BACHELOR’S THESIS COMPUTING SCIENCE

“Bridges” as an SMT problem

Solving and generating puzzles using different boolean encodings

Rico TE WECHEL
s4773039

August 22, 2023

First supervisor/assessor:
dr. C.L.M. Kop (Cynthia)

Second assessor:
dr. J.S.L. Junges (Sebastian)

Radboud University : %

AN,
‘crTe™

o

S
MiNe <Y

Abstract

A property of NP-complete problems is that we can reduce them to each other.
”Bridges” is an NP-complete logic puzzle. An SMT solver is a tool that can deter-
mine the satisfiability of a mathematical formula. Since the Boolean satisfiability
problem is a form of a mathematical formula and is proven to be NP-complete, we
can reduce the problem of a game of Bridges to an SMT problem, which we can
in turn use to efficiently find solutions to puzzles, and even to generate them. In
this thesis we will compare two different SMT encodings for the puzzle, of which
we find that one is majorly better in terms of efficiency over the other, also when
it comes to generating. We will also find that human solvability is a factor to take
into account when generating puzzles.

Contents

[3.2 Constraint 1: Bridges can only exist between two cells|

[3.3 Constraint 2: Bridges are either horizontal or vertical|

[3.4 Constraint 3: Bridges are either single or double|

[3.5 Constraint 4: Bridges may not be obstructed|

[3.6 Constraint 5: Cell values are satisfied by bridge endpoints|.

[3.7 Constraint 6: Every cell is reachable from every other cell|.

[4 Grid Encoding|

4.2 Vahd field piece constraint|

4.3 Constrants 1,2, 3and 4]

4.4 Constraint 5: Cell values are satisfied by bridge endpoints|.

4.5 Constraint 6: Every cell 1s reachable from every other cell|.

5.1 Unique solvability|

5.2 Algorithm|

[6 Experiments|

[6.1.2 Measuring|
6.2 Solving puzzles| .

6.3 Generatingpuzzles|,

[6.4 Human solvability|

Futur rk

A Append
|A.1 Constraint examples Chapters 3and4|
|A.1.1 Graphencoding|.
IA.1.2 Gndencodingf.
|IA.2 Tables and graphs Chapter 6|

Chapter 1

Introduction

Throughout the centuries, more and more logical puzzles have been created for
people to solve for fun. The best classic example is the game of Sudoku. Sudoku
is a game with a small set of easy to understand rules, and a solution to the puzzle
is found if every field in the game stays true to the set of rules. It can, however, be
very difficult to get to such a point, which it what makes Sudoku a fun puzzle to

play.

Sudoku is among one of the puzzles that have been proven to be NP-complete.
[9] NP-complete problems have two properties. Property 1: The problem P is
in the set of NP problems. This means that the solution to problem P can be
verified to be an actual solution in polynomial time by a non-deterministic Turing
machine, though finding an actual solution in polynomial time may not be feasible.
Property 2: The problem P is in the set of NP-Hard problems. This means that
every problem in NP can be reduced to problem P in polynomial time. These two
properties combined we call NP-completeness. [7] If a problem is NP-complete,
we get a very interesting property: Every problem that is NP-complete can be
reduced to any other problem in the NP-complete class. The first problem that
was proven to be NP-complete is the SAT problem. It turns out that SAT came to
play a crucial role in solving mathematical problems. For instance, SAT solvers
were built that can solve mathematical problems given that the problem has been
reduced to SAT. By now, a lot of research has been done on solving mathematical
problems using solvers in general. 2]

Nowadays, there are several kinds of mathematical solvers. Amongst those is
something called an SMT solver. Throughout this study we will dive in on the
background of SMT solvers in general and explore different possibilities and prop-
erties of SMT solvers. After that we will look into how we can reduce Bridges to
SMT by encoding the game in terms of SMT methods in order to find solutions
to the puzzles. This should be possible, as Bridges has also been proven to be
NP-complete [[1] (though it is sufficient for Bridges to be in NP, because SAT is

NP-complete, and SAT C SMT, as we will see in Chapter @] Preliminaries). Af-
ter that we try to generate puzzles using the same SMT methods and evaluate the
human solvability of the generated puzzles. Nearing the end of the paper, we will
describe our findings when it comes to efficiency between several ways of solving
and generating puzzles using SMT.

Chapter 2

Preliminaries

2.1 Bridges

Bridges (Hashiwokakero) is a logic puzzle game invented by a Japanese publisher
called Nikoli. [1] In the game, the player has to connect several cells in a grid using
bridges such that several conditions are met. The player starts off with a (usually)
square grid partially filled with cells. These cells contain numbers that represent
the total number of bridges that should be connected to this cell. The goal is to
connect every cell in the grid using bridges in such a way that all the numbers in
the cells are equal to the number of bridges connected to those cells. In general,
the game rules can be summed up as follows:

1. Bridges can only be built between two cells

2. Bridges can be built either horizontally or vertically

3. Bridges can be single (counting as one) or double (counting as two)
4. Bridges may not be obstructed by other bridges or cells
5

. For each cell, the number of connected bridges to the cell should match the
number inside the cell

6. The network should be connected to be one whole. In other words: Every
cell should be reachable from every other cell

Take as example figure 2.1l As you can see, all of the conditions are met in the
solution.

We will also make two assumptions about the puzzles in this study. One being
that loops are allowed in solved configurations. There are also variants of Bridges
where loops are not allowed in final solutions, but this will be kept outside the
scope of this study. Furthermore, a very important property that we assume is that
every puzzle should be uniquely solvable. In other words, for each puzzle there is

exactly one correct solution. This is important when it comes to logical puzzles; if
there would be more than one correct solution, there would come a moment in time
while solving the puzzle where there is a form of non-determinism; multiple moves
can be made that could be considered correct, which defies the point of the game.
In general it should hold that it’s always logically reasonable that a considered
move should bring you a step closer to the solution or not. This may be a very hard
logical reasoning, but in any case it should ensure that you’re on the right track.

@@@@

@@@@

o 0, @@G)

(a) (b)

Figure 2.1: Two configurations of a Bridges puzzle. Figure represents an
unsolved puzzle, while figure 2.5 represents its solution.

2.2 Automated solvers

Normally, to solve a Bridges puzzle, one would start with solving relatively easy
cells, and solving the puzzle step by step. For instance, in the example above, the
cell on the left containing the number 6 can be solved instantly. There are only
three directions where bridges can go from this cell, as the cell is located on the
edge of the game. Because the number is 6 and bridges can at most be double, we
know that to ’satisfy’ and be done with this cell, we should connect double bridges
from the cell containing 6 to the adjacent cells with the numbers 4, 3 and 3. On
its turn, the cell in the bottom left with value 3 becomes easy to solve, as to satisfy
this cell, there is only one cell left to go to with a single bridge, which is the cell
with value 3 on its right side. We can continue reasoning this way to finally solve
the puzzle.

In this study, we will look at an automated way to solve these puzzles using Sat-
isfiability Modulo Theory (SMT) solvers. An SMT solver is an automated solver
that’s capable of solving mathematical formulas. [3|] They’re able to solve any
mathematical theory that contain variables, integers, equalities, inequalities, propo-

sitions, predicates, and even programming data structures like strings and arrays.
The way it solves these kind of formulas is by trying to find a valuation for all the
variables in the formula such that the formula evaluates to true. If such a valua-
tion can be found, we call the formula satisfiable. Otherwise, the formula is called
unsatisfiable. When searching for such a valuation, all sorts of different methods
are applied that may differ per SMT solver. This includes rewriting the formula to
simpler forms and applying lemmas, but they partially also make use of reductions
to the Boolean Satisfiability Problem, or SAT in short. [3]

As described in the introduction, SAT was the first problem that was proven to be
NP-complete. SMT solvers still make use of SAT solving, as both solvers have a
common goal: solving mathematical formulas. While SAT solvers are only scoped
to solving Boolean formulas in Conjunctive Normal Form that consist of Boolean
variables, SMT solvers add a whole layer over SAT solvers that extend the theories
that we can solve. SAT’s scope is within the class of NP, while SMT’s scope is
of even higher complexity than that. [3] Different SMT solvers apply different
methods to be able to achieve their goals. While we often do not know what these
methods are, we will give some example methods that translate problems normally
not in the scope of SAT to something that is within the scope of SAT. For this study,
there are two relevant problems that SMT can handle which SAT cannot:

Handling integers and (in)equalities

The main reason for this study to use SMT solvers instead of SAT solvers is to be
able to use integers in our Boolean formulas. We want to be able to use them both
for variables and for equalities and inequalities. SMT solvers allow integers to exist
explicitly, whereas SAT solvers don’t, as the latter only work with variables of the
type Boolean. One possible way to encode integers using Boolean variables is by
using a unary or binary encoding, [4]] where a sequence of Boolean values make
up a bitstring that resembles the decimal integer. This essentially is equivalent to
reducing to SAT. This works for integers up to about 1000. Integers higher than
that order of magnitude will make the encoding and solving very tedious and slow.
For this study though, such high numbers will not be used and thus a unary or
binary encoding should not be considered a problem.

Handling arbitrary, non-CNF Boolean formulas

Another useful property to have is the ability to use any form of Boolean formula
as proposition. SAT solvers require formulas to be in CNF. This means that on top-
most level, the entire formula should be a conjunction of clauses, where clauses
consist of disjunctions of at least one literal. As SMT solvers accept any Boolean
formula as input, it can be useful to have a method that translates arbitrary Boolean
formulas to Boolean formulas in CNF. An efficient way of doing this is by mak-
ing use of Tseitin transformations [6]]. This transformation can take any Boolean

formula consisting of negations, conjunctions, disjunctions, implications or equiv-
alences and transform it into CNF, which is satisfiable if and only if the original
Boolean formula is. An important aspect here is that it can do the transformation
in linear time, and the output formula also grows linearly with respect to the input
formula, therefore not causing much overhead in the translation from SMT to SAT.

SMT solvers are thus amongst others capable of reducing problems to SAT that
are normally not in the scope of SAT, for example using the methods described
above. Do note that other than reducing to SAT, SMT solvers often have a lot
of other elegant methods that are able to extend their powers over SAT. While in
theory encoding Bridges as a SAT problem is possible, we choose SMT over SAT
in this study to essentially outsource the work of handling integers, (in)equalities
and arbitrary mathematical formulas to the SMT solver. This way, we can focus on
formalizing the core rules of the game efficiently.

Chapter 3

Graph Encoding

The idea is that we define variables as well as Boolean formulas that encode a given
game of Bridges. The Boolean formulas should be seen as constraints over the vari-
ables following the rules of the game as described in section 2.1. We know that if
the SMT solver found a valuation that satisfies the Boolean formulas, it found a
solution to the puzzle. Because the puzzles we’re trying to solve are uniquely solv-
able, we also know that the found solution is in fact the solution in that case. In this
chapter, we will look into an encoding where we see the puzzle as a graph where
the edges resemble bridges and the nodes resemble cells. Other than formalizing
the encoding within this section in a generic form, an example of a full encoding
for an example puzzle can be found in Appendix

3.1 Structure

To build a Boolean formula, we need variables. In this first encoding we define two
different kinds of variables. Firstly the main set of variables that, when a valuation
for the Boolean formula is found, form the solution to the puzzle directly. These
variables directly resemble the bridges in the game. Secondly we have to define
helper variables that tell us something about the connectedness of all cells. These
variables are needed to describe the connectedness of the entire network of cells
as a whole (constraint 6), and will be explained in section 3.7. Finally, before we
introduce the variables, it’s important to note that throughout this research, we will
refer to cells in a game using indexed numbers from top to bottom, left to right.
The leftmost cell in the top row will be referenced to by index 0, the second cell in
the top row will be reference to by index 1, continuing all the way to the rightmost
cell in the bottom row which will be referenced to by index n — 1, where n is the
total number of cells in the game.

Bridge variables

We define the set of bridge variables B in which each variable 8 € B can have a
natural number value € N. Each variable takes two natural numbers x and y € N
as arguments such that variable 3, , represents the bridge between cell x and cell y.
Important to note is that x and y are reflexive here because bridges are undirected,
meaning that 3, , = 3, .. The value of 3, , represents the weight of the bridge,
0 being non-existent, 1 being a single bridge and 2 being a double bridge. The
number of bridge variables is equal to the number of bridges that can potentially
exist, without taking into account the presence of other bridges. Each variable
represents a different potential bridge. This means that there’s a variable for every
cell pair where both cells are on the same horizontal or vertical axis and there
is no obstructing node in between. As clarification, below a figure can be found
displaying all the bridge variables for an example puzzle.

X Bos

Figure 3.1: An example puzzle with all bridge variables visualized. The dotted
lines represent the possible bridges to be drawn, disregarding their weight.

Connectedness variables

We introduce a set of connectedness variables I'. A connectedness variable v € T’
is a Boolean variable that takes two natural numbers n and ¢ € N as arguments
such that variable -y, ; is true if and only if cell 0 is connected to cell n in at most
1 bridges, regardless of the weight of the bridges. The connectedness variables act
solely to express whether cells are connected in a given number of steps in some
way or not. For example, if cell O is connected to cell 1 with a single bridge, and
cell 1 is connected to cell 2 with a double bridge, 2,1 should be equivalent to
false, but v2 2 (and all other ~, ; where n = 2 and ¢ > 2) should be equivalent
to true. For an entire network to be connected, it’s enough to show that from a
given cell in the network, you can reach every other cell. Therefore, it’s enough
to define connectedness variables in such a way that it only tells something about
cell 0’s connectedness to every other cell. The shortest path between two cells is a
direct bridge, and the longest path can at most be the number of cells minus one. In

10

other words, the connectedness variables range from 7o 1 to v,,—1,,—1, where n is
the number of cells in the game. In section 3.7 we describe how we can use these
variables to formalize the connectedness of the entire network of cells and bridges.

3.2 Constraint 1: Bridges can only exist between two cells

This constraint is implicitly satisfied because the bridge variables’ definition only
allows bridges to exist between two cells. It is therefore not needed in this encoding
to define an explicit constraint.

3.3 Constraint 2: Bridges are either horizontal or vertical

This constraint is implicitly satisfied because the bridge variables’ definition only
allows bridges to exist either on a horizontal axis or a vertical axis. It is therefore
not needed in this encoding to define an explicit constraint.

3.4 Constraint 3: Bridges are either single or double

It is relatively simple to formalize this constraint. For single and double bridges
we can simply allow bridge variables to only have an integer value of 1 or 2
respectively in the final solution. However, since we defined the bridge variables
to represent every potential bridge, the set of bridge variables contains variables
representing bridges that should not exist in the final solution of the game. There-
fore, we should in this encoding not only allow single or double bridges to exist,
but also bridges that do not exist. We can formalize this as follows:

ANCES:ES)

BeB

3.5 Constraint 4: Bridges may not be obstructed

By definition of the bridge variables, this constraint is partially satisfied already.
There are no bridge variables that allow bridges between two cells where that same
bridge is obstructed by a cell in between. This means that we don’t have to explic-
itly define that bridges may not be obstructed by cells. We do however still have to
formalize that bridges may not be obstructed by other bridges. Implicitly, bridges
can only be obstructed by bridges with the opposite orientation. For example, if
a horizontal bridge would be obstructed by another horizontal bridge, this would
mean that there is also a cell obstructing one of the bridges, so we already took
care of that problem. All that’s therefore left to do is to compare all horizontal
bridges to all vertical bridges, and check for crossings. This is formalized below,
where By, is the set of all horizontal bridges, B, is the set of all vertical bridges,
and bridgesCross(f1, B2) returns true if and only if part of a horizontal bridge

11

overlaps with a vertical part of a different bridge, or vice-versa. This can easily be
programmed with help of cell coordinates.

/\ /\ (61 >0AN[F >0 = ﬂbridgesCross(Bl,Bg))
BleBhor 6263’067‘

3.6 Constraint 5: Cell values are satisfied by bridge end-
points

For this constraint we have to formalize that the values in each of the cells are
satisfied. Cell satisfaction is reached when the value inside a cell equals the number
of bridge endpoints on the coordinates of that cell. To formalize this constraint we
define some helper sets and functions. First we define set C as the set of all cells.
We also define a function val(x € C') that takes as argument a cell and returns
the value inside the cell. Finally we also define a function match(z € C,y € B)
that takes as arguments a cell and a bridge variable and returns that same bridge
variable if one of the bridge’s endpoints matches the coordinates of the cell, and 0
otherwise. A Formalization is then quite trivial:

/\ (val(c) = Z match(c, 3))

ceC BeB

3.7 Constraint 6: Every cell is reachable from every other
cell

The idea is that if, for every cell n and all path lengths ¢ up to maximum path length
we use connectedness variables vy, ; to formalize what it means for the involved cell
n to be connected to cell 0, we can use those formalizations to ensure that every
cell pair is in some way connected. Take the following game of Bridges in graph
representation:

€0
ng ———
€1 €3
n9 T ns

Figure 3.2: A connectedness graph of a game of Bridges. Each edge represents a
potential bridge that may exist.

12

This undirected graph represents a game of Bridges, abstracting away from the val-
ues inside the cells and the weights of the bridges. We only care about the possible
existence of a bridge between two cells. An edge being present represents that a
bridge may be built between the relevant two cells, given their coordinates. We call
this graph the potentiality graph of a game of Bridges. Using logic equivalence
operators, we can express connectedness variables in terms of bridge variables and
other connectedness variables (by means of adjacent edges and nodes in the poten-
tiality graph) to build one single big constraint that describes the connectedness of
the entire game of Bridges.

For example in figure if we want to know what it means for node ng to be
connected with node n; directly in one step, we are interested in edge ey only,
which is represented by bridge variable 3, ,,. There is no other way to reach
node n; from node ng in one step other than via eg, so we can safely say that
Yni,1 <~ Bno,nl > 0.

A somewhat more interesting example to investigate would be getting from ng to
n1 in at most two steps. We not only need to reason about getting from ng to ng
directly in one step, but also about getting from ng to n; in two steps. For any
connection in 2 steps or more, we can approach the problem recursively, by de-
scribing the connection in terms of one of the neighbors of the destination node
in one less step, and adding the last step explicitly. In the scenario of going from
node ng to node n;, we could either worry about getting from ng to n¢ in one step
(which is trivial) and take edge ey or worry about getting from ng to ng in one step
(which is impossible) and take edge es3. If we try to formalize this we would get

777,1,2 — ’Ynl,l V (’7710,1 A\ B’no,nq > 0) V (ﬁ)/ng,l A Bng,nl > O)

13

Remark The reason we introduced a second argument ¢ in the connected-
ness variables (that represents the maximum number of steps it takes to reach
one cell from another) instead of simply defining a connectedness variable as
the connectedness of two nodes in any number of steps is that if we don’t,
we get a circular dependency between Boolean formulas which results in un-
wanted behaviour. For example, imagine we want to describe the connected-
ness between nodes ny and nq and the connectedness between nodes ng and ng
as displayed in figure[3.2] Using more simple connectedness variables without
an argument representing the number of steps, we would get the following two
formalizations:

Yoy = (Yoo A Brony > 0) V (Yng A)
Yoz = (Yo A)V (Yny A Brgng > 0)

If we set all colored variables to true and the uncolored variables to false,
both equivalences would evaluate to true, thus satisfying our formalizations.
This valuation would therefore imply however, that nodes ng and n; are con-
nected and nodes ng and n3 are connected, while the only bridge actually being
present in the game is the bridge between nodes n; and ng. This obviously is
an impossible scenario, and therefore this method of formalizing the properties
does not work. When we add an argument that tells us something about the
number of steps the nodes are connected in, this circular dependency is cut out.

If we want to find a solution for which it holds that from every node all other nodes
are reachable, we need to abstract away from the example explained earlier, and
reason about connectedness of node pairs in graphs in general. We differentiate
between four different scenarios:

Node 0 is connected to itself in at most any number of steps

Node 0 is always reachable from itself, namely in O steps. Therefore, the connect-
edness variable representing node 0 with 7 higher than 0 should be set to true, as
the variable denotes that node 0 is connected in at most i steps. We can trivially
formalize this as:

Y0,

A node is connected to node 0 in at most 1 step

When investigating whether a node can be connected to node 0 in at most 1 step
we can encounter two cases: Node n is a direct neighbor of node 0, meaning there
exists an edge between the two nodes in the potentiality graph, or node 0 and node
n are not direct neighbors, meaning there can never be a direct bridge between
the two nodes, and thus there is no edge between the two nodes in the potentiality
graph. In the first case, the two cells are actually connected in exactly one step if
and only if the corresponding bridge has a weight larger than 0. In the latter case,

14

the two cells can never be connected in exactly one step. This can be formalized as
follows:

Yni <= Bon >0 (if e, exists in the potentiality graph)

“Yn,i otherwise

(wheren # 0 and i = 1)

A node is connected to node 0 in at least 2 steps

If we look at the connectedness of node 0 and node n in 2 steps or more, the
basic idea is to express node 0’s connectedness with another node that is directly
neighboring node n. Either we think about getting from node 0 to the node n’s
northern neighbor in one less step, and take a final step south to node n, or we
think about getting from node 0 to node n’s eastern neighbor in one less step, and
take a final step west to node n, etc. Intuitively, we also include a recursive term
Yn,i—1 in each definition to indicate that if you can reach node 7 in at most ¢ — 1
steps you can also reach node n in at most 7 steps. The following formalization
describes the connectedness of node 0 with node n in at least 2 steps, where N,
resembles the set of directly neighboring nodes of node n in the potentiality graph.

Yng < Yni-1V \/ (’yzﬂ;l A Bz,n > 0) (wheren # 0 and 7 > 1)
zZENp,

A node should be connected to node 0 in at most maximum path length

Finally, now we’ve formalized what it means for all nodes to be connected to node
0 in some way, we should ensure they are actually connected. The choice to define
Yn.; in such a way that ¢ resembles the maximum number of steps it takes to reach
n from 0 allows a very trivial formalization of this property if we take N to be the
number of nodes in the game:

Vn,i (wheren #0andi= N —1)

Now we’ve formalized every possible case we can encounter when investigating
the connectedness of node 0 to every other node for all possible maximum num-
ber of steps, we can build the constraint. If we traverse over every connectedness
variable o1 t0 Yp—1,,—1, €xpress them in terms of other nodes in the potentiality
graph and their adjacent edges following the scenarios above, and combine them
into one large conjunction of Boolean formulas, we’ve built a constraint that en-
sures connectedness of a an entire Bridges solution.

15

Chapter 4

Grid Encoding

Now we have a first encoding of the puzzle in SMT, it’s interesting to look at other
methods of encoding the puzzle as well. While the graph encoding in the previous
chapter forms an intuitive way to encode the puzzle, we choose to focus on an
at first sight more naive encoding of the puzzle in this chapter. We will look at
the puzzle from a perspective where we view the puzzle as 2D grid where every
field can be a separate piece: A cell, a bridge piece, or nothing. Just like in the
previous chapter, we will again provide an example of a full encoding of a puzzle

in Appendix

4.1 Structure

In the grid encoding we also use two different kinds of variables. This time, the
puzzle is mainly represented by a set of variables that represent a field in the puzzle
grid. Again, the variables form a direct solution to the puzzle if a valid valuation
for the Boolean formula is found. Instead of using potential bridges as variables,
we completely discard the concept of a bridge as something that exists as one
entity, but use the field variables to build bridges piece by piece. Secondly, we use
the same connectedness variables again as helper variables for the connectedness
constraint. They are defined in the exact same way as described in section 3.1, but
the way we use them to build the constraints will be slightly different, as described
in section 4.5. Even though the potential bridges that can be built are not defined
explicitly as variables in the grid encoding, we can still deduce what all potential
bridges are since we know what the coordinates of all the cells in the game are.
We can therefore still define the set of bridges B which consists of all possible
bridges (every cell pair where both cells are on the same horizontal or vertical axis
and there is no obstructing node in between). This set turns out to be useful when
formalizing the connectedness constraint.

16

Field variables

We define ® as the set of field variables. Each variable ¢ € ® can have a value
p € P, where the set of pieces P = {e,—,=, |, ||, C'}. Respectively, the pieces
available are empty field pieces, single horizontal bridge pieces, double horizontal
bridge pieces, single vertical bridge pieces, double vertical bridge pieces, and cells
with a value. The value of the field variable represents what piece is placed in the
field. The number of field variables equals the number of fields in the grid plus
the number of fields needed for the border (see section 4.2). Using all six different
field pieces, we can fill up the grid such that it forms a valid puzzle.

4.2 Valid field piece constraint

As in this encoding, the allowed pieces that are placed in the grid have to be defined
and are not explicitly part of the game rules, we have to implement a constraint that
ensures that only valid pieces can be placed on fields. Most important is that we
formalize the initial configuration of an empty’ game. Only the fields that we
know contain a cell may contain a cell. We formalize this explicitly. Aside from
that, it’s also important to note that it does not hold that every field can contain
every piece. Fields on the northern and southern edges of the grid can only be
empty, cells or horizontal bridge pieces, fields on the western and eastern edges
of the grid can only be empty, cells or vertical bridge pieces, and in the same
way corner fields can only be empty or cells. A formalization could become quite
complicated, but by defining a border of extra fields around the actual game where
we force the fields to be empty, formalization becomes quite trivial. The extra
empty fields around the game allow the other constraints to check neighboring
fields without having to take into account the possibility of going out of bounds of
the actual game.

p=e
if ¢ is on the extra border drawn around the game
AT
ocd if ¢ is supposed to contain a cell
V (v=p)
peP\{C}
if ¢ is not supposed to contain a cell

4.3 Constraints 1, 2, 3 and 4

Recall the first four game rules:

1. Bridges can only be built between two cells

17

2. Bridges can be built either horizontally or vertically
3. Bridges can be single (counting as one) or double (counting as two)
4. Bridges may not be obstructed by other bridges or cells

A very interesting thing about the grid encoding is that all these game rules can
actually be covered by one constraint. When formalizing one of these rules, we
quickly find that the most straightforward way to do this is to make implications
on what neighboring fields can contain given the piece on the current field. It turns
out that these implications on the neighboring fields always result in implications
that directly also cover the other three constraints in the list above. For example,
if we look at rule 4: ”Bridges may not be obstructed by other bridges or cells”,
we can come up with the following constraint: If a given bridge piece is a single
vertical bridge piece, the northern and southern neighboring pieces can only be a
cell or another single vertical bridge piece. Looking at this formulation, we can
see that it directly also covers rule 1, 2 and 3. Of course, this also holds for any
combination of single/double and horizontal/vertical bridge pieces, and should be
included in the formalization. Figure visualizes all the scenarios that we must
include in our constraint.

—iC| — |—IC |/c |/c
Scenario 1 | "

=/C| = |==IC |/C [/c
Scenario 2 Scenario 3 Scenario 4

Figure 4.1: A visualization of all the different scenarios that are allowed by the
constraint

Note The fact that bridge pieces can only be single or double and hori-
zontal or vertical, is ensured by the explicit constraint defined in section 4.2.
Rule 2 and 3 in this section are about entire bridges being single or double and
horizontal or vertical.

By applying this reasoning to formalize implications on all neighboring fields that
matter for every field that contains a bridge piece in the game, we can construct a
relatively simple but big constraint to cover all first four game rules. Note that if
a field contains a horizontal bridge piece, we only need to set restrictions on their
horizontally neighboring fields if we apply the same logic to the perpendicular
direction. Naturally, this holds both ways. Figure @.2] displays why this reasoning
works. Also note that if a field is empty or is a cell, its neighbors can be anything.

18

It is therefore not needed to explicitly define constraints on the neighboring fields
for fields that are empty or a cell. The formalization is as follows:

Figure 4.2: An example of a scenario that is prohibited by the constraint. The
horizontal bridge pieces meet the requirements of scenario 1 in figure but the
vertical bridge piece clashes with scenario 4 in figure @

((p1 =b) = A (p2=bVpy=0C)) if b is horizontal

AN e

p1€D bEBP ((tp1 =b) = A (p2=0bV s = C)) if b is vertical
p2ENV,,

Here 1 € ®g, where @ is the set of all fields that are actually part of the game,
or in other words, are not on the extra border around the game that we introduced.
The set of bridge pieces BP (C P) = {—,=, | , | }, the set N H, represents the
set of fields directly neighboring field ¢ horizontally, and the set NV, represents
the set of fields directly neighboring field ¢ vertically.

4.4 Constraint 5: Cell values are satisfied by bridge end-
points

This constraint has a similar formalization as it has in the graph encoding. Since
we don’t work with bridge endpoints on cells in this encoding but with neighboring
fields of a cell that can contain a piece, we must map all neighboring field pieces to
a natural number value (depending on the direction of the piece with respect to the
cell) in order to count. To formalize this constraint we again define set C' as the set
of all cells and function val(z € C) that takes as argument a cell and returns the
value inside the cell. The set of neighboring fields IV F, represents the set of fields
directly neighboring cell c. In the formalization, ite(p, a, b) is a Boolean formula
that evaluates to a if proposition p evaluates to true, and evaluates to b otherwise.
We use a case distinction between vertical and horizontal neighbor pieces to for-
malize this constraint:

/\ (val(c) = Z map(c, ¢))

ceC QOGNFC

19

Where

mapl(c,) = ite(“" = |), Lite((¢ =), 2, 0)) (if ¢ is north or south of c)
| ite<(¢ =—)L ite((#’ ==),2, 0)) (if ¢ is east or west of c)

4.5 Constraint 6: Every cell is reachable from every other
cell

For the more complex connectedness constraint in the grid encoding we use the
same approach as in the graph encoding, which is described in detail in section
3.7. Earlier we’ve defined the set of all potential bridges B again. This also means
that we are still able to use the concept of the potentiality graph. We can thus use
the same case distinction and formalizations as in section 3.7. In order to modify
the formalizations to fit the grid encoding though, we need to replace the bridge
variables we used in section 3.7 with field variables that neighbor the concerning
node. To specify that cell 0 and cell n are connected, it’s enough to only specify
that a neighboring field of cell 0 contains a bridge piece in the direction of node n,
as all constraints defined earlier imply that if a bridge piece is present, it should be
part of an entire bridge between two nodes.

Node 0 is connected to itself in at most any number of steps

We use the same formalization as in the graph encoding:

Y0,

A node is connected to node 0 in at most 1 step

With respect to the formalization of this case in the graph encoding, the only thing
that changes is that we not only need to specify the cases where e, , exists in the
potentiality graph, but we also need to differentiate in which direction e ,, exists, as
the field pieces to be used are dependent on that. We define ¢, , as the neighboring
field ¢ of cell z in the direction of node y. We use the ¢ notation instead of the ¢
notation to differentiate from the field coordinate notation in the running example
in Appendix [Al The formalization of the constraint is as follows:

Yni <= (¢on =—)V (¢on ==) (if ep,, exists in the potentiality
graph horizontally)
Tni <= (Pon = |) V (pon = ||) (if ep,p, exists in the potentiality

graph vertically)

L Vn,i otherwise

20

(wheren # 0 and i = 1)

A node is connected to node 0 in at least 2 steps

Just as in the case where a node n is connected to node 0 in at most 1 step, we don’t
have to change the formalization of this case radically compared to the formaliza-
tion in the graph encoding. In fact, we can still apply the same logic, but again we
have to differentiate in directions when it comes to deciding what kind of bridge
pieces need to be placed. NN, resembles the set of directly neighboring nodes of
node z in the potentiality graph, and ¢, , is the neighboring field ¢ of cell z in the
direction of cell y. We get the following formalization:

('7z,i71 A ((¢z,n = _) \4 (¢z,n = =)))
if e, ,, 1s horizontal in the pot. graph

Yni < VTnji-1V \/ (“n pot. graph)

2EN, ('Yz,i—l A ((¢Z7n = |) \ (¢z,n = ”)))

(if e, , is vertical in the pot. graph)

(wheren # 0 and ¢ > 1)

A node should be connected to node 0 in at most maximum path length

We use the same formalization as in the graph encoding, with /N being the number
of nodes in the game:

Yn,i (wheren #0andi= N —1)

Finally, by combining every case described above in one big constraint using con-
junctions as we traverse over every connectedness variable vo 1 t0 V,—1,,—1, W€
can ensure connectedness of an entire Bridges puzzle.

21

Chapter 5

Generating

Now we’ve looked into solving games of Bridges using SMT solvers, it makes
sense to look into how we can use SMT solvers in generating puzzles as well.
The idea is that if we know how to find solutions to games of Bridges using SMT
solvers, we can use that to iteratively add bridges and cells to existing solutions to
generate new solvable puzzles.

5.1 Unique solvability

Generating puzzles in general is pretty trivial; we can simply start drawing value-
less cells connected by either single or double bridges, keep on expanding, for all
cells fill in a value that makes sense with the drawn bridges to finally remove all
bridges. That leaves us with a solvable puzzle. However, this gives us no guar-
antee that the puzzles are uniquely solvable. This means that a given solution to
a puzzle is the one and only solution. This is a property we are looking for, since
having multiple solutions for one puzzle could cause non-determinism while trying
to solve the puzzle. That would defy the point of playing the game.

We can use SMT solvers to iteratively build a game of Bridges and by checking if
the game is uniquely solvable after we’ve filled in the cell values and removed the
bridges. At the end of each iteration, we feed the puzzle to an SMT solver using
one of our encodings, build the constraints described in the previous chapters (de-
pending on the encoding chosen), and determine if the puzzle is uniquely solvable
by adding a final constraint that tells the SMT solver that the solution that we’ve
built ourselves should not be a solution.

For the graph encoding, that constraint is formalized as follows:

- /\ (8 = solution(p))

BeB

22

For the grid encoding, the constraint is formalized as follows:

- /\ (p = solution(p))
ped

In both formalizations, the solution() function takes a bridge variable (3 or a field
variable ¢ that returns the bridge weight of the corresponding bridge in the solution
that we generated or respectively, the field piece of the corresponding field in the
solution that we generated.

If the SMT solver’s output is that the Boolean formula is unsatisfiable, it means
that the solution that we generated is the only solution to that game’s configuration
of cells and possible bridges, and thus the puzzle is uniquely solvable. If the SMT
solver’s output is that it found a valuation that satisfies the Boolean formula, it
means that it found another solution to the puzzle, and the puzzle configuration
is thus not uniquely solvable. We are therefore in search of unsatisfiability while
generating, in contrast to solving, where we were in search of satisfiability.

5.2 Algorithm

The algorithm that we will use will be as follows: We take as arguments a field
size, a number of cells we strive to place on the field, and the encoding we will use
to verify unique solvability.

We start off with a single cell placed randomly on the field, without a value. From
there on, we enter the main loop that ends when either we’ve placed the desired
number of cells, or we reach a threshold of 1000 tries to create a uniquely solvable
puzzle but failed. In the loop, we begin with setting a counter to O that keeps track
of how often we tried to place a new cell.

Then we enter a new loop that ends when we found a field where we can actually
place a new cell. In that second loop, we first check if the number of tries to place
a new cell has reached a threshold of 1000. If we have, we can most probably
conclude that in the current game configuration no more cells can be added, and
We raise an error.

If not, we continue by selecting a random cell from the existing network to work
from. From that source cell, we determine all directions in which we can build a
bridge, taking into account other existing bridges, cells, and the borders. We select
a possible direction at random, and determine the number of available fields we
have in that direction to place a new cell, again taking into account all other exist-
ing bridges, cells, and the borders. In the range of fields that we have left, we select
a random field and place a new cell candidate. We also increment the counter that
keeps track of how many times we tried to find a new cell. If it appears that from
the selected source cell there are no possible directions to go and place a cell, the
inner loop repeats with a different source cell.

After the inner loop, we have found a candidate cell that we add to the network,

23

connected via a bridge from the chosen source cell. This bridge will either have
weight 1 or 2 at random. Now, from this candidate cell, we determine all directions
in which an already existing cell in the network can be found. For all these possible
directions from the candidate cell, there is a 50% chance to build a bridge (again
with weight 1 or 2 at random) from the candidate cell to the already existing cell
in the network in the given direction. This step allows loops to exist in the puzzles
we generate.

Now that the candidate cell and bridges are added we can check for unique solv-
ability. We count all bridge endpoints per cell, set the cell values accordingly and
remove all bridges. We now have a puzzle that we can encode (using the encod-
ing given as argument) as an SMT problem, and feed it to a solver as described
in section 5.1. If the puzzle is not uniquely solvable (constraint in section 5.1 is
satisfiable), we increment the counter of tries to create a uniquely solvable puzzle,
and restore the game state to what it was at the beginning of the main loop, that
is, without the new candidate cell and added bridges. If the puzzle is still uniquely
solvable (the constraint in section 5.1 is unsatisfiable), we continue with the game
state in which the new valueless cell and all new bridges are still added, we reset
the counter of tries to create a uniquely solvable puzzle, and increment the counter
of the number of cells that we added. At this point we’ve reached the end of a main
loop iteration, and the cycle repeats until either we’ve placed the desired number
of cells, or we reach a threshold of 1000 tries to create a uniquely solvable puzzle
but failed.

When we exit the loop, we explicitly check if the threshold of 1000 tries to create
a uniquely solvable puzzle has been reached, and raise an error in that case. In
case the loop was ended because we’ve reached the desired amount of cells, we
are successful, and we can count all bridge endpoints per cell, set the cell values
accordingly, remove all bridges, and return the puzzle.

To summarize; we now have an algorithm that adds a new cell via a bridge to the
network every iteration, adds random bridges to existing cells to create loops, and
each iteration evaluates whether the puzzle is uniquely solvable or not. The algo-
rithm always produces either a uniquely solvable puzzle of a given field size and a
given number of cells, or an error if a uniquely solvable puzzle cannot be generated
using the parameters in a certain run. Because the algorithm works with random-
ness, this result can be different in a next run of the algorithm. On the next page,
a concise version of the algorithm is described in pseudocode for improved read-
ability. Also included are two example 15x15 generated puzzles, both presented in
solved form as well for clarity.

24

Algorithm 1: generatePuzzle

Data: fieldSize > 3, cellGoal > 2, solver € {Graph, Grid}

Result: A puzzle with cellGoal cells of size fieldSize x fieldSize

puzzle < new puzzle of size fieldSize x fieldSize with 1 cell without
value, randomly placed;

cellCount + 1;

triesUnique < 0;

while cellCount < cellGoal and triesUnique < 1000 do

triesNewCell < 0;

srcCell < null;

newCell + null;

while newCell = null do

if triesNewCell > 1000 then
Error: Not able to generate puzzle with enough cells using given

parameters in this run
end
srcCell < Random existing cell;
newCell <— Random new cell neighboring srcCell;
// null if no new cell/bridge can be placed from srcCell

triesNewCell < triesNewCell + 1;

end
puzzle < puzzle with newClell and bridge (weight 1 or 2 at random)
from srcCell to newCell added;

for n € neighbors(newCell) do
50% chance for puzzle < puzzle with bridge (weight 1 or 2 at

random) from newC'ell to n;

end
if puzzle is not uniquely solvable (using solver) then
triesUnique <+ triesUnique + 1;
puzzle < puzzle with newClell and all new bridges removed;
else
triesUnique < 0;
cellCount < cellCount + 1;

end

end

if triesUnique > 1000 then
Error: Not able to generate puzzle with unique solution using given

parameters in this run

else

Count bridge endpoints per cell and set cell values;
puzzle < puzzle with all bridges removed;
return puzzle;

end

25

OO

©

®e O

() (d)

Figure 5.1: Two examples of generated puzzles. Figure and figure repre—
sent the generated puzzles, while figure and figure [5.1d| represent their solu-
tions, respectively

26

Chapter 6

Experiments

In this chapter we will go over all experiments that were done and results that
were found during this study. In general, we measured constraint construction
and solving times with both SMT encodings on verified existing uniquely solvable
puzzles and on our own generated uniquely solvable puzzles. We also measured
the generation times of puzzles using both encodings. Finally, we also had some
volunteers solve a number of puzzles, and had them track their solving times.

6.1 Setup

To conduct experiments, we need to make sure we are in possession of a big pool
of different puzzles as well as a way to measure the running times of the solver and
the generator with as little influence by external factors as possible.

6.1.1 Puzzle tool

Simon Tatham’s Portable Puzzle Collection| [10] offers a steady platform to play,
solve, generate, import and export puzzles of Bridges easily. The website offers
several difficulties of puzzles, as well as some tweakable parameters such as the
field size, maximum number of bridges per direction and allowing loops or not.
S&T’s tool can convert any puzzle to an ID and vice versa, which allows us to
solve puzzles generated by the tool with our own solver, but also allows the tool
to solve puzzles generated by us. Using a python script we were able to extract
puzzles in large batches from the tool. We retrieved 100 easy puzzles and 100 hard
puzzles for all of the following field sizes: 7x7, 15x15, 30x30 and 50x50. These
are the puzzles we will be using in our solving experiments mostly.

27

https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/bridges.html

6.1.2 Measuring

To measure how effective our solving and generation methods are, we added sev-
eral different timing measurements throughout our algorithms. For the solvers, we
measured the time it takes to build all the actual constraints per puzzle, the time it
takes to find a valuation that satisfies all those constraints and the total time to get
from puzzle to solution. For the generations, we measured the total time it takes to
get from nothing to a uniquely solvable puzzle, and for every main loop iteration of
the algorithm we measured the time it takes that iteration to complete and the time
it takes that iteration to check whether there is a unique solution. Other than that
we also measured for each generated puzzle what the maximum number of con-
secutive failed tries for finding a new cell and finding a uniquely solvable puzzle
is. In the same way we can also measure how often we fail to generate puzzles.
We fail to generate a puzzle if we reach the threshold of 1000 tries to either create
a uniquely solvable puzzle or to place a new cell in the game, as can be recognized
by when the algorithm raises an error.

We run all our experiments on an external Ubuntu (22.10 x64) server with 8gb
RAM, a 4 core CPU and SSD main memory. No other active tasks were executed
on this external server while the experiments ran for best results. For both solving
and generations, we use SMT solver ’SMTInterpol’ in this study. [5]

6.2 Solving puzzles

In this set of experiments we let our SMT solver loose on several sets of 100 puzzle
files. We have sets of 100 7x7, 100 15x15, 100 30x30 and 100 50x50 easy puzzles
from S&T’s tool, four sets of 100 hard puzzles of the same sizes from the tool and
four sets of 100 puzzles that we’ve generated ourselves of the same sizes using the
graph encoding. We only used the graph encoding for generating since (as we will
see in section 6.3) it is faster and the encoding used doesn’t change the algorithm
and thus what kind of puzzles we will generate. We solve all puzzles once with
the graph encoding and once with the grid encoding, and note down all the timing
measurings. Timeouts during solving did not happen, fortunately.

The most relevant results are contained in the graphs in this section, while in Ap-
pendix |Al we can find more elaborate results of all the experiments that we ran. In
figure [6.1] we can find an easy to observe graph that contains boxplots per puzzle
category. The y-axis contains the total time in milliseconds it took the SMT solver
to build constraints and satisfy them to get from a puzzle to a solution. The blue
boxplots represent puzzles solved with the graph encoding, the orange boxplots
represent puzzles solved with the grid encoding. In table [A.2] table [A.3]and ta-
ble[A.4l we can find extended tables that contain more elaborate data on the actual
times measured.

In general, we observe that the grid encoding becomes slower in solving compared
to the graph encoding as the game sizes grow. The exact factor depends on the

28

10°

104

102

10t

S

Easy

Boxplots for total times per batch

¥

Hard Generated Easy Hard Generated Easy Hard Generated Easy Hard

Difficulty Difficulty Difficulty Difficulty

Figure 6.1: Boxplots on the total solution times per puzzle category and encoding

size of the puzzle. For puzzle sizes 7x7 and 15x15, the scaling between solving
with the graph encoding vs. solving with the grid encoding always lies around 3,
for 30x30 the factor lies around 4, and for 50x50 puzzles the factor quickly grows
to 8. We can observe a rough exponential growth in solving times. This is to be
expected, as SMT is typically NP-Hard, implying at least exponential growths. The
variations in solving times are also often also very high, with outliers downwards
for the graph encoding specifically.

It is to be expected that the growth in time is only roughly measurable to be expo-
nential, because there are more factors that have influence here than just the size
of the puzzle. For the graph encoding for example, the number of bridge variables
depend on the number of bridges that can potentially be built, and this does not
have a very direct relationship with the field size, but rather with the placement of
all cells. The grid encoding does not rely on bridge variables, but only on variables
for every field. Because it creates (implicational) constraints for every field in the
game regardless of the fact whether a bridge can potentially be present there or not,
it is easier to determine constraint growth factors there. Another factor is the num-
ber of cells in the game. While there is a growth visible in number of cells with

29

Category = 7x7 Category = 15x15 Category = 30x30 Category = 50x50

Generated

Encoding
I Graph
E Grid

respect to the field size, the gaps between the cells can still be large or small. Our
sample puzzle sets contain several large size puzzles that contain only a handful
of cells, resulting in fewer bridge variables, and thus the graph encoding scoring
better. This explains the downward outliers for the graph encoding in figure

We can see though, when we look at tables [A.2] [A.3] and [A.4] that the growth in
total time it takes to find a solution using the grid encoding is mostly present in
finding a satisfiable valuation for the constraints, and not so much in the time it
takes to build the constraint. This is most probably because building constraints is
a matter of defining variables and placing them in formulas as specified. However,
actually solving those formulas involves taking into account every defined formula
and finding a valuation of variables that fits for every formula. This takes trial and
error, applying tactics (by the SMT solver) to simplify formulas, and calculations
to get a result. On top of that, The longer a constraint is and the more variables it
contains, the longer it takes for the SMT solver to find a valuation that is satisfying
every constraint. Considering that the formulas of the grid encoding’s constraints
are much longer than those in the graph encoding because of the dependence on
field variables, the numbers shown in the tables make sense. The growth is visible
in the solving times, and not on the construction times.

Another interesting thing here is that we can see that for smaller game sizes, the
time it takes to build the constraints using the graph encoding is relatively short
with respect to building them with the grid encoding. In large size puzzles the time
it takes the graph encoding to do so nears the time it takes for the grid encoding
to do so. This probably is related to the phenomenon described earlier where the
number of variables and formulas is dependent on the number of possible bridges
in the graph encoding, but not in the grid encoding. For smaller sized puzzles, there
is a smaller chance to find potential bridges than in bigger sized puzzles, because
in bigger sized puzzles more cells can be placed.

When it comes to the difficulty of the puzzles from S&T’s tool, we see that the
difficulty itself is not a very influential factor in terms of solving time. There is a
difference observable in larger sized puzzles, but not as much as one would expect.
This is remarkable, as we would expect that the human solvability factor present
in difficulty of a puzzle (see section 6.4) would lead to more potential for SAT and
SMT solvers to apply simpler methods like unit propagation and other simplifi-
cation methods. Although we cannot directly conclude that such methods are not
applied as much as we would expect, it is verified in the results that solving puz-
zles is definitely different for humans than it is for computers. This is most of all
visible in the observation that puzzles generated by us (that do not have a human
solvability factor) have very consistent solving times with respect to those from
S&T’s tool.

In general, when we inspect the constraints described in chapter 3 and 4, we can
say that when it comes to the graph encoding, the size of constraint 3 grows linearly
with the number of potential bridges present in the puzzle, the size of constraint 4

30

grows quadratically with the number of potential bridges present in the puzzle, the
size of constraint 5 grows linearly with the number of cells in game, and the size
of constraint 6 grows quadratically with the number of cells in the game. When it
comes to the grid encoding, the valid piece constraint grows quadratically with the
size of the game, constraints 1, 2, 3 and 4 (which is one constraint in the encoding)
grow quadratically with the size of the game, constraint 5 grows quadratically with
the number of cells in the game, and constraint 6 grows quadratically with the the
number of cells in the game. While we don’t have an exact measurement on how
the number of cells and the number of potential bridges in the game grows with the
size of the game, we can make an approximation that this is also a quadratic factor.

Given everything above, we can conclude that the graph encoding is effectively
always faster than the grid encoding because it has fewer quadratically growing
formulas than the grid encoding. Moreover, the graph encoding especially works
faster on smaller puzzles than the grid encoding because the number of cells and
the number of potential bridges (which are relevant for the graph encoding) are
more linear with the field size than quadratic, opposed to the field variables in the
grid encoding growing quadratically with the field size.

Remark In a previous version of the grid encoding, we did not implement
the border around the edge of the game. This not only made coding the con-
straint building of the valid field piece constraint a lot harder than it is with
the border, but it also made another element we previously included in the
grid encoding redundant to include. What we previously included in the valid
field piece constraint was that if a certain field can only be a bridge piece or
an empty field, it can explicitly not be a cell. Before we added the border
around the game grid that forces fields to be empty, this made solving puzzles
faster with a factor around 10. Interestingly enough, when we added the border
around the game, it turned out that explicitly mentioning that a field cannot be
a cell became redundant. With the border around the grid, it was sufficient to
only state that a field can only be a bridge piece or an empty field, implicitly
stating that the field cannot be a cell. Because with the border around the grid
added being a more efficient grid encoding, we decided not to note down the
measurements we made on solving puzzles without the border in this paper.
This does raise questions though, which we will come back to in Chapter [§}
Future work. An example of how the valid field piece constraint in the old grid
encoding was formalized:

31

p=C

if ¢ is supposed to contain a cell
lp=C)N(p=¢)

if ¢ is not supposed to contain a cell and is on the corner of the grid
“(p=C)A V (¢=p)

/\ PGPNS

if ¢ is not supposed to contain a cell and is on the north or south edge of the grid

ped
“lp=C)n V (p=p)
pePwE
if ¢ is not supposed to contain a cell and is on the west or east edge of the grid
“lp=C)A V (¢=p)
PEPmid
\ if ¢ is not supposed to contain a cell and is not on the edges of the grid
Here, PNS = {67_7=}> PWE = {6, |7 ”} and Pmid = {6,—,=, |7 ”}

6.3 Generating puzzles

In this set of experiments we generate 100 puzzle IDs with the graph encoding
and 100 puzzle IDs with the grid encoding for every size (7x7, 15x15, 30x30 and
50x50). For each size, we calculated the average number of cells in a game of that
size that’s generated by S&T’s tool (the difficulty doesn’t seem to matter there).
For 7x7 this turns out to be 11 cells, for 15x15 it’s 36 cells, 30x30 gets 91 cells,
and 50x50 gets 151. While, as mentioned before, this ratio varies a lot in puzzles
from S&T’s tool, we generate puzzles with these number of cells to keep the ratio
of size:cells as much in line with with the ratio in puzzles generated via S&T’s tool

as possible. In tables and in Appendix [A] you can see the results of
the experiments we ran.

First of all, it is important to note that we created quite a successful algorithm.
In all generations we made, not a single puzzle failed to generate because unique
solvability could not be achieved anymore in a certain iteration. Table tells us
that for any game size it never took more than 5 consecutive iterations of the loop
in the algorithm to place a new cell without breaking unique solvability. Moreover,
the means also tell us that on average it only takes roughly 1 extra iteration to find
a new cell that doesn’t break unique solvability with respect to the original try.

Secondly, the algorithm does sometimes fail in achieving the desired number of
cells. We did not include the number of times this happens in the tables in Ap-
pendix [A] but the numbers are as follows: For generation of 7x7 puzzles this hap-

32

pens in about 33% of all generation attempts, for 15x15 puzzles in about 21% of
the generation attempts, and for 30x30 and 50x50 puzzles it never happened. We
do however have measurements that hint towards this trend visible in table [A.6l
The mean, standard deviation and maximum of the number of tries it took to place
a new cell in one iteration are much higher in the generation of 15x15 puzzles
than in the other puzzles. A possible explanation for this is that for smaller puz-
zles, there is only limited space to place new cells and bridges. If the algorithm
by chance starts by placing a lot of long bridges with respect to the field size, this
already removes a lot of the potential to successfully find a new field to place a
valid cell in that still meets all the conditions. In larger puzzles this is less of a
problem, because it would require lots of consecutive placements of long bridges
to lessen the potential of finding a valid placement in the next iteration. Because
the algorithm is largely based on chance, this statistically does not happen as often.
Another explanation can be that the number of desired cells that we feed our algo-
rithm are based on the ratios from S&T’s tool. Because the generation algorithm
of S&T’s tool presumably does not rely on chance, it could be that these ratios do
not work as well on smaller puzzles with the generation method we came up with.
In Chapter [§} Future work we will address these issues again and come up with
potential fixes.

Now to look at the generation times. In general, again the graph encoding is much
faster compared to the grid encoding when it comes to generating. While we don’t
see the factor of 8 in the 50x50 puzzles like we found while solving them (it is now
around 4, according to table [A.5)), the standard deviation is extremely high, indi-
cating that this factor should probably not be taken as accurate. We can conclude
however that the grid encoding is still slower. We roughly see the same trend we
found in solving the puzzles, which we can see in the boxplots in figure This
is to be expected, as this slowness builds upon the slowness that we found in the
previous section when it comes to solving one puzzle. As we are essentially solv-
ing the same puzzle over and over again but with an extra cell and some bridges
added, the time difference becomes extra visible over the iterations.

In figure [A.8] figure [A.9] figure [A.10] and figure [6.3] for both the graph and the
grid encodings we plotted the time it takes for the SMT solver to construct and try

to satisfy all constraints per loop iteration. This includes the constraint described
in section 5.1: Unique solvability, which must result in an unsatisfiable outcome
(UNSAT) for a loop iteration to be successful in the algorithm. We call a loop iter-
ation successful if the algorithm does not fail to place a new cell without breaking
unique solvability. The time it takes the SMT solver to construct and try to satisfy
the constraints in one loop iteration is representable for the total time it takes to
successfully complete one loop iteration, because the execution times of the algo-
rithm without the part that uses the SMT solver are outweighed by the time it takes
to construct and try to satisfy the constraints regardless of the puzzle size. The
plot for 50x50 puzzles is included in this section for the best representation. The
plots for 7x7, 15x15 and 30x30 puzzles contain the same trend, but can be found

33

106

10°

10*

Time (ms)

103

10?

Encoding

Boxplots for generation times per batch

I Graph

I Grid

—

=

7x7 15x15 30x30
Size

Figure 6.2: Boxplots on generation times per puzzle category and encoding

in Appendix [A] It is very easy to see in these plots, especially in the plots for larger
game sizes, that the time it takes to verify that a puzzle is still uniquely solvable
in the grid encoding consistently grows exponentially, while in the graph encoding
the time begins to grow quicker, but later converges to an exponential growth in
time as well. This is again to be explained by the phenomenon where the graph
encoding performs well especially on smaller sized puzzles because of its depen-
dency on the number of bridge variables, where the grid encoding is constantly
dependent on the number of field variables.

There is one final interesting thing to mention when considering the generation
times of our algorithm. Note that when solving puzzles we are generally looking
to satisfy (SAT) boolean constraints, while in generating uniquely solvable puzzles
we are looking for UNSAT based on the constraint described in section 5.1. This
raises the question if SAT and UNSAT roughly take the same time to decide, be-
cause if not, it is a relevant factor to take into account when comparing solving
times to generation times. In table we noted down measuring we did on SAT
and UNSAT times. We find that indeed UNSAT takes longer to decide than SAT in
almost every case. For the graph encoding we see a growth from around 1.25 for

34

50x50

Average UNSAT times per iteration
Encoding
mmE Graph
e Grid

10%

103

Time (ms)

10!

Iteration

Figure 6.3: Barplot on UNSAT times for verifying unique solvability per iteration
while generating 50x50 puzzles

small puzzles to a factor of around 2 for the large puzzles when we compare SAT
to UNSAT times, while for the grid encoding the factor stays somewhat constant
around 1,25. We can conclude that UNSAT times are indeed a factor one wants
to take into account when comparing the generation times to the solving times for
both the graph and the grid encoding.

6.4 Human solvability

Where we before had our SMT solver solve both the puzzles from S&T’s tool and
the puzzles we generated ourselves, in this section we focus on having the puzzles
get solved by some human volunteers. Though it was hard to find volunteers that
were willing to spend their time on solving puzzles for this study, we can still spot
trends and make some conclusions on the difference between puzzles generated
from S&T’s tool and puzzles generated by our algorithm.

The experiment was set up as follows: We provided five test subjects with the rules
of the game and an example game with its solution. We also provided them with

35

Size Encoding Mean Std. dev. | Mean Std. dev.
SAT (ms) | SAT (ms) | UNSAT (ms) | UNSAT (ms)

7x7 Graph 12.1 6.42 15.54 9.48

7x7 Grid 40.15 19.87 33.96 11.55

15x15 | Graph 141.82 4591 185.18 70.63

15x15 | Grid 411.83 176.14 515.47 151.14

30x30 | Graph 1605.58 418.42 2806.52 916.47

30x30 | Grid 6299.68 2228.00 6800.33 2413.29

50x50 | Graph 5877.04 1142.05 11983.91 4430.05

50x50 | Grid 29131.89 | 10510.20 | 36933.72 14373.90

Table 6.1: SAT vs. UNSAT mean times for puzzles per category

6 warm-up puzzles to get our test subjects familiar with the rules and nature of the
game. Two of those games were easy 7x7 games generated by S&T’s tool, two
games were hard 7x7 games generated by S&T’s tool, and the last two warm-up
games were 7x7 games generated by our own algorithm. Essentially, we provided
the test subjects with 30 15x15 games, of which 10 were easy games from S&T’s
tool, 10 were hard games S&T’s tool, and 10 were generated by our own algorithm.
The test subjects did not know what puzzles were generated by what tool or what
their difficulty were at the time of solving them. All puzzles were also scrambled
up, but for everyone in the same order. We had the test subjects measure their
solving times in seconds and note them down on an answer sheet. In table [6.2] we
noted down what the average results per category were and in figure we made
a plot per category in which every individual puzzle solving time per test subject
can be seen in a graph.

Difficulty | Mean (s) | Std. dev. (s) | Min (s) | Max (s)
Warmup 59.27 44.57 15 198
Easy 141.12 74.56 31 360
Hard 272.54 207.21 53 1044
Generated | 313.40 252.42 87 1200

Table 6.2: Data on time it takes humans to solve generated puzzles

We can conclude a few things from these results. First of all, the puzzles from
S&T’s tool are confirmed to have a difference in difficulty when it comes to the
difficulties the tool provides. We can see that on average the hard puzzles tend
to be solved in around double the amount of time compared to the easy puzzles
by each test subject. It is also to be expected that the harder the puzzle gets, the

36

Time (seconds)

Puzzle solving times by humans

Category = Warmup Category = Easy Category = Hard Category = Generated
1200
°
1000
e
800
° Puzzle
e 0
1
2
600 Q °
. e 3
o 4
e 5
6
400 pS . 7
e ° ° o
o b I e :
A e 9
it H o 4 %
° 1S A & o S
200 ° 5 e e M ¢ 4 H °
L) A 0 ® ° - ® X H s o o &
e [}
A ° ° e b4 ° s o
H 2 o s o ® s H
e L H () Y
0
A B C D E A B C D E A B C D E A B C D E
Participant Participant Participant Participant

Figure 6.4: Scatterplot on times it takes humans to solve generated 15x15 puzzles

deviation in average solving times also grows, as per puzzle the chance is higher
that a test subject might get stuck.

Now, if we look at the solving times of the puzzles that we generated ourselves, we
see that on average they are considered the hardest of the categories. For all test
subjects the mean, minimum and maximum solving times are higher than those of
the other categories, with very high outliers up to 15 to 20 minutes per puzzle. The
deviation between solving times of the puzzles generated by us can easily be ex-
plained: our generation algorithm did not take into account the human solvability
factor. Test subjects reported that it occasionally happened that they got stuck on a
generated puzzle, because they felt like they needed to take a gamble on what next
bridge to place rather than reasoning about if they can place a bridge with certainty
or not. This happened for some hard puzzles from S&T’s tool as well, but in much
lower frequency. In reality, the human solvability factor here is in the number of
steps one has to reason forward in the puzzle. For example, there was one puzzle
(puzzle 6 in the category ’Generated’ in figure we solved ourselves that was
verified to be uniquely solvable, but it took an assumption and 20 bridge place-
ments further until we encountered a contradiction, which proved the assumption

37

to be false. On average, a hard puzzle from S&T’s tool would maximally take one
assumption and 5 bridge placements to encounter a contradiction. We have the
theory that the generation algorithm from S&T’s tool counts the number of steps
it takes to encounter a contradiction in order to determine the puzzle’s difficulty.
When we fed the puzzle that took 20 steps to encounter a contradiction to S&T’s
tool and pressed ’solve’, the tool returned an error saying "Game does not have
a (non-recursive) solution.”. We did however verify that it has a unique solution,
so clearly the algorithm behind S&T’s tool is built using a reasoning based on hu-
man solvability, marking the puzzle as unsolvable. The missing factor of human
solvability in some of the generated puzzles is directly visible in the results of the
experiments.

In conclusion, the puzzles that we generated ourselves are definitely playable and
are mostly comparable to the hard puzzles generated by S&T’s tool. There are
puzzles however, that are significantly harder because by chance they require much
more reasoning steps to be able to make a move that is guaranteed to be correct.
In Chapter 8} Future work I will address this issue and make a proposal on how to
include the human solvability factor in a generation algorithm.

38

Chapter 7

Conclusions

In this study, we came up with two different SMT encodings for the logical puzzle
game “Bridges”. One in which the puzzle is encoded as a graph problem with the
variables representing the possible bridges to be built, and one where the entire
field is encoded as a grid where the variables represent the pieces that are placed
on the grid. We used the encodings to both solve puzzles and to generate puzzles.

It turns out that the graph encoding tends to be more efficient when it comes to
both solving and generating puzzles compared to the grid encoding. This was to be
expected, as the number of formulas and variables to be solved by the SMT solver
in the grid encoding is much higher than in the graph encoding.

For solving puzzles, we’ve seen that the both SMT encodings’ solving times grow
with at most a quadratic factor with respect to the puzzle sizes. This holds for the
puzzles from Simon Tatham’s Portable Puzzle Collection as well as the puzzles
that we generated on our own. Still, the graph encoding has less of a growth factor
than the grid encoding because there are multiple constraints in that encoding that
don’t rely directly on the puzzle size, but rather on the number of bridge variables.
Due to the nature of the grid encoding, the constraints largely do rely directly on
the puzzle size.

When it comes to generating uniquely solvable puzzles, we’ve seen that at least the
same growth factor in time as we find in solving puzzles is present, but because the
generation algorithm relies on searching for unsatisfiability of a puzzle configura-
tion to ensure there is only one solution to be found, the generation times grow by
an even bigger factor. As each iteration in the algorithm searches for unsatisfiabil-
ity, the total time it takes to generate a puzzle can explode pretty quickly as the size
grows. Moreover, In figure it’s clearly visible that the graph encoding scores
better on smaller sized puzzles in generations, as it has a higher growth factor in
generation times when it comes to smaller puzzles. We also found that the puzzles
we generate do not take into account the factor of human solvability, which leads to

39

the phenomenon that some puzzles generated can be very hard to solve by applying
human logic.

Last mentioned is also reflected in the research we did with test subjects solving
the puzzles we generate. Although the pool of test subjects was relatively small,
we can still see the trend that the generated puzzles took the test subjects longer to
solve than the puzzles from Simon Tatham’s Portable Puzzle Collection. Solving
times also deviated more because human solvability was not taken into account.

To conclude, Satisfiability Modulo Theory solvers form a very viable toolkit to
solve and generate logic puzzles like Bridges. Translating the problem to an SMT
problem can be pretty straightforward if one can formalize the rules of the game us-
ing the mathematical tactics the SMT solver provides. One must take into account
though that when generating puzzles, human solvability is a factor to implement if
they search to generate puzzles to publish to an audience.

40

Chapter 8

Future work

There are a few topic in this research that leave questions or open up possibilities
for future work. To start off:

Specifically for this puzzle, it might be interesting to come up with another encod-
ing for the problem that gives more insight on how much influence certain choices
within an encoding have. In this study, two very different encodings were used that
both contain their own specific constructs in the constraints that it uses. For in-
stance, the grid encoding uses the ite (if-then-else) programming construct as part
of a mathematical formula. We suspect the ite construct to be a time-consuming
thing for an SMT solver to solve. Coming up with an encoding that differs only
little from either the graph encoding or the grid encoding can give more insight
on the efficiency of the individual encodings and on the consequences in practical
situations of the tactics that SMT solvers use.

Secondly, for this research we only used the SMT solver ’SMT-Interpol’ using the
Java wrapper library *JavaSMT’. [8] More research can be done on the effective-
ness of this SMT solver or the wrapper to gain insight in their efficiencies. The
same encodings can be used to compare timing measurements.

For the generation algorithm there are a number of improvements that can still be
made. To name two: Large parts of the algorithm are based upon randomness.
Instead of relying on choosing a random source cell in the existing network to
work from each time, we could improve the algorithm by keeping track of what
existing cells have already been tried to set as source cell, and didn’t turn out to
work. Another improvement could be made on the way that generating loops in the
puzzle works. Currently, after placing a new cell, it scans every direction for cells
that the new cell can connect to from its position. Instead, when looking for a field
to place a new cell from a source cell, if it turns out no new cell can be placed in a
direction, but there is the possibility to build a bridge in that direction, we can try
to build the bridge instead of giving up and reiterating to find a new field to place a

41

new cell. This could improve the way loops are made and perhaps result in puzzles
even more similar to those found on Simon Tatham’s Portable Puzzle Collection.

Another thing about the generation algorithm in this research is that it doesn’t
take into account human solvability. In future research, one could look into the
possibility of involving that factor in the generation. One way to do this could
be to come up with a solving algorithm of the puzzle that uses human-like tactics
instead of SMT solving. If a certain threshold of logical thinking steps is reached
when evaluating the current puzzle configuration on unique/human solvability, the
newly added cell could be removed again. This would lead to generation of puzzles
that are more likely to be solvable by humans, and thus more realistic to play.

Lastly, in Chapter [6f Experiments a remark was made that in a previous grid en-
coding, a small factor of including an explicit statement in a constraint (that should
logically be implied by other statements) resulted in huge differences in solving
time until another design choice was made for the grid encoding, that at first sight
does not seem related. This raises the discussion of how small changes in encod-
ings in general can lead to surprising results in efficiency. More research could be
done on if one can come up with a general theory on how these differences can
be made insightful to improve future logical encodings. It also raises the question
if this is perhaps something specific for SMT-Interpol. It could be interesting to
test this with other solvers and investigate how they deal with these small changes
between encodings.

42

Bibliography

[1] Daniel Andersson. Hashiwokakero is np-complete. Information Processing
Letters, 109(19):1145-1146, 2009.

[2] Tomads Balyo, Marijn Heule, and Matti Jarvisalo. Sat competition 2016: Re-
cent developments. In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 31, 2017.

[3] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Springer,
2018.

[4] Magnus Bjork. Successful sat encoding techniques. Journal on Satisfiability,
Boolean Modeling and Computation, 7(4):189-201, 2011.

[5] Jiirgen Christ, Jochen Hoenicke, and Alexander Nutz. Smtinterpol: An inter-
polating smt solver. In International SPIN Workshop on Model Checking of
Software, pages 248-254. Springer, 2012.

[6] Thijs de Jong, CLM Kop, and JSL Junges. Mosaic as a sat problem. 2023.

[7] Oded Goldreich. P, NP, and NP-Completeness: The basics of computational
complexity. Cambridge University Press, 2010.

[8] Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer. Javasmt:
A unified interface for smt solvers in java. In Verified Software. Theories,
Tools, and Experiments: Sth International Conference, VSTTE 2016, Toronto,
ON, Canada, July 17-18, 2016, Revised Selected Papers 8, pages 139-148.
Springer, 2016.

[9] Inés Lynce and Jo€l Ouaknine. Sudoku as a sat problem. In AI&M, 2006.

[10] Simon Tatham. Portable puzzle collection. available from (accessed 2011-
07-28).

43

Appendix A

Appendix

A.1 Constraint examples Chapters 3 and 4

These sections contain running examples of the constraints that will be built for
the puzzle in figure following the definitions in Chapters 3 and 4. Though the
example puzzle is very elementary and can result in trivial or redundant constraints
in some cases, the examples still give insight in the behaviour of the constraints.

® e
® 6

(a) (b)

Figure A.1: Two configurations of a very basic Bridges puzzle. Figure repre-
sents an unsolved puzzle, while figure represents its solution. Recall that we
number the cells in the game from top left to bottom right, starting from O.

44

A.1.1 Graph encoding

Constraint 3: Bridges are either single or double

(0< By <2)
A (0< B2 <2)
AN (0 B3 <2)
A (0L B3 <2)

Constraint 4: Bridges may not be obstructed

In this example puzzle, bridgesCross(Bo 1, fo,2), bridgesCross(fo.1, B1,3),
bridgesCross(B2.3, fo2) and bridgesCross(f523, £1,3) all evaluate to false. Be-
cause of the negation of the function in the constraint we therefore get:

(Bo,i > 0A Bo2 >0 = true)
AN (Bog >0AB13>0 = true)
A (Ba3>0ABo2 >0 = true)
AN (B23>0Ap13>0 = true)

To limit the size of the full constraints to a comprehensible format, we chose to
keep the example puzzle as simple as possible. In case there would actually be
possible crossing bridges present in the puzzle, they would have the Boolean value
false on the right side of the corresponding implication, making the implication
(and thus the entire conjunction) evaluate to false in case both involved bridge
variables have a value higher than 0.

Constraint 5: Cell values are satisfied by bridge endpoints

2=[o1+Bo2+0+0
2=001+0+B13+0
2=0+Bo2+0+ P23
2=04+0+ P13+ f23

(
(
(
(

~—_ — — —

A
A
A

45

Constraint 6: Every cell is reachable from every other cell

> 0> > > > > > > > > > >

> >

70,1
70,2
70,3
(711 = Bo1 >0)

(’Yl,z
(71,3

71,3
(72,1

(’72,2
(72,3

72,3
V3,1

(73,2

(73,3
73,3

< fp2>0)

46

= 71,1V ((vo1 A Bo1 > 0) V

— 712V ((’}/0,2 A\ 5071 > 0) V

= 721V ((’YO,l A Bo2 >0)V

= 722V (Y2 A Bo2>0)V

< 31V (M1 ABiz>0)V

= 7132V ((71,2 ABiz>0)V

(73,1 A Brg > 0))

)
(732 A P13 > 0)))

(73,1 A\ B2,z > 0)))
)

(V3,2 A B2,z > 0))

(v2,1 A Pa2,3 > 0)))
(72,2 A\ Bo,3 > 0)))

A.1.2 Grid encoding

In this example, we use a coordinate system for the field variables: ¢, , denotes
the field variable belonging to the field on row z, column y in the game including
the extra border around the game. ¢g o denotes the top left field and ¢4 4 denotes
the bottom right field.

Valid field piece constraint

(¢0,0 =€)
A (po1=e)
A (po2 =e)
A (po3 =e)
A (poa=e)
A (p10=c¢)
N (p11=C)
A (prea=e)V(pra=—)V(piz==)V(p12=|)V(p12=]|)
AN (p13=0C)
AN (pra=e)
A (p20=c¢)
A (p21 =€)V (P21 =—)V (21 ==)V (p21 =)V (p21=
A (pr2=e)V(p22=—)V(p22a==)V(p22=1])V(p22=
A (p23=e)V (p23=—)V (p23==)V (p23=)V (p23=
A (p24=c¢)
A (p30=c¢€)
N (p31=C)
N (p32=e)V(pz2=—)V(pz2==)V(p32= |) V(32 = ||)
N (p33=0C)
A (psa=ce)
A (a0 =c¢)
A (pa1=c¢)
N (pap=ce)
A (pa3=e)
AN (paa=ce)

47

Constraints 1, 2, 3 and 4

<(<P1,1 =—) = ((pro=—)V(e10=0C)) A ((pr2=—) V (p12 = C)))
A (== = ((Pro==)V(ero=O) A (L2 ==) V (12 = C)))
A ((901,1 =) = ((po1=])V(po1=0C)) A ((p21=1])V (P21 ZC)))
A <(%0171 =) = ((wor =)V (po1=0C))A((p21 =)V (p21= C)))
A ((901,2 =—) = ((pri=—)V(p11 =) A((p13=—)V(p13= C)))
A ((901,2 ==) = ((pr1==)V (11 =) A ((pr3==) V (13 = C)))
A ((601,2 =) = ((vo2=1)V(po2=0C)) A ((g22=)V (p22= C)))
A (=1 = (w02 =)V (w02 =C) A (922 =)V (#22=C)))
A (ra=—) = ((Lra=—) V(2= O) A ((pra=—) V (14 = O)))
A (ps==) = (Pra==)V(pr2=C) A ((pra==) V (pr4 = O)))
A ((801,3 =) = ((po3 =)V (vos=0C)) A ((p23=|)V (2,3 = C)))
A ((90173 =) = ((os =)V (eos=0C)) A ((p23 =)V (023 = C)))
A ((@2,1 =—) = ((p20=—)V (020=0C)) A ((p22=—) V (22 = C)))
A (2 ==) = ((pr0==) V(p20= O) A (22 ==) V (22 = O)))
A <(<P2,1 =) = ((kra=]) V(e =C)) A (g1 =)V (p31= C)))
A ((802,1 =) = ((era=]) V(1 =) A ((p31=])V (31 = C)))
A ((902,2 =—) = ((p21=—)V(p21 =C)) A ((p23=—) V(23 = C)))
A ((p22==) = ((L21==)V (020 = O) A ({925 ==) V (023 = C))
A ((%02:2 =) = ((pra=DVipr2=C) A ((ps2=[)V(ps2= 0)))
A <(‘P272 =) = ((pr2a=])V(pr2=C) A((w32=|)V(ps2= C)))
A ((602,3 =—) = ((p22=")V(p22=0C)) A ((p24=—)V (24 = C)))
A ((902,3 ==) = ((p22==)V (022 =0C)) A ((p24 ==) V (24 = C)))
A ((802,3 =) = ((pra=]) V(13 =0C)) A ((p33=|)V (p33= C)))
A ((902,3 =) = ((pra=])V(er3=0C)) A ((w33=])V (33 = 0)))

48

A ((903,12—) = ((9030——)V(<P30—C))/\((903,22—)\/(8032—0)))
A ((903,1:=) = ((<P30:=)V(<P30—C))A((<P3,2:=)V(8032:C)))
A (s =1) = ((p2a =)V (e = O) A ((paa = DV (a1 = 0)))
A <(‘P371—||) = ((9021—||)V(9021:C))/\((<P4,1—||)V(9041=C)))
A (s =—) = ((paa =—) V(@31 = O) A (33 =—)V (933 = O)))
A ((903,2==) = ((9031==)V(<P31—C))/\((<P33==)\/(8033—C)))
A ((903,22) = ((p22=])V(p22=0)) A((a2 =)V(9042=C)))
A (es2=]) = (2 =)V (2 =) A (012 =) V (12 = ©)
A ((903,3:—) = ((<P3,2:—)V(<P372:C))A((<P3,4:—)V(80374:C)))
A (ra==) = ((er2a==)V(es2 = O) A((g3a ==) V (34 = C)))
A ((psa=1) = (3= V(g3 =) A ((paa =)V (¢as = ©))
A (s =) = (L2 =)V (23 =) A (a3 =)V (913 = ©))

Constraint 5: Cell values are satisfied by bridge endpoints

P —(zte(tpgl =), Lyite((por = ||) ,2,0)) (zte P12 =—), 1,ite((pr2 = =),2,0)

+ (zte(g021 =), Lite((p21 = ||), 2.0)) (zte(golo =) 1, ite((p10 = =)

A2 —(Zte(gpgg —), Lyite((pos = ||) ,2,0)) n (zte 14 =—),1,ite((pr4 = =),2,0)
+ (zte(gpgg =), Lite((p23 = ||), 2,0)) (zte(gplg =)1 ite((p12 = =),

A2 =(ite(pan = |) Lite((pan = [),2.0)) + (ite(psz = —), 1ite((ps2 = =),2,0)
n (2te(<p41 =), 1ite((par = [),2.0)) (zte(gp;;o =), 1ite((ps0 = =)

A2 =(itelpas = [). Lite (w23 = [),2.0)) + (ite(sa = —), Lite((p51 = =),2,0)
) =)

+ (Zte(904,3 = |)7 172t€((§043 - ” ;2,0) (Zt€(§0372 = _)7 117;756((@32 =

49

Constraint 6: Every cell is reachable from every other cell

70,1
N 70,2
70,3
A (g = (pra=—)V(p12==))

A (71,2 — 7.1V <’Yo,1 A ((901,2 =—)V(pi2 = =))> \ (’73 1A ((9023 = | (2,3 = ||))

>

A <’Y1,3 = M2V (70,2 A((pr2=—) V(12 = =))> Vv (732 A (23 =)V (p23 =))

ARG
A (’72,1 — (9021:|)V (2,1:”))

A <722 = 72,1V (701 A((p21=])V(p21=]))) % (73,1 A ((p32=—) V (p32 ==)))>

A (723 — 722\/<’Yo2/\((3021—| (p21 =))V(7372/\((@372:—)v(¢372:=))>

N 723
AN 0N

A <732 = 131V (711/\ ((p23 = | (p2,3 = ||)\/ (’72,1/\ ((p32=—) V(3.2 ==)))>

A <’Y33 — 732V <V12 A((p23=1])V (p23 =))) \ (’yg,g A ((p32=—) V (p32 :=)))

N Y33

50

A.2 Tables and graphs Chapter 6

Size Difficulty | Encoding | Mean (ms) | Std. dev. (ms) | Min (ms) | Max (ms)
7x7 Easy Graph 15.69 11.38 5 65
7x7 Easy Grid 48.25 24.59 22 180
X7 Hard Graph 12.9 7.73 4 44
7x7 Hard Grid 38.0 18.28 16 113
X7 Generated | Graph 12.1 6.42 3 42
7x7 Generated | Grid 40.15 19.87 17 113
15x15 | Easy Graph 126.41 85.55 18 470
15x15 | Easy Grid 336.66 178.55 70 1044
15x15 | Hard Graph 129.43 69.73 22 474
15x15 | Hard Grid 402.53 218.07 115 1194
15x15 | Generated | Graph 141.82 45.95 46 268
15x15 | Generated | Grid 411.83 176.14 142 1098
30x30 | Easy Graph 1275.23 846.89 38 3341
30x30 | Easy Grid 4185.28 2594.07 404 12916
30x30 | Hard Graph 1744.05 1104.84 198 7803
30x30 | Hard Grid 7432.49 5213.42 1239 33253
30x30 | Generated | Graph 1605.58 418.42 929 3085
30x30 | Generated | Grid 6299.68 2229.00 3530 14183
50x50 | Easy Graph 2942.64 3360.11 11 22987
50x50 | Easy Grid 13504.99 13688.43 997 81760
50x50 | Hard Graph 6877.72 5789.78 378 29636
50x50 | Hard Grid 32589.01 30631.11 3652 233734
50x50 | Generated | Graph 5877.04 1142.05 3399 9468
50x50 | Generated | Grid 29131.89 10510.20 16943 71754

Table A.2: Data on total times to find a solution puzzle category

51

Size Difficulty | Encoding | Mean (ms) | Std. dev. (ms) | Min (ms) | Max (ms)
X7 Easy Graph 12.15 9.28 3 53
7x7 Easy Grid 33.58 16.37 17 98
X7 Hard Graph 9.61 6.23 3 40
7x7 Hard Grid 24.0 11.86 11 72
7x7 Generated | Graph 9.14 4.99 3 33
7x7 Generated | Grid 28.59 15.00 13 88
15x15 | Easy Graph 82.29 57.19 12 296
15x15 | Easy Grid 131.32 56.44 50 309
15x15 | Hard Graph 80.89 46.21 17 317
15x15 | Hard Grid 124.34 49.28 52 284
15x15 | Generated | Graph 93.92 37.71 32 223
15x15 | Generated | Grid 134.28 42.57 62 286
30x30 | Easy Graph 672.98 455.68 28 2245
30x30 | Easy Grid 824.22 386.02 225 1686
30x30 | Hard Graph 849.12 492.14 92 2863
30x30 | Hard Grid 1044.92 695.91 267 6220
30x30 | Generated | Graph 848.07 165.73 554 1444
30x30 | Generated | Grid 968.59 178.60 640 1580
50x50 | Easy Graph 1394.24 1443.49 8 7349
50x50 | Easy Grid 2030.34 1186.17 622 6383
50x50 | Hard Graph 3178.99 2649.36 214 17009
50x50 | Hard Grid 3623.42 2109.40 937 10622
50x50 | Generated | Graph 2742.8 530.88 1847 5049
50x50 | Generated | Grid 3258.74 394.85 2379 4422

Table A.3: Data on constraint construction times per puzzle category

52

Size Difficulty | Encoding | Mean (ms) | Std. dev. (ms) | Min (ms) | Max (ms)
X7 Easy Graph 3.54 2.48 1 15
7x7 Easy Grid 14.67 10.64 4 82
X7 Hard Graph 3.29 2.50 1 16
7x7 Hard Grid 14.0 9.26 3 62
7x7 Generated | Graph 2.96 1.85 0 9

7x7 Generated | Grid 11.56 8.2 3 53
15x15 | Easy Graph 44.12 33.47 4 174
15x15 | Easy Grid 205.34 144.93 20 830
15x15 | Hard Graph 48.54 30.92 5 189
15x15 | Hard Grid 278.19 191.55 43 1054
15x15 | Generated | Graph 47.9 19.38 11 114
15x15 | Generated | Grid 271.55 162.13 64 964
30x30 | Easy Graph 602.25 460.43 10 2149
30x30 | Easy Grid 3361.06 2302.62 179 11496
30x30 | Hard Graph 894.93 679.02 63 4940
30x30 | Hard Grid 6387.57 4847.25 940 31512
30x30 | Generated | Graph 757.51 348.10 375 1996
30x30 | Generated | Grid 5331.09 2190.03 2696 13130
50x50 | Easy Graph 1548.4 2020.43 3 15638
50x50 | Easy Grid 11474.65 12690.42 294 77979
50x50 | Hard Graph 3698.73 3371.85 164 17278
50x50 | Hard Grid 28965.59 29207.20 2643 223112
50x50 | Generated | Graph 3134.24 1003.34 909 6862
50x50 | Generated | Grid 25873.15 10472.85 13833 68616

Table A.4: Data on constraint solving times per puzzle category

53

Size:Cells | Encoding | Mean (ms) | Std. dev. (ms) | Min (ms) | Max (ms)
7x7:11 Graph 68.96 40.50 30 231
7x7:11 Grid 261.72 73.81 154 526
15x15:36 | Graph 1923.6 359.86 1352 3091
15x15:36 | Grid 7212.84 1452.56 4734 13747
30x30:91 | Graph 66179.3 13377.07 48123 115451
30x30:91 | Grid 210056.18 | 57940.98 137038 480715
50x50:151 | Graph 442830.04 | 89006.00 284361 762485
50x50:151 | Grid 1795369.67 | 503253.74 961611 3041132
Table A.5: Data on generation times per puzzle
Size:Cells | Encoding | Mean (#) | Std. dev. (#) | Min (#) | Max (#)
7x7:11 Graph 11.29 13.60 2 81
7x7:11 Grid 9.77 10.15 1 50
15x15:36 | Graph 24.87 29.10 4 205
15x15:36 | Grid 25.90 46.78 5 377
30x30:91 | Graph 17.22 13.88 4 95
30x30:91 | Grid 17.27 11.99 6 71
50x50:151 | Graph 12.19 4.58 5 30
50x50:151 | Grid 13.22 5.32 6 33
Table A.6: Data on tries to place new cell per iteration
Size:Cells | Encoding | Mean (#) | Std. dev. (#) | Min (#) | Max (#)
7x7:11 Graph 0.62 0.68 0 2
7x7:11 Grid 0.62 0.68 0 3
15x15:36 | Graph 0.96 0.79 0 5
15x15:36 | Grid 0.96 0.65 0 2
30x30:91 | Graph 1.24 0.57 0 3
30x30:91 | Grid 1.27 0.53 0 3
50x50:151 | Graph 1.4 0.65 0 5
50x50:151 | Grid 1.34 0.54 1 3

Table A.7: Data on on tries to verify unique solvability per iteration

54

Time (ms)

Average UNSAT times per iteration

< n ©o ~ © o o
—

Iteration

Encoding
B Graph
s Grid

10!
10°
- o~ m

Figure A.8: Barplot on UNSAT times for verifying unique solvability per iteration
while generating 7x7 puzzles

55

Average UNSAT times per iteration

 n ©W ~ ©o o O H N M < 1n W ~ 0 o O H N M < 1 YW ~ W o O H o Mm < un
- A4 4 A4 4 =4 A4 4 A 24 N N N N N &N N N N N M m m o m mn om

Iteration

Encoding
B Graph
s Grid

~N m

Figure A.9: Barplot on UNSAT times for verifying unique solvability per iteration
while generating 15x15 puzzles

10?

10t
10°
i
-

Time (ms)

56

Average UNSAT times per iteration
4
10 Encoding
Emm Graph

s Grid

10°

10!

10°

Time (ms)
-
Ea
A e —

Iteratlon

Figure A.10: Barplot on UNSAT times for verifying unique solvability per iteration
while generating 30x30 puzzles

57

	Introduction
	Preliminaries
	Bridges
	Automated solvers

	Graph Encoding
	Structure
	Constraint 1: Bridges can only exist between two cells
	Constraint 2: Bridges are either horizontal or vertical
	Constraint 3: Bridges are either single or double
	Constraint 4: Bridges may not be obstructed
	Constraint 5: Cell values are satisfied by bridge endpoints
	Constraint 6: Every cell is reachable from every other cell

	Grid Encoding
	Structure
	Valid field piece constraint
	Constraints 1, 2, 3 and 4
	Constraint 5: Cell values are satisfied by bridge endpoints
	Constraint 6: Every cell is reachable from every other cell

	Generating
	Unique solvability
	Algorithm

	Experiments
	Setup
	Puzzle tool
	Measuring

	Solving puzzles
	Generating puzzles
	Human solvability

	Conclusions
	Future work
	Appendix
	Constraint examples Chapters 3 and 4
	Graph encoding
	Grid encoding

	Tables and graphs Chapter 6

