analysis fully compatible with scikit-learn. There-
fore, we will use these implementations1,2 in this research.

5.1.2 Feature Importance Weights

The interpretability methods, adapted in Chapter 4, generate a plot which shows how each
feature affects the prediction of the model. However, they do not provide concrete values - also
called weights - indicating the importance of each feature. Nevertheless, this is required for the
three evaluation metrics we intend to use. Therefore, we apply the feature importance measure
introduced by Greenwell et al. [16]. It is based on the "flatness" of the plot generated by the
interpretability method. Any variable for which the plot is "flat", is likely to be less important
than those predictors whose plot varies across a wider range of the response. Therefore, the
importance of any variable Xj can be computed as follows:

I(Xj) =

√√√√ 1

K − 1

K∑
k=1

[f̂j(x
(k)
j )− 1

K

K∑
k=1

f̂j(x
(k)
j )]2 (5.3)

where f̂j is the plot function and x
(k)
j are the K unique values of Xj . Originally, this approach

was only used for PDP plots. However, since ICE and ALE plots are similar, we also apply it
to those. The implementation of the feature importance measure can be found in Appendix C.

It is important to note that the feature importance measure can only assign positive weights
to features; it can indicate how much influence a feature has but not whether this influence
is positive or negative. Apart from this, the average of an ICE plot gives the corresponding
PDP plot. Therefore, the feature importance measure yields the same result for PDP and ICE.
Consequently, in Chapter 7, where the results of the experiments are discussed, we group PDP
and ICE together and simply refer to this as ’PDP/ICE’.

5.1.3 Evaluation of Interpretability Methods

The three evaluation metrics we are going to use to compare the accuracy of the interpretability
methods will be discussed now. The implementations of the evaluation metrics can be found in
Appendix C.

Ranking Plot

First, we are going to compare the coefficients of the variables in the underlying data with the
assigned weights by the interpretability method as done in the study by Krzyziński et al. [24].
This is achieved by plotting the assigned weights by the interpretability methods over time,
which we call the ranking plot. Of course, the correctness of the weights does not solely depend
on the accuracy of the interpretability method, it also depends on the accuracy of the survival
model. For example, if the survival model does not learn the underlying relationships in the
data properly, the interpretability method is unlikely to give accurate results [30]. Therefore,
when assessing the accuracy of the weights, we also take the Brier scores of the survival models
into account.

1https://scikit-survival.readthedocs.io/en/stable/api/generated/sksurv.metrics.brier_score.
html

2https://scikit-survival.readthedocs.io/en/stable/api/generated/sksurv.metrics.as_integrated_
brier_score_scorer.html
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While the ranking plot can visualise the difference between the assigned and actual weights of
the features, its dependency on the accuracy of the survival model is a problem. Therefore, we
also use the faithfulness and monotonicity metrics that do not suffer from this dependency.

Faithfulness

Secondly, we are going to use the faithfulness metric introduced by Oblizanov et al. [31]. It
measures the correspondence between the assigned weights by the interpretability methods and
the actual influence of each feature on the prediction of the model. It is calculated as the Pearson
sample correlation between the weights and the change in model prediction when the feature is
set to a fixed value. Since the variables are sampled from different distributions, we decided to
fix each variable to its mean value.

Figure 5.1 illustrates a schematic representation of the calculation. The metric can take values
from -1, indicating a complete mismatch between the weights and contributions of the features, to
1, indicating the correctness of the distribution of weights. A value of 0 indicates no correlation.

Figure 5.1: Schematic representation of the faithfulness metric [31]

Monotonicity

Thirdly, we are going to use the monotonicity metric which was also introduced by Oblizanov
et al. [31]. It measures the extent to which the interpretability methods have a distortion of
feature priorities (i.e. when less influential features receive a higher weight than more influential
features). It is calculated by iteratively fixing features, ordered by increasing weights, obtained
from the interpretability method. Again, we decided to fix each feature to its mean value. The
main difference with the faithfulness metric is that monotonicity determines the cumulative
effect of features, which is more reliable when features are highly correlated [31].

Figure 5.2: Schematic representation of the monotonicity metric [31]
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A schematic representation of the calculation can be found in Figure 5.2. The metric can
take values from 0, indicating a complete distortion of feature priorities, to 1, indicating more
important features correctly received more weight than less important features.

5.2 Efficiency

The efficiency of the interpretability methods will be compared by measuring their execution
times. It is important to note that we only include the computation time of the plot values in the
time measurements; the actual plotting itself is not included. The main reason for this decision is
that I/O operations are generally slower than computational operations. Therefore, as previous
research suggests, excluding I/O operations from execution time measurements provides a more
reliable metric for evaluating the efficiency of an algorithm [17].
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Chapter 6

Experimental Setup

In this chapter, we discuss the setup of the experiments. First, we outline the setup of the
accuracy experiments. Then, we continue with the efficiency experiment.

6.1 Accuracy: Experiment 1 and 2

The accuracy of the interpretability methods will be compared by conducting two experiments.
In the first experiment, we assess whether the interpretability methods correctly describe vari-
ables with an insignificant, constant or time-dependent effect, provided that the underlying
survival model can make use of such dependencies. In the second experiment, we assess the
effect of feature correlation on the accuracy of the interpretability methods.

In both experiments, we also vary the parameters passed to the interpretability methods. In
the case of PDP and ICE, this is the number of grid values (i.e. the subset of unique values)
it should use in the computation. For ALE, this is the number of intervals the data instances
should be divided into. In the experiments, we want to cover a wide range of possible parameter
values while keeping the amount of results manageable. Therefore, we use 10, 40, 100 and 200
grid values and intervals.

Figure 6.1: Schematic representation of Experiment 1 and 2
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Figure 6.1 gives an overview of Experiments 1 and 2. Chapter 5 discussed the ’Feature Impor-
tance Weights’, ’Evaluate Accuracy’ and ’Evaluate Models’ parts. In the following sections, we
discuss the other aspects.

6.1.1 Simulating Data

For the experiments, we simulate data based on the simulation studies in the papers by Lin et
al. [26] and Krzyziński et al. [24]. The script for the data simulation was provided by Wieske
de Swart and can be found in Appendix B.

Experiment 1

For the first experiment, we generate four datasets. Each dataset consists of N = 2000 obser-
vations. To ensure that the interpretability methods do not rely on the underlying distribution
of the baseline hazard function, we use three different ones. Two are common survival distribu-
tions, namely an exponential (6.1) and Weibull distribution (6.2). The third one (6.3) is more
complex, its logarithm is a fractional polynomial function. The baseline hazard functions are
defined as follows:

hI0(t) = 0.08, (6.1)

hII0 (t) = 1.2 · 0.1 · t0.2, (6.2)

hIII0 (t) = exp(−17.8 + 6.5t− 11
√
t · ln t+ 9.5

√
t). (6.3)

We generate three datasets EXP1_exponential, EXP1_weibull and EXP1_complex based on the
following hazard function

h(t) = h0(t) · exp[(−0.9 + 0.1t+ 0.9 ln t)x(1)

+ 0.5x(2) − 0.2x(3) + 0.1x(4) + 10−6x(5)]
(6.4)

where the baseline hazard function h0(t) is (6.1), (6.2) and (6.3) respectively. The coefficients
in the hazard function give feature x(1) a time-dependent effect, x(2), x(3) and x(4) a constant
effect, and x(5) an insignificant effect, representing noise. Furthermore, variables x(1) and x(2)

are sampled from a binomial distribution, such that

P(x(1) = 0) = P(x(1) = 1) = P(x(2) = 0) = P(x(2) = 1) = 0.5.

The other variables are sampled from normal distributions, namely x(3) ∼ N (10, 2), x(4) ∼
N (20, 4), and x(5) ∼ N (0, 1).

Additionally, a fourth dataset EXP1_non_td is generated which does not contain time-dependent
feature effects. It uses the baseline hazard function in (6.3). However, the time-dependent
coefficient of x(1) in the hazard function in (6.4) is replaced with 1.

The survival function is determined based on the cumulative hazard function, namely S(t) =
exp(−H(t)), as discussed in section 2.1.2.

Experiment 2

For the second experiment, we generate six datasets. Each consists of N = 2000 observations.
Since we are mainly interested in the feature correlation, we keep the hazard function as simple as
possible. Therefore, for each dataset, we use the baseline hazard function in (6.1). Furthermore,
in the hazard function in (6.4) we replace the time-dependent effect of x(1) with 1.

The sampling of variables x(1), x(2) and x(5) is the same as in Experiment 1. However, we create
feature correlation between x(3) and x(4) by sampling from a multivariate normal distribution
N ([ 22 ], [

2 c
c 2 ]). The correlation coefficient c is replaced with 0, 0.2, 0.4, 0.6, 0.8 and 1 to generate

the six datasets EXP2_0, EXP2_02, EXP2_04, EXP2_06, EXP2_08 and EXP2_1 respectively.
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Train and Test Data

In both experiments, the simulated data is split into train (70%) and test data (30%). The
training data is used to fit the survival models and the test data is used as input for the
interpretability methods. The 70-30 split is chosen to ensure a sufficient amount of data is used
to train the models, so they can properly learn the underlying relationships in the data, while
also enough data is set apart for the interpretability methods, so they can properly explain the
models. Since the values of the features are randomly generated in the simulation script, more
advanced ways of splitting the data are not required to prevent selection bias.

6.1.2 Survival Models

For the accuracy experiments, we use two popular survival models, namely Random Survival For-
est [20] and Cox Proportional Hazards [7]. Both models are implemented in scikit-survival.
Therefore, we will use these implementations1,2 in the experiments. It is important to note that
we train separate models on each of the generated datasets. Hence, in Experiment 1 we have
four CPH and RSF models and in Experiment 2 we have six CPH and RSF models.

6.2 Efficiency: Experiment 3

In the third experiment, we are going to compare the execution time of the interpretability
methods. Based on the definitions of the interpretability methods in Chapter 4, the execution
time seems to depend on (1) the number of instances in the data and (2) the number of grid
values, in the case of PDP and ICE, and the number of intervals, in the case of ALE. Therefore,
we are going to compute the execution times with varying numbers of observations and numbers
of grid values/intervals used in the computation. To improve the reliability of the experiment,
we repeat each measurement four times and take the average.

Figure 6.2 gives an overview of Experiment 3. Chapter 5 discussed the ’Evaluate Efficiency’
part. In the following sections, we discuss the other aspects.

Figure 6.2: Schematic representation of Experiment 3

1https://scikit-survival.readthedocs.io/en/stable/api/generated/sksurv.linear_model.
CoxPHSurvivalAnalysis.html

2https://scikit-survival.readthedocs.io/en/stable/api/generated/sksurv.ensemble.
RandomSurvivalForest.html
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6.2.1 Simulating Data

We assume the relations between a given number of variables to be unimportant; based on
the definitions in Chapter 4, the specific functional form between variables does not seem to
influence the execution time of the interpretability methods. Therefore, we generate one dataset
with N = 10000 observations using the exponential baseline hazard function in (6.1) and the
hazard function in (6.4). The variables are sampled from the same distributions as in Experiment
1. We also use the same split of training and test data. The number of observations are varied
by only using a subset of the test data as input to the interpretability methods.

6.2.2 Survival Model

In this experiment, we also assume the underlying survival model to be unimportant. The
primary rationale behind this assumption is that the functional difference between the Cox Pro-
portional Hazards and Random Survival Forest is not relevant for comparing execution times
since the accuracy of the survival model does not influence the execution time of the interpretabil-
ity method. Furthermore, while the computation time for generating survival probabilities by
the survival model influences the execution time of the interpretability methods, it should not
impact the relative efficiency comparison among the methods. Therefore, we only use a Random
Survival Forest.
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Chapter 7

Results

In this chapter, we discuss the results of the experiments. Due to the large volume of results, it
is not feasible to show all of them. Therefore, we restrict ourselves to the most important ones.
The code used to generate the results can be found in Appendix D.

7.1 Experiment 1

In the first experiment, we intend to determine whether the interpretability methods correctly
explain variables with a time-dependent, constant or insignificant effect. Thus, we fit a separate
Cox Proportional Hazards (CPH) and Random Survival Forest (RSF) model to the training part
(70%) of each of the four datasets generated for Experiment 1. Hence, we have four CPH and
four RSF models. The performance of the models, expressed in the Brier score, is illustrated in
Figure 7.1. The corresponding integrated Brier scores are presented in Table 7.1. We can see
that the integrated Brier score of CPH is smaller than RSF for all four datasets. Therefore, we
know that CPH outperforms RSF in all cases. However, the difference is relatively small.

Figure 7.1: Time-dependent performance of the RSF and CPH models
trained on the four datasets of Experiment 1 measured by Brier score (lower
is better; 0.25 indicates random guessing [24])

7.1.1 Ranking Plot

Figure 7.2 shows the feature weights assigned by PDP, ICE and ALE, computed with the test
part (30%) of the four generated datasets, at different time points. In this case, PDP and ICE
used ten grid values and ALE used ten intervals in their computation. In the first row, the
weights are shown for the RSF model, whereas in the second row, they are shown for the CPH
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Table 7.1: Integrated Brier score of the RSF and CPH models trained on
the four datasets of Experiment 1

model. Both models are trained on the EXP1_exponential dataset. As explained in Chapter
5, the feature importance measure yields the same result for PDP and ICE. Therefore, they are
grouped together and referred to as ’PDP/ICE’.

Since the data in this experiment is synthetically generated, we know that variable x(1) has a
time-dependent effect. The effect of x(1) is positive in the beginning and negative later. However,
the feature importance measure we use, explained in Chapter 5, only assigns positive weights to
features; it indicates how much influence a feature has but not whether the influence is positive
or negative. Therefore, the time-dependent effect of x(1) should first decrease, and instead of
becoming negative, start increasing again between time points 2 and 3. In Figure 7.2, we can
see that this time-dependent effect of x(1) is correctly modelled by all interpretability methods
for RSF but not for CPH. This can be explained by the fact that CPH assumes variable effects
to be constant over time [7], whereas RSF does not [20], as discussed in Chapter 2. This shows
that PDP, ICE and ALE explain variables with a time-dependent effect correctly, provided that
the underlying survival model can make use of such dependencies.

Figure 7.2: Feature weights of RSF and CPH trained on EXP1_exponential
assigned by PDP, ICE or ALE using ten grid values or intervals

From the simulated data, we also know that variable x(5) represents noise. Therefore, it should
get no weight assigned. In Figure 7.2, we can see that the interpretability methods correctly
assign zero weight to variable x(5) in the CPH model. However, this is not the case for the RSF

30



model. Since CPH outperforms RSF, it might be the case that RSF is overfitting rather than
the interpretability methods being inaccurate. Especially since learning noise is one of the main
causes of overfitting [40]. Interestingly, we noticed for ALE that a rise in the number of intervals
increases the weight assigned to the noise variable in the RSF model. For example, Figure 7.3
displays the feature weights assigned by the interpretability methods when two hundred grid
values or intervals are used. By comparing the top-left plot in Figure 7.2 and 7.3, we can see
that the weight assigned by PDP and ICE to variable x(5) is similar in both cases. However,
for ALE we can see that variable x(5) gets more weight assigned when two hundred instead of
ten grid intervals are used. It is unclear whether this is due to the RSF model being inaccurate,
for example by overfitting, or ALE becoming less accurate as the number of intervals increases.
However, based on the faithfulness of ALE, which will be discussed later, we suspect the latter.

Figure 7.3: Feature weights of RSF and CPH trained on EXP1_exponential
assigned by PDP, ICE or ALE using two hundred grid values or intervals

The models trained on EXP1_weibull and EXP1_complex showed similar results compared to
EXP1_exponential. However, there is an interesting difference between the results of the models
trained on EXP1_complex and EXP1_non_td. As explained in Chapter 6, these datasets are
nearly identical, with the exception of variable x(1). In EXP1_complex, variable x(1) has a time-
dependent effect, whereas in EXP1_non_td, it has a constant effect. In both datasets, all other
variables have a constant effect. However, we can see in Figure 7.4, displaying the assigned
weights in the models trained on EXP1_complex, the weights of x(2), x(3) and x(4) change over
time. In contrast, in Figure 7.5, displaying the assigned weights in the models trained on
EXP1_non_td, they stay relatively constant. This could indicate that the time-dependent effect
of x(1) in EXP1_non_td disrupts the weights assigned by the interpretability methods to variables
with a constant effect. However, it could also be the case that it is a result of changing feature
priorities in the underlying survival model. Since the Brier scores of the models trained on
EXP1_non_td and EXP1_complex are different, we suspect the latter.
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Figure 7.4: Feature weights of RSF and CPH trained on EXP1_complex
assigned by PDP, ICE or ALE using ten grid values or intervals

Figure 7.5: Feature weights of RSF and CPH trained on EXP1_non_td as-
signed by PDP, ICE or ALE using ten grid values or intervals

7.1.2 Faithfulness

In Figure 7.6, the average faithfulness of the interpretability methods over time is displayed
when ten grid values or intervals are used. We can see that the faithfulness of ALE is higher
than PDP and ICE for all datasets and models. This indicates that the weight of each feature
assigned by ALE corresponds more to the actual influence of that feature on the prediction of
the model. This is also the case when forty or a hundred grid values or intervals are used.
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Figure 7.6: Average time-dependent faithfulness of PDP, ICE and ALE using
ten grid values or intervals for RSF and CPH models trained on the four
datasets of Experiment 1

However, we noticed for all interpretability methods that the faithfulness for the RSF models
decreases as the number of grid values or intervals rises. In other words, the correspondence
between the assigned weight by the interpretability methods and the actual influence of the
features on the prediction of the survival model decreases as the number of grid values or intervals
rises. This decrease is more extreme for ALE than for PDP and ICE. As a result, the faithfulness
of ALE is lower than PDP and ICE for the RSF models trained on EXP1_exponential and
EXP1_weibull when two hundred grid values or intervals are used, as displayed in Figure 7.7.
A possible explanation for this is that, as we saw earlier, ALE incorrectly assigns more weight
to noise variable x(5) as the number of intervals increases.

Figure 7.7: Average time-dependent faithfulness of PDP, ICE and ALE using
two hundred grid values or intervals for RSF and CPH models trained on
the four datasets of Experiment 1

7.1.3 Monotonicity

In Figure 7.8, the average monotonicity of the interpretability methods over time is displayed
when ten grid values or intervals are used. We can see that the interpretability methods have
perfect monotonicity for the CPH models. This is also the case when forty, a hundred or two
hundred grid values or intervals are used. This indicates that the interpretability methods
correctly assign a larger weight to more important features than to less important features in
the CPH models. However, for the RSF models, we can see that ALE has higher monotonicity
than PDP and ICE when ten grid values or intervals are used. However, when the number
of grid values or intervals increases, this changes. The monotonicity of PDP and ICE stays
relatively constant irrespective of the number of grid values, whereas that of ALE decreases as
the number of intervals rises. For example, in Figure 7.9, the average monotonicity for forty grid
values or intervals is displayed. We can see that PDP and ICE have higher monotonicity than
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ALE for EXP1_exponential. When the number of grid values and intervals rises even more,
this difference gets larger and starts to appear with the other datasets as well, as displayed in
Figure 7.10. This indicates that ALE is more likely to distort feature priorities in RSF models
than PDP and ICE as the number of intervals increases. We suspect that this is related to ALE
assigning more weight to variable x(5) as the number of intervals increases, as we saw earlier.

Figure 7.8: Average time-dependent monotonicity of PDP, ICE and ALE
using ten grid values or intervals for RSF and CPH models trained on the
four datasets of Experiment 1

Figure 7.9: Average time-dependent monotonicity of PDP, ICE and ALE
using forty grid values or intervals for RSF and CPH models trained on the
four datasets of Experiment 1

Figure 7.10: Average time-dependent monotonicity of PDP, ICE and ALE
using two hundred grid values or intervals for RSF and CPH models trained
on the four datasets of Experiment 1
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7.2 Experiment 2

In the second experiment, we intend to determine the effect of feature correlation, created
between variable x(3) and x(4), on the accuracy of the interpretability methods. Thus, we fit
a CPH and RSF model to the training part (70%) of each of the six generated datasets for
Experiment 2. Hence, we have six CPH and six RSF models. The performance of the models,
expressed in the Brier score, is displayed in Figure 7.11. The corresponding integrated Brier
scores are presented in Table 7.2. We can see in Figure 7.11 that the Brier score of RSF is higher
than CPH in all cases. This is confirmed by the integrated Brier scores in Table 7.2. Therefore,
we know that CPH outperforms RSF for all six datasets. Interestingly, the similarity between
the Brier scores across different datasets indicates that feature correlation has little to no impact
on the accuracy of the survival models.

Figure 7.11: Time-dependent performance of the RSF and CPH models
trained on the six datasets of Experiment 2 measured by Brier score

Table 7.2: Integrated Brier score of the RSF and CPH models trained on
the six datasets of Experiment 2

7.2.1 Ranking Plot

Figure 7.12 shows the weights assigned by the interpretability methods, computed using the
test part (30%) of the six generated datasets, at different time points. In this case, the survival
models are trained on EXP2_0, a dataset containing no feature correlation. Furthermore, the
interpretability methods use ten grid values or intervals in their computation. We can see that
the interpretability methods give similar weights to the variables in the CPH model. This was
also the case for all other datasets containing different degrees of feature correlation.
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Since the data for this experiment was synthetically generated, we know that each variable
has a constant effect. This effect is highest for variable x(1), followed by x(2), x(3), x(4) and
x(5), where x(5) represents noise. We can see in the bottom two graphs of Figure 7.12 that
the interpretability methods assign more importance to x(3) than x(2) in the CPH model. It is
unclear whether this is the actual distribution of feature importances in the underlying model
or a mistake by the interpretability methods. However, as the number of grid values or intervals
increases, this distortion of feature priorities is resolved. For example, in Figure 7.13, which
shows the feature weights when forty grid values or intervals are used, we can see that variable
x(2) gets more weight assigned than x(3).

Figure 7.12: Feature weights of RSF and CPH trained on EXP2_0 assigned
by PDP, ICE and ALE using ten grid values

Figure 7.13: Feature weights of RSF and CPH trained on EXP2_0 assigned
by PDP, ICE and ALE using forty grid values

36



Therefore, we suspect that the interpretability methods get more accurate for the CPH models
as the number of grid values or intervals increases. This phenomenon is independent of the
degree of feature correlation; it also occurred for the other datasets.

However, the degree of feature correlation seems to have little influence on the interpretability
methods in the CPH models. For example, in the bottom two graphs of Figure 7.14, the
assigned weights for the CPH model trained on EXP2_08, a dataset with a feature correlation
of 0.8 between x(3) and x(4), is shown. If we compare this to the bottom two graphs of Figure
7.12, we can see that apart from a slight decrease in the importance of variable x(2) there is no
significant change.

Figure 7.14: Feature weights of RSF and CPH trained on EXP2_08 assigned
by PDP, ICE and ALE using ten grid values

Figure 7.15: Feature weights of RSF and CPH trained on EXP2_04 assigned
by PDP, ICE and ALE using forty grid values
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In contrast, in the RSF models, the feature correlation seems to have a larger effect on ALE
than on PDP and ICE. The assigned feature weights of PDP and ICE are relatively stable for
different degrees of feature correlation, whereas ALE tends to distort feature priorities when the
correlation is around 0.5. For example, in Figure 7.15, we can see that ALE incorrectly gives
variable x(4) more weight than x(3) in the RSF model, whereas PDP and ICE do not. This
distortion of feature priorities by ALE increases as the number of intervals rises. However, it is
likely that this does not solely result from feature correlation. As we saw in Experiment 1, ALE
tends to assign more weight to noise as the number of intervals increases. Apart from this, we
also do not know whether the distortion of feature priorities results from an inaccurate survival
model or an inaccurate interpretability method. However, as we concluded earlier from the Brier
scores that feature correlation has little to no impact on the accuracy of the survival models, we
suspect the latter.

7.2.2 Faithfulness

In Figure 7.16, the average faithfulness of PDP, ICE and ALE using ten grid values or intervals
is displayed. The x-axis indicates the degree of feature correlation between x(3) and x(4) and the
y-axis indicates the average faithfulness over time. For the CPH models, we can see that the
average faithfulness of ALE is higher than PDP and ICE. In other words, the weights assigned
by ALE correspond more to the actual influence of the features on the prediction of the model.
This is also the case when forty, a hundred or two hundred grid values or intervals are used.

Figure 7.16: Average time-dependent faithfulness of PDP, ICE and ALE
using ten grid values or intervals for RSF and CPH models trained on the
six datasets of Experiment 2

For the RSF models, we noticed that the interpretability methods have similar faithfulness when
the number of grid values or intervals is set to ten, as displayed in Figure 7.16. However, as the
number of grid values and intervals increases there appear differences between the interpretability
methods. The faithfulness of PDP and ICE stays approximately the same as the number of grid
values increases. For example, in Figure 7.17, we can see the average faithfulness when two
hundred grid values or intervals are used.

Figure 7.17: Average time-dependent faithfulness of PDP, ICE and ALE
using two hundred grid values or intervals for RSF and CPH models trained
on the six datasets of Experiment 2
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Furthermore, we can see that the degree of feature correlation has little effect on the faithfulness
of PDP and ICE. This indicates that the correspondence between the actual influence of features
and their assigned weights by PDP and ICE stays approximately the same when the number
of grid values and/or degree of feature correlation changes. However, the faithfulness of ALE
decreases as the number of intervals increases. Especially, for models trained on datasets with
a feature correlation between 0.4 and 0.8, as displayed in Figure 7.17. This indicates that
the correspondence between the weights assigned by ALE and the actual influence of features
decreases when the feature correlation is around 0.5 and the number of intervals increases.

7.2.3 Monotonicity

In terms of monotonicity, we found that the interpretability methods have perfect monotonicity
for the CPH models irrespective of the feature correlation and the number of grid values or
intervals. However, for the RSF models, we found some differences between the interpretability
methods. The monotonicity of PDP and ICE stays approximately the same as the number of
grid values increases. For example, in Figure 7.18 and 7.19, the average monotonicity is displayed
when ten or two hundred grid values or intervals are used respectively.

Figure 7.18: Average time-dependent monotonicity of PDP, ICE and ALE
using ten grid values or intervals for RSF and CPH models trained on the
six datasets of Experiment 2

Figure 7.19: Average time-dependent monotonicity of PDP, ICE and ALE
using two hundred grid values or intervals for RSF and CPH models trained
on the six datasets of Experiment 2

By comparing the left plot in both figures, we can see that the monotonicity of PDP and ICE
does not change. Furthermore, the degree of correlation has little effect on the monotonicity of
PDP and ICE. This indicates that the likelihood of PDP and ICE distorting feature priorities
is independent of the number of grid values used in the computation and the degree of feature
correlation in the underlying data. In contrast, the monotonicity of ALE for models with a
feature correlation between 0.4 and 0.8 decreases as the number of intervals increases. This can
be seen when comparing the left plot in Figure 7.18 and 7.19. This indicates that ALE is more
likely to distort feature priorities with a feature correlation between 0.4 and 0.8 as the number
of intervals increases.
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7.3 Experiment 3

In the third experiment, we compare the efficiency of the interpretability methods. Thus, we
fit an RSF model to the dataset generated for Experiment 3. Then, the execution time of the
interpretability methods is measured while varying the size of the input data and the number of
grid values or intervals used in the computation. As explained in Chapter 5, the measurements
only include the computation of the plot values, not the actual plotting itself. Furthermore, the
hardware specifications of the machine used for measuring the execution times can be found in
Appendix E.

7.3.1 1D-PDP

In Table 7.3, we can see the execution time of 1D-PDP for various combinations of the number
of observations in the input data (500 until 2500) and the number of grid values (10 until 200)
used in the computation. By looking at each column, we can determine the influence of the
number of observations on the execution time. In each column, we see that a larger number
of observations in the input data increases the execution time of 1D-PDP. However, this effect
seems to be rather small; when the number of observations increases twofold, the execution time
only increases by a small proportion. For example, when the number of observations increases
from 500 to 1000 the execution time increases by 38% on average and when the observations
rise from 1000 to 2000, the execution time increases by 55% on average.

Table 7.3: Execution time (in seconds) of 1D-PDP with varying number
of observations (500-2500) and number of grid values (10-200) used in the
computation

When we look at the rows in Table 7.3, we can determine the influence of the number of grid
values on the execution time. In every row, we see that an increase in the number of grid
values increases the execution time. This effect is larger than the influence of the number of
observations on the execution time; when the number of grid values doubles in size, the execution
time increases approximately twofold. For example, when the grid values increase from 20 to
40, the execution time rises with 97%, from 40 to 80 with 105% and from 100 to 200 with 96%
on average.

7.3.2 ICE

Table 7.4 describes the execution time of ICE for different combinations of the number of obser-
vations in the input data (500 until 2500) and the number of grid values (10 until 200) used in
the computation. As one might expect, since the PDP and ICE algorithms are almost identical,
we see the same relation between the execution time and the number of observations. When the
number of observations doubles, the execution time increases with 39% (from 500 to 1000) and
54% (from 1000 to 2000) on average. We also see that the effect of the number of grid values is
larger than the influence of the number of observations. For example, when the number of grid
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values doubles, the execution time increases with 102% (from 20 to 40), 101% (from 40 to 80)
and 95% (from 100 to 200) on average.

Table 7.4: Execution time (in seconds) of ICE with varying number of ob-
servations (500-2500) and number of grid values (10-200) used in the com-
putation

Interestingly, the execution time of PDP and ICE are similar. For example, PDP takes 16.036
seconds to compute with 2500 observations and 200 grid values, whereas ICE takes 17.116
seconds. This can be explained by the fact that the only difference in the computation of the
PDP and ICE values is that PDP takes the average of the predictions whereas ICE does not.
However, we suspect that actually plotting the ICE values will take longer than graphing the
PDP values since ICE draws separate lines for each observation whereas PDP only needs to
plot one line. Unfortunately, we did not measure the execution time including the plotting; we
focused purely on the computation time of the values before they are plotted.

7.3.3 1D-ALE

Table 7.5 contains the execution time of 1D-ALE for various number of observations (500 until
2500) and number of intervals (10 until 200) used in the computation. Unlike PDP and ICE, the
number of observations has little to no effect on the execution time. On average, the execution
time increases by 3% when the observations rise from 500 to 1000 and 11% when the observations
rise from 1000 to 2000. Interestingly, the influence of the observations decreases as the number
of intervals gets larger. For example, in the left two columns, an increase in the number of
observations always increases the execution time. In contrast, in the right two columns, an
increase in the number of observations does not imply a higher execution time.

Table 7.5: Execution time (in seconds) of 1D-ALE with varying number of
observations (500-2500) and number of intervals (10-200) used in the com-
putation

The relation between the execution time and the number of intervals is similar to 1D-PDP
and ICE. Whenever the number of intervals doubles, from 20 to 40, 40 to 80 or 100 to 200,

41



the execution time increases by 85%, 91% and 112% respectively. Furthermore, with a small
number of observations and number of grid values/intervals, the three interpretability methods
have similar execution times. For example, 0.389, 0.313 and 0.344 for five hundred observations
and ten grid values or intervals. However, compared to 1D-PDP and ICE, 1D-ALE scales
better. As the number of observations and the number of grid values or intervals increase, 1D-
ALE becomes increasingly faster than 1D-PDP and ICE. For example, with 1500 observations
and 80 grid values/intervals, 1D-ALE is 2.03 times faster than 1D-PDP and 1.89 times faster
than ICE. However, with 2500 observations and 200 grid values/intervals, 1D-ALE is 2.6 times
faster than 1D-PDP and 2.8 times faster than ICE.

7.3.4 2D-PDP

In Table 7.6, we can see the execution time of 2D-PDP for different numbers of observations
(500 until 2500) and numbers of grid values (5 until 40). It is important to note that we used
smaller grid sizes than in the preceding measurements of 1D-PDP, ICE and 1D-ALE. The main
reason for this choice was that the execution time of 2D-PDP was already high for a relatively
small number of grid values. Therefore, it was not feasible to use the same number of grid values
as in previous measurements.

Table 7.6: Execution time (in seconds) of 2D-PDP with varying number
of observations (500-2500) and number of grid values (5-40) used in the
computation

When looking at the columns, we see that a rise in the number of observations increases the
execution time. This effect is the same as for 1D-PDP when the observations go from 500 to
1000, namely an increase of 38% in execution time. However, when the observations go from
1000 to 2000, there is an increase of 50% whereas 1D-PDP has an increase of 55%. It is likely
that this difference results from measurement errors.

By looking at the rows, we can determine the effect of the number of grid values on the execution
time. In every row, we can see that an increase in grid values has a relatively large effect on
the execution time. For example, when the grid values change from 5 to 10, the execution time
increases by 332%, from 10 to 20 by 306% and from 20 to 40 by 300%. As one might expect,
the effect of grid values for 2D-PDP is larger than for 1D-PDP. This can be explained by the
fact that 1D-PDP goes over each grid value, but 2D-PDP needs to go over each combination of
grid values for the two features. Therefore, the execution time does not grow linearly, like for
1D-PDP, but quadratically with the number of grid values.

7.3.5 2D-ALE

In Table 7.7, we can see the execution time of 2D-ALE for different numbers of observations (500
until 2500) and numbers of intervals (5 until 40). If we compare it with the execution times of
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2D-PDP in Table 7.6, we can see that 2D-PDP is faster when computing with a small number
of grid values/intervals. For example, the execution time of 2D-PDP is on average 1.5 times
faster than 2D-ALE when there are five grid values/intervals. However, 2D-ALE scales better
than 2D-PDP; the number of observations and intervals have a smaller effect on the execution
time of 2D-ALE compared to 2D-PDP. When the number of observations increases from 500 to
1000, the execution time rises by 35% and from 1000 to 2000 the execution time increases by
21%. In contrast, for 2D-PDP this is 38% and 50% respectively. Additionally, when the number
of intervals go from 5 to 10, the execution time increases by 278%, from 10 to 20 by 253% and
from 20 to 40 by 140%. For 2D-PDP, each of these values was over 300%. As a result, 2D-ALE
gets faster than 2D-PDP for larger numbers of grid values/intervals. For example, the execution
time of 2D-ALE is on average 1.4 times faster than 2D-PDP when there are 40 grid values or
intervals.

Table 7.7: Execution time (in seconds) of 2D-ALE with varying number of
observations (500-2500) and number of intervals (5-40) used in the compu-
tation
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Chapter 8

Conclusions

In conclusion, we adapted PDP, ICE and ALE for survival analysis by incorporating the survival
probability and the notion of time. Furthermore, we compared the accuracy and efficiency of
the adapted feature summary methods by conducting three experiments.

8.1 Findings

In the first experiment, we have seen that PDP, ICE and ALE correctly explain variables with
a time-dependent effect, provided that the underlying survival model can make use of such
dependencies. However, ALE tends to assign more weight to noise as the number of intervals
increases. Furthermore, the faithfulness and monotonicity of PDP and ICE exceed that of ALE
as the number of grid values or intervals increases.

In the second experiment, we have seen that a moderate to high feature correlation has a negative
effect on ALE. Especially when the number of intervals increases. In contrast, feature correlation
has no significant effect on PDP and ICE. As a result, the faithfulness and monotonicity of PDP
and ICE stay relatively constant independent of the number of grid values or degree of feature
correlation. However, the faithfulness and monotonicity of ALE, especially for these moderate
to high feature correlations, decrease as the number of intervals increases.

In the third experiment, we have seen that the execution time of 1D-PDP and ICE is similar.
Furthermore, with a small number of observations and intervals, the execution time of 1D-ALE
is also similar. However, 1D-ALE gets increasingly faster than 1D-PDP and ICE as the number
of observations or the number of grid values/intervals increases. Apart from this, by comparing
2D-PDP and 2D-ALE we have seen that 2D-PDP is faster for smaller grid values, whereas
2D-ALE scales better for larger intervals.

Using these findings, we can address the research question: What are the advantages and disad-
vantages of different feature summary methods for survival analysis? The answer is that while
PDP and ICE offer the advantage of greater accuracy, exhibiting robustness against feature
correlation and changing method parameters, ALE stands out for its efficiency, demonstrating
better scalability. Thus, when there is little to no feature correlation, ALE is the preferred
method. In this case, it is important to keep the number of intervals relatively low to maintain
high accuracy. On the other hand, with moderate to high feature correlation or when the degree
of feature correlation is unknown, PDP and ICE are the preferred choices.
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8.2 Limitations

A limitation of our research is the small number of interpretability methods that were compared.
In this research, we only compared three feature summary methods: PDP, ICE and ALE. The
choice to limit our comparison to these methods was primarily due to time constraints imposed
by the scope and duration of the research project. However, we also had to select interpretability
methods that give the same type of output. Otherwise, finding appropriate evaluation metrics
would be hard or even infeasible. As explained in Chapter 2, formalising general evaluation
metrics for different types of explanations remains an open problem.

Another limitation is the small number of survival models used in the experiments. This is
mainly a limitation because the accuracy of the feature summary methods seems to depend on
the underlying survival model. For example, as highlighted in Chapter 7, the interpretability
methods performed better on the Cox Proportional Hazards than on the Random Survival Forest
models. Therefore, even though our experiments yielded valuable insights, these findings may
not be generalisable to other survival models.

The last limitation is the substantial amount of critical components we had to implement our-
selves. This includes the faithfulness metric, monotonicity metric, and feature importance mea-
sure. This was mainly due to the absence of available open-source implementations. Therefore,
given the limited time frame, this extra work prevented us from conducting more extensive
experiments.

8.3 Future Work

Future studies could focus on addressing the aforementioned limitations of this research. For
example, as an extension to this study, other interpretability methods could be adapted and
compared for survival analysis. For example, surrogate intrinsically interpretable models which
explain a black-box model by approximating it with an intrinsically interpretable model [5].
Apart from this, future research could incorporate a more extensive selection of survival models.
This could provide a more comprehensive understanding of the strengths and limitations of
the interpretability methods. In addition, in this research, we focused on two of the three
goals of interpretability, namely accuracy and efficiency. Future studies could compare the
interpretability methods based on the third goal, namely understandability.
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Appendix A

Interpretability Methods for Survival
Analysis

The following implementations are inspired by existing code1,2,3 of the interpretability methods,
discussed in Chapter 2, that are only suitable for classification and regression models.

[ ]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.neighbors import NearestNeighbors
from sksurv.linear_model import CoxPHSurvivalAnalysis
from sksurv.ensemble import RandomSurvivalForest
from sksurv.metrics import brier_score, integrated_brier_score
import time
from scipy.stats import pearsonr
from sklearn.model_selection import train_test_split
from tabulate import tabulate
import math

A.1 Partial Dependence Plot

[ ]: def grid_values(X, feature, no_values):
"""
Create a subset of the unique values.
:param X: array of shape (n_instances, n_features) containing the

covariates
:param feature: integer to indicate the column index of the feature

of interest
:param no_values: intiger determining the size of the subset
:return: array of shape (no_values,) containing a subset of the unique

values of the feature of interest in X
Note: if the request subset size (no_values) is larger than the number of

unique values, the unique values are returned, and hence the

1https://github.com/scikit-learn/scikit-learn/tree/main
2https://github.com/blent-ai/ALEPython/tree/dev
3https://github.com/DanaJomar/PyALE/tree/master
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subset size is smaller than no_values
"""
return np.unique(np.quantile(X[:, feature],

np.linspace(0, 1, no_values), method ="lower"))

[ ]: def pdp_1d(estimator, X, feature, t, no_values):
"""
Compute the partial dependence values for the feature of interest at a

specific time.
:param estimator: trained survival model
:param X: array of shape (n_instances, n_features) containing the

covariates
:param feature: integer to indicate the column index of the feature of

interest
:param t: time of interest
:param no_values: integer determining the number of unique values that

will be used in the computation
:return: array of shape (no_values,) containing the subset of unique

values used in the computation,
array of shape (no_values,) containing the average survival
probability at each unique value

"""
unique_values = grid_values(X, feature, no_values)
X_copy = np.copy(X)
averaged_predictions = []
for i in unique_values:

X_copy[:, feature] = i
prediction = estimator.predict_survival_function(X_copy, True)[:, t]
averaged_predictions.append(np.mean(prediction, axis=0))

return unique_values, averaged_predictions

[ ]: def pdp_2d(estimator, X, feature1, feature2, t, no_values):
"""
Compute the partial dependence values for the features of interest at a

specific time.
:param estimator: trained survival model
:param X: array of shape (n_instances, n_features) containing the

covariates
:param feature1: integer to indicate the column index of the first

feature of interest
:param feature2: integer to indicate the column index of the second

feature of interest
:param t: time of interest
:param no_values: integer determining the number of unique values that

will be used in the computation
:return: array of shape (no_values,) containing the subset of unique

values for feature1 used in the computation,
array of shape (no_values,) containing the subset of unique
values for feature2 used in the computation,
array of shape (no_values, no_values) containing the average
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survival probability at each combination of unique values of
feature1 and feature2

"""
unique_values1 = grid_values(X, feature1, no_values)
unique_values2 = grid_values(X, feature2, no_values)
X_copy = np.copy(X)
averaged_predictions = []
for i in range(0, len(unique_values1)):

X_copy[:, feature1] = unique_values1[i]
for j in range(0, len(unique_values2)):

X_copy[:, feature2] = unique_values2[j]
prediction = estimator.predict_survival_function(X_copy,

True)[:, t]
averaged_predictions.append(np.mean(prediction, axis=0))

averaged_predictions = np.reshape(averaged_predictions,
(len(unique_values1),
len(unique_values2))).T

return unique_values1, unique_values2, averaged_predictions

[ ]: def pdp_plot(estimator, X, features, t, no_values=100):
"""
Create 1D- or 2D-PDPs.
:param estimator: trained survival model
:param X: array of shape (n_instances, n_features) containing the

covariates
:param features: array of {int, (int, int)} containing the column indices

of the features of interest for which to compute a PDP-plot
(e.g. 0 for 1D-PDP and (0, 1) for 2D-PDP)

:param t: time of interest
:param no_values: integer determining the number of unique values that

will be used in the computation
:return: None
"""
for feature in features:

if type(feature) is int:
unique_values,
averaged_predictions = pdp_1d(estimator, X, feature, t, no_values)

plt.figure()
plt.xlabel(feature)
plt.ylabel('Partial Dependence')
plt.plot(unique_values, averaged_predictions)
plt.show()

elif type(feature) is tuple and len(feature) == 2:
feature1 = feature[0]
feature2 = feature[1]
unique_values1, unique_values2,
averaged_predictions = pdp_2d(estimator, X, feature1,

feature2, t, no_values)
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XX, YY = np.meshgrid(unique_values1, unique_values2)
levels = np.linspace(averaged_predictions.min(),

averaged_predictions.max(), 8)
fig, ax = plt.subplots()
ax.set_xlabel(feature1)
ax.set_ylabel(feature2)
contourf_ = ax.contourf(XX, YY, averaged_predictions,

levels=levels)
cbar = fig.colorbar(contourf_)
plt.show()

else:
print('Feature ' + str(feature) + ' does not have the right ' +

'format.')
return NotImplementedError

A.2 Individual Conditional Expectation

[ ]: def ice(estimator, X, feature, t, no_values):
"""
Compute the individual conditional expectation values for the feature of

interest at a specific time.
:param estimator: trained survival model
:param X: array of shape (n_instances, n_features) containing the

covariates
:param feature: integer to indicate the column index of the feature of

interest
:param t: time of interest
:param no_values: integer determining the number of unique values that

will be used in the computation
:return: array of shape (no_values,) containing the subset of unique

values used in the computation,
array of shape (n_instances, no_values) containing the survival
probability of each instance at each unique value

"""
unique_values = grid_values(X, feature, no_values)
X_copy = np.copy(X)
predictions = []
for i in unique_values:

X_copy[:, feature] = i
prediction = estimator.predict_survival_function(X_copy, True)[:, t]
predictions.append(prediction)

return unique_values, np.ravel(predictions).reshape(len(unique_values),
-1).T

[ ]: def ice_plot(estimator, X, features, t, no_values=100):
"""
Create ICE plot.
:param estimator: trained survival model
:param X: array of shape (n_instances, n_features) containing the
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covariates
:param features: array of {int} containing the column indices of the

features of interest for for which to compute an ICE-plot
:param t: time of interest
:param no_values: integer determining the number of unique values that

will be used in the computation
:return: None
"""
for feature in features:

if type(feature) is int:
unique_values, predictions = ice(estimator, X, feature, t,

no_values)
plt.figure()
for prediction in predictions:

plt.plot(unique_values, prediction, color='blue',
alpha=0.1, linewidth=0.5) #plot each individual line

plt.xlabel(feature)
plt.ylabel('Partial Dependence')
plt.show()

else:
print('Feature ' + str(feature) + ' does not have the right ' +

'format.')
return NotImplementedError

A.3 Accumulated Local Effects

[ ]: def get_quantiles(X, feature, k):
"""
Compute k unique quantiles for the feature of interest.
:param X: array of shape (n_instances, n_features) containing the

covariates
:param feature: integer to indicate the column index of the feature of

interest
:param k: number of quantiles
:return: array of shape (k+1,) containing the unique quantiles of the

feature of interest.
Note: if identical quantiles are present, these are removed, and hence

the number of unique quantiles is less than k+1
"""
return np.unique(np.quantile(X[:, feature],

np.linspace(0, 1, k+1), method ="lower"))

[ ]: def get_indices(X, feature, quantiles):
"""
Compute the bin each instance falls into based on the instance's feature

value and the quantiles.
:param X: array of shape (n_instances, n_features) containing the

covariates
:param feature: integer to indicate the column index of the feature of

interest
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:param quantiles: array of shape (n_quantiles,) containing the quantiles
of the feature of interest

:return: array of shape (n_instances,) containing for each instance the
index of the bin it falls into

Note: the number of bins is the number of quantiles - 1
Note: first bin: [lower quantile, upper quantile],

other bins: (lower quantile, upper quantile]
"""
return np.clip(np.digitize(X[:, feature], quantiles, right=True) - 1,

0, None)

[ ]: def roll_replace(X, periods, axis, fill_value):
"""
Shift the elements a number of periods along a given axis.
:param X: array of shape (n_instances, n_features) containing the

covariates
:param periods: number of rows/columns the elements need to be shifted
:param axis: 0 or 1 indicating the axis along which to shift the elements
:param fill_value: replacement value for empty cells created by shifting

the elements
:return: array of shape (n_instances, n_features) containing the shifted

elements.
"""
X_shift = np.roll(X, periods, axis)
if axis == 0:

X_shift[:periods, :] = fill_value
else:

X_shift[:, :periods] = fill_value
return X_shift

[ ]: def ale_1d(estimator, X, feature, t, k):
"""
Compute the accumulated local effects values for the feature of interest

at a specific time.
:param estimator: trained survival model
:param X: array of shape (n_instances, n_features) containing the

covariates
:param feature: integer to indicate the column index of the feature of

interest
:param t: time of interest
:param k: number of intervals
:return: array of shape (k,) containing the interval edges,

array of shape (k,) containing the survival probability in each
interval

"""
quantiles = get_quantiles(X, feature, k)
indices = get_indices(X, feature, quantiles)

#uncentered ALE
X_copy = np.copy(X)
ale_values = np.array([0])
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interval_sizes = np.array([0])
for interval in range(0, len(quantiles) - 1):

X_interval = X_copy[indices == interval]

#compute prediction when feature value is set to lower bound
lower_bound = quantiles[interval]
X_interval[:, feature] = lower_bound
pred_low = estimator.predict_survival_function(X_interval, True)[:, t]

#compute prediction when feature value is set to upper bound
upper_bound = quantiles[interval + 1]
X_interval[:, feature] = upper_bound
pred_up = estimator.predict_survival_function(X_interval, True)[:, t]

pred_dif = pred_up - pred_low
pred_sum = np.sum(pred_dif)
weighted_sum = pred_sum/len(X_interval) #divide by number of

#instances in interval
ale_values = np.append(ale_values, weighted_sum)
interval_sizes = np.append(interval_sizes, len(X_interval))

ale_values_uncentered = np.cumsum(ale_values) #cumulatively add the ale
#values of all intervals

#centered ALE
mean = 0
bottom = np.sum(interval_sizes)
for i in range(0, len(ale_values_uncentered) - 1):

top = np.sum((ale_values_uncentered[i] +
ale_values_uncentered[i + 1]) /

2 * interval_sizes[i + 1])
mean += top/bottom

ale_values_centered = ale_values_uncentered - mean

return quantiles, ale_values_centered

[194]: def ale_2d(estimator, X, feature1, feature2, t, k):
"""
Compute the accumulated local effects values for the features of interest

at a specific time.
:param estimator: trained survival model
:param X: array of shape (n_instances, n_features) containing the

covariates
:param feature1: integer to indicate the column index of the first

feature of interest
:param feature2: integer to indicate the column index of the second

feature of interest
:param t: time of interest
:param k: number of intervals
:return: array of shape (k,) containing the interval edges for the first
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feature of interest,
array of shape (k,) containing the interval edges for the second
feature of interest,
array of shape (k,k) containing the survival probability in each
interval cell

"""
quantiles1 = get_quantiles(X, feature1, k)
indices1 = get_indices(X, feature1, quantiles1)
quantiles2 = get_quantiles(X, feature2, k)
indices2 = get_indices(X, feature2, quantiles2)

#uncentered ALE
X_copy = np.copy(X)
#masked in which every empty cell is set to True
ale_values = np.ma.MaskedArray(

np.zeros((len(quantiles1) - 1, len(quantiles2) - 1)),
mask=np.ones((len(quantiles1) - 1, len(quantiles2) - 1)))

interval_sizes = np.zeros((len(quantiles1) - 1, len(quantiles2) - 1))

for interval1 in range(0, len(quantiles1) - 1):
lower_bound1 = quantiles1[interval1]
upper_bound1 = quantiles1[interval1 + 1]
for interval2 in range(0, len(quantiles2) - 1):

lower_bound2 = quantiles2[interval2]
upper_bound2 = quantiles2[interval2 + 1]

#compute interval cell
X_interval = X_copy[(indices1 == interval1) &

(indices2 == interval2)]
interval_sizes[interval1, interval2] = len(X_interval)

if len(X_interval) > 0:
#mark interval as non-empty
ale_values.mask[interval1, interval2] = False

#compute prediction when both features are set to upper bound
X_interval[:, feature1] = upper_bound1
X_interval[:, feature2] = upper_bound2
pred_up_up = estimator.predict_survival_function(X_interval,

True)[:, t]

#compute prediction when feature1 is set to lower bound and
#feature2 is set to upper bound
X_interval[:, feature1] = lower_bound1
X_interval[:, feature2] = upper_bound2
pred_low_up = estimator.predict_survival_function(X_interval,

True)[:, t]

#compute prediction when featur1 is set to upper bound and
#feature2 is set to lower bound
X_interval[:, feature1] = upper_bound1
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X_interval[:, feature2] = lower_bound2
pred_up_low = estimator.predict_survival_function(X_interval,

True)[:, t]

#compute prediction when both features are set to lower bound
X_interval[:, feature1] = lower_bound1
X_interval[:, feature2] = lower_bound2
pred_low_low = estimator.predict_survival_function(X_interval,

True)[:, t]

#compute ALE value for the interval cell
difference = (pred_up_up - pred_low_up) - (pred_up_low -

pred_low_low)
sum_dif = np.sum(difference)
weighted_dif = sum_dif/len(X_interval)
ale_values[interval1, interval2] = weighted_dif

# replace empty interval cells with nearest neighbour value
indices_valid = np.where(~ale_values.mask)
indices_invalid = np.where(ale_values.mask)
if len(indices_invalid[0]) != 0: #if there are empty cells

range1 = quantiles1.max() - quantiles1.min()
range2 = quantiles2.max() - quantiles2.min()
bins1_values = np.tile(quantiles1, (len(quantiles2), 1))
bins2_values = np.tile(quantiles2, (len(quantiles1), 1)).T
features_valid = np.append((quantiles1[indices_valid[0]] +

quantiles1[indices_valid[0] + 1]) /
(2 * range1),
(quantiles2[indices_valid[1]] +
quantiles2[indices_valid[1] + 1]) /

(2 * range2))
features_valid = np.reshape(features_valid, (2, -1)).T
features_invalid = np.append((quantiles1[indices_invalid[0]] +

quantiles1[indices_invalid[0] + 1]) /
(2 * range1),

(quantiles2[indices_invalid[1]] +
quantiles2[indices_invalid[1] + 1]) /

(2 * range2))
features_invalid = np.reshape(features_invalid, (2, -1)).T

nbrs = NearestNeighbors(n_neighbors=1,
algorithm="kd_tree").fit(features_valid)

distances, indices = nbrs.kneighbors(features_invalid)
ale_values[indices_invalid[0],

indices_invalid[1]] = ale_values[indices_valid[0]
[indices.flatten()],
indices_valid[1]
[indices.flatten()]]

#add zero column and row
ale_values = np.insert(ale_values, 0, np.zeros(len(quantiles1) - 1),
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axis = 1)
ale_values = np.insert(ale_values, 0, np.zeros(len(quantiles2)),

axis = 0)
interval_sizes = np.insert(interval_sizes, 0, np.zeros(

len(quantiles1) - 1), axis = 1)
interval_sizes = np.insert(interval_sizes, 0, np.zeros(len(quantiles2)),

axis = 0)

#cumulatively add rows and columns
ale_values = np.cumsum(np.cumsum(ale_values, axis=0), axis=1)

#compute individual effect of feature1
difference = ale_values - roll_replace(ale_values, periods=1,

axis=0, fill_value=0)
weighted_dif = interval_sizes * ((difference +

roll_replace(difference, periods=1,
axis=1, fill_value=0))/2)

sum_dif = np.sum(weighted_dif, axis=1)
weighted = np.where(np.sum(interval_sizes, axis=1) == 0, 0,

sum_dif / (np.sum(interval_sizes, axis=1)))
individual_effect1 = np.cumsum(weighted)

#compute individual effect of feature2
difference = ale_values - roll_replace(ale_values, periods=1,

axis=1, fill_value=0)
weighted_dif = interval_sizes * ((difference +

roll_replace(difference, periods=1,
axis=0, fill_value=0))/2)

sum_dif = np.sum(weighted_dif, axis=0)
weighted = np.where(np.sum(interval_sizes, axis=0) == 0, 0,

sum_dif / (np.sum(interval_sizes, axis=0)))
individual_effect2 = np.cumsum(weighted)

#subract individual effect
ale_values = ((ale_values - individual_effect2).T - individual_effect1).T

#centered ALE
average = np.sum(interval_sizes[1:, 1:] *

(ale_values[0:len(quantiles1) - 1,
0:len(quantiles2) - 1] +

ale_values[1:len(quantiles1),
1:len(quantiles2)] +

ale_values[0:len(quantiles1) - 1,
1:len(quantiles2)] +

ale_values[1:len(quantiles1),
0:len(quantiles2) - 1]) / 4)

ale_values_centered = ale_values - average / np.sum(interval_sizes)

return quantiles1, quantiles2, ale_values_centered.T
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[ ]: def ale_plot(estimator, X, features, t, k=40):
"""
Create 1D- or 2D-ALEs.
:param estimator: trained survival model
:param X: array of shape (n_instances, n_features) containing the

covariates
:param features: array of {int, (int, int)} containing the column indices

of the features of interest for which to compute an ALE-plot
(e.g. 0 for 1D-ALE and (0, 1) for 2D-ALE)

:param t: time of interest
:param k: number of intervals
:return: None
"""
for feature in features:

if type(feature) is int:
quantiles, ale_values = ale_1d(estimator, X, feature, t, k)

plt.figure()
plt.xlabel(feature)
plt.ylabel('Accumulated Local Effects')
plt.plot(quantiles, ale_values)
plt.show()

elif type(feature) is tuple and len(feature) == 2:
quantiles1, quantiles2, ale_values = ale_2d(

estimator, X, feature[0], feature[1], t, k)

XX, YY = np.meshgrid(quantiles1, quantiles2)
fig, ax = plt.subplots()
ax.set_xlabel(feature[0])
ax.set_ylabel(feature[1])
im = ax.imshow(ale_values, origin="lower",

extent=[XX.min(), XX.max(), YY.min(), YY.max()])
imc = ax.contour(XX, YY, ale_values, colors="black")
ax.clabel(imc, imc.levels, inline="True", fontsize=10)
cbar = fig.colorbar(im, ax=ax)
plt.show()

else:
print('Feature ' + str(feature) + ' does not have the right ' +

'format.')
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Appendix B

Simulated Data

[ ]: """
Script for data simulation provided by Wieske de Swart
"""

import numpy as np
import pandas as pd
from numpy.random import default_rng

class SimulatedDataset:
"""
Create a simulated dataset based on the multivariate joint model linear
Based on the description in "Functional survival forests for multivariate

longitudinal outcomes: Dynamic prediction
of Alzheimer’s disease progression" by Jeffrey Lin and "SurvSHAP(t):

Time-dependent explanations of machine learning
survival models" by Mateusz Krzyziński.
"""
def __init__(self, N, visit_times, h0="constant", c=0, c_x1="td",

data="EXP1", nr_datasets=1, seed=42):
"""
:param N: number of subjects
:param visit_times: array of time points at which variables and

resulting hazard/ survival/ event are computed
:param h0: ["constant", "weibull", "complex"] string to indicate the

baseline hazard function
:param c: intiger indicating the degree of feature correlation
:param c_x1: ["td", "constant"] string to indicate the effect of

feature x1
:param data: ["EXP1", "EXP2"] string to indicate the type of dataset
:param nr_datasets: number of datasets that should be generated
:param seed: random seed
"""
self.N = N
self.visit_times = visit_times
self.nr_times = len(visit_times)
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self.rng = default_rng(seed=seed)
self.h0 = h0
self.c = c
self.c_x1 = c_x1
self.data = data

if nr_datasets == 1:
self.df = self.create_dataframe()
self.dflist = [self.df]

elif nr_datasets > 1:
self.dflist = []
for i in range(nr_datasets):

self.dflist.append(self.create_dataframe())

def generate_var(self):
"""
:return: set of variables with size [N, 1, nr_var]
"""
x = np.zeros([self.N, 1, 5])
x[:, 0, 0] = self.rng.binomial(1, 0.5, size=self.N)
x[:, 0, 1] = self.rng.binomial(1, 0.5, size=self.N)
if self.data == "EXP1":

x[:, 0, 2] = self.rng.normal(10, 2, size=self.N)
x[:, 0, 3] = self.rng.normal(20, 4, size=self.N)

elif self.data == "EXP2":
x[:, 0, 2:4] = self.rng.multivariate_normal([2, 2],

[[2, self.c],
[self.c, 2]],

size=self.N)
else:

print("data should be one of {EXP1, EXP2}, but was: ", data)
return NotImplementedError

x[:, 0, 4] = self.rng.normal(0, 1, size=self.N)
return x

def hazard_function(self, h0_type, c_x1_type, t, x):
""" Generate the measured and underlying longitudinal covariates
:param h0_type: determines baseline hazard function
:param c_x1_type: determines the effect of feature x1
:param t: array with the visit times
:param x: set of variables/ covariates
:return: array of shape [N, nr_times] with the hazard for all

subjects and time points
"""
t = t[None, :]
# determine baseline hazard
if h0_type == "constant":

h0 = 0.08 + 1e-18 * t
elif h0_type == "weibull":

h0 = 1.2 * 0.1 * t ** 0.2
elif h0_type == "complex":
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h0 = np.exp(-17.8 + 6.5 * t - 11 * np.sqrt(t) * np.log(t+1e-18) +
9.5 * np.sqrt(t))

else:
print("h0 should be one of {constant, weibull, complex}, " +

"but was: ", h0_type)
return NotImplementedError

# determine hazard function
if c_x1_type == "td":

c_x1 = -0.9 + 0.1 * t + 0.9 * np.log(t+1e-18)
elif c_x1_type == "constant":

c_x1 = 1
else:

print("c_x1 should be one of {td, constant}, but was: ",
c_x1_type)

return NotImplementedError
h_exp = (c_x1 * x[:, :, 0] + 0.5 * x[:, :, 1] - 0.2 * x[:, :, 2] +

0.1 * x[:, :, 3] + 1e-6 * x[:, :, 4])

return h0 * np.exp(h_exp)

def generate_survival_model(self, x):
""" Generate the hazard and survival function
:param h0: baseline hazard
:param bcov: array of shape [N, 1, nr_bcov] with baseline covariate(s)
:param lcov: array of shape [N, nr_times, nr_lcov] with longitudinal

covariate(s)
:return: hazard, survival, event_time and event
"""
# survival submodel
hazard = self.hazard_function(self.h0, self.c_x1, self.visit_times, x)
# determine the survival based on the hazard:
surv = np.exp(-np.cumsum(hazard, axis=1))
u = self.rng.uniform(0, 1, size=[self.N, 1])
# the event happens when the random probability u is greater than the
# survival probability surv
# the index of the event time can be found by counting the instances
# before this is true
time_idx = np.count_nonzero(surv > u, axis=1)
# when all instances are nonzero the subject is censored at the last
# time step ("end of study" censoring)
cens_end = time_idx == self.nr_times
event_time = self.visit_times[np.where(time_idx == self.nr_times,

self.nr_times - 1, time_idx)]
# add more censoring by generating random censoring times ("dropout")
cens = self.rng.uniform(self.visit_times[1], 2*self.visit_times[-1],

size=self.N)
cens_time = self.visit_times[np.searchsorted(self.visit_times, cens,

side="right") - 1]
event = np.where(np.logical_or(cens_end, cens_time < event_time),

0, 1)
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event_time = np.minimum(event_time, cens_time)
return hazard, surv, event_time, event

def create_dataframe(self):
"""
Generate the covariates and survival model and combine all relevant

information in a dataframe
:return: dataframe with id, visit_time, hazard, survival, event_time,

event and all covariates
"""
x = self.generate_var()
hazard, surv, event_time, event = self.generate_survival_model(x)

df = pd.DataFrame({
"id": np.repeat(np.arange(self.N), self.nr_times),
"visit_time": np.tile(self.visit_times, self.N),
"hazard": np.ravel(hazard),
"survival": np.ravel(surv),
"event_time": np.repeat(event_time, self.nr_times),
"event": np.repeat(event, self.nr_times),

})
# add variables
for i in range(x.shape[-1]):

df["x_" + str(i + 1)] = np.repeat(x[:, 0, i], self.nr_times)

# remove visit times that occur after the event time:
df = df.loc[lambda df: df["visit_time"] < df["event_time"], :]
return df
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Appendix C

Evaluation Metrics for Interpretability
Methods

[ ]: def feature_importance(y_values):
"""
Compute the importance weight of a feature based on the values in its

PDP- or ALE-plot.
Based on the description in "A Simple and Effective Model-Based Variable

Importance" by Greenwell et al.
:param y_values: array of shape (no_y_values,) containing the y-values of

the PDP- or ALE-plot of the feature of interest
:return: integer indicating the feature importance of the feature of

interest
Note: a small importance value indicates less importance and vice versa
"""
return np.sqrt(np.sum(np.square(y_values - np.mean(y_values))) /

(len(y_values) - 1))

[ ]: def rank_values_t(estimator, X, t, parameter, plot='PDP/ICE'):
"""
Compute the feature importance value of each feature at a specific time

point.
:param estimator: trained survival model
:param X: array of shape (n_instances, n_features) containing the

covariates
:param t: time of interest
:param parameter: integer indicating the number of grid values (PDP/ICE)

or number of intervals (ALE) used in the feature's plot
:param plot: ['PDP/ICE', 'ALE'] string to indicate the plot the feature

importance value is based on
:return: array of shape (n_features,) with the feature as first field,

and feature importance as second field.
Note: PDP and ICE are grouped together since they give the same result
"""
X = X.to_numpy()
feature_columns = np.arange(X.shape[1]) #no_features = no_columns in X
rank_values = []
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y_values = []
for f in feature_columns:

if plot == 'PDP/ICE':
_, y_values = pdp_1d(estimator, X, f, t, parameter)

elif plot == 'ALE':
_, y_values = ale_1d(estimator, X, f, t, parameter)

else:
print("plot should be one of {PDP/ICE, ALE}, but was: ", plot)
return NotImplementedError

rank_value = feature_importance(y_values)
rank_values.append((f, rank_value))

return rank_values

[ ]: def ascending_ranking(ranking):
"""
Sort the feature importance values in ascending order.
:param ranking: array of shape (n_features,) with the feature as first

field, and feature importance as second field.
:return: sorted array of shape (n_features,) with the feature as first

field, and the feature importance as second field.
"""
return sorted(ranking, key=lambda x: x[1], reverse=False)

[ ]: def faithfulness(estimator, X, ranking, t):
"""
Compute the faithfulness metric.
Based on the desscription in "Evaluation Metrics Research for Explainable

Artificial Intelligence Global Methods Using Synthetic Data" by
Oblizanov et al.

:param estimator: trained survival model
:param X: array of shape (n_instances, n_features) containing the

covariates
:param ranking: array of shape (n_features,) with the feature as first

field, and feature importance as second field.
:param t: time of interest
:return: integer indicating the correlation between the feature

importance values and prediction changes when the feature
is set to its mean value

"""
X = X.to_numpy()
base_survival = estimator.predict_survival_function(X, True)[:, t]
delta_survival = np.array([])
for (feature, importance) in ranking:

X_faithfulness = np.copy(X)
X_faithfulness[:, feature] = np.mean(X[:, feature])
survival = estimator.predict_survival_function(X_faithfulness,

True)[:, t]
delta_survival = np.append(delta_survival,

np.mean(np.abs(survival - base_survival)))
rank_values = [i for (f, i) in ranking]
statistic, pvalue = pearsonr(rank_values, delta_survival)
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return statistic

[ ]: def monotonicity(estimator, X, ranking, t):
"""
Compute the monotonicity metric.
Based on the desscription in "Evaluation Metrics Research for Explainable

Artificial Intelligence Global Methods Using Synthetic Data" by
Oblizanov et al.

:param estimator: trained survival model
:param X: array of shape (n_instances, n_features) containing the

covariates
:param ranking: array of shape (n_features,) with the feature as first

field, and feature importance as second field.
:param t: time of interest
:return: integer indicating the proportion of features that received a

higher feature importance value compared to a feature with a
lower feature importance value that causes more prediction change

"""
X = X.to_numpy()
ranking = ascending_ranking(ranking)
base_survival = estimator.predict_survival_function(X, True)[:, t]
delta_survival = np.array([])
X_monotonicity = np.copy(X)
for (feature, importance) in ranking:

X_monotonicity[:, feature] = np.mean(X[:, feature])
survival = estimator.predict_survival_function(X_monotonicity,

True)[:, t]
delta_survival = np.append(delta_survival,

np.mean(np.abs(survival - base_survival)))
count = 0
for i in np.arange(len(delta_survival)-1):

for j in delta_survival[i+1:]: #values after d[i]
if delta_survival[i] > j:

count += 1
n_comparisons = len(delta_survival)*(len(delta_survival)-1)/2
return 1 - count/n_comparisons
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Appendix D

Experiments

[ ]: def transform(df):
"""
Transform the dataframe by:
- reducing the longitudinal data to the first measurement only
- splitting the dataframe into train data (70%) and test data (30%)
- splitting both the train and test data into two separate dataframes:

- X - shape = (n_samples, n_features) containing the covariates
- y - shape = (n_samples,) containing the binary event indicator as

first field, and time of the event/censoring as second field.
:param df: dataframe with id, visit_time, hazard, survival, event_time,

event and five covariates
:return: transformed dataframe
"""
df = df.drop_duplicates(['id'])
X = df[['x_1', 'x_2', 'x_3', 'x_4', 'x_5']]
y = np.array([tuple(x) for x in df[['event', 'event_time']].values],

dtype=[('event', 'bool_'), ('event_time', 'i4')])
X_train, X_test = train_test_split(X, test_size=0.3, random_state=42)
y_train, y_test = train_test_split(y, test_size=0.3, random_state=42)
return X_train, X_test, y_train, y_test

[ ]: def brier_scores(estimator, X_test, y_train, y_test, times=np.arange(10)):
"""
Compute the brier score at different time points and the integrated brier

score.
:param estimator: trained survival model
:param X_test: array of shape (n_test_samples, n_features) containing the

covariates for the test data
:param y_train: array of shape (n_train_samples, ) containing the binary

event indicator as first field, and time of the event/censoring
as second field field for the training data.

:param y_test: array of shape (n_train_samples, ) containing the binary
event indicator as first field, and time of the event/censoring
as second field field for the test data.

:param times: times of interest
:return: array of shape (n_times, ) containing the brier score at each
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time, and integer indicating the integrated brier score.
"""
survs = estimator.predict_survival_function(X_test)
preds = np.asarray([[fn(t) for t in times] for fn in survs])
return brier_score(y_train, y_test, preds, times)[1],␣

↪→integrated_brier_score(y_train, y_test, preds, times)

D.1 Experiment 1

[ ]: #Generate the datasets with differerent baseline hazard functions

visit_times = np.arange(0, 10.1, 0.5)

#EXP1_exponential
sim_data_exp = SimulatedDataset(2000, visit_times, h0="constant")
df_exp = sim_data_exp.df
df_exp.to_csv("./dataset/simdata_N2000_EXP1_exponential.csv", index=False)
df_exp = pd.read_csv("./dataset/simdata_N2000_EXP1_exponential.csv")

#EXP1_weibull
sim_data_weib = SimulatedDataset(2000, visit_times, h0="weibull")
df_weib = sim_data_weib.df
df_weib.to_csv("./dataset/simdata_N2000_EXP1_weibull.csv", index=False)
df_weib = pd.read_csv("./dataset/simdata_N2000_EXP1_weibull.csv")

#EXP1_complex
sim_data_comp = SimulatedDataset(2000, visit_times, h0="complex")
df_comp = sim_data_comp.df
df_comp.to_csv("./dataset/simdata_N2000_EXP1_complex.csv", index=False)
df_comp = pd.read_csv("./dataset/simdata_N2000_EXP1_weibull.csv")

#EXP1_non_td
sim_data_non_td = SimulatedDataset(2000, visit_times, h0="complex",

c_x1="constant")
df_non_td = sim_data_non_td.df
df_non_td.to_csv("./dataset/simdata_N2000_EXP1_non_td.csv", index=False)
df_non_td = pd.read_csv("./dataset/simdata_N2000_EXP1_non_td.csv")

[ ]: #Transform dataframes for survival models

datasets = [df_exp, df_weib, df_comp, df_non_td]
n_datasets = len(datasets)
dataset_types = ['EXP1_exponential', 'EXP1_weibull',

'EXP1_complex', 'EXP1_non_td']

X_train = np.zeros(n_datasets, dtype=np.ndarray)
X_test = np.zeros(n_datasets, dtype=np.ndarray)
y_train = np.zeros(n_datasets, dtype=np.ndarray)
y_test = np.zeros(n_datasets, dtype=np.ndarray)
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for d in np.arange(n_datasets):
X_train[d], X_test[d], y_train[d], y_test[d] = transform(datasets[d])

[ ]: #Train the survival models

model_types = ['RSF', 'CPH']
n_model_types = len(model_types)

models = np.zeros((n_model_types, n_datasets), dtype=np.ndarray)
n_models = len(models) * len(models[0])

for d in np.arange(n_datasets):
models[0, d] = RandomSurvivalForest().fit(X_train[d], y_train[d])
models[1, d] = CoxPHSurvivalAnalysis().fit(X_train[d], y_train[d])

[ ]: #Evaluate the models

normal_brier_scores = np.zeros((n_model_types, n_datasets), dtype=np.ndarray)
integrated_brier_scores = np.zeros((n_model_types, n_datasets))
end_time = 10

#Brier Score Plot
fig, axs = plt.subplots(1, n_datasets, figsize=(10, 3))
fig.tight_layout()
axs[0].set_ylabel('Brier Score')
for m in np.arange(n_model_types): #RSF or CPH

for d in np.arange(n_datasets): #EXP1_exponential, EXP1_weibull,
#EXP1_complex or EXP1_non_td

normal_brier_scores[m, d], integrated_brier_scores[m, d] = (
brier_scores(models[m, d], X_test[d], y_train[d], y_test[d]))

axs[d].plot(np.arange(end_time), normal_brier_scores[m, d],
label=model_types[m])

axs[d].set_ylim([0, 0.25])
axs[d].set_title(dataset_types[d])
axs[d].set_xlabel('Time')

fig.legend(model_types)
fig.show()

#Integrated Brier Score Table
table = [['Dataset', model_types[0], model_types[1]],

[dataset_types[0], integrated_brier_scores[0, 0],
integrated_brier_scores[1, 0]],

[dataset_types[1], integrated_brier_scores[0, 1],
integrated_brier_scores[1, 1]],

[dataset_types[2], integrated_brier_scores[0, 2],
integrated_brier_scores[1, 2]],

[dataset_types[3], integrated_brier_scores[0, 3],
integrated_brier_scores[1, 3]]]

print(tabulate(table, headers='firstrow', tablefmt='fancy_grid'))
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[ ]: #Compute the rankings

parameters = [10, 40, 100, 200]
n_parameters = len(parameters)

method_types = ['PDP/ICE', 'ALE']
n_methods = len(method_types)

feature_names = np.array(['x1', 'x2', 'x3', 'x4', 'x5'])
n_features = len(feature_names)

rankings = np.zeros((n_model_types, n_datasets, end_time, n_methods,
n_features, n_parameters), dtype=tuple)

for par in np.arange(n_parameters):
#Compute ranking at different time points
for m in np.arange(n_model_types): #RSF or CPH

for d in np.arange(n_datasets): #EXP1_exponentional, EXP1_weibull,
#EXP1_complex, EXP1_non_td

for t in np.arange(end_time): #[0, 10)
for p in np.arange(n_methods): #PDP/ICE or ALE

rankings[m, d, t, p, :, par] = rank_values_t(
models[m, d], X_test[d], t,
parameter=parameters[par],
plot=method_types[p])

[ ]: #Plot the rankings

for par in np.arange(n_parameters):
for d in np.arange(n_datasets):

fig, axs = plt.subplots(n_model_types, n_methods,
figsize=(5, 5), sharex=True, sharey=True)

axs[0, 0].set_ylabel('Feature Importance')
axs[1, 0].set_xlabel('Time')
axs[1, 0].set_ylabel('Feature Importance')
axs[1, 1].set_xlabel('Time')
for m in np.arange(n_model_types):

for p in np.arange(n_methods):
for f in np.arange(n_features):

axs[m, p].plot(np.arange(end_time),
[i for (f, i) in
rankings[m, d, :, p, f, par]],

label=feature_names[f])
axs[m, p].set_title(model_types[m]+' '+method_types[p])

fig.legend(feature_names)
fig.suptitle('Parameter '+str(parameters[par])+

' - ' +dataset_types[d])
fig.tight_layout()
fig.show()
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[ ]: #Faithfulness

for par in np.arange(n_parameters):
faith_values = np.zeros((n_model_types, n_datasets, end_time, n_methods))
average = np.zeros((n_model_types, n_datasets, n_methods))
for t in np.arange(end_time): #[0, 10)

fig, axs = plt.subplots(1, n_model_types, figsize=(5, 2))
fig.tight_layout()
axs[0].set_title(model_types[0])
axs[0].set_ylabel('Faithfulness')
axs[1].set_title(model_types[1])
for m in np.arange(n_model_types): #RSF or CPH

for p in np.arange(n_methods): #PDP/ICE or ALE
for d in np.arange(n_datasets): #EXP1_exp, EXP1_weibull,

#EXP1_complex, EXP1_non_td
faith_values[m, d, t, p] = faithfulness(

models[m, d], X_test[d],
rankings[m, d, t, p, :, par], t)

average[m, d, p] += faith_values[m, d, t, p]
axs[m].plot(np.arange(n_datasets), faith_values[m, :, t, p],

label=method_types[p])
axs[m].set_xticks(np.arange(n_datasets), dataset_types,

rotation='vertical')
fig.legend(method_types, loc='lower center')
fig.suptitle('Parameter '+str(parameters[par])+' - Time ' +str(t))
fig.subplots_adjust(top=0.80)
fig.show()

average = average/end_time
fig, axs = plt.subplots(1, n_model_types, figsize=(5, 2))
fig.tight_layout()
axs[0].set_title(model_types[0])
axs[0].set_ylabel('Average Faithfulness')
axs[1].set_title(model_types[1])
for m in np.arange(n_model_types): #RSF or CPH

for p in np.arange(n_methods): #PDP/ICE or ALE
axs[m].plot(np.arange(n_datasets), average[m, :, p],

label=method_types[p])
axs[m].set_xticks(np.arange(n_datasets), dataset_types,

rotation='vertical')
fig.legend(method_types, loc='lower center')
fig.suptitle('Parameter '+str(parameters[par])+' - Average')
fig.subplots_adjust(top=0.80)
fig.show()
table = [['Dataset', model_types[0]+' '+method_types[0],

model_types[0]+' '+method_types[1],
model_types[1]+' '+method_types[0],
model_types[1]+' '+method_types[1]],

[dataset_types[0], average[0, 0, 0], average[0, 0, 1],
average[1, 0, 0], average[1, 0, 1]],

[dataset_types[1], average[0, 1, 0], average[0, 1, 1],
average[1, 1, 0], average[1, 1, 1]],
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[dataset_types[2], average[0, 2, 0], average[0, 2, 1],
average[1, 2, 0], average[1, 2, 1]],

[dataset_types[3], average[0, 3, 0], average[0, 3, 1],
average[1, 3, 0], average[1, 3, 1]]]

print(tabulate(table, headers='firstrow', tablefmt='fancy_grid'))

[ ]: #Monotonicity

for par in np.arange(n_parameters):
mon_values = np.zeros((n_model_types, n_datasets, end_time, n_methods))
average = np.zeros((n_model_types, n_datasets, n_methods))
for t in np.arange(end_time): #[0, 10)

fig, axs = plt.subplots(1, n_model_types, figsize=(5, 2),
sharex=True, sharey=True)

fig.tight_layout()
axs[0].set_title(model_types[0])
axs[0].set_ylabel('Monotonicity')
axs[1].set_title(model_types[1])
for m in np.arange(n_model_types): #RSF or CPH

for p in np.arange(n_methods): #PDP/ICE or ALE
for d in np.arange(n_datasets): #EXP1_exp, EXP1_weibull,

#EXP1_complex, EXP1_non_td
mon_values[m, d, t, p] = monotonicity(

models[m, d], X_test[d],
rankings[m, d, t, p, :, par], t)

average[m, d, p] += mon_values[m, d, t, p]
axs[m].plot(dataset_types, mon_values[m, :, t, p],

label=method_types[p])
axs[m].set_xticks(np.arange(n_datasets), dataset_types,

rotation='vertical')
fig.legend(method_types, loc='lower center')
fig.suptitle('Parameter '+str(parameters[par])+' - Time ' +str(t))
fig.subplots_adjust(top=0.80)
fig.show()

average = average/end_time
fig, axs = plt.subplots(1, n_model_types, figsize=(5, 2),

sharex=True, sharey=True)
fig.tight_layout()
axs[0].set_title(model_types[0])
axs[0].set_ylabel('Average Monotonicity')
axs[1].set_title(model_types[1])
for m in np.arange(n_model_types): #RSF or CPH

for p in np.arange(n_methods): #PDP/ICE or ALE
axs[m].plot(np.arange(n_datasets), average[m, :, p],

label=method_types[p])
axs[m].set_xticks(np.arange(n_datasets), dataset_types,

rotation='vertical')
fig.legend(method_types, loc='lower center')
fig.suptitle('Parameter '+str(parameters[par])+' - Average')
fig.subplots_adjust(top=0.80)
fig.show()
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table = [['Dataset', model_types[0]+' '+method_types[0],
model_types[0]+' '+method_types[1],
model_types[1]+' '+method_types[0],
model_types[1]+' '+method_types[1]],

[dataset_types[0], average[0, 0, 0], average[0, 0, 1],
average[1, 0, 0], average[1, 0, 1]],

[dataset_types[1], average[0, 1, 0], average[0, 1, 1],
average[1, 1, 0], average[1, 1, 1]],

[dataset_types[2], average[0, 2, 0], average[0, 2, 1],
average[1, 2, 0], average[1, 2, 1]],

[dataset_types[3], average[0, 3, 0], average[0, 3, 1],
average[1, 3, 0], average[1, 3, 1]]]

print(tabulate(table, headers='firstrow', tablefmt='fancy_grid'))

D.2 Experiment 2

[ ]: #Generate datasets with feature correlation

visit_times = np.arange(0, 10.1, 0.5)
correlations = np.array([0, 0.2, 0.4, 0.6, 0.8, 1])

#EXP2_0
sim_data_00 = SimulatedDataset(2000, visit_times, h0="constant", c=0,

data="EXP2", c_x1="constant")
df_0 = sim_data_00.df
df_0.to_csv("./dataset/simdata_N2000_EXP2_0.csv", index=False)
df_0 = pd.read_csv("./dataset/simdata_N2000_EXP2_0.csv")

#EXP2_02
sim_data_02 = SimulatedDataset(2000, visit_times, h0="constant", c=0.2,

data="EXP2", c_x1="constant")
df_02 = sim_data_02.df
df_02.to_csv("./dataset/simdata_N2000_EXP2_02.csv", index=False)
df_02 = pd.read_csv("./dataset/simdata_N2000_EXP2_02.csv")

#EXP2_04
sim_data_04 = SimulatedDataset(2000, visit_times, h0="constant", c=0.4,

data="EXP2", c_x1="constant")
df_04 = sim_data_04.df
df_04.to_csv("./dataset/simdata_N2000_EXP2_04.csv", index=False)
df_04 = pd.read_csv("./dataset/simdata_N2000_EXP2_04.csv")

#EXP2_06
sim_data_06 = SimulatedDataset(2000, visit_times, h0="constant", c=0.6,

data="EXP2", c_x1="constant")
df_06 = sim_data_06.df
df_06.to_csv("./dataset/simdata_N2000_EXP2_06.csv", index=False)
df_06 = pd.read_csv("./dataset/simdata_N2000_EXP2_06.csv")

#EXP2_08
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sim_data_08 = SimulatedDataset(2000, visit_times, h0="constant", c=0.8,
data="EXP2", c_x1="constant")

df_08 = sim_data_08.df
df_08.to_csv("./dataset/simdata_N2000_EXP2_08.csv", index=False)
df_08 = pd.read_csv("./dataset/simdata_N2000_EXP2_08.csv")

#EXP2_1
sim_data_1 = SimulatedDataset(2000, visit_times, h0="constant", c=1,

data="EXP2", c_x1="constant")
df_1 = sim_data_1.df
df_1.to_csv("./dataset/simdata_N2000_EXP2_1.csv", index=False)
df_1 = pd.read_csv("./dataset/simdata_N2000_EXP2_1.csv")

[ ]: #Transform dataframes for survival models

datasets = [df_0, df_02, df_04, df_06, df_08, df_1]
n_datasets = len(datasets)
dataset_types = ['EXP2_0', 'EXP2_02', 'EXP2_04',

'EXP2_06', 'EXP2_08', 'EXP2_1']

X_train = np.zeros(n_datasets, dtype=np.ndarray)
X_test = np.zeros(n_datasets, dtype=np.ndarray)
y_train = np.zeros(n_datasets, dtype=np.ndarray)
y_test = np.zeros(n_datasets, dtype=np.ndarray)

for d in np.arange(n_datasets):
X_train[d], X_test[d], y_train[d], y_test[d] = transform(datasets[d])

[ ]: #Train the survival models

model_types = ['RSF', 'CPH']
n_model_types = len(model_types)

models = np.zeros((n_model_types, n_datasets), dtype=np.ndarray)
n_models = len(models) * len(models[0])

for d in np.arange(n_datasets):
models[0, d] = RandomSurvivalForest().fit(X_train[d], y_train[d])
models[1, d] = CoxPHSurvivalAnalysis().fit(X_train[d], y_train[d])

[ ]: #Evaluate models

normal_brier_scores = np.zeros((n_model_types, n_datasets), dtype=np.ndarray)
integrated_brier_scores = np.zeros((n_model_types, n_datasets))
end_time = 10

#Brier Score Plot
fig, axs = plt.subplots(2, int(n_datasets/2), figsize=(8, 5),

sharex=True, sharey=True)
fig.tight_layout()
axs[0, 0].set_ylabel('Brier Score')
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axs[1, 0].set_ylabel('Brier Score')
axs[1, 0].set_xlabel('Time')
axs[1, 1].set_xlabel('Time')
axs[1, 2].set_xlabel('Time')
for m in np.arange(n_model_types): #RSF or CPH

for d in np.arange(n_datasets): #EXP1_exponential, EXP1_weibull,
#EXP1_complex or EXP1_non_td

normal_brier_scores[m, d], integrated_brier_scores[m, d] = (
brier_scores(models[m, d], X_test[d], y_train[d], y_test[d]))

axs[math.floor(d/3), d % 3].plot(np.arange(10),
normal_brier_scores[m, d],
label=model_types[m])

axs[math.floor(d/3), d % 3].set_title(dataset_types[d])
axs[math.floor(d/3), d % 3].set_xticks(np.arange(0, end_time, 2.5),

np.arange(0, end_time, 2.5))
fig.legend(model_types)
fig.show()

#Integrated Brier Score Table
table = [['Dataset', model_types[0], model_types[1]],

[dataset_types[0], integrated_brier_scores[0, 0],
integrated_brier_scores[1, 0]],

[dataset_types[1], integrated_brier_scores[0, 1],
integrated_brier_scores[1, 1]],

[dataset_types[2], integrated_brier_scores[0, 2],
integrated_brier_scores[1, 2]],

[dataset_types[3], integrated_brier_scores[0, 3],
integrated_brier_scores[1, 3]],

[dataset_types[4], integrated_brier_scores[0, 4],
integrated_brier_scores[1, 4]],

[dataset_types[5], integrated_brier_scores[0, 5],
integrated_brier_scores[1, 5]]]

print(tabulate(table, headers='firstrow', tablefmt='fancy_grid'))

[ ]: #Compute the rankings

method_types = ['PDP/ICE', 'ALE']
n_methods = len(method_types)

parameters = [10, 40, 100, 200]
n_parameters = len(parameters)

feature_names = np.array(['x1', 'x2', 'x3', 'x4', 'x5'])
n_features = len(feature_names)

rankings = np.zeros((n_model_types, n_datasets, end_time, n_methods,
n_features, n_parameters), dtype=tuple)

for par in np.arange(n_parameters):
#Compute ranking at different time points
for m in np.arange(n_model_types): #RSF or CPH
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for d in np.arange(n_datasets): #0, 0.2, 0.4, 0.6, 0.8 or 1
for t in np.arange(end_time): #[0, 10)

for p in np.arange(n_methods): #PDP/ICE or ALE
rankings[m, d, t, p, :, par] = rank_values_t(

models[m, d], X_test[d], t,
parameter=parameters[par],
plot=method_types[p])

[ ]: #Plot the rankings

for par in np.arange(n_parameters):
for d in np.arange(n_datasets):

fig, axs = plt.subplots(n_model_types, n_methods, figsize=(5, 5),
sharex=True, sharey=True)

axs[0, 0].set_ylabel('Feature Importance')
axs[1, 0].set_xlabel('Time')
axs[1, 0].set_ylabel('Feature Importance')
axs[1, 1].set_xlabel('Time')
for m in np.arange(n_model_types):

for p in np.arange(n_methods):
for f in np.arange(n_features):

axs[m, p].plot(np.arange(end_time),
[i for (f, i) in
rankings[m, d, :, p, f, par]],

label=feature_names[f])
axs[m, p].set_title(model_types[m]+' '+method_types[p])

fig.legend(feature_names)
fig.suptitle('Parameter '+str(parameters[par])+

' - ' +dataset_types[d])
fig.tight_layout()
fig.show()

[ ]: #Faithfulness

for par in np.arange(n_parameters):
faith_values = np.zeros((n_model_types, n_datasets, end_time, n_methods))
average = np.zeros((n_model_types, n_datasets, n_methods))
for t in np.arange(end_time): #[0, 10)

fig, axs = plt.subplots(1, n_model_types, figsize=(5, 2))
fig.tight_layout()
axs[0].set_title(model_types[0])
axs[0].set_ylabel('Faithfulness')
axs[0].set_xlabel('Rho')
axs[1].set_title(model_types[1])
axs[1].set_xlabel('Rho')
for m in np.arange(n_model_types): #RSF or CPH

for p in np.arange(n_methods): #PDP/ICE or ALE
for d in np.arange(n_datasets): #0, 0.25, 0.5, 0.75 or 1

faith_values[m, d, t, p] = faithfulness(
models[m, d], X_test[d],
rankings[m, d, t, p, :, par], t)
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average[m, d, p] += faith_values[m, d, t, p]
axs[m].plot(correlations, faith_values[m, :, t, p],

label=method_types[p])
axs[m].set_xticks(correlations, correlations)

fig.legend(method_types, loc='lower center')
fig.suptitle('Parameter '+str(parameters[par])+' - Time ' +str(t))
fig.subplots_adjust(top=0.80)
fig.show()

average = average/end_time
fig, axs = plt.subplots(1, n_model_types, figsize=(5, 2))
fig.tight_layout()
axs[0].set_title(model_types[0])
axs[0].set_ylabel('Average Faithfulness')
axs[0].set_xlabel('Rho')
axs[1].set_title(model_types[1])
axs[1].set_xlabel('Rho')
for m in np.arange(n_model_types): #RSF or CPH

for p in np.arange(n_methods): #PDP/ICE or ALE
axs[m].plot(correlations, average[m, :, p], label=method_types[p])
axs[m].set_xticks(correlations, correlations)

fig.legend(method_types, loc='lower center')
fig.suptitle('Parameter '+str(parameters[par])+' - Average')
fig.subplots_adjust(top=0.80)
fig.show()
table = [['Dataset', model_types[0]+' '+method_types[0],

model_types[0]+' '+method_types[1],
model_types[1]+' '+method_types[0],
model_types[1]+' '+method_types[1]],

[dataset_types[0], average[0, 0, 0], average[0, 0, 1],
average[1, 0, 0], average[1, 0, 1]],

[dataset_types[1], average[0, 1, 0], average[0, 1, 1],
average[1, 1, 0], average[1, 1, 1]],

[dataset_types[2], average[0, 2, 0], average[0, 2, 1],
average[1, 2, 0], average[1, 2, 1]],

[dataset_types[3], average[0, 3, 0], average[0, 3, 1],
average[1, 3, 0], average[1, 3, 1]],

[dataset_types[4], average[0, 4, 0], average[0, 4, 1],
average[1, 4, 0], average[1, 4, 1]],

[dataset_types[5], average[0, 5, 0], average[0, 5, 1],
average[1, 5, 0], average[1, 5, 1]]]

print(tabulate(table, headers='firstrow', tablefmt='fancy_grid'))

[ ]: #Monotonicity

for par in np.arange(n_parameters):
mon_values = np.zeros((n_model_types, n_datasets, end_time, n_methods))
average = np.zeros((n_model_types, n_datasets, n_methods))
for t in np.arange(end_time): #[0, 10)

fig, axs = plt.subplots(1, n_model_types, figsize=(5, 2),
sharex=True, sharey=True)

fig.tight_layout()
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axs[0].set_title(model_types[0])
axs[0].set_ylabel('Monotonicity')
axs[0].set_xlabel('Rho')
axs[1].set_title(model_types[1])
axs[1].set_xlabel('Rho')
for m in np.arange(n_model_types): #RSF or CPH

for p in np.arange(n_methods): #PDP/ICE or ALE
for d in np.arange(n_datasets): #0, 0.25, 0.5, 0.75 or 1

mon_values[m, d, t, p] = monotonicity(
models[m, d], X_test[d],
rankings[m, d, t, p, :, par], t)

average[m, d, p] += mon_values[m, d, t, p]
axs[m].plot(correlations, mon_values[m, :, t, p],

label=method_types[p])
axs[m].set_xticks(correlations, correlations)

fig.legend(method_types, loc='lower center')
fig.suptitle('Parameter '+str(parameters[par])+' - Time ' +str(t))
fig.subplots_adjust(top=0.80)
fig.show()

average = average/end_time
fig, axs = plt.subplots(1, n_model_types, figsize=(5, 2),

sharex=True, sharey=True)
fig.tight_layout()
axs[0].set_title(model_types[0])
axs[0].set_ylabel('Average Monotonicity')
axs[0].set_xlabel('Rho')
axs[1].set_title(model_types[1])
axs[1].set_xlabel('Rho')
for m in np.arange(n_model_types): #RSF or CPH

for p in np.arange(n_methods): #PDP/ICE or ALE
axs[m].plot(correlations, average[m, :, p], label=method_types[p])
axs[m].set_xticks(correlations, correlations)

fig.legend(method_types, loc='lower center')
fig.suptitle('Parameter '+str(parameters[par])+' - Average')
fig.subplots_adjust(top=0.80)
fig.show()
table = [['Dataset', model_types[0]+' '+method_types[0],

model_types[0]+' '+method_types[1],
model_types[1]+' '+method_types[0],
model_types[1]+' '+method_types[1]],

[dataset_types[0], average[0, 0, 0], average[0, 0, 1],
average[1, 0, 0], average[1, 0, 1]],

[dataset_types[1], average[0, 1, 0], average[0, 1, 1],
average[1, 1, 0], average[1, 1, 1]],

[dataset_types[2], average[0, 2, 0], average[0, 2, 1],
average[1, 2, 0], average[1, 2, 1]],

[dataset_types[3], average[0, 3, 0], average[0, 3, 1],
average[1, 3, 0], average[1, 3, 1]],

[dataset_types[4], average[0, 4, 0], average[0, 4, 1],
average[1, 4, 0], average[1, 4, 1]],

[dataset_types[5], average[0, 5, 0], average[0, 5, 1],
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average[1, 5, 0], average[1, 5, 1]]]
print(tabulate(table, headers='firstrow', tablefmt='fancy_grid'))

D.3 Experiment 3

[ ]: #Generate data and train model

sim_data_eff = SimulatedDataset(10000, visit_times)
df_eff = sim_data_eff.df
df_eff.to_csv("./dataset/simdata_N5000_EXP3.csv", index=False)
df_eff = pd.read_csv("./dataset/simdata_N5000_EXP3.csv")

#Transform data to fit model
X_train, X_test, y_train, y_test = transform(df_eff)

#Train model
model = RandomSurvivalForest().fit(X_train, y_train)

[ ]: #1D-plots

no_instances = [500, 1000, 1500, 2000, 2500]
parameters = [10, 20, 40, 60, 80, 100, 200]

feature = 2 #we apply the interpretability methods on feature x3
feature_names = ['x_1', 'x_2', 'x_3', 'x_4', 'x_5']
no_repetitions = 4

#PDP
times_pdp = np.full((len(no_instances), len(parameters)), None)
for n in np.arange(len(no_instances)):

for p in np.arange(len(parameters)):
unique_values = len(np.unique(

X_test.iloc[:no_instances[n], :]
[feature_names[feature]]))

if unique_values >= parameters[p]:
times = 0
for r in np.arange(no_repetitions):

begin = time.time()
pdp_1d(model, X_test.iloc[:no_instances[n], :].to_numpy(),

feature, 0, parameters[p])
end = time.time()
times += end - begin

times_pdp[n, p] = times/no_repetitions
table_pdp = [np.append(no_instances[0], times_pdp[0, :]),

np.append(no_instances[1], times_pdp[1, :]),
np.append(no_instances[2], times_pdp[2, :]),
np.append(no_instances[3], times_pdp[3, :]),
np.append(no_instances[4], times_pdp[4, :])]

print(tabulate(table_pdp,
headers=['', parameters[0], parameters[1],
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parameters[2], parameters[3],
parameters[4], parameters[5],
parameters[6]], tablefmt='fancy_grid'))

#ICE
times_ice = np.full((len(no_instances), len(parameters)), None)
for n in np.arange(len(no_instances)):

for p in np.arange(len(parameters)):
unique_values = len(np.unique(

X_test.iloc[:no_instances[n], :]
[feature_names[feature]]))

if unique_values >= parameters[p]:
times = 0
for r in np.arange(no_repetitions):

begin = time.time()
ice(model, X_test.iloc[:no_instances[n], :].to_numpy(),

feature, 0, parameters[p])
end = time.time()
times += end - begin

times_ice[n, p] = times/no_repetitions

table_ice = [np.append(no_instances[0], times_ice[0, :]),
np.append(no_instances[1], times_ice[1, :]),
np.append(no_instances[2], times_ice[2, :]),
np.append(no_instances[3], times_ice[3, :]),
np.append(no_instances[4], times_ice[4, :])]

print(tabulate(table_ice,
headers=['', parameters[0], parameters[1],

parameters[2], parameters[3],
parameters[4], parameters[5],
parameters[6]], tablefmt='fancy_grid'))

#ALE
times_ale = np.full((len(no_instances), len(parameters)), None)
for n in np.arange(len(no_instances)):

for p in np.arange(len(parameters)):
unique_values = len(np.unique(

X_test.iloc[:no_instances[n], :]
[feature_names[feature]]))

if unique_values >= parameters[p]:
times = 0
for r in np.arange(no_repetitions):

begin = time.time()
ale_1d(model, X_test.iloc[:no_instances[n], :].to_numpy(),

feature, 0, parameters[p])
end = time.time()
times += end - begin

times_ale[n, p] = times/no_repetitions

table_ale = [np.append(no_instances[0], times_ale[0, :]),
np.append(no_instances[1], times_ale[1, :]),
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np.append(no_instances[2], times_ale[2, :]),
np.append(no_instances[3], times_ale[3, :]),
np.append(no_instances[4], times_ale[4, :])]

print(tabulate(table_ale,
headers=['', parameters[0], parameters[1],

parameters[2], parameters[3],
parameters[4], parameters[5],
parameters[6]], tablefmt='fancy_grid'))

[ ]: #2D-plots

no_instances = [500, 1000, 1500, 2000, 2500]
parameters = [5, 10, 20, 30, 40]

feature1 = 2 #x3
feature2 = 3 #x4

#PDP
times_pdp = np.full((len(no_instances), len(parameters)), None)
for n in np.arange(len(no_instances)):

for p in np.arange(len(parameters)):
unique_values1 = len(np.unique(

X_test.iloc[:no_instances[n], :]
[feature_names[feature1]]))

unique_values2 = len(np.unique(
X_test.iloc[:no_instances[n], :]
[feature_names[feature2]]))

if (unique_values1 >= parameters[p] and
unique_values2 >= parameters[p]):
times = 0
for r in np.arange(no_repetitions):

begin = time.time()
pdp_2d(model, X_test.iloc[:no_instances[n], :].to_numpy(),

feature1, feature2, 0, parameters[p])
end = time.time()
times += end - begin

times_pdp[n, p] = times/no_repetitions

table_pdp = [np.append(no_instances[0], times_pdp[0, :]),
np.append(no_instances[1], times_pdp[1, :]),
np.append(no_instances[2], times_pdp[2, :]),
np.append(no_instances[3], times_pdp[3, :]),
np.append(no_instances[4], times_pdp[4, :])]

print(tabulate(table_pdp,
headers=['', parameters[0], parameters[1],

parameters[2], parameters[3],
parameters[4]], tablefmt='fancy_grid'))

#ALE
times_ale = np.full((len(no_instances), len(parameters)), None)
for n in np.arange(len(no_instances)):
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for p in np.arange(len(parameters)):
unique_values1 = len(np.unique(

X_test.iloc[:no_instances[n], :]
[feature_names[feature1]]))

unique_values2 = len(np.unique(
X_test.iloc[:no_instances[n], :]
[feature_names[feature2]]))

if (unique_values1 >= parameters[p] and
unique_values2 >= parameters[p]):
times = 0
for r in np.arange(no_repetitions):

begin = time.time()
ale_2d(model, X_test.iloc[:no_instances[n], :].to_numpy(),

feature1, feature2, 0, parameters[p])
end = time.time()
times += end - begin

times_ale[n, p] = times/no_repetitions

table_ale = [np.append(no_instances[0], times_ale[0, :]),
np.append(no_instances[1], times_ale[1, :]),
np.append(no_instances[2], times_ale[2, :]),
np.append(no_instances[3], times_ale[3, :]),
np.append(no_instances[4], times_ale[4, :])]

print(tabulate(table_ale,
headers=['', parameters[0], parameters[1],

parameters[2], parameters[3],
parameters[4]], tablefmt='fancy_grid'))
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Appendix E

Hardware Specifications

Operating System: Microsoft Windows 10 Home
System Type: x64-based PC
CPU: Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz, 2201 MHz, 2 cores, 4 logical processors
RAM: 16GB, DDR3, 1600 MT/s
Environment: Jupyter Notebook
Kernel: ipykernel
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