
Bachelor’s Thesis Computing Science

Verifying a Barrier using Iris

Simcha van Collem
s1040283

March 18, 2023

First supervisor/assessor:
dr. Robbert Krebbers

Second assessor:
prof. dr. Herman Geuvers

Abstract

A barrier is a low-level concurrency construct. One thread can wait until
another thread signals. This allows the programmer to add deterministic
behavior to their concurrent program, and is a common technique to eliminate
data races. To formally reason about a program with barriers, one wants
a modular verification of the barrier. This allows the programmer to use
the barrier as a black box. Dodds et al., 2016 stated such a specification,
and proved it correct for three different barrier implementations, using the
iCAP separation logic (Svendsen & Birkedal, 2014). However, they did not
have the possibility to mechanize their proofs using a proof assistant. In this
thesis we mechanize the verification of the first two barrier implementations,
using the Iris separation logic (Jung et al., 2018), in the Coq proof assistant.
We present a different verification and to achieve this we develop two new
constructs: authoritative ordering and recursively nested wands. The former
keeps track of the order of elements in a list via ghost state, while the latter
is an essential part of the resource invariant.

Contents

1 Introduction 3

2 Preliminaries 6
2.1 HeapLang . 6
2.2 Hoare and separation logic . 9
2.3 Proving specifications . 12

3 Simple Barrier 17
3.1 Implementation . 17
3.2 Specification . 18
3.3 Verification . 19

3.3.1 Verification of New Barrier-Spec 24
3.3.2 Verification of Signal-Spec 24
3.3.3 Verification of Wait-Spec 26

4 Chainable Barrier 30
4.1 Key features . 30

4.1.1 Receive splitting . 31
4.1.2 Send splitting . 33
4.1.3 Chains and renunciation 35

4.2 Implementation . 38
4.3 Specification . 40
4.4 Intuitive verification . 43

4.4.1 Invariant . 44
4.4.2 Barrier creation . 47
4.4.3 Send splitting . 47
4.4.4 Receive splitting . 48
4.4.5 Signalling . 48
4.4.6 Extending . 49
4.4.7 Renunciation . 50
4.4.8 Receiving . 50

1

5 Formalization 52
5.1 Authoritative ordering . 52
5.2 Definitions . 54

6 Related Work 59

7 Conclusions and Future Work 64

2

Chapter 1

Introduction

Tony Hoare was one of the first to provide a program logic to reason about
imperative programs, in what we now call Hoare logic (Hoare, 1969). In
Hoare logic we have Hoare triples {P} e {Q}, which should intuitively be
read as the following: if precondition P holds and program e terminates,
then postcondition Q holds. Although this logic worked great for simple
imperative languages, for many decades, there did not seem to be an extension
to languages with a heap to store values. In the early 2000s, Peter O’Hearn,
John Reynolds and Hongseok Yang presented separation logic (O’Hearn et al.,
2001; Reynolds, 2002). This extends Hoare logic with the idea of ownership
of resources. For example, a program can own the points-to resource ℓ 7→ v,
which asserts that value v is stored at location ℓ in the heap. Ownership
of this resource allows us to verify read and write operations to ℓ, with the
guarantee that ℓ does not get updated by another program.

A few years later, separation logic was extended to reason about concur-
rent programs (Brookes, 2007; O’Hearn, 2007). Ownership of resources is
now given to threads, allowing a thread to reason about a piece of memory
with the guarantee that no other thread changes its content. This allows for
verification of a single thread without one having to worry about interference
from other threads. However, in concurrent programs, it is common that
there is some form of communication between threads. One way to do this,
is via the use of barriers. A programmer can use a barrier to let one thread
wait until another thread signals the first thread to continue. As an example,
let us consider the following program.

let ℓ = ref(37) in

let b = new barrier () in wait b;

let n = ! ℓ in

ℓ← n+ 3

let n = ! ℓ in

ℓ← n+ 2;

signal b

3

The program starts by storing 37 on the heap and returning its location (i.e.
a pointer), after which a new barrier b is created. It then executes the two
programs separated by the double line in separate threads. The left thread
first has to wait until the barrier is signalled. After that, it reads the current
value from ℓ and increments it by 3. The right thread first reads the current
value, then increments it by 2, and finally signals the barrier. The left thread
can thus only update ℓ after the right thread has finished executing.

To verify programs like these, we need an abstract specification for the
barrier. A client can then use this during verification, without bother thinking
about the barrier’s implementation details, which typically involve low-level
atomic operations. Dodds et al. (2011) presented such a specification which
they verified using Concurrent Abstract Predicates (CAP) (Dinsdale-Young
et al., 2010), a separation logic designed to reason about concurrent modules
in a abstract way. They later strengthened the specification in (Dodds
et al., 2016). They verified three different barrier implementations using
impredicative Concurrent Abstract Predicates (iCAP) (Svendsen & Birkedal,
2014), a descendant from CAP which furthermore allows to reason about
higher-order code.

However, the verification of their second barrier implementation requires
a lot of bookkeeping, and has not been mechanized in a proof assistant.
Furthermore, there has been a lot of follow-on work on iCAP. Iris (Jung
et al., 2018) is one such separation logic, which is implemented and verified
in the Coq proof assistant (Krebbers et al., 2017). This allows a user to
verify their programs in Coq, which was not possible for Dodds et al.

In this thesis, we verify the first two barrier implementations discussed
in (Dodds et al., 2016). Our verification is fully formalized in Coq using Iris.
The verification of the first barrier has already been done in Iris (Jung et al.,
2016, §4). However, our verification uses a different technique compared to
Dodds et al. and Jung et al., which we elaborate in Chapter 6, and also
serves as a stepping stone to the more complex verification of the second
barrier. The invariant used in the verification of the second implementation
is significantly different from the one presented by Dodds et al. Finally, we
add a new clone operation to the second barrier implementation of Dodds
et al., and extend the specification with a rule for clone.

We argue that our verification of the second barrier implementation is
cleaner compared to Dodds et al. To achieve this we design a suitable notion
of logical state for the barriers. This allows us to define a different resource
invariant using a recursively nested wands construction, which is, to the best
of our knowledge, a new construction. Using this invariant, we are able to
eliminate the bookkeeping steps used by Dodds et al., resulting in cleaner
proofs. Finally, we design a construction to keep track of an ordering using
ghost state, called authoritative ordering.

It has to be noted that there are some limitations to our work. First, we
implement the barriers in HeapLang. This is a ML-like language part of Iris,

4

mainly used for program verification. It has some low-level constructs allowing
for fine-grained concurrency, but it is quite different from C, which would
be a more common language to implement low-level constructs like barriers.
Second, we assume a sequentially consistent memory model, as opposed to a
relaxed memory model which is used by multiprocessors nowadays. However,
these limitations are regular in this field of study.

We start this thesis by introducing HeapLang, the programming language
we use in this thesis, and give an introduction to separation logic in Chapter 2.
In Chapter 3, we verify the simple barrier implementation given in (Dodds
et al., 2016, Section 4). This chapter mainly serves as an introduction to Iris.
Chapter 4 discusses the barrier implementation that supports chains (Dodds
et al., 2016, Section 6), and an intuitive verification is presented. The
formalization of this verification is discussed in Chapter 5. Finally, we
discuss related work in Chapter 6, and we conclude in Chapter 7 with future
work.

The Coq formalization, accompanied with installation instructions and
references to the relevant section, can be found here (van Collem, 2023).

5

Chapter 2

Preliminaries

In this chapter we give a brief introduction to separation logic and HeapLang.
We start by presenting Iris’s HeapLang (§2.1), a programming language used
in the rest of this thesis. We then proceed by giving a short introduction to
separation logic (§2.2), and conclude by showing how we can prove program
specifications (§2.3). We do not discuss Iris specific features in this chapter,
so readers familiar with separation logic may safely skim this chapter.

2.1 HeapLang

We start by introducing HeapLang. HeapLang is an untyped ML style
language which supports higher-order heap (e.g. storing functions on the
heap), concurrency and common atomic operations. It is a language which is
primarily used to provide examples and show what Iris is capable of. There
do, until now, not exist ways to run HeapLang outside of Coq.

We partially present the syntax of HeapLang. In some places we cut
some corners to simplify the story. One can refer to (The Iris Team, 2022,
§12) for a more thorough formalization of HeapLang.

v ::= () | z | ℓ | true | false | rec f (x) := e | . . . (z ∈ Z, ℓ ∈ Loc)

inl(v) | inr(v) | . . .
e ::= v | x | e1e2 | if e then e1 else e2 |

− e | e1 + e2 | . . .
inl(e) | inr(e) | (match e with inl(x)⇒ e1 | inr(y)⇒ e2 end) |
ref(e) | Free(e) | ! e | e1 ← e2 | CAS(e1, e2, e3) | FAA(e1, e2) |
e1 || e2 | . . .

HeapLang is an untyped lambda calculus. It furthermore has recursive
functions which we use to define non-recursive functions, let expressions and

6

the sequence of two expressions:

λx. e ≜ rec (x) := e

let x = e1 in e2 ≜ (λx. e2)e1

e1; e2 ≜ let = e1 in e2

We also frequently use optionals, which we can encode in the following way:1

none ≜ inl(())

some(e) ≜ inr(e)

We furthermore use indentation for if-statements to indicate their scopes.
For example, the code on the left should be parsed as the code on the right.

if e1

then e2;

e3

else e4;

e5

e6

(if e1 then (e2; e3) else (e4; e5)); e6

HeapLang is also able to interact with the heap. We can use ref(e) to
store a value on the heap. It returns a location ℓ which can be thought of as
a pointer. Note that there is no “null pointer”, but we can represent it as
none, and all other pointers as some(ℓ). We use Free(e) to free a location, ! e
to read a value stored at a location, and e1 ← e2 to update the value stored
at e1 to e2. These four operations are atomic, meaning that they do this in a
single program step.2 Apart from these heap operations, HeapLang also has
two other atomic operations. CAS(e1, e2, e3) (compare and swap) compares
the value stored at e1 with e2. When they are equal, e1 gets updated to
e3 and true is returned, otherwise it returns false. FAA(e1, e2) (fetch and
add) loads the value stored in e1, adds e2 to it and returns the original value.
Finally, we can use e1 || e2 to execute e1 and e2 in parallel and join them
together when they are both finished.3 It is called the par operation.

As HeapLang has support for multithreading, we need to talk about the
semantics of how the threads interleave. Thread scheduling is completely

1The definition of none looks a bit weird but we just pass (), the unit value, to the inl

constructor.
2Do note that ℓ← f(n) first reduces f(n) to a value, before storing it in ℓ. That means

that ℓ← f(n) is not atomic, while ℓ← 1 is.
3The par operation actually is not a primitive of HeapLang. Rather, it has fork {e},

which forks a new thread to execute e. We can implement par using fork. However, for
our examples, it is easier to think of par as a primitive of the language.

7

nondeterministic meaning a programmer can make no assumptions about
the order threads execute in.

We now present a few example programs, which we later give and prove
specifications for.

Example 1 (Parallel execution). We define a function par exec, which
takes a location ℓ. It then allocates a new location ℓ′ where we store 37. It
doubles the value stored in ℓ and adds 3 to the value stored in ℓ′. These
operations are done in parallel. Finally it returns the newly allocated location
ℓ′.

par exec ≜ λℓ. let ℓ′ = ref(37) in(
let n = ! ℓ in

ℓ← 2 · n
letm = ! ℓ′ in

ℓ′ ← m+ 3

)
ℓ′

Example 2 (List append). Before we can write a function to append two lists,
we first need a way to encode lists in HeapLang. There are many possible
ways to do this, but we use a representation which is sort of analogous
to linked lists in C-style languages. An empty list is represented by none,
and a list of values a :: x⃗ is represented by some(ℓ), such that the value
stored at ℓ is a pair containing x and the representation of x⃗. Using this
representation, we represent the list [1, 2] by some(ℓ1), where the value stored
at ℓ1 is (1, some(ℓ2)) and the value stored at ℓ2 is (2, none). Now that we
have a way to represent lists in HeapLang, we can define append as follows:

append ≜ rec append(v1, v2) := match v1 with

none ⇒ v2

| some(hd)⇒ let x = fst(! hd) in

let xs = snd(! hd) in

let v′1 = append(xs, v2) in

hd ← (x, v′1);

some(hd)

end

If v1 represents the empty list, then we can just return v2. In the other case,
we first read the values stored in the hd location. We then do a recursive
call to append v2 to the tail of our current list. Finally, we store the original
value x together with the new tail, v′1, in hd , and return some(hd), the
representation of our appended list.

Finally, it is good to stress that this language is not safe at all. We can
write all kind of programs like true ← false, ()(), which have undefined

8

behavior. It is furthermore possible to write programs with use-after-free
bugs:

let ℓ = ref(true) in

Free(ℓ);

ℓ← false

This is of course undesirable. We thus want a version of Hoare logic which
not only allows us to prove specifications for programs, but furthermore also
allows us to argue that a program is safe.

2.2 Hoare and separation logic

We can use separation logic to reason about HeapLang programs. Separation
logic is an extension of Hoare logic. We write Hoare triples {P} e {Φ} as
specifications for programs. Intuitively, they represent the fact that (i) e is a
safe program, and (ii) if precondition P holds and program e terminates with
value v, then postcondition Φ(v) holds. We often write {P} e {v. Q} as a
shorthand for {P} e {λv. Q}, and {P} e {Q} as a shorthand for {P} e {λ . Q}
whenever we are not interested in the return value. Furthermore, it is good to
stress that these Hoare triples only specify partial correctness of a program.
Take for example the following recursive function which loops forever:

diverge ≜ rec diverge() := diverge ()

We are able to prove the following specification for it:4

{True} diverge () {False}

This makes sense as diverge () does not terminate, allowing us to state any
postcondition we would like.

We now present the Iris propositions, which can be used for pre and
postconditions.5

P ::= φ | P ∧Q | P ∨Q | P → Q | ∀x. P | ∃x. P | Higher order logic

ℓ 7→ v | P ∗Q | P −∗ Q | {P} e {Φ} | Separation logic

▷P | �P | |⇛P | P N | a γ | . . . Iris

The first line corresponds with standard higher order logic. We let φ range
over all propositions of the meta logic, Coq in this case. This allows us to, for
example, reason about lists in our logic. The second line has the separation

4The proof uses Löb induction which we do not present until §3.3.
5We again cut a corner here by taking Hoare triples as a primitive of Iris, while they

are actually defined inside the logic itself (Jung et al., 2018, §6).

9

logic primitives. The intuitive idea behind separation logic propositions
is that they describe some resource. Proposition P holding corresponds
to owning said resource. Because of this correspondence, we often refer
to propositions as resources. Programs can only use and update resources
they own. We shortly see an example of this when we discuss ℓ 7→ v. In
the original separation logic papers (O’Hearn et al., 2001; Reynolds, 2002),
resources were heap fragments, describing a finite part of the heap. In Iris it
is also possible to own other kinds of resources,6 some of which are shown
on the third line. For simplicity sake, we only consider heap fragments as
our type of resources for the rest of this chapter.

The separating conjunction ∗ has the following meaning: P ∗ Q holds
whenever P and Q both hold and describe disjoint resources. In our case this
corresponds to P and Q describing disjoint parts of the heap. We typically
say that a program owns P and Q when it owns P ∗Q.

The proposition ℓ 7→ v should be read as ℓ points to v and is often referred
to as the points-to predicate of ℓ. It states that value v is stored at location
ℓ in the heap. Only when a program owns ℓ 7→ v, it is allowed to read
or update the value stored at ℓ. This is what makes sure that we cannot
have use-after-free-bugs, as a program loses the points-to predicate of ℓ after
freeing ℓ. In a similar way, this also ensures that a program cannot write to
unallocated memory. Also note that if a program owns ℓ 7→ v ∗ ℓ′ 7→ w, then
we know that ℓ ̸= ℓ′ as both resources cannot describe the same part of the
heap.

The magic wand −∗ can be thought of as an implication for separation
logic: whenever a program owns P −∗ Q and combines it, using ∗, with a
disjoint resource P , the program owns Q.

Hoare triples {P} e {Φ} are, as already discussed, used to state specifica-
tions for programs. Furthermore, P also describes a footprint of e. As e can
only use and update resources it owns itself, we can be sure that it does not
use any resources disjoint with P .

Finally the last line consists of propositions which are not present in
the original separation logics (O’Hearn et al., 2001; Reynolds, 2002). We
discuss them on demand whenever we come across them. The ▷ modality

and invariants P
N

are discussed in §3.3, and the � and |⇛ modalities are

discussed in §4.3. Ghost state ownership a
γ
is used in Chapter 5. One can

refer to Jung et al., 2018, §3 for a discussion.
Now that we can describe resources, we can use them to reason about

concurrent programs. Instead of saying that a program owns a resource, we
assign ownership of resources to individual threads. We furthermore make
sure that the resources owned by threads are all disjoint with each other.
This allows us to reason locally about each thread. When a thread owns

6One can refer to (Jung et al., 2018, §3) for a more thorough discussion on resource
ownership in Iris.

10

ℓ 7→ v, it can be sure that no other thread also owns a points-to predicate
for the same location. Otherwise the two threads own resources describing
intersecting heap fragments which cannot happen. Since a thread knows
that it exclusively owns ℓ 7→ v, it can be sure that no other thread changes
the value stored at ℓ, thus never invalidating ℓ 7→ v.

We conclude this section by discussing plausible specifications for the
example programs from the previous section. We prove these specifications
in the next section.

Example 3 (Parallel execution specification). The par exec function, which
we defined in Example 1, has the following specification:

ParExec-Spec

{ℓ 7→ k} par exec(ℓ)
{
ℓ′. ℓ 7→ (2 · k) ∗ ℓ′ 7→ 40

}
In this case ℓ is a location and k an integer. We often leave these variables
unbound, especially when it is clear from the context what their type should
be.

This specification says that, if we own ℓ 7→ k and execute par exec(ℓ),
the function returns a location ℓ′ and ownership of the resources ℓ 7→ (2 · k),
ℓ′ 7→ 40. As we own both resources, they should be disjunct, meaning that
ℓ ≠ ℓ′. This essentially tells us that the location ℓ′ is fresh, i.e. a new
location.

Example 4 (List append specification). When we make a call append(v1, v2),
we should make sure that both v1, v2 are actual representations of lists of
values. Otherwise the execution gets stuck at some point. We do this using
an abstract predicate isList :Val→ List(Val)→ iProp. This predicate takes
a value v and a list of values x⃗, and asserts whether the value v represents
the list x⃗, according to the representation we discussed in Example 2. Before
we discuss the definition of isList, let us look at how we can use it in the
specification for append:

Append-Spec

{isList(v1, x⃗1) ∗ isList(v2, x⃗2)} append(v1, v2) {v. isList(v, x⃗1 ++ x⃗2)}

This specification states that, if we have two lists of values x⃗1, x⃗2, and two val-
ues v1, v2 representing these lists respectively, and we execute append(v1, v2),
the function returns a value v, which represents the list x⃗1 ++ x⃗2.

We define isList by recursion on the list, as follows:

isList(v, []) ≜ v = none

isList(v, a :: x⃗) ≜ ∃ℓ, v′. v = some(ℓ) ∗ ℓ 7→ (a, v′) ∗ isList(v′, x⃗)

This corresponds with the intuitive representation we discussed in Example 2.
The empty list is represented by none and a non empty list is represented by
some(ℓ), where the value stored at ℓ is a pair containing the head of the list
and the representation of the tail of the list.

11

2.3 Proving specifications

Until now we have seen how we can create programs and what kind of
specifications we can write down. The final piece of the puzzle is to be able
to prove specifications. We start by giving some general proof rules, after
which we prove the specifications we discussed in Examples 3, 4.

Before we can give proof rules we need to present the entailment relation
⊢. Whenever we write P ⊢ Q we mean that if P holds, then Q also holds.
Furthermore, we write ⊢ P when P holds without any assumptions, and
P ⊣⊢ Q when both P ⊢ Q and Q ⊢ P . Although we present Hoare triples
are first-class citizens of Iris, we write them without the entailment in from
of them, for simplicity sake.

We start by introducing the rules for separating conjunction and the
magic wand.

Sep-Unit

True ∗ P ⊣⊢ P
Sep-Weaken

P ∗Q ⊢ P
Sep-Comm

P ∗Q ⊣⊢ Q ∗ P

Sep-Assoc

P ∗ (Q ∗R) ⊣⊢ (P ∗Q) ∗R

Sep-Mono
P1 ⊢ Q1 P2 ⊢ Q2

P1 ∗ P2 ⊢ Q1 ∗Q2

Wand-Intro
P ∗Q ⊢ R

P ⊢ Q −∗ R

Wand-Elim
P ⊢ Q −∗ R
P ∗Q ⊢ R

The unit resource of ∗ is True. We can use Sep-Weaken to throw away
resources.7 We furthermore have that the separating conjunction is both
commutative and associative. If we want to prove a separating conjunction,
we can use Sep-Mono to prove both parts separately by also splitting our
assumptions. Finally, Wand-Intro andWand-Elim describe that the magic
wand can be seen as an implication for separation logic. These rules are
regularly used when proving specifications. We typically use them implicitly,
just like we normally do when using proof rules of the logical connectives in
higher order logic. Iris of course also has the regular proof rules for higher
order logic which we do not state here.

7One could notice that by having this rule, it is impossible to reason about memory
leaks. Some separation logics therefore exclude this rule. A discussion on why this rule is
present in Iris can be found in (Jung et al., 2018, §9). We discuss how this rule restricts a
possible extension of the specification in Chapter 7.

12

We now discuss the following proof rules for Hoare triples:

Hoare-Frame
{P} e {v. Q}

{P ∗R} e {v. Q ∗R}

Hoare-Conseq

P ⊢ P ′ {
P ′} e {v. Q′} ∀u. (Q′[u/v] ⊢ Q[u/v])

{P} e {v. Q}

Hoare-Pure
{P} e2 {v. Q} e1 →pure e2

{P} e1 {v. Q}

Hoare-Val

{True} v {w. w = v}

The most important rule of separation logic is Hoare-Frame. Like we
discussed earlier, P can be seen as a footprint of e. As e only uses those
resources in P , we can be sure that a disjoint frame R, still holds after e has
finished executing. This rule is what allows us to write specifications which
only describe a small part of the heap, but instantiate them for any heap
satisfying that precondition. We could for example use it to state another
specification for par exec:{

ℓ 7→ k ∗ ℓ′′ 7→ v
}
par exec(ℓ)

{
ℓ′. (ℓ 7→ (2 · k) ∗ ℓ′ 7→ 40) ∗ ℓ′′ 7→ v

}
As location ℓ′′ is not used in par exec, we can be sure that ℓ′′ 7→ v still holds
in the postcondition. We often use this rule implicitly in proofs.

Hoare-Conseq is similar to the consequence rule from Hoare logic. It
allows us to weaken the precondition and strengthen the postcondition. This
rules is also used implicitly in proofs most of the times.

If we can do a pure program step from e1 to e2, i.e. one which does not
involve using the heap, we can use Hoare-Pure to prove a Hoare triple for
e2. These pure program steps are defined like one would expect for a lambda
calculus. The complete definition of →pure is given in (The Iris Team, 2022,
§12).8

Finally, Hoare-Val states that a program consisting of a single value
returns that value.

We now give proofs of the specifications for par exec, append we gave
in Examples 3, 4. We give our proofs as decorated programs, accompanied
with extra explanation where needed. In these decorated programs we write
resources in green, code in blue and comments explaining intermediate steps
in ML comment style: (* Comment *).

Example 5 (Proof of specification of par exec). Before we discuss the proof

8Note that they use a different notation for pure reductions, namely
ϵ−→h.

13

{ℓ 7→ k}
let ℓ′ = ref(37) in
(* Use Hoare-Alloc *)
{ℓ 7→ k ∗ ℓ′ 7→ 37}
(* Use Hoare-Par and give ℓ 7→ k to the left thread,

and ℓ′ 7→ 37 to the right thread *)

{ℓ 7→ k}
let n = ! ℓ in

(* Use Hoare-Load *)

{n = k ∗ ℓ 7→ n}
ℓ← 2 · n
(* Use Hoare-Store *)

{n = k ∗ ℓ 7→ 2 · k}
(* Use Sep-Weaken *)

{ℓ 7→ 2 · k}

{ℓ′ 7→ 37}
letm = ! ℓ′ in

(* Use Hoare-Load *)

{m = 37 ∗ ℓ′ 7→ 37}
ℓ′ ← m+ 3

(* Use Hoare-Store *)

{m = 37 ∗ ℓ′ 7→ 40}
(* Use Sep-Weaken *)

{ℓ′ 7→ 40}

{ℓ 7→ (2 · k) ∗ ℓ′ 7→ 40}
ℓ′

(* Use Hoare-Val *)
{ℓ′. ℓ 7→ (2 · k) ∗ ℓ′ 7→ 40}

Figure 2.1: Proof sketch of par exec.

sketch given in Figure 2.1, we need the following proof rules:

Hoare-Par
{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 || e2 {Q1 ∗Q2}

Hoare-Alloc

{True} ref(v) {ℓ. ℓ 7→ v}

Hoare-Load

{ℓ 7→ v} ! ℓ {w. w = v ∗ ℓ 7→ v}
Hoare-Store

{ℓ 7→ v} ℓ← w {u. u = () ∗ ℓ 7→ w}

We discuss them on demand, whenever we come across a use of them.
We start with the precondition ℓ 7→ k. We then use Hoare-Alloc which

gives us a fresh location together with its points-to predicate ℓ′ 7→ 37. By
framing ℓ 7→ k implicitly, we end up with ℓ 7→ k ∗ ℓ′ 7→ 37. We now need
to use Hoare-Par. It allows us to split our precondition and prove Hoare
triples for both threads separately. We then get both postconditions of the
individual threads, as a postcondition of the par operation. The reason
that this rule is sound, is that if e1, e2 use disjoint resources, their execution
order does not matter. We can thus focus on the individual threads. Their
postconditions still describe disjunct resources, so we can safely take the
separating conjunction of them. In our proof sketch, we only discuss the
left thread, as the right thread has a completely analogous proof. We first
use Hoare-Load to load the current value from ℓ. It says that the return
value, is the value asserted by the points-to predicate. We furthermore get

14

the points-to predicate back via the postcondition. We then use Hoare-
Store to update the value stored at ℓ. It takes a points-to predicate as a
precondition and gives it back with the value stored updated to w. We now
know that n = k ∗ ℓ 7→ 2 · k holds. As we do not need the fact that n = k
for the rest of the proof, we can use Hoare-Conseq and Sep-Weaken
to forget this. Now that we have proven Hoare triples for both threads, we
know that both their postconditions hold. Finally, the program returns ℓ′ so
we conclude by using Hoare-Val.

Example 6 (Proof of specification of append). We now prove the following
specification for append:

{isList(v1, x⃗1) ∗ isList(v2, x⃗2)} append(v1, v2) {v. isList(v, x⃗1 ++ x⃗2)}

We prove this by induction on x⃗1. Its proof sketch is given in Figure 2.2. We
prove this specification by showing that it holds for both cases of the match
statement. We first discuss the first case, where we know that v1 = none.
If we look at the definition of isList, which we gave in Example 4, we
see that it has to be the case that x⃗1 = none. We can thus conclude
that v2 represents x⃗1 ++ x⃗2. We then use Hoare-Val, to get the desired
postcondition. In the some case, we can reason in a similar way to the none
case to conclude that x⃗1 = a :: x⃗′1, for some value a and list of values x⃗′1. If

we then unfold isList, we get the value w1, which represents x⃗′1. We thus

have hd 7→ (a,w1) ∗ isList(w1, x⃗′1). We then use Hoare-Load twice to read
the values of the pair stored in hd . We can use our induction hypothesis for
the inductive call to append . We know isList(w1, x⃗′1) ∗ isList(v2, x⃗2) and x⃗′1
is the parameter we can use our induction hypothesis for. By our induction
hypothesis, we know that isList(v′1, x⃗

′
1 ++ x⃗2) holds. We now use Hoare-

Store to update the tail of our list. Finally, we fold the definition of isList
and use Hoare-Val to conclude our postcondition.

15

{isList(v1, x⃗1) ∗ isList(v2, x⃗2)}
match v1 with

none ⇒ {v1 = none ∗ isList(v1, x⃗1) ∗ isList(v2, x⃗2)}
(* x⃗1 = [] as v1 = none *)

{x⃗1 = [] ∗ isList(v2, x⃗2)}
(* x⃗2 = x⃗1 ++ x⃗2 as x⃗1 = [] *)

{isList(v2, x⃗1 ++ x⃗2)}
v2

(* Use Hoare-Val *)

{v. isList(v, x⃗1 ++ x⃗2)}
| some(hd)⇒ {v1 = some(hd) ∗ isList(v1, x⃗1) ∗ isList(v2, x⃗2)}

(* x⃗1 = a :: x⃗′
1 as v1 = some(hd), unfold isList(v1, x⃗1) *){

x⃗1 = a :: x⃗′
1 ∗ hd 7→ (a,w1) ∗ isList(w1, x⃗′

1) ∗ isList(v2, x⃗2)
}

let x = fst(! hd) in

(* Use Hoare-Load *){
x = a ∗ hd 7→ (a,w1) ∗ isList(w1, x⃗′

1) ∗ isList(v2, x⃗2)
}

let xs = snd(! hd) in

(* Use Hoare-Load *){
xs = w1 ∗ hd 7→ (a,w1) ∗ isList(w1, x⃗′

1) ∗ isList(v2, x⃗2)
}

let v′1 = append(xs, v2) in

(* Induction hypothesis *){
hd 7→ (a,w1) ∗ isList(v′1, x⃗′

1 ++ x⃗2)
}

hd ← (x, v′1);

(* Use Hoare-Store and fact that x = a *){
hd 7→ (a, v′1) ∗ isList(v′1, x⃗′

1 ++ x⃗2)
}

(* Fold isList *){
isList(some(hd), a :: x⃗′

1 ++ x⃗2)
}

some(hd)

(* Use Hoare-Val *){
v. isList(v, a :: x⃗′

1 ++ x⃗2)
}

(* Rewrite x⃗1 = a :: x⃗′
1 *)

{v. isList(v, x⃗1 ++ x⃗2)}
end

{v. isList(v, x⃗1 ++ x⃗2)}

Figure 2.2: Proof sketch of append.

16

Chapter 3

Simple Barrier

In this chapter we give an implementation of a simple barrier (§3.1). This
implementation is a direct port of the one given in (Dodds et al., 2016,
Figure 8) and was also used in (Jung et al., 2016, Figure 9). We proceed by
giving the specification (§3.2) presented in (Dodds et al., 2016, Section 4).
Finally, we discuss how we could verify this specification (§3.3) and conclude
with a proof sketch of the specification. Our verification and proof go in a
different fashion than those in (Dodds et al., 2016; Jung et al., 2016), as we
do not use state transition systems.1 This chapter mainly serves as an Iris
tutorial. Readers familiar with both Iris and barriers may want to skip this
chapter.

3.1 Implementation

We start by giving an implementation for a simple barrier in HeapLang. We
define 3 methods: new barrier creates a new barrier, signal gets a barrier
and signals it, and wait also gets a barrier and waits until the barrier is
signalled. The code of this barrier is straightforward. We only need to store
whether our barrier has been signalled yet. That means that new barrier

can return a reference to false, signal updates this reference to true and
wait recursively calls itself until the reference is set to true.

new barrier ≜ λ . ref(false)

signal ≜ λb. b← true

wait ≜ rec wait(b) := if ! b then () else wait b

Before we give the specification, let us look at a motivating example.
Suppose we have two computationally expensive functions expensive bool

and expensive int, which return a boolean and an integer respectively.

1We discuss this difference in Chapter 6

17

Now consider the following code:

example ≜

λr. let x = ref(false) in

let b = new barrier () in
x← expensive bool ();

signal b

let n = expensive int () in

wait b

let b′ = !x in

if b′

then r ← 2 · n
else r ← n

Recall that the double line in the middle is notation for the par operation,
which executes both expressions in parallel. The left thread first computes
expensive bool and then signals the barrier to indicate that that computa-
tion has finished. The right threads starts by computing expensive int. It
then needs to wait for the left thread to finish, as it needs to be sure that
the expensive bool computation has finished. This is achieved by waiting
on the barrier. Finally, when it is done waiting, it checks the value of x, and
based on that it makes a decision on what to store in r.

When we want to prove a specification for this example we can see that
both threads need to have access to x. We are thus unable to split our
resources which means we cannot use the Hoare-Par rule directly. However,
we as the programmer, know that this code is thread safe: We do not use x
in the left thread after the barrier got signalled, and we only access it in the
right thread after we are done waiting on the barrier. We would thus desire
a specification for our barrier where we can transfer the ownership of x from
the left to the right thread.

3.2 Specification

To give a specification for our barrier, we make use of two abstract predicates:
send(b, P) and recv(b, P). For now, we do not look at their definitions yet,
but rather at their use in the specification. The specifications of our methods
are as follows:

New Barrier-Spec

{True} new barrier () {b. recv(b, P) ∗ send(b, P)}

Signal-Spec

{send(b, P) ∗ P} signal b {True}
Wait-Spec

{recv(b, P)} wait b {P}

Intuitively, ownership of send(b, P) represents the fact that when someone
owns resource P , they should be able to signal barrier b and give up ownership

18

of P . Ownership of recv(b, P) represents the fact that when someone waits
on b, they should get ownership of P after b got signalled. The specification
of new barrier just states that it returns a barrier b together with the
predicates recv(b, P) and send(b, P) for a resource P specified by the user.
This makes it possible to verify signal and wait calls on the returned
barrier.

To verify that this specification is indeed strong enough for our example,
we prove the following specification for example:

{r 7→ v} example r {r 7→ 74}

To prove this we assume that expensive bool, expensive int return true, 37
respectively:

{True} expensive bool () {b. b = true}
{True} expensive int () {z. z = 37}

The decorated program can be found in Figure 3.1. We start by using
Hoare-Alloc to allocate a reference x and store false in it. Before we can
use New Barrier-Spec, we should decide which resource we want to send
and receive. We can see that the right thread needs access to the points-to
predicate of x. As expensive bool always returns true, we know that true
is stored at x when we call signal b. We thus use

P ≜ x 7→ true

as the resource to send and receive. We can now create a new barrier using
New Barrier-Spec. We give x 7→ false ∗ send(b, P) to the left thread
and the r 7→ v ∗ recv(b, P) to the right. In the left thread we first compute
expensive bool and use Hoare-Store to store the result in x. As we
now know that x 7→ true, we can signal the barrier using Signal-Spec. In
the right thread we start by computing expensive int. After that we can
wait on the barrier using Wait-Spec. After we are done waiting, the right
threads owns x 7→ true. This allows us to use Hoare-Load and conclude
that b′ = true. In the then-case, we use Hoare-Store to store 74 in r,
after which we use Sep-Weaken. In the else-case, we have a contradiction
false = true. As we can conclude anything from a contradiction, we can
also conclude that r 7→ 74 holds. As we showed that r 7→ 74 holds after both
cases, we can conclude that r 7→ 74 holds after the if statement. Finally,
we conclude by using Hoare-Par to combine the postconditions of both
threads, and conclude with r 7→ 74 as the final postcondition.

3.3 Verification

We can now define the send and recv predicates. These predicates should
relate the physical state, i.e. the values stored on the heap, to a suitable

19

{r 7→ v}
let x = ref(false) in
{x 7→ false ∗ r 7→ v}
(* Use Hoare-Alloc *)
let b = new barrier () in

(* Use New Barrier-Spec with P ≜ x 7→ true *)
{x 7→ false ∗ r 7→ v ∗ send(b, P) ∗ recv(b, P)}
(* Give x 7→ false ∗ send(b, P) to the left thread,

and r 7→ v ∗ recv(b, P) to the right thread *)

{x 7→ false ∗ send(b, P)}
x← expensive bool ();

(* Spec of expensive bool *)

{x 7→ true ∗ send(b, P)}
signal b

(* Use Signal-Spec *)

{True}

{r 7→ v ∗ recv(b, P)}
let n = expensive int () in

(* Spec of expensive int *)

{n = 37 ∗ r 7→ v ∗ recv(b, P)}
wait b

(* Use Wait-Spec *)

{r 7→ v ∗ x 7→ true}
let b′ = !x in

(* Use Hoare-Load *)

{b′ = true ∗ r 7→ v ∗ x 7→ true}
if b′

then {r 7→ v ∗ x 7→ true}
(* Use Hoare-Store *)

r ← 2 · n
{r 7→ 74 ∗ x 7→ true}
(* Use Sep-Weaken *)

{r 7→ 74}
else {false = true ∗ r 7→ v ∗ x 7→ true}

(* Contradiction *)

r ← n

{r 7→ 74}
{r 7→ 74}

(* Use Hoare-Par to combine the postconditions of both threads *)
{r 7→ 74}

Figure 3.1: Proof sketch of example.

20

notion of logical or ghost state. This is a type of state which, unlike physical
state, is not present during the execution of a program. Rather, it is only
available during the verification of a program. We can read and write
information to this logical state by indexing it with a ghost name γ. Making
use of this logical state, allows us to prove specifications of more complex
programs, where multiple threads may read or write to the same location
on the heap. In this section, we design a logical state for this barrier. This
allows us to define the send and recv predicates. Afterwards, we show that
these definitions are indeed correct, by giving decorated programs to prove
the New Barrier-Spec, Signal-Spec, Wait-Spec rules from §3.2.

Both signal and wait need to read or write to the stored boolean. We
can thus see that both the send and recv predicates need knowledge about the
points-to predicate of the stored boolean. As we cannot split this points-to
predicate,2 we cannot give it to both send(b, P) and recv(b, P).

In situations like this, we can use an invariant. The proposition I
N

states that proposition I holds at any moment, hence being an invariant.
Each invariant has a namespace N , which use we discuss later. To allocate
an invariant we use the following rule:

Hoare-Inv-Alloc{
I

N ∗ P
}
e {v. Q}

{I ∗ P} e {v. Q}

At first it does not seem like this rule is useful. However, invariants are

duplicable: I
N

states that I always holds, so duplicating this fact is sound.
We thus get the following rule:

Inv-Dup

I
N ⊢ I

N ∗ I
N

This means we can give the invariant to multiple threads. This obviously
comes at a cost on how we can access I, the resource inside the invariant. Any
thread may want to temporarily break the invariant, do some computations
and then satisfy it again. The problem is that this could mean that the
invariant is also broken for all other threads, who may do some computations
while the invariant is broken. This would break the promise that the invariant

holds at any time. To prevent this, we require that I
N

can only be broken,
or rather opened, around atomic expressions. Atomic expressions reduce to
a value in one step. That means that no other threads execute during an
atomic expression so we can safely open the invariant. This gives rise to the

2Technically we can, but we would get two read only points-to predicates, i.e.

ℓ
1/27−−→ b ∗ ℓ 1/27−−→ b, which means we can no longer store new values (Bornat et al., 2005;

Boyland, 2003).

21

following rule:

Hoare-Inv-Open
atomic(e) N ⊆ E {▷ I ∗ P} e {v. ▷ I ∗Q}E\N{

I
N ∗ P

}
e
{
v. I

N ∗Q
}
E

The essential part of this rule is that we can temporarily open invariants
around atomic expressions. It furthermore has some technicalities, which we
discuss now. Opening the same invariant twice could lead to inconsistencies.
To prevent this we use a mask E . Hoare triples are written with a mask
subscript, indicating which invariants may still be opened in its proof.3

When opening an invariant we do not directly get access to I, rather to ▷ I.
The ▷ is a later modality. Intuitively, ▷P means that P holds after one
program step. Without the ▷ guard in Hoare-Inv-Open, Iris would become
inconsistent (Jung et al., 2018, §8.2). Therefore, Iris internally uses step
indexing (Appel & McAllester, 2001; Birkedal et al., 2012), which results in
these ▷ modalities appearing in the rule. However, in many cases we can
get rid of these ▷ modalities as we discuss in §3.3.2. To introduce a later
modality, one can use the following rule:

Later-Intro

P ⊢ ▷P

The idea behind this rule is that if P already holds, then it will also hold
after a program step.

Going back to the specification of our barrier, we need to define a suitable
invariant. We can see that for each barrier there can be three possible states:

1. The barrier is not signalled yet.

2. The barrier is signalled but the resource is not received yet.

3. The barrier is signalled and the resource is received.

In the first state the false is stored in the reference, while in the other two
states, true is stored. To distinguish the last two states, we notice that
when the barrier gets signalled, P is given up by the sender. We can thus
store this resource in the invariant. When transitioning to the last state, we
want to transfer this ownership from the invariant to the receiver. However,
the receiver should only be able to receive P once, otherwise we could for
example duplicate points-to predicate by receiving them multiple times. We
therefore make use of an exclusive token, denoted as token(γ).4 If a receiver

3Note that we typically do not write this subscript in proof rules when the mask is ⊤,
indicating that no invariants are currently open.

4In this chapter we consider token(γ) as a primitive. In Iris, it is defined using ghost
state. We could formally define it, using the exclusive RA, as token(γ) ≜ ex()

γ
(Jung

et al., 2018, §3).

22

owns this token, they can exchange it with the invariant for the resource P .
This makes sure they can only receive P once. The exclusivity of token(γ)
refers to the following rule:

Token-Exclusive

token(γ) ∗ token(γ) ⊢ False

This is similar to the points-to predicate where we have

ℓ 7→ v ∗ ℓ 7→ v′ ⊢ False

We can allocate an exclusive token as follows:

Token-Alloc
{P ∗ ∃γ. token(γ)} e {v. Q}

{P} e {v. Q}

The γ one gets by this rule is a ghost name, which, as we discussed earlier,
serves as a key into the logical state.

We can now define the invariant:

I(ℓ, γ, P) ≜ ℓ 7→ false︸ ︷︷ ︸
Barrier is not
signalled yet

∨ (ℓ 7→ true ∗ P)︸ ︷︷ ︸
Barrier is signalled,
P is not received yet

∨ (ℓ 7→ true ∗ token(γ))︸ ︷︷ ︸
Barrier is signalled,

P is received

The three disjuncts corresponds with the three states we described above. To
transition from the first to the second state, the reference should be updated
to true and P should be given to the invariant. This transition happens
when signal gets called, as the reference will be updated and P is provided
via the precondition of Signal-Spec. To transition from the second to the
last state, one should provide token(γ) and gets P in return. This transition
will be done by the receiver, so we initially give the ownership of token(γ)
to the receiver. Although this invariant exactly describes the barrier’s state
system, it can be a bit cumbersome to work with because each time we
open the invariant, we have to do a case distinction just to get the points-to
predicate. We thus use the following invariant, which is logically equivalent,
but a bit nicer to work with:

I(ℓ, γ, P) ≜ ∃b. ℓ 7→ b ∗ (if b then (token(γ) ∨ P) elseTrue)

Note that the we use a meta level (Coq) if statement here, not the one from
the HeapLang program syntax.

We can now use this invariant to define our send and recv predicates.
Both of them should have typeVal→ iProp→ iProp, as they take the value
returned by new barrier and the resource being received or sent. We define
them as follows:

send(ℓ, P) ≜ ∃γ. ℓ ∈ Loc ∗ I(ℓ, γ, P)
N

recv(ℓ, P) ≜ ∃γ. ℓ ∈ Loc ∗ token(γ) ∗ I(ℓ, γ, P)
N

23

{True}
ref(false)
(* Use Hoare-Alloc *)
{ℓ. ℓ 7→ false}
(* Use Token-Alloc *)
{ℓ. ℓ 7→ false ∗ token(γ)}
(* Fold definition of I *)
{ℓ. I(ℓ, γ, P) ∗ token(γ)}
(* Use Hoare-Inv-Alloc *){
ℓ. I(ℓ, γ, P)

N ∗ token(γ)
}

(* Use Inv-Dup *){
ℓ. I(ℓ, γ, P)

N ∗ I(ℓ, γ, P)
N ∗ token(γ)

}
(* Fold definitions of send, recv *)
{ℓ. send(ℓ, P) ∗ recv(ℓ, P)}

Figure 3.2: new barrier proof sketch.

Both predicates assert that the value should be a location and that the
invariant should hold. Furthermore, recv(ℓ, P) has ownership of token(γ).
This can be used to transition from the second to the last state and receive
P . We can also be sure that the invariant is never in state 3 when we have
a recv predicate: otherwise both the invariant and recv(ℓ, P) own token(γ),
allowing us to prove False using Token-Exclusive.

With these definitions, we can proceed to verify the specification by
giving a decorated program for each of new barrier, signal, wait.

3.3.1 Verification of New Barrier-Spec

The decorated program is given in Figure 3.2. We start by allocating a
location where false is stored. We then allocate the exclusive token using
Token-Alloc. We are now ready to allocate the invariant. To do so, we
first need to prove I(ℓ, γ, P). This holds because we have ℓ 7→ false. Now

that we know I(ℓ, γ, P)
N
, we can duplicate it using Inv-Dup. Finally we

can split our resources and prove

I(ℓ, γ, P)
N ⊢ send(ℓ, P)

I(ℓ, γ, P)
N ∗ token(γ) ⊢ recv(ℓ, P)

by instantiating the existential quantifiers and framing.

3.3.2 Verification of Signal-Spec

The decorated program is given in Figure 3.3. We start by destructing
the send predicate and beta reducing the lambda. We now want to prove

24

{send(ℓ, P) ∗ P}
(* Unfold send *){
I(ℓ, γ, P)

N ∗ P
}

(* Open invariant *)
{▷ I(ℓ, γ, P) ∗ P}
(* Unfold I *)
{▷(∃b. ℓ 7→ b ∗ (if b then (token(γ) ∨ P) elseTrue)) ∗ P}
(* Distribute ▷ *) (1)
{▷(ℓ 7→ b) ∗ ▷(if b then (token(γ) ∨ P) elseTrue) ∗ P}
(* Timelessness of ℓ 7→ b *) (2)
{ℓ 7→ b ∗ ▷(if b then (token(γ) ∨ P) elseTrue) ∗ P}
ℓ← true

(* Use Hoare-Store and Hoare-Later-Eliminate *) (3)
{ℓ 7→ true ∗ (if b then (token(γ) ∨ P) elseTrue) ∗ P}
(* Weaken *)
{ℓ 7→ true ∗ P}
(* Introduce ∨ *)
{ℓ 7→ true ∗ (token(γ) ∨ P)}
(* Fold I *)
{I(ℓ, γ, P)}
(* Use Later-Intro *)
{▷ I(ℓ, γ, P)}
(* Close invariant *){

I(ℓ, γ, P)
N}

(* Weaken *)
{True}

Figure 3.3: signal proof sketch.

{
I(ℓ, γ, P)

N ∗ P
}
ℓ← true {True} As storing a value is an atomic expres-

sion, we can open up the invariant. We now want to store true in ℓ but this
is not possible yet. If we unfold I, we can see that we have the following:

▷(∃b. ℓ 7→ b ∗ (if b then (token(γ) ∨ P) elseTrue))

but we need ℓ 7→ b before we can store a value in ℓ. This ▷ modality is
introduced by the Hoare-Inv-Open rule. We earlier stated that we can get
rid of this later modality if most cases, which we now explain. There are
basically three ways to eliminate later modalities:5

1. Commuting rules for ▷

2. Timelessness

3. Program steps

5Since Iris 4.0, there is also a fourth way, later credits (Spies et al., 2022), but we do
not discuss that method in this thesis.

25

These three ways correspond to the numbers is Figure 3.3. We first distribute
the ▷ using the following commuting rules:6

Later-Exists
τ is inhabited ▷∃x : τ. P

∃x : τ. ▷ P

Later-Sep
▷(P ∗Q)

▷P ∗ ▷Q

We now have ▷(ℓ 7→ b). To strip the later here we can make use of the
fact that points-to predicates are timeless. Intuitively, a proposition P is
timeless, written as timeless(P), if it is first-order, does not refer to other
invariants and does not contain nested Hoare triples (Jung et al., 2018, §5.7).
Because of this property we can strip the ▷ from a timeless proposition in
the precondition using the following rule:

Hoare-Timeless-Pre
timeless(P) {P ∗Q} e {v. R}

{▷P ∗Q} e {v. R}

We now own ℓ 7→ b which means ℓ can be updated. We are also allowed to
remove the only remaining ▷ as we did a program step. As explained earlier,
▷P intuitively mean that P holds after one program step. This intuition is
captured by the following rule:

Hoare-Later-Eliminate
e is not a value {P} e {v.Φ(v)}

{▷R ∗ P} e {v. R ∗ Φ(v)}

We can now prove I(ℓ, γ, P) and use Later-Intro to close the invariant.
The postcondition we want to prove is True, so we can conclude by weakening.

3.3.3 Verification of Wait-Spec

The decorated program is given in Figure 3.4. As wait is a recursive function,
we need to use induction. However, unlike the verification of append in
Example 6, we do not have a inductive argument to perform induction on.
In such a case, we can use Löb induction:

Löb Induction
▷P ⊢ P

⊢ P

If we want to prove P , it is enough to assume the induction hypothesis ▷P ,
and then prove P . At first this rule may seem weird, but it makes sense if
instantiate it with a Hoare triple:

▷ ({recv(b, P)} wait b {P}) ⊢ {recv(b, P)} wait b {P}
{recv(b, P)} wait b {P}

6We normally do not write the domain of an existential variable, but for the Later-
Exists rule it is needed as that type should have an inhabitant.

26

Our induction hypothesis now states that the Hoare triple holds, but under a
▷ modality. This means that we can use it, after we did at least one program
step. We can thus use it when we do a recursive call. This is sound because
Hoare triples only assert partial correctness.

In this proof we did a let expansion on ! ℓ. This is because we want to
open the invariant which we can only do around an atomic expression. Using
the following rule we can bind to the first argument of a let expression:

Hoare-Let
{P} e1 {x. Q} ∀v. {Q[v/x]} e2[v/x] {w. R}

{P} let x := e1 in e2 {w. R}

In our proof sketch, this allows us to open up the invariant around ! ℓ.
In actual proofs, this method of doing a let expansion is unpractical.

We would have to show that the semantics of our program does not change
after this expansion. One possible method is to restrict our language to only
allow programs which are in A-normal form (Flanagan et al., 1993), which
means the programmer has to let expand all their code by hand. Iris handles
this problem is a different way, by introducing evaluation contexts and the
following bind rule:

Hoare-Bind
K is an evaluation context {P} e {v. Q} ∀v. {Q}K[v] {w. R}

{P}K[e] {w. R}

In our proof sketch we could take K as if • then () else wait ℓ and K[e]
would fill e into the hole in our context, which is denoted by •. However,
this approach does not have a nice representation in our decorated program,
hence why we do the let expansion and use Hoare-Let.7

Now that we can open the invariant around ! ℓ, we can again distribute
the later and use the timelessness of ℓ 7→ b. We dereference ℓ and remove a
▷ because we did a program step. For (1) we argue that the following holds:

(if b then (token(γ) ∨ P) elseTrue) ∗ token(γ) ⊢
(if b then (token(γ) ∨ P) elseTrue) ∗ (if b then P else token(γ))

We do so by case distinction on b. Suppose b is true. This means that we
have (token(γ)∨P)∗ token(γ). As we know by Token-Exclusive, token(γ)
is exclusive which means that P ∗ token(γ) holds. We can then prove our
goal by giving token(γ) to the left and P to the right hand side of the ∗.
When b is false we need to prove True ∗ token(γ) ⊢ True ∗ token(γ) which
holds trivially. We can now close the invariant again and continue to the if
statement. If b is true, then we own P , so after evaluating () we are done. If

b is false, then we still own token(γ). If we combine this with I(ℓ, γ, P)
N

7One may notice that Hoare-Let is an instantiation of Hoare-Bind.

27

we get recv(ℓ, P) again. We now need to execute wait ℓ. We can use our
induction hypothesis and get P via the postcondition of the recursive call.
As we receive P in both cases of the if statement, we can conclude that
afterwards we always own P , which concludes the proof.

28

{recv(ℓ, P)}
(* Unfold recv *){
I(ℓ, γ, P)

N ∗ token(γ)
}

let f =
{
I(ℓ, γ, P)

N ∗ token(γ)
}

(* Open invariant *)

{▷ I(ℓ, γ, P) ∗ token(γ)}
(* Unfold I *)

{▷(∃b. ℓ 7→ b ∗ (if b then (token(γ) ∨ P) elseTrue)) ∗ token(γ)}
(* Distribute ▷ and timelessness of ℓ 7→ b *)

{ℓ 7→ b ∗ ▷(if b then (token(γ) ∨ P) elseTrue) ∗ token(γ)}
! ℓ

(* Dereference ℓ, remove ▷ by program step *)

{b. ℓ 7→ b ∗ (if b then (token(γ) ∨ P) elseTrue) ∗ token(γ)}
(* See note (1) *)

{b. ℓ 7→ b ∗ (if b then (token(γ) ∨ P) elseTrue) ∗ (if b then P else token(γ))}
(* Fold I *)

{b. I(ℓ, γ, P) ∗ (if b then P else token(γ))}
(* Introduce ▷ *)

{b. ▷ I(ℓ, γ, P) ∗ (if b then P else token(γ))}
(* Close invariant *){
b. I(ℓ, γ, P)

N ∗ (if b then P else token(γ))
}{

f = b ∗ I(ℓ, γ, P)
N ∗ (if b then P else token(γ))

}
if f then{

b = true ∗ I(ℓ, γ, P)
N ∗ (if b then P else token(γ))

}
(* Reduce if *){
I(ℓ, γ, P)

N ∗ P
}

()
(* Weaken *)
{P}

else{
b = false ∗ I(ℓ, γ, P)

N ∗ (if b then P else token(γ))
}

(* Reduce if *){
I(ℓ, γ, P)

N ∗ token(γ)
}

(* Fold recv *)
{recv(ℓ, P)}
wait ℓ
(* Induction hypothesis *)
{P}

{P}

Figure 3.4: wait proof sketch.

29

Chapter 4

Chainable Barrier

In this chapter, we extend the barrier we have seen in the previous chapter.
We start by describing some key features of this barrier (§4.1). We then
proceed by giving the implementation of this barrier (§4.2). Our implementa-
tion is a slight adaptation of the on given in (Dodds et al., 2016, Section 6).
This allows us to present a richer specification (§4.3) than the one given
in (Dodds et al., 2016, Figure 2). We extend the implementation by adding
a clone operation, and the specification by adding rules for send splitting,
send strengthening and receive weakening.1 Finally, we conclude by giving an
intuitive idea of the verification of the specification (§4.4). Our verification
takes a different approach compared with (Dodds et al., 2016, Section 6). By
taking a different invariant we are able to prove the specification in a more
straightforward way. The verification presented in §4.4, is meant to explain
the intuitive idea. The formal definitions are presented in Chapter 5.

4.1 Key features

In this section we discuss key features of the chainable barrier. We do this
via example programs and discuss how the code needs to change to support
these individual features. We start of by discussing receive splitting (§4.1.1).
Next, we introduce send splitting (§4.1.2), and finally, we discuss how to
create a chain of barriers and how to use renunciation (§4.1.3). Both receive
splitting and renunciation were already present in Dodds et al., 2016, while
send splitting is a new feature introduced in this thesis.

1Note that receive weakening was already present the Coq formalization of Jung et al.,
2016. However, they used a slightly weaker version in the paper, namely Recv-Mono.

30

4.1.1 Receive splitting

It is common that we want to wait on the same barrier in different threads.
Let us consider the following example program:

let b = new barrier () in wait b;

ℓ1 ← (! ℓ1) + 5

ℓ1 ← 37;

ℓ2 ← 42;

signal b

wait b;

ℓ2 ← (! ℓ2)− 5

The middle thread stores values in ℓ1, ℓ2 and then signals the barrier. The
left and right thread wait on the barrier before updating one of the locations.
This code is safe since the left and right thread only use ℓ1, ℓ2 after the
barrier is signalled. We furthermore have that after the signal, ℓ1 is only
used in the left thread, and ℓ2 is only used in the right thread. However,
the specification of Chapter 3 is not strong enough to verify this example.
Using New Barrier-Spec we only get a single recv(b, P) resource. As we
always need recv(b, P) for the precondition of a wait call, we can currently
only have one wait call in verified programs. We therefore introduce the
following rule to the specification:

Recv-Split

recv(b, P ∗Q) ⊢ |⇛ recv(b, P) ∗ recv(b,Q)

If we have a recv(b, P ∗ Q) resource, we can split it and get two receive
predicates back. We can use recv(b, P) for one wait call to receive P , and
recv(b,Q) for another wait call to receive Q. The |⇛ symbol, a ghost state
update modality, is a technicality which is discussed in §4.3. For now, it is
only important to note that we can eliminate these |⇛ modalities at any
point during verification of a program, which means we can more or less
ignore them.

With this rule we could verify our example program as shown in Figure 4.1.
We first obtain recv(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42) and send(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42)
by using New Barrier-Spec. We can use Recv-Split to split the single
receive predicate into two to get recv(b, ℓ1 7→ 37) and recv(b, ℓ2 7→ 42). We
then give recv(b, ℓ1 7→ 37) to the left thread, send(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42) and
the points-to predicates of ℓ1, ℓ2 to the middle thread, and recv(b, ℓ2 7→ 42)
to the right thread. We now have a receive predicate for b in both the left
and right thread, and a send predicate in the middle thread. The rest of the
verification follows by using Hoare-Load, Hoare-Store, Wait-Spec and
Signal-Spec.

Note that we do not have to change the code of the barrier to introduce
this rule, as there is no problem with multiple threads executing a wait

call. We only need to change the invariant we use for the verification to add
support for this rule, which we discuss in §4.4.

31

{ℓ1 7→ v ∗ ℓ2 7→ w}
let b = new barrier () in

(* Use New Barrier-Spec with P ≜ ℓ1 7→ 37 ∗ ℓ2 7→ 42 *)
ℓ1 7→ v ∗ ℓ2 7→ w

∗ send(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42)

∗ recv(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42)

(* Use Recv-Split *)
ℓ1 7→ v ∗ ℓ2 7→ w

∗ send(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42)

∗ recv(b, ℓ1 7→ 37) ∗ recv(b, ℓ2 7→ 42)

(* Split resources over the three threads *)

{recv(b, ℓ1 7→ 37)}
wait b;

(* Use Wait-Spec *)

{ℓ1 7→ 37}
ℓ1 ← (! ℓ1) + 5

(* Use Hoare-Load,

Hoare-Store *)

{ℓ1 7→ 42}

{
send(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42)

∗ ℓ1 7→ v ∗ ℓ2 7→ w

}
ℓ1 ← 37;

(* Use Hoare-Store *){
send(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42)

∗ ℓ1 7→ 37 ∗ ℓ2 7→ w

}
ℓ2 ← 42;

(* Use Hoare-Store *){
send(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42)

∗ ℓ1 7→ 37 ∗ ℓ2 7→ 42

}
signal b

(* Use Signal-Spec *)

{True}

{recv(b, ℓ2 7→ 42)}
wait b;

(* Use Wait-Spec *)

{ℓ2 7→ 42}
ℓ2 ← (! ℓ2)− 5

(* Use Hoare-Load,

Hoare-Store *)

{ℓ2 7→ 37}

(* Combine the postconditions of all threads *)
{ℓ1 7→ 42 ∗ ℓ2 7→ 37}

Figure 4.1: Verification of receive splitting example.

32

4.1.2 Send splitting

It is also possible that we have multiple worker threads signalling a single
thread when they are all finished. Let us consider the following program:

let b = new barrier () in

clone b; ℓ1 ← 37;

signal b

wait b;

ℓ1 ← (! ℓ1) + 5;

ℓ2 ← (! ℓ2)− 5

ℓ2 ← 42;

signal b

We start by creating a barrier, after which we clone it. This basically tells the
barrier that it needs to wait on an extra signal before it is done waiting. This
means that after this call, the barrier waits for two separate signals. The left
and right thread both signal the barrier after updating ℓ1, ℓ2 respectively,
after which the middle thread is done waiting and can continue executing.
The specification for clone is the following:

Clone-Spec

{send(b, P ∗Q)} clone b {send(b, P) ∗ send(b,Q)}
If we need to send P ∗ Q, we can use clone to send this via two separate
signal calls. The first call sends P and the second one sends Q. We therefore
get two send predicates via the postcondition.

By extending our specification with this rule, we can verify the example,
as shown in Figure 4.2. We start by obtaining recv(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42)
and send(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42) by using New Barrier-Spec. We then
use Clone-Spec to split the send predicate and get send(b, ℓ1 7→ 37) and
send(b, ℓ2 7→ 42). We then give send(b, ℓ1 7→ 37) and the points-to predicate
of ℓ1 to the left thread, recv(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42) to the middle thread, and
recv(b, ℓ2 7→ 42) and the points-to predicate of ℓ2 to the right thread. We
now have a send predicate for b in both the left and right thread, and a
receive predicate in the middle thread. The rest of the verification proceeds
by using Hoare-Load, Hoare-Store, Wait-Spec and Signal-Spec.

To add this functionality, we need to change the implementation of the
barrier. Previously there was a boolean flag, which indicated whether the
barrier was signalled. This is now replaced with an integer counter, which
states how many times the barrier needs to be signalled before it is done
waiting. The counter starts at 1 and wait waits until it is equal to 0. The
counter gets decremented by calls to signal and incremented by calls to
clone. The changes in the code are discussed in §4.2.

Note that, although they look similar, Clone-Spec and Recv-Split
have an important difference. The former is a Hoare triple, which means one
can use it to split a send predicate after a clone call, while the latter can be
used to split a receive predicate at any moment during the verification of a
program.

33

{ℓ1 7→ v ∗ ℓ2 7→ w}
let b = new barrier () in

(* Use New Barrier-Spec with P ≜ ℓ1 7→ 37 ∗ ℓ2 7→ 42 *)
ℓ1 7→ v ∗ ℓ2 7→ w

∗ recv(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42)

∗ send(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42)

clone b;
(* Use Clone-Spec *)
ℓ1 7→ v ∗ ℓ2 7→ w

∗ recv(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42)

∗ send(b, ℓ1 7→ 37) ∗ send(b, ℓ2 7→ 42)

(* Split resources over the three threads *)

{
ℓ1 7→ v

∗ send(b, ℓ1 7→ 37)

}
ℓ1 ← 37;

(* Use Hoare-Store *){
ℓ1 7→ 37

∗ send(b, ℓ1 7→ 37)

}
signal b

(* Use Signal-Spec *)

{True}

{recv(b, ℓ1 7→ 37 ∗ ℓ2 7→ 42)}
wait b;

(* Use Wait-Spec *)

{ℓ1 7→ 37 ∗ ℓ2 7→ 42}
ℓ1 ← (! ℓ1) + 5;

(* Use Hoare-Load,

Hoare-Store *)

{ℓ1 7→ 42 ∗ ℓ2 7→ 42}
ℓ2 ← (! ℓ2)− 5

(* Use Hoare-Load,

Hoare-Store *)

{ℓ1 7→ 42 ∗ ℓ2 7→ 37}

{
ℓ2 7→ w

∗ send(b, ℓ2 7→ 42)

}
ℓ2 ← 42;

(* Use Hoare-Store *){
ℓ2 7→ 42

∗ send(b, ℓ2 7→ 42)

}
signal b

(* Use Signal-Spec *)

{True}

(* Combine the postconditions of all threads *)
{ℓ1 7→ 42 ∗ ℓ2 7→ 37}

Figure 4.2: Verification of send splitting example.

34

4.1.3 Chains and renunciation

Up til now we have only considered individual barriers. However, there are
cases where there is a order in which threads should execute. Let us consider
the following program:

let b1 = new barrier () in

let b2 = new barrier () in
ℓ← (! ℓ) + x

signal b2

if y = 0

then signal b1

else wait b2;

ℓ← (! ℓ) + y;

signal b1

wait b2;

wait b1;

ℓ← (! ℓ) + z

The left thread first adds x to ℓ, after which it signals b2. The execution of
the middle thread depends on the value of y. If y = 0 it instantly signals
b1. Otherwise, it first waits on b2, then adds y to ℓ, and finally signals b1.
The right thread has to wait on both barriers before it can add z to ℓ. One
can thus observe that, first x is added to ℓ, then, depending on the value of
y, y may be added, and finally, z is added. We essentially created a chain
of barriers. One may observe that extending this pattern to more threads
results in quite ugly code. Furthermore, we cannot dynamically add more
barriers to this chain. For example, the middle thread could create another
barrier, but the right thread does not have access to it, so it cannot wait on
it.

We therefore put this chain construction in the barrier itself. From now
on, we consider a barrier as a linear chain of nodes. A programmer can use
signal and wait to signal and wait on individual nodes. A wait call not
only has to wait until the node itself got signalled, but also until all nodes
which occur earlier in the chain have been signalled. To add a new node
in the chain, one can use extend. It takes a node b as an argument, and
returns a new node b′ which is inserted in the chain, such that it is the first
node which occurs earlier than b. This means that a wait b call also has to
wait until b′ got signalled. We can thus use extend to dynamically add new
nodes to the chain.

With this new construction, we can simplify the example program, like

35

follows:

let b1 = new barrier () in

let b2 = extend b1 in
ℓ← (! ℓ) + x

signal b2

if y = 0

then signal b1

else wait b2;

ℓ← (! ℓ) + y;

signal b1

wait b1;

ℓ← (! ℓ) + z

Instead of creating a new barrier, we extend b1 to get b2. The wait b1 call in
the right thread terminates once both b1 and b2 have been signalled, so we
now only need a single wait call.

Let us now look at a the specification of extend:2

Extend-Spec

{send(b, P)} extend b
{
b′. b′ ≺ b ∗ send(b′, Q) ∗ recv(b′, Q) ∗ send(b, P)

}
If a client owns send(b, P), they can extend b. The function returns a new
node b′ for which b′ ≺ b holds. This ≺ (earlier) predicate represents the
fact that b′ occurs earlier in the chain than b. Furthermore, the client gets
ownership of send(b′, Q) and recv(b′, Q) for arbitrary Q, and also gets back
ownership of send(b, P).

In programs, it can be the case that a thread may or may not do a wait

call. This happens, for example, in the program above, where the middle
thread only calls wait b2 if y is unequal to 0. This means that while verifying
the middle thread, we do not receive a resource from b1 if y = 0. In situations
like this, we can use the following rule:

Renunciation

recv(b, P) ∗ send(b′, Q) ∗ b ≺ b′ ⊢ |⇛ send(b′, P −∗ Q)

Again, we do not worry about the |⇛ modality for now. The Renunciation
rule intuitively says that if we can receive P from node b, signal node b′

with resource Q and b ≺ b′ holds, then it is enough to just signal node b′

with resource P −∗ Q. Recall that P −∗ Q describes a resource, which when
combined with P , describes Q. The reason why this rule is sound, is because
we give up ownership of recv(b, P). We can therefore no longer receive P via
a wait b call. Instead, when P is sent to b, b can forward P to b′. We thus
only need to send P −∗ Q to b′.

With these rules, we can verify that the example program sums x, y and
z, as shown in in Figure 4.3. As a precondition we assume that ℓ 7→ 0. We
start by using New Barrier-Spec. If we inspect the code, we can notice

2This is a slightly weaker version. The stronger specification is presented in §4.3.

36

{ℓ 7→ 0}
let b1 = new barrier () in

(* Use New Barrier-Spec with P ≜ ℓ 7→ x+ y *)
{ℓ 7→ 0 ∗ recv(b1, ℓ 7→ x+ y) ∗ send(b1, ℓ 7→ x+ y)}
let b2 = extend b1 in

(* Use Extend-Spec with Q ≜ ℓ 7→ x *){
ℓ 7→ 0 ∗ recv(b1, ℓ 7→ x+ y) ∗ send(b1, ℓ 7→ x+ y)

∗ b2 ≺ b1 ∗ recv(b2, ℓ 7→ x) ∗ send(b2, ℓ 7→ x)

}

{
send(b2, ℓ 7→ x)

∗ ℓ 7→ 0

}
ℓ← (! ℓ) + x;

(* Use Hoare-Load,

Hoare-Store *){
send(b2, ℓ 7→ x)

∗ ℓ 7→ x

}
(* Use Signal-Spec *)

signal b2

{True}

{
send(b1, ℓ 7→ x+ y)

∗ b2 ≺ b1 ∗ recv(b2, ℓ 7→ x)

}
if y = 0

then (* Substitute y = 0 *){
send(b1, ℓ 7→ x+ 0)

∗ b2 ≺ b1 ∗ recv(b2, ℓ 7→ x)

}
(* Use Renunciation *)

{send(b1, (ℓ 7→ x) −∗ (ℓ 7→ x+ 0))}
(* Use Signal-Spec, as

(ℓ 7→ x) −∗ (ℓ 7→ x+ 0)

is a tautology *)

signal b1

{True}

else

{
send(b1, ℓ 7→ x+ y)

∗ b2 ≺ b1 ∗ recv(b2, ℓ 7→ x)

}
wait b2;

(* Use Wait-Spec *){
send(b1, ℓ 7→ x+ y)

∗ ℓ 7→ x

}
ℓ← (! ℓ) + y

(* Use Hoare-Load,

Hoare-Store *){
send(b1, ℓ 7→ x+ y)

∗ ℓ 7→ x+ y

}
signal b1

(* Use Signal-Spec *)

{True}
{True}

{recv(b1, ℓ 7→ x+ y)}
wait b1;

(* Use Wait-Spec *)

{ℓ 7→ x+ y}
ℓ← (! ℓ) + z

(* Use Hoare-Load,

Hoare-Store *)

{ℓ 7→ x+ y + z}

(* Combine postconditions of all threads *)
{ℓ 7→ x+ y + z}

Figure 4.3: Verification of chain example.

37

that ℓ always contains x+ y after the wait b1 call in the right thread. Even
if y = 0, we still know that ℓ contains x, which is equal to x + y in this
case, as the wait b1 call also waits for b2 to get signalled. We can therefore
receive ℓ 7→ x + y, so we take P ≜ ℓ 7→ x + y in our application of New
Barrier-Spec. We then use Extend-Spec to create an extra node. We
take Q ≜ ℓ 7→ x, as this is the value stored at ℓ when we signal b2. We then
give send(b2, ℓ 7→ x) ∗ ℓ 7→ 0 to the left thread. It can use this to update ℓ
and signal b2. To the right thread we give recv(b1, ℓ 7→ x + y). After the
wait b1 call, it receives ℓ 7→ x+ y, allowing it to add z to the sum. Verifying
the middle thread is the most interesting, as we need to use Renunciation
there. In the else-case of the if statement, we can first receive ℓ 7→ x, then
update ℓ, and finally, send ℓ 7→ x + y to b1. In the then-case, we first use
Renunciation, after which we only have to send (ℓ 7→ x) −∗ (ℓ 7→ x+ 0).
We can prove this proposition by using Wand-Intro and the fact that
0 is a right identity for +. We can thus use Signal-Spec, after which
the verification of the middle thread is done. Finally, we can combine the
postconditions of all threads, to see that ℓ indeed contains the sum of x, y
and z.

To implement this feature, each node needs to keep track of an optional
previous node. The wait function can then recursively call on previous nodes,
until all of them are signalled. The extend function updates the previous
node to insert a new one. In the next section, we discuss the complete
implementation.

4.2 Implementation

We now discuss the implementation of this barrier. The complete implemen-
tation is given in Figure 4.4. We first need a way to represent the barriers.
Every node in a barrier consists of a counter and an optional previous node.
We can therefore use a representation similar to the one we used in Example 2
for lists. The representation we use here is slightly different for reasons that
become apparent when we discuss the implementation of signal. A node is
represented by a location ℓ, similar to how a barrier was represented by a
location in Chapter 3. We store the counter of the node in ℓ and store the
optional previous node at ℓ+L 1. This is the location directly after ℓ and can
be thought of as pointer addition.

With this new representation in mind, new barrier needs to allocate
two adjacent locations. We can do this using AllocN(2, ()), which returns
a location ℓ such that ℓ 7→ () and (ℓ+L 1) 7→ (). As the counter should be
initialized to 1, we set ℓ to 1, and since there is no previous node, we store
none in ℓ+L 1. Finally we return the representation of this new node, namely
ℓ.

The implementations of signal and clone are quite similar to each other.

38

new barrier ≜ λ . let ℓ = AllocN(2, ()) in

ℓ← 1;

(ℓ+L 1)← none;

ℓ

signal ≜ λb. FAA(b,−1);
()

clone ≜ λb. FAA(b, 1);

()

wait ≜ rec wait(b) := if (! b) = 0

then match !(b+L 1) with

none ⇒ ()

| some(b′)⇒ wait(b′)

end

else wait(b)

extend ≜ rec extend(b) := let b′ = !(b+L 1) in

let ℓ = AllocN(2, ()) in

ℓ← 1;

(ℓ+L 1)← b′;

if CAS(b+L 1, b
′, some(ℓ))

then ℓ

else Free(ℓ);

Free(ℓ+L 1);

extend(b)

Figure 4.4: Implementation of the barrier

39

The argument b is exactly where the counter is stored. We thus use FAA (fetch
and add) to atomically increment or decrement the counter, and afterwards
return the unit value. We need an atomic operation to change the counter,
as there can be multiple threads signalling or cloning at the same time. This
is also the reason why we cannot use a pair to store both the counter and
the previous node, as we cannot do a FAA operation on the first element of a
pair.

The implementation of wait changes slightly, as it also needs to wait on
previous nodes. We first check if the counter (i.e. the value stored in b) is
equal to 0. If the counter is not equal to 0 yet, we do a recursive call on the
same barrier. If the counter is set to 0, we check whether there is a previous
node. We are done waiting whenever there is no previous node, in which
case we return. If there is a previous node b′ we recursively wait on b′.

The implementation of extend is bit more complex. We first load the
previous node of b and call it b′. We then allocate a location ℓ for the
new node, and initialize its counter to 1. We want to insert this new node
immediately after b, which means that the previous node of the new node
should be set to b′. This creates a data race, as another thread may have
already updated the previous node of b after we read it into b′. We therefore
need a CAS (compare and swap) check.3 If b′ is still stored at b+L 1, we update
the previous node of b to some(ℓ), i.e. the newly created node. Afterwards,
we return this new node. If the previous node of b has changed, we can
conclude that we lost the race. We free the allocated locations and try to
extend the node once again with a recursive call.

4.3 Specification

We now discuss the full specification of this barrier, which is given in Fig-
ure 4.5. We start by looking at the rules of the ≺-predicate. Firstly,
Earlier-Trans says that the ≺-predicate is transitive. If we know that b1
occurs earlier in the chain than b2, and b2 occurs earlier than b3, then b1 also
occurs earlier than b3. Furthermore, the ≺-predicate is timeless, which means
we can eliminate ▷ guards around them.4 Finally, Earlier-Persistent
states that the ≺-predicate is persistent. We have not seen persistency up
til now, so we discuss it shortly. Propositions are persistent when they can
describe a resource without needing exclusive ownership over that resource.
For example, ℓ 7→ 1 is not persistent as it describes exclusive ownership of ℓ.
On the other hand, b1 ≺ b2 is persistent, because multiple threads can know
it at the same time. Once b1 ≺ b2 holds, it holds forever. This is because

3Note that Dodds et al. did not need a CAS check in their implementation of extend.
This is because in the absence of send splitting there is at most one sender, so the extend
race is always won. Their implementation thus had a data race, but this was not a problem
as the specification forbids it.

4Linguistically, it is nice that we can eliminate later guards around earlier predicates.

40

Earlier-Trans

b1 ≺ b2 ∗ b2 ≺ b3 ⊢ b1 ≺ b3

Earlier-Timeless

timeless(b1 ≺ b2)
Earlier-Persistent

b1 ≺ b2 ⊢ �(b1 ≺ b2)

New Barrier-Spec

{True} new barrier () {b. recv(b, P) ∗ send(b, P)}

Signal-Spec

{send(b, P) ∗ P} signal b {True}
Wait-Spec

{recv(b, P)} wait b {P}

Clone-Spec

{send(b, P ∗Q)} clone b {send(b, P) ∗ send(b,Q)}

Extend-Spec{
send(b, P) ∗⊛e∈E e ≺ b

}
extend b{
b′. send(b, P) ∗ b′ ≺ b ∗ send(b′, Q) ∗ recv(b′, Q) ∗⊛e∈E e ≺ b′

}
Recv-Weaken

recv(b, P) ∗ (P −∗ Q) ⊢ recv(b,Q)
Send-Strengthen

send(b, P) ∗ (Q −∗ P) ⊢ send(b,Q)

Recv-Split

recv(b, P ∗Q) ⊢ |⇛ recv(b, P) ∗ recv(b,Q)

Renunciation

recv(b, P) ∗ send(b′, Q) ∗ b ≺ b′ ⊢ |⇛ send(b′, P −∗ Q)

Figure 4.5: Specification of the barrier

41

there is no function to delete or shuffle nodes. We thus do not need exclusive
ownership of this fact. Persistent propositions have the property that they
are duplicable. This means that once we know that b1 ≺ b2 holds, we can
duplicate it such that we can distribute the information to multiple threads.

The specifications of new barrier, signal and wait are the same as
in §3.2, and the specification of clone is the same as discussed in §4.1.2. The
specification of extend, given by Extend-Spec, is slightly stronger than
discussed in §4.1.3. The precondition now takes a set E of nodes which occurs
earlier than b, as e ≺ b for all e ∈ E. It then states in the postcondition that
e ≺ b′ for all e ∈ E holds. This represents the fact that if a node was earlier
than b, then it is now also earlier than b′, as b′ was inserted as the previous
node of b. We cannot assume that b′ is still the previous node of b, as other
threads may already have extended b with other new nodes, but we do know
that all nodes which were earlier than b before the extend b call, are earlier
than b′ after the call.

Finally, we have rules for the receive and send predicates. Let us first
look at Recv-Weaken and Send-Strengthen as we have not seen those
before. We can use Recv-Weaken to weaken the resource we can receive.
For example, suppose that we have a function which takes as precondition
recv(b,∃n. even(n) ∗ ℓ 7→ n), while we own recv(b, ℓ 7→ 2). We can then use
Recv-Weaken and the fact that

ℓ 7→ 2 ⊢ ∃n. even(n) ∗ ℓ 7→ n

to prove the precondition. It thus allows us to receive a weaker resource.
Similarly, we can use Send-Strengthen to send a stronger resource. Let
us now look at Recv-Split and Renunciation, and especially the update
modality |⇛, which we did not discuss before. Intuitively, one can read
Recv-Split in the following way: if one owns recv(b, P ∗Q), they can own
recv(b, P) ∗ recv(b,Q) after a ghost state update. This ghost state update
is a technicality. Similarly to how we defined send and recv in §3.3, their
definitions again assert some invariant. During the verification of this rule,
we need to temporarily open this invariant, change some ghost state, and
close the invariant again. The |⇛ modality expresses this. However, this
is not a problem for a client using this specification. That is because the
following rule allows us to do ghost state updates at any point during a
program:

Hoare-Conseq-Upd

P ⊢ |⇛P ′ {
P ′} e {v. Q′} ∀u. (Q′[u/v] ⊢ |⇛Q[u/v])

{P} e {v. Q}

Thus, if we want to prove {recv(b, P ∗Q)} e {v. Q}, we can use Hoare-
Conseq-Upd combined with Recv-Split after which we need to prove
{recv(b, P) ∗ recv(b,Q)} e {v. Q}.

42

1 •

sends: {P}
recvs: {P}

P −∗ P

send split

P = P1 ∗ P2

2 •

sends: {P1, P2}
recvs: {P1 ∗ P2}

(P1 ∗ P2) −∗ (P1 ∗ P2)

receive split

2 •

sends: {P1, P2}
recvs: {P1, P2}

(P1 ∗ P2) −∗ (P1 ∗ P2)

send P1

1 •

sends: {P2}
recvs: {P1, P2}

P2 −∗ (P1 ∗ P2)

send P 0 •

sends: ∅
recvs: {P}

True −∗ P

receive P

0 •

sends: ∅
recvs: ∅

True −∗ True

extend Q

1 •

sends: {P}
recvs: {P}

1 •

sends: {Q}
recvs: {Q}

Q −∗ (Q ∗ (P −∗ P))

renounce Q

1 •

sends: {Q −∗ P}
recvs: {P}

1 •

sends: {Q}
recvs: ∅

Q −∗ (True ∗ ((Q −∗ P) −∗ P))

send Q −∗ P

0 •

sends: ∅
recvs: {P}

1 •

sends: {Q}
recvs: ∅

Q −∗ (True ∗ (True −∗ P))

pass on P

0 •

sends: ∅
recvs: ∅

1 •

sends: {Q}
recvs: {P}

Q −∗ (P ∗ (True −∗ True))

Figure 4.6: Barrier operations

4.4 Intuitive verification

We now present an intuitive verification of the specification. We do this
by examining the possible operations a client can perform on a barrier.
Figure 4.6 gives an overview of how the physical state relates to the logical
state, before and after each operation. We start this section by discussing the
invariant which relates the physical state to the logical state (§4.4.1). We also
discuss how we represented both the physical and logical state in Figure 4.6.
Afterwards, we look at every operation from Figure 4.6 individually, and
discuss how we can alter the physical and logical state in such a way that
the invariant still holds after the operation.

43

4.4.1 Invariant

To define a invariant, we first need a way to represent the nodes of a barrier.
As discussed in §4.2, a node is represented in the code, or physically, as an
optional location ℓ, such that its counter is stored at ℓ and it previous node
is stored at ℓ+L 1. Logically we represent them using the following inductive
record:

Node ≜ {

ℓ : Loc,

sends : FinMSet(iProp),

recvs : FinMSet(iProp),

prev : Option(Node)

}

A node contains a location where we physically store the counter and previous
node. It furthermore has two finite multisets of propositions, or resources.
The resources that a client still has to send via signal are stored in sends,
and the resources a client can still receive via wait are stored in recvs . They
are both multisets as it should be possible to send the same resource multiple
times. Finally, we store an optional previous Node in prev . This makes Node
inductive, meaning we can represented a chain of nodes using a single head
node nhd .

Note that we do not need to add a field for the counter. That is because
the counter stores the number of times a node still needs to be signalled.
This is equal to |sends|, the size of sends , as sends contains all the resources
that still needs to be sent via signal. That means that the value of the
counter is already implicitly stored in this record.

To see how this logical Node record relates to a physical node, let us
consider Figure 4.7. In the top half we represented the physical state of
a barrier. There are two nodes. The first one is stored ad ℓ1 and has its
counter set to 1 and its previous node stored in ℓ2. The second node has
its counter set to 2 and no previous node. Logically we could represent this
using the Node given in the bottom half of the diagram. Note that the sizes
of the sends fields indeed match up with the counters which are physically
stored.

Intuitively, one can interpret the definitions of the send and recv pred-
icates in the following way: for a physical node b represented by a logical
node n, there are send(b, P) predicates for all P ∈ n.sends, and recv(b, P)
predicates for all P ∈ n.recvs. For the rest of this chapter this intuitive defi-
nition is enough. On the other hand, for physical nodes b, b′ represented by
logical nodes n, n′, b ≺ b′ holds whenever either n is the previous node of n′,
or n is earlier than the previous node of n′. Formally we would define these
predicates using ghost state, but we delay this discussion until Chapter 5.

44

1 some(ℓ2) 2 none

ℓ1 ℓ2

Physical

Logical{ℓ = ℓ1,
sends = {R},
recvs = {Q,R},
prev = Some({

ℓ = ℓ2,
sends = {P,Q},
recvs = {P},
prev = None

)}
}

Figure 4.7: Physical and logical state

With this logical representation at hand, we can define an invariant. The
invariant asserts information about nhd , the head of the chain, and consists
of two main parts. The first part describes the physical state, so we refer
to it as the physical invariant. For each node n in the chain, the physical
invariant asserts that the size of n.sends is stored at n.ℓ, and the value stored
at n.ℓ+L 1 is none when n has no previous node, and some(n′.ℓ) whenever
n′ is the previous node of n.

The second part of the invariant describes how the resources stored in
sends and recvs relate to each other. From now on, we refer to it as the
resource invariant. Before we define it, let us look at the barrier in Figure 4.8.
This representation mixes the physical and logical state. The values b1, b2

1 •

sends: {R}
recvs: {Q,R}

2 •

sends: {P,Q}
recvs: {P}

b1 b2

Figure 4.8: Mixed representation

denote the physical representations of the two nodes. The previous node of
b1 is b2, indicated by the arrow, and b2 has no previous node. The counters
of the nodes are displayed in the their left boxes, and the sends and recvs
multisets are displayed beneath each node. Nodes b1, b2 have their counter

45

set to 1, 2 respectively, as that is the number of resources in their sends field.
A sender still needs to send R to b1, and a receiver will be able to receive
Q and R from b1 once the counters of both b1, b2 are set to 0. Node b2 still
needs to be send P and Q by a sender, and a receiver will be able to receive
R from b2 once the counter of b2 is set to 0. One may observe that this is
the same barrier as pictured in Figure 4.7. It is however represented in a
more visual way, so we use this representation for the rest of the chapter.

Given the barrier from Figure 4.8, we can write its resource invariant in
the following way:

(P ∗Q)︸ ︷︷ ︸
b2.sends

−∗ (P︸︷︷︸
b2.recvs

∗ (R︸︷︷︸
b1.sends

−∗ (Q ∗R)︸ ︷︷ ︸
b1.recvs

))

Once both P,Q have been sent to b2, a receiver can receive P from b2, as
at that point the counter of b2 will be 0 and it has no previous node. If not
only P,Q are sent to b2, but R is also sent to b1, then a receiver can also
receive Q,R from b1, as the counters of both itself and its previous node are
set to 0.

In general, we can write such a resource invariant for every chain of
nodes. For simplicity’s sake, we only consider chains with a maximum of
two nodes in this chapter. The general case is discussed in Chapter 5. For a
chain consisting of a single node b, we can write the resource invariant in
the following way: (

⊛P∈b.sends . P
)
−∗
(
⊛R∈b.recvs . R

)
Once all the resources have been sent to b, the big separating conjunction⊛
ranges over an empty domain, resulting in the following resource invariant:

True −∗
(
⊛R∈b.recvs . R

)
This represents the fact that the resources in b.recvs are owned by the
resource invariant and are ready to be received. This is similar to how the
invariant owned P is §3.3.

For a two node chain with head b1 and tail b2, i.e. b2 is the previous node
of b1, the resource invariant becomes the following:(

⊛
P∈b2.sends

P

)
−∗

((
⊛

R∈b2.recvs
R

)
∗

((
⊛

P∈b1.sends
P

)
−∗

(
⊛

R∈b1.recvs
R

)))
Once all resources in b2.sends have been sent to b2, a receiver can start
receiving resources from b2.recvs . As b2 is the previous node of b1, a receiver
has to wait until all resources in both b2.sends and b1.sends have been sent,
before it can receive resources from b1.recvs.

With this invariant at hand, we can verify the operations from Figure 4.6.
To verify these operations, we make use of diagrams similar to Figure 4.8.

46

Additionally, for each barrier, we write its resource invariant beneath it. We
now verify that under the assumption that the invariant holds before an
operation, we can modify both the physical and logical state in such a way
that the invariant also holds after the operation. This is similar to how we
verified signal and wait is Section 3.3. Let us first discuss what happens
when we create a barrier in the next section.

4.4.2 Barrier creation

At the end of a new barrier () call, we have physically created a barrier, i.e.
we have a value b such that b = some(ℓ) where ℓ 7→ 1 and (ℓ+L 1) 7→ none.
This physical representation can also be seen in Figure 4.9. We now need to

1 •

sends: {P}
recvs: {P}

P −∗ P

Figure 4.9: Barrier creation

create a logical Node nhd such that we can satisfy the invariant. We take

nhd ≜ {ℓ = ℓ, sends = {P}, recvs = {P}, prev = None}

The nhd .ℓ field should obviously be set to ℓ, and nhd .prev should be set to
None, as there is no previous node yet. As can be seen in New Barrier-
Spec, a client has to pick a resource P they want to send and receive. We
thus set both n.sends and n.recvs to {P}. The physical and logical state
now line up with Figure 4.9. To satisfy the invariant, we first notice that the
physical part is satisfied if we give up ownership of the points-to predicates for
ℓ and ℓ+L 1, which we received after the AllocN call. Now all that remains
is to prove that the resource invariant holds, but this is trivial as P −∗ P is
a tautology. We can also prove the postcondition of New Barrier-Spec:
we set n.sends = n.recvs = {P}, so we get ownership of the send(b, P) and
recv(b, P), which we can give to the postcondition.

4.4.3 Send splitting

As stated by Clone-Spec, if a client owns send(b, P1 ∗P2), they can give up
ownership of send(b, P1 ∗ P2), call clone b, and get ownership of send(b, P1)
and send(b, P2). Now suppose that we own send(b, P1 ∗ P2), where b is the
barrier represented in the left hand side of Figure 4.10. At the end of the
clone b call, the counter is incremented by 1, resulting in the physical state
represented in the right hand side of Figure 4.10. We now need to update the

47

1 •

sends: {P1 ∗ P2}
recvs: {P1 ∗ P2}

(P1 ∗ P2) −∗ (P1 ∗ P2)

send split

2 •

sends: {P1, P2}
recvs: {P1 ∗ P2}

(P1 ∗ P2) −∗ (P1 ∗ P2)

Figure 4.10: Send splitting

logical state in such a way that we can satisfy the invariant again. We do this
by removing P1 ∗ P2 from sends and adding P1, P2 separately to sends . The
size of sends is now again equal to the counter, so the physical invariant is
satisfied. Although we changed the contents of sends, the resource invariant
stays the same. As it held before the clone b operation, it still has to hold
after it. All that remains is to prove the postcondition send(b, P1)∗send(b, P2),
which holds because both P1, P2 are in the sends field.

4.4.4 Receive splitting

The verification of Recv-Split is similar. The difference is that there is no
physical change, only a logical one. As can be seen in Figure 4.11, we now

2 •

sends: {P1, P2}
recvs: {P1 ∗ P2}

(P1 ∗ P2) −∗ (P1 ∗ P2)

receive split

2 •

sends: {P1, P2}
recvs: {P1, P2}

(P1 ∗ P2) −∗ (P1 ∗ P2)

Figure 4.11: Receive splitting

replace the P1 ∗ P2 in the recvs field with P1 and P2 separately. As there is
no physical change, the physical invariant still holds. For the same reason as
in the verification of send splitting, the resource invariant does not change,
so it also still holds. The postcondition recv(b, P1) ∗ recv(b, P2) is satisfied
because both P1, P2 are part of the recvs field.

4.4.5 Signalling

The verification of Signal-Spec is interesting, as the resource invariant will
no longer be a tautology like it was before. Suppose we own send(b, P1) ∗ P1

for the barrier represented in the left hand side of Figure 4.12. At the end of
a signal b call, the counter has decremented by 1, so the barrier transitions
to the physical state represented in the right hand side of Figure 4.12. To
satisfy the physical invariant, we remove P1 from sends, as this makes the
size of sends equal to the counter. The resource invariant however, now

48

2 •

sends: {P1, P2}
recvs: {P1, P2}

(P1 ∗ P2) −∗ (P1 ∗ P2)

signal P1

1 •

sends: {P2}
recvs: {P1, P2}

P2 −∗ (P1 ∗ P2)

Figure 4.12: Signalling

becomes P2 −∗ (P1 ∗P2). We can however still prove this, as the precondition
of Signal-Spec states we have ownership of P1. We can thus give up
ownership of P1, and give it to the resource invariant. This is similar to the
verification of Signal-Spec in §3.3.2, where we also gave ownership of the
resource to the invariant. This makes sure we satisfy the invariant again.
The verification is now complete, as there is no postcondition.

4.4.6 Extending

As extend is a recursive function, the verification of Extend-Spec makes
use of Löb induction, just like we did in §3.3.3. If the extend race is lost,
i.e. some other thread has already extended the node we tried to extend, we
can use the induction hypothesis. This is possible because the state did not
change which means that the invariant still holds. For the rest of the proof we
can thus assume that we won the extend race. That means that the physical
state updates like in Figure 4.13. We update the logical state by adding a new

b

1 •

sends: {P}
recvs: {P}

P −∗ P

extend Q

b b′

1 •

sends: {P}
recvs: {P}

1 •

sends: {Q}
recvs: {Q}

Q −∗ (Q ∗ (P −∗ P))

Figure 4.13: Extending

node b′ to the chain. Like in the verification of New Barrier-Spec (§4.4.2),
the client picks a resource Q that they want to send to and receive from the
new node. We thus set the sends and recvs field of the new node to {Q}.
The physical invariant is now satisfied as the size of sends if set to 1. The
resource invariant becomes Q −∗ (Q ∗ (P −∗ P)). As the previous resource
invariant P −∗ P already holds, we can easily prove Q −∗ (Q ∗ (P −∗ P)).
Finally, we need to prove the postcondition. As we did not change b.sends,
we still own send(b, P), and because we set b′sends = b′.recvs = {Q}, we also
own recv(b′, Q) ∗ send(b′, Q). We know that b′ ≺ b holds because we set b′ as

49

the previous node of b. Finally, to prove ⊛e∈E e ≺ b′, we assume that e ∈ E.
By the precondition we can thus assume that e ≺ b. As this was already true
before we updated the previous node of b, and we inserted b′ just after b, it
has to be the case that e ≺ b′ also holds, which concludes this verification.

4.4.7 Renunciation

Just like in the verification of Recv-Split (§4.4.4), there is no physical
state change, only a logical one. As can be seen in Figure 4.14, we own

b b′

1 •

sends: {P}
recvs: {P}

1 •

sends: {Q}
recvs: {Q}

Q −∗ (Q ∗ (P −∗ P))

renounce Q

b b′

1 •

sends: {Q −∗ P}
recvs: {P}

1 •

sends: {Q}
recvs: ∅

Q −∗ (True ∗ ((Q −∗ P) −∗ P))

Figure 4.14: Renunciation

send(b, P) and recv(b′, Q), and we also know that b′ ≺ b. We now want to
update the logical state such that we get ownership of send(b,Q −∗ P). We
do this by replacing P with Q −∗ P in b.sends and removing Q from b′.recvs .
We did not change the sizes of the sends fields, so the physical invariant
still holds. The resource invariant changes from Q −∗ (Q ∗ (P −∗ P)) to
Q −∗ (True ∗ ((Q −∗ P) −∗ P)), which still holds. As b.sends contains Q −∗ P ,
we now own send(b,Q −∗ P), which concludes the verification.

4.4.8 Receiving

The verification of Wait-Spec is interesting, as it involves two different
operations. The operation which is performed, depends on whether a node
is the last in the chain. As wait is recursive, we again use Löb induction, so
we only consider the interesting case where the counter is set to 0.

Let us first consider the case where we try to receive a resource P from
the last node in a chain, like in Figure 4.15. In this case the resource invariant

0 •

sends: ∅
recvs: {P}

True −∗ P

receive P

0 •

sends: ∅
recvs: ∅

True −∗ True

Figure 4.15: Receiving

50

is just simply True −∗ P . We can thus update the logical state by removing
P from recvs, after which the new resource invariant becomes True −∗ True.
This means we can receive P from the invariant, as it no longer needs it to
satisfy the resource invariant. This is similar to the proof of Wait-Spec
in §3.3.3, where we also received P from the invariant. The postcondition of
Wait-Spec is P , which we now own, so that concludes this case.

We now consider the case where we try to receive a resource P from a
node b which has a previous node b′, like in Figure 4.16. Before we can receive

b b′

0 •

sends: ∅
recvs: {P}

1 •

sends: {Q}
recvs: ∅

Q −∗ (True ∗ (True −∗ P))

pass on P

b b′

0 •

sends: ∅
recvs: ∅

1 •

sends: {Q}
recvs: {P}

Q −∗ (P ∗ (True −∗ True))

Figure 4.16: Passing on

P , we still need to wait for the second node to be signalled, as wait waits
on all previous nodes. We thus pass on P to its previous node. This means
we remove P from b.recvs, and add it to b′.recvs. After this update to the
logical state, the resource invariant changes from Q −∗ (True ∗ (True −∗ P))
to Q −∗ (P ∗ (True −∗ True)). Under the assumption that the first resource
invariant holds, we can easily prove that the new resource invariant also
holds. Furthermore, we now have ownership of recv(b′, P) as we passed on
P to b′. We can thus use our induction hypothesis to receive P after the
recursive wait b′ call.

We can now see how in general a resource P is received. The resource P
gets passed on through the chain every time a counter is set to 0. At some
point, P will be passed to the last node in the chain. Once the counter of
the last node is also set to 0, we can receive P .

51

Chapter 5

Formalization

In this chapter we present our formalization to verify the specification of the
chainable barrier (Figure 4.5). Like we did in the verification of the simple
barrier (§3.3), we have to find the right definitions for the abstract send,
recv and ≺-predicates. Given the right definitions, we verify the rules from
Figure 4.5 using the proof rules of Iris. With the verification of the barrier
at hand, we can use it to verify clients, like we did in Figures 4.1, 4.2, 4.3.
To obtain confidence that our barrier specification is indeed the right one,
we can use Iris’ adequacy theorem (Jung et al., 2018, §7.4) to obtain a closed
proof stating that the client is safe.

In order to find the right definitions, we use existing Iris techniques, like
we did in the verification of the simple barrier (§3.3), and combine these with
two new constructions. The first new construction is called authoritative
ordering, which we present in §5.1. It can be used to keep track of the
order of elements in a list via ghost state. The second new construction is
recursively nested wands. This construction is discussed together with the
definitions of the abstract send, recv and ≺-predicates in §5.2. This chapter
is quite technical, so readers are assumed to have sufficient knowledge from
“Iris from the group up” (Jung et al., 2018).

5.1 Authoritative ordering

To model the ≺-relation we need a resource which keeps track of the order of
the nodes. In this section we describe a construction which does exactly that.
This construction does no depend on the use of locations. In fact, we can use
this construction to assert an ordering on lists of any type. The orderings we
can describe using this construction are persistent, and we can always extend
an ordering by adding an element somewhere in the ordering. However,
we cannot remove elements from the ordering. The design of authoritative
ordering is inspired by a similar construction in Iris, which models partial
bijections (The Iris Team, 2023, iris/base logic/lib/gset bij.v). We

52

discuss its differences and similarities in Chapter 6. We now look at the
specification of authoritative ordering, and then discuss its implementation.

Specification. We write authγ(x⃗) for authoritative ownership of the or-
dering on list x⃗. The ordering of the elements is according to their order
in x⃗. The owner of this resource allowed to update the ordering by adding
new elements to x⃗. No one else can own this resource as it is exclusive. We
therefore call this ownership authoritative. We write a ≺γ b for fragmental
ownership of the same ordering. It asserts that a has a lower index in x⃗
than b. This ownership is fragmental, as it does not say anything about
the other elements in x⃗. The ghost variable γ relates the fragments to the
authoritative ordering. For example, given γ ̸= γ′, if we own authγ(x⃗)∗a ≺γ b

and authγ′(x⃗′), we know that a occurs earlier in x⃗ than b, but we do not

know anything about the order of a and b in x⃗′, or if they are even elements
of x⃗′.

Let us now look at the specification of these resources.

authγ-Timeless

timeless(authγ(x⃗))

≺γ-Timeless

timeless(a ≺γ b)

authγ-Exclusive

authγ(x⃗) ∗ authγ(x⃗′) ⊢ False

≺γ-Persistent

a ≺γ b ⊢ �(a ≺γ b)

≺γ-Trans

a ≺γ b ∗ b ≺γ c ⊢ a ≺γ c

≺γ-Get

∃i < j. ∧ x⃗(i) = a ∧ x⃗(j) = b

authγ(x⃗) ⊢ a ≺γ b

≺γ-Indices

authγ(x⃗) ∗ a ≺γ b ⊢ ∃i < j. ∧ x⃗(i) = a ∧ x⃗(j) = b

authγ-NoDup

authγ(x⃗) ⊢ NoDup(x⃗)

authγ-Alloc

NoDup(x⃗) ⊢ ˙|⇛∃γ. authγ(x⃗)

authγ-Update

a /∈ x⃗++ x⃗′

authγ(x⃗++ x⃗′) ⊢ ˙|⇛ authγ(x⃗++ a :: x⃗′)

Both authγ and ≺γ are timeless, which allows us to remove ▷ modalities
around them when we are proving Hoare triples. The exclusivity of authγ is
captured by authγ-Exclusive. As we use the authoritative ordering to model
the ≺-relation on barrier nodes, it makes sense that we have ≺γ-Persistent
and ≺γ-Trans. It does however mean that one cannot remove elements
from the ordering, as ≺γ is persistent.

The ≺γ-Get rule states that the owner of the authoritative element can
prove that a ≺γ b by showing that the index of a in x⃗ is smaller than the
index of b. On the other hand, if the owner of the authoritative element
knows that a ≺γ b, they can get the indices of a and b using ≺γ-Indices.

53

The rule authγ-NoDup states that an ordering cannot contain duplicate
elements. Without this requirement, one could use ≺γ-Trans and ≺γ-
Indices to prove that c has a lower index than b in the list [a, b, c, a].

To allocate a new ordering, one can use authγ-Alloc. The premise
requires that the list x⃗ does not contain duplicate elements, for the same
reason as explained above. The conclusion states that one receives a ghost
variable γ and ownership of authγ(x⃗), after executing a ghost state update.
Recall that this can be done during program execution using Hoare-Conseq-
Upd.

Finally, one can use authγ-Update to add a new element to the ordering,
given that it was not in the ordering before. This element is added to the
ordering after a ghost state update has happened.

Implementation. To implement this, we use the following definitions:

authγ(x⃗) ≜ ∃X.NoDup(x⃗) ∗ •X γ ∗ ◦X γ

∗ ∀a, b. ((a, b) ∈ X ↔ ∃i < j. ∧ x⃗(i) = x ∧ x⃗(j) = y)

a ≺pre
γ b ≜ ◦{(a, b)} γ

a ≺γ b ≜ a (≺pre
γ)+ b

The resource algebra being used is Auth((FinSet(A×A),∪)), where A is any
type. The authoritative element quantifies over a set X. This set contains
pairs (a, b), whenever a has a lower index in x⃗ than b. Furthermore, we assert
that x⃗ does not contain duplicates, and we assert ownership of both •X γ

and ◦X γ
.1

To define ≺γ , we first define ≺pre
γ , which asserts ownership of the fragment

◦{(a, b)} γ
. Due to the definition of authγ , this makes sure that a has a

lower index in the list than b. Finally, to allow us to prove ≺γ-Trans, we
define ≺γ as the transitive closure.2 of ≺pre

γ

The proof that this implementation satisfies the implementation can be
found in the Coq formalization (van Collem, 2023). Let us next look at how
we can use this construction to define the send, recv and ≺-predicates.

5.2 Definitions

The complete definitions can be found in Figure 5.1. Let us start of by
discussing the logical state. The Node record is similar to the one from §4.4.
The only difference is that the sends and recvs fields no longer have type

1The ownership of the fragment ◦X γ
may seem a bit weird, but it is actually needed to

prove ≺γ-Get. This trick was also used in the partial bijection construction we mentioned
earlier.

2This is the transitive closure for Iris propositions, which we added to Iris as part of
this thesis: https://gitlab.mpi-sws.org/iris/iris/-/merge requests/862

54

https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/862

Node ≜ {
ℓ : Loc,

sends : FinSet(GName),

recvs : FinSet(GName),

prev : Option(Node)

}

BName ≜ {
s : GName,

o : GName,

r : GName

}

chain: Node→ List(Node)

chain(n) ≜[n] if n.prev = None

n :: chain(n′) if n.prev = Some(n′)

resources : Node→ iProp→ iProp

resources(n, Pacc) ≜

let P ′
acc =

 ⊛
γ∈n.sends

∃P. ▷P ∗ γ Z⇒ P

 −∗ ((⊛
γ∈n.recvs

∃P. ▷P ∗ γ Z⇒ P

)
∗ Pacc

)
inP ′

acc if n.prev = None

resources(n′, P ′
acc) if n.prev = Some(n′)

I : BName→ iProp

I(γ) ≜ ∃nhd . • (
⋃
{n.ℓ 7→ n.sends | n ∈ chain(nhd)})

γ.s ∗ (1)

• (
⊎
{n.ℓ 7→ n.recvs | n ∈ chain(nhd)})

γ.r ∗ (2)

authγ.o([n.ℓ | n ∈ chain(nhd)]) ∗ (3)

resources(nhd ,True) ∗ (4) ⊛
n∈chain(nhd)

n.ℓ 7→� 0 ∗ (n.ℓ+L 1) 7→ ⌈n.prev .ℓ⌉ if |n.sends| = 0

n.ℓ 7→ |n.sends| ∗ (n.ℓ+L 1) 7→ ⌈n.prev .ℓ⌉ otherwise

 (5)

send:Val→ iProp→ iProp

send(ℓ, P) ≜ ∃γ, γP , P ′. ℓ ∈ Loc ∗ (P −∗ P ′) ∗ ◦{ℓ 7→ {γP }}
γ.s ∗

γP Z⇒ P ′ ∗meta(ℓ,N , γ) ∗ I(γ)
N

recv :Val→ iProp→ iProp

recv(ℓ, P) ≜ ∃γ, γP , P ′. ℓ ∈ Loc ∗ (P ′ −∗ P) ∗ ◦{ℓ 7→ {γP }}
γ.r ∗

γP Z⇒ P ′ ∗meta(ℓ,N , γ) ∗ I(γ)
N

≺ :Val→Val→ iProp

ℓ ≺ ℓ′ ≜ ∃γ. ℓ ∈ Loc ∗ ℓ′ ∈ Loc ∗meta(ℓ,N , γ) ∗meta(ℓ′,N , γ) ∗ ℓ′ ≺γ.o ℓ

Figure 5.1: Definitions

55

FinMSet(iProp), but rather FinSet(GName). This is because we use saved
propositions (Dodds et al., 2016, Section 5.1) to keep track of the resources
that still needs to be sent or received. That means that sends is a finite set
of ghost names, where each ghost name corresponds with a resource that
still needs to be sent. There can be multiple ghost names with the same
associated resource, so we can still send the same resource multiple times.
The recvs field stores the same information, just for resources that still need
to be received. Again, the counter of a node is stored implicitly in this record,
as it corresponds to the size of sends.

Now that we have a notion of a logical state, let us look at the barrier
invariant I. It takes a structure γ which contains three ghost names. We use
γ.s to store the resources which still have to be sent, γ.r to store the resources
which still have to be received, and γ.o to store the order of elements in the
chain. The invariant starts by extensionally quantifying over a node nhd ,
which represents the head of the chain. The rest of the invariant can be split
into five separate parts. Parts (1), (2) keep track of all the resources that
still have to be sent or received. We use chain(nhd) to get an ordered list of
all the nodes in the chain, and map all their locations to their corresponding
sends and recvs sets. We use the Auth(FinMap(Loc, (FinSet(GName),⊎)))
resource algebra to store these. This allows us to add new resources with
fresh identifiers, and remove resources if we have ownership of some fragment
◦{ℓ 7→ γP }. It is important to note that we use a disjoint union ⊎ in (2). This
asserts that the values of the map, i.e. n.recvs for n ∈ chain(nhd), are distinct.
This is essential for the passing on of resources we discussed in §4.4.8. In
this case we need to pass on an identifier γP , which is only possible whenever
γP is not yet part of the recvs field of the previous node. We can keep all
n.recvs sets distinct, as we can always allocate saved propositions with fresh
identifiers.

In (3), the invariant asserts the authoritative ordering of the locations
in the chain. It is important to note that chain(n) returns a list where the
order of the nodes is reversed, i.e. the last node in the list corresponds to the
earliest node. We take this into account in the definition of the ≺-predicate.

In (4), the resource invariant is asserted using resources(n,True). It is
similar to how we defined it for chains with a maximal length of 2 in §4.4.1,
but it has a few technical differences. First, the big separating conjunctions
ranges over ghost names γ due to the use of saved propositions. We must
therefore extensionally quantify over a resource P which is saved at γ, as
asserted by γ Z⇒ P . Second, all resources are guarded by a ▷ modality. This
is because saved propositions do not agree directly, as can be seen in the
following rule:

Saved Prop-Agree

γ Z⇒ P ∗ γ Z⇒ Q ⊢ ▷(P ↔ Q)

By guarding all resources with a ▷ modality, we can use their agreement

56

at a later step index. This has the consequence that the resource received
in wait is received under a ▷. However, the resource is received after the
previous node is read. Afterwards the program still does some steps, which
allows us to eliminate the ▷ modality. Finally, to allow for chains of arbitrary
size, the resources function is recursive. It uses a resource accumulator Pacc ,
which is nested under a wand each recursive call. This is what we call
a recursively nested wands construction. It has the consequence that the
nhd .recvs resources are nested under a wand for each earlier node. This is
exactly the behavior we want, as this means all the sends resources of the
earlier nodes have to be sent, before we can receive any resource of nhd .recvs .

Finally, the invariant relates the logical state to the physical state in (5).
It holds the points-to predicates of all the nodes in the chain, asserting
their counter and previous values. We write ⌈n.prev .ℓ⌉ to lift the location
of the optional previous node from the meta logic to a HeapLang optional
location value. Once a counter has become 0, it can never increase again.
We therefore make its points-to predicate persistent in that case. The reason
why we do this, has to do with the implementation of wait. In Figure 4.4,
we can see that we read both counter and prev , with two separate reads.
We thus need to open the invariant twice, and we want to be sure that the
counter is still 0 when we do the second read. This then allows us to either
pass on the resource to the previous node, or extract it from the resource
invariant and give it to the postcondition, like we discussed in §4.4.8.

The send and recv predicates are similar to each other. We first discuss the
send predicate, and then discuss the differences with recv. The send(ℓ, P)
predicate states that the value ℓ is actually a location. It furthermore
extensionally quantifies over γ, γP and P ′. The γ is used to assert the barrier

invariant I(γ)
N
. The resource P ′ is saved at γP , as asserted by γP Z⇒ P ′. It

relates to P by P −∗ P ′. This allows to verify Send-Strengthen, as P , the
resource we send, may be stronger than the stored resource P ′. Ownership
of ◦{ℓ 7→ {γP }}

γ.s
indicates that γP is indeed one of the identifiers which

has not been sent yet. Due to the saved proposition we thus know that
P ′ is part of the resource invariant. Finally, we need to make sure that
when two nodes are in the same chain, they agree on the same invariant,
and thus, agree on the same value for γ. We do this using meta predicates,
which allows us to associate logical data with locations (The Iris Team,
2023, iris/base logic/lib/gen heap.v). We explain how this asserts the
agreement on γ record, when we discuss the ≺-predicate.

The differences between the send and recv predicates are subtle. To
verify Recv-Weaken, we assert P ′ −∗ P , as P , the resource a client receives,
may be weaker than the stored resource P ′. Furthermore, the ownership
of ◦{ℓ 7→ {γP }}

γ.s
is changed to ownership of ◦{ℓ 7→ {γP }}

γ.r
(the ghost

name is changed from γ.s to γ.r), as recv(b, P) should assert that P is yet
to be received.

57

The ℓ ≺ ℓ′ predicate again states that the values ℓ, ℓ′ are actual locations.
It also asserts ownership of ℓ′ ≺γ.o ℓ. Note that we swapped the order
here: ℓ ≺ ℓ′ asserts that ℓ′ ≺γ.o ℓ. This is because, as explained earlier, the
authoritative ordering in the invariant (3) is reversed. Finally, we use meta
predicates to associate γ with both locations. Two meta predicates always
agree on the associated data with a location:

meta(ℓ,N , γ) ∗meta(ℓ,N , γ′) ⊢ γ = γ′

Thus, if we have ownership of recv(ℓ, P), send(ℓ′, Q) and ℓ ≺ ℓ′, like in the
verification of Renunciation, we can conclude that both nodes agree on
the same invariant, as ℓ ≺ ℓ′ states that they are both associated with the
same γ.

58

Chapter 6

Related Work

In this chapter we discuss related work. We start of by discussing the
differences between our work and the verification by Dodds et al. We then
compare our two new constructions, authoritative ordering and recursively
nested wands, to earlier work, and conclude by discussing a separation logic
with Pthreads-style barriers.

Specification and implementation. Our specification from Figure 4.5
is slightly different from the one presented by Dodds et al., 2016. First of all,
we added a clone operation which allows for send splitting. We furthermore
added Recv-Weaken and Send-Strengthen. Jung et al., 2016 already
added Recv-Weaken to the specification in their Coq formalization, and
we added Send-Strengthen in a similar way.

Our specification of extend is also slightly different from Dodds et al.,
2016. This is because their extend function returned a tuple of nodes, where
the second node was the same as the argument. However, this was not clear
from the specification. Our extend only returns the new node, which allows
for a shorter Extend-Spec rule.

Dodds et al., 2016 had to reason about stability of resources (Wickerson
et al., 2010) in their specification. They had to do this because some
iCAP propositions are not stable, which means that a proposition may be
invalidated after another thread has executed. We, however, did no have to
reason about stability, as all Iris propositions are stable (Jung, 2020, §7.1).

Finally, we had to add a CAS loop to the implementation of extend. By
introducing send splitting, it is possible that multiple threads try to extend
a node at the same time. To deal with this data race, we use a CAS loop. As
Dodds et al., 2016 did not have send splitting, they were sure that their was
only one thread allowed to extend a node, hence why they did not have to
take care of the data race in their implementation.

59

Logical state. The main difference between our verification in Chapter 5
and Dodds et al., 2016, Section 6, is how we defined our logical state. Their
CNode structure, which corresponds to our Node structure, has an additional
W field, which holds a finite set of ghost names.1 With this field, each node
keeps track of the resources that are renounced on earlier nodes, and to
which they will later get access. In our verification, when we renounce a
resource we directly move it from the earlier to the later node. They instead
keep the resource in the recvs set of the earlier node, but also add it to the
W set of the later node. Their resource invariant then roughly becomes the
following:2

⊛
n∈ chain(nhd)

 ⊛
γ∈n.sends∪n.W

∃P. ▷P ∗ γ Z⇒ P

 −∗ (⊛
γ∈n.recvs

∃P. ▷P ∗ γ Z⇒ P

)

A resource P ∈ n.recvs can thus only be received once all resources in n.sends
and n.W have been supplied. This makes their resource invariant simpler, as
their is no need for recursively nested wands. However, receiving a renounced
resource becomes more involved. They show that, for a node n, once all
previous and its own counter are set to 0, one can remove all resources from
n.W, by cancelling them with earlier renounced resources (Lemma 6.3). To
prove this they need an additional property in their invariant, namely well-
formedness, which states that for each node n, the resources stored in n.W
are actually available from nodes earlier in the chain. Proving preservation
of well-formedness is conceptually not too hard, but it does require a lot of
bookkeeping, which can become quite involved in a proof assistant. We do
not have to do this bookkeeping, as we move resources immediately when
they get renounced, as opposed to doing it when all resources are sent.

State transition systems. Our verification made use of resource algebras,
while both Dodds et al., 2016 and Jung et al., 2016 used state transitions
systems (STS) for the verification of the barriers.3 State transition systems,
whose use in separation logic was pioneered by CaReSL (Turon, Dreyer, &
Birkedal, 2013; Turon, Thamsborg, et al., 2013), are an intuitive way to
write down how different threads interact with a program. It consists of a set
of states, transitions between them and a state interpretation function. Some
transitions are only allowed by certain threads, which is modelled by the
transition requiring a certain token from a thread. The state interpretation

1The terminology and field names they use is a bit different, e.g. they have region
identifiers instead of ghost names, and their I field corresponds to our recvs field. For
simplicity, we stick to the terminology used in this thesis.

2One can clearly see that our resource invariant is inspired by theirs.
3The verification of the simple barrier by Jung et al., 2016 was later redone using

resource algebras, see https://gitlab.mpi-sws.org/iris/examples/-/merge requests/16.

60

https://gitlab.mpi-sws.org/iris/examples/-/merge_requests/16

function relates the state of the STS with both the physical and the logical
state.

While a STS is an intuitive representation of a protocol on paper, rea-
soning with it in Coq is rather tedious. In Iris, it is more common to reason
with resources algebras (Jung et al., 2018, §2.1). As Jung, 2020 stated in his
PhD thesis: “This is probably the biggest hurdle someone has to overcome
to become proficient in Iris”. However, once proficient with them, proofs
typically become smaller.4

Authoritative ordering. Our authoritative ordering construction (§5.1)
is inspired by a construction which models partial bijections (The Iris Team,
2023, iris/base logic/lib/gset bij.v). In a similar way to authoritative
ordering, there is an authoritative element which keeps track of the complete
partial bijection, and fragments which keep track of individual pairs which are
related by the bijection. They make use of the view camera (The Iris Team,
2023, iris/algebra/view.v), which is a generalization of the authoritative
camera (Jung et al., 2015, §3.6) we use. If we want to generalize the authori-
tative ordering construction, on which we shortly comment in Chapter 7, it
would be good to use view camera as well, although that probably means we
would need another abstraction layer to close the fragmental elements under
transitivity.

Recursively nested wands. The recursively nested wands construction
is somewhat similar to the accessor pattern in Iris (Jung, 2020, §5.6), which
is related to a ramification (Hobor & Villard, 2013). A ramification is of the
following form:

R ⊢ P ∗ (Q −∗ R′)

If one has ownership of R, they can exchange it for ownership of P , some
smaller part of the resource. They can then update that resource to Q
and update the whole resource to R′ using Q −∗ R′. This allows one to
temporarily focus on a specific part of R and then update it to R′.

If we compare this to the resource invariant, we can see a similar pattern.
As an illustration, let us take the following resource invariant, which we used
as an example in §4.4.1:

(P ∗Q)︸ ︷︷ ︸
b2.sends

−∗ (P︸︷︷︸
b2.recvs

∗ (R︸︷︷︸
b1.sends

−∗ (Q ∗R)︸ ︷︷ ︸
b1.recvs

))

Before one can receive, or access, R, all of P,Q,R have to be sent. The main
difference is that these resources are gradually being sent. One typically

4For example, when the simple barrier verification in Iris was rewritten to use resources
algebras instead of a STS, there was a +87,-224 line difference https://gitlab.mpi-sws.org/
iris/examples/-/merge requests/16/diffs.

61

https://gitlab.mpi-sws.org/iris/examples/-/merge_requests/16/diffs
https://gitlab.mpi-sws.org/iris/examples/-/merge_requests/16/diffs

uses the accessor pattern to temporarily access a small part of the resource,
where as the premises of the resource invariant are gradually satisfied until
one can receive a resource.

Pthreads-style barrier. Hobor and Gherghina, 2011 designed a separa-
tion logic with pthreads-style barriers as a primitive. This is different from
our work, as we implemented a barrier with low-level operations, while they
took barriers as a primitive and assumed operational semantics for them.
Using this operational semantics they proved a higher order specification for
the barriers. They verified the soundness of their separation logic using Coq.

The semantics of the pthreads barriers studied by Hobor and Gherghina,
differs slightly from the barriers studied by us: a barrier bn call, signals the
barrier, but also waits until a number of other threads made a barrier bn
call as well. They can thus be used to synchronize multiple threads. After
the threads are synchronized, the barrier is reset and can be used again for
another synchronization. This is different from our implementation, where
the signal and wait functions are split up, and a barrier cannot be reset
after its counter is set to 0.

Their key insight was that these barrier are used to redistribute ownership
of resources between threads. They furthermore noticed that this can be
modelled using a finite automata, where each barrier synchronization corre-
sponds to a transition in the automata. To model this in their separation
logic, they added a barrier(bn, π, cs) proposition, which states that barrier
bn, owned with fractional permission π (Bornat et al., 2005; Boyland, 2003),
is in state cs. To make sure that a state transition from cs to ns only
redistributes resources, they added the following conditions:

⊛i Prei = F ∗ barrier(bn,■, cs)

⊛i Post i = F ∗ barrier(bn,■,ns)

}
(6.1)

∃π.Prei ⇒ ⊤ ∗ barrier(bn, π, cs) (6.2)

For a thread i, its pre and postconditions of the barrier bn are Prei,Post i
respectively. Equation 6.1 requires that the combination of all preconditions
should include full ownership of the barrier, denoted by the ■. Furthermore,
the combination of all postconditions should be the almost the same: only
the barrier resource is allowed to transition from state cs to ns . Equation 6.2
requires that each thread has ownership of some part of the barrier resource.
Using these requirements,5 a user can define a automata and add it to the
context Γ. This gives rise to their Hoare rule for barrier bn:

Γ[bn] = bd lookup move(bd , cs, dir ,mv) = (P,Q)

Γ ⊢ {P} barrier bn {Q}
5and a few more technical requirements

62

If there is a transition in the automata bd with precondition P and postcon-
dition Q, then one can use these as pre and postconditions of the barrier bn
call. Note by construction of the automata, condition 6.2 has to hold for P .

In follow-up work, Hobor and Gherghina, 2012 integrated this logic
into the HIP/SLEEK program verification toolset (Gherghina et al., 2011;
Nguyen & Chin, 2008). In their earlier work, they showed how one could
define a barrier automata in their Coq development. Even for a quite simple
automata, with only 4 states and 4 transitions, they had a Coq file of 2700
lines, to verify that this automata was well defined. Verification of this script
took approximately 48 seconds. The definition of the same automata in
SLEEK consisted of only 20 lines, and was verified in less than 2.3 seconds.

63

Chapter 7

Conclusions and Future Work

In this thesis we formally verified two of the three barrier implementations
discussed in (Dodds et al., 2016). To do so, we designed two new constructions:
recursively nested wands and authoritative ordering. These constructions
allowed us to define a different invariant, which required less bookkeeping,
ultimately leading to more straightforward proofs.

One possible venture for future work is a formal verification of the third
barrier implementation discussed in (Dodds et al., 2016). This implementa-
tion uses a tree structure, instead of a linear chain. The tree has the invariant
that if the signal flag of a node is set, all the flags of its children are also set.
This means that wait has to check less flags, resulting in a more efficient
implementation. We reckon that this implementation can be verified in a
similar way to our verification presented in Chapter 5. To do so, one would
need to generalize authoritative ordering. Currently, it models the ordering
of a list, which can be seen as a path graph or linear graph. This could
however be extended to arbitrary finite graphs, allowing one to model the
≺-predicate for the tree based implementation.

Another possibility for future work, is to add deallocation to the imple-
mentation and specification. Currently, it is not possible to deacllocate a
barrier. To implement deallocation, one could use reference counting. How-
ever, we cannot describe the absence of memory leaks in the specification, as
Iris is an affine separation logic (Jung et al., 2018, §9.5): using Sep-Weaken,
one is able to throw away a send(b, P) predicate, which means the barrier
will never be deallocated. To completely eliminate the possibility of memory
leaks, one could use Iron (Bizjak et al., 2019). This is a separation logic
modelled on top of Iris, which allows one to reason about the absence of
leaked resources.

Finally, we only verified partial correctness for the barriers, i.e. if the
wait calls terminate, the appropriate resource is given to the client. This does
mean that a client cannot use these specifications to get a total correctness
proof of their program. However, there are many possible programs, where

64

a client would like to use a barrier, but still have the guarantee that their
program eventually terminates. It would thus be interesting to see if it
is possible to write a specification which guarantees termination of wait
under fair use, i.e. if someone owns send(b, P), they eventually call signal b.
However, Iris cannot be used to prove termination under fair scheduling.
TaDA Live (D’Osualdo et al., 2021) is a separation logic which allows to
reason about termination of blocking fine-grained concurrent programs. Our
barrier is such a program, as wait is essentially a busy wait loop. However,
TaDA Live is not higher order, which means we cannot write the specification
using higher order predicates like send(b, P) and recv(b, P), with P being an
arbitrary separation logic proposition.

65

Bibliography

Appel, A. W., & McAllester, D. A. (2001). An indexed model of recursive
types for foundational proof-carrying code. ACM Trans. Program.
Lang. Syst., 23 (5), 657–683. https://doi.org/10.1145/504709.504712

Birkedal, L., Møgelberg, R. E., Schwinghammer, J., & Støvring, K. (2012).
First steps in synthetic guarded domain theory: Step-indexing in the
topos of trees. Log. Methods Comput. Sci., 8 (4). https://doi.org/10.
2168/LMCS-8(4:1)2012

Bizjak, A., Gratzer, D., Krebbers, R., & Birkedal, L. (2019). Iron: Managing
obligations in higher-order concurrent separation logic. Proc. ACM
Program. Lang., 3 (POPL), 65:1–65:30. https://doi.org/10.1145/
3290378

Bornat, R., Calcagno, C., O’Hearn, P., & Parkinson, M. (2005). Permis-
sion accounting in separation logic. Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, 259–270. https://doi.org/10.1145/1040305.1040327

Boyland, J. (2003). Checking interference with fractional permissions. In R.
Cousot (Ed.), Static analysis (pp. 55–72). Springer Berlin Heidelberg.

Brookes, S. (2007). A semantics for concurrent separation logic. Theor.
Comput. Sci., 375 (1-3), 227–270. https://doi.org/10.1016/j.tcs.2006.
12.034

Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M. J., & Vafeiadis, V.
(2010). Concurrent abstract predicates. In T. D’Hondt (Ed.), ECOOP
2010 - object-oriented programming, 24th european conference, mari-
bor, slovenia, june 21-25, 2010. proceedings (pp. 504–528, Vol. 6183).
Springer. https://doi.org/10.1007/978-3-642-14107-2 24

Dodds, M., Jagannathan, S., & Parkinson, M. J. (2011). Modular reasoning
for deterministic parallelism. In T. Ball & M. Sagiv (Eds.), Proceedings
of the 38th ACM SIGPLAN-SIGACT symposium on principles of
programming languages, POPL 2011, austin, tx, usa, january 26-28,
2011 (pp. 259–270). ACM. https://doi.org/10.1145/1926385.1926416

Dodds, M., Jagannathan, S., Parkinson, M. J., Svendsen, K., & Birkedal,
L. (2016). Verifying custom synchronization constructs using higher-
order separation logic. ACM Trans. Program. Lang. Syst., 38 (2).
https://doi.org/10.1145/2818638

66

https://doi.org/10.1145/504709.504712
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1145/3290378
https://doi.org/10.1145/3290378
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1145/1926385.1926416
https://doi.org/10.1145/2818638

D’Osualdo, E., Sutherland, J., Farzan, A., & Gardner, P. (2021). Tada live:
Compositional reasoning for termination of fine-grained concurrent
programs. ACM Trans. Program. Lang. Syst., 43 (4), 16:1–16:134.
https://doi.org/10.1145/3477082

Flanagan, C., Sabry, A., Duba, B. F., & Felleisen, M. (1993). The essence
of compiling with continuations. Proceedings of the ACM SIGPLAN
1993 Conference on Programming Language Design and Implementa-
tion, 237–247. https://doi.org/10.1145/155090.155113

Gherghina, C., David, C., Qin, S., & Chin, W. (2011). Structured speci-
fications for better verification of heap-manipulating programs. In
M. J. Butler & W. Schulte (Eds.), FM 2011: Formal methods -
17th international symposium on formal methods, limerick, ireland,
june 20-24, 2011. proceedings (pp. 386–401, Vol. 6664). Springer.
https://doi.org/10.1007/978-3-642-21437-0\ 29

Hoare, C. A. R. (1969). An axiomatic basis for computer programming.
Commun. ACM, 12 (10), 576–580. https://doi.org/10.1145/363235.
363259

Hobor, A., & Gherghina, C. (2011). Barriers in concurrent separation logic. In
G. Barthe (Ed.), Programming languages and systems - 20th european
symposium on programming, ESOP 2011, held as part of the joint
european conferences on theory and practice of software, ETAPS
2011, saarbrücken, germany, march 26-april 3, 2011. proceedings
(pp. 276–296, Vol. 6602). Springer. https://doi.org/10.1007/978-3-
642-19718-5\ 15

Hobor, A., & Gherghina, C. (2012). Barriers in concurrent separation logic:
Now with tool support! Log. Methods Comput. Sci., 8 (2). https :
//doi.org/10.2168/LMCS-8(2:2)2012

Hobor, A., & Villard, J. (2013). The ramifications of sharing in data struc-
tures. In R. Giacobazzi & R. Cousot (Eds.), The 40th annual ACM
SIGPLAN-SIGACT symposium on principles of programming lan-
guages, POPL ’13, rome, italy - january 23 - 25, 2013 (pp. 523–536).
ACM. https://doi.org/10.1145/2429069.2429131

Jung, R. (2020). Understanding and evolving the rust programming language
[Doctoral dissertation, Saarland University, Saarbrücken, Germany].
https://doi.org/10.22028/D291-31946

Jung, R., Krebbers, R., Birkedal, L., & Dreyer, D. (2016). Higher-order
ghost state. Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, 256–269. https://doi.org/10.
1145/2951913.2951943

Jung, R., Krebbers, R., Jourdan, J.-H., Bizjak, A., Birkedal, L., & Dreyer, D.
(2018). Iris from the ground up: A modular foundation for higher-order
concurrent separation logic. Journal of Functional Programming, 28,
e20. https://doi.org/10.1017/S0956796818000151

67

https://doi.org/10.1145/3477082
https://doi.org/10.1145/155090.155113
https://doi.org/10.1007/978-3-642-21437-0_29
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-19718-5_15
https://doi.org/10.1007/978-3-642-19718-5_15
https://doi.org/10.2168/LMCS-8(2:2)2012
https://doi.org/10.2168/LMCS-8(2:2)2012
https://doi.org/10.1145/2429069.2429131
https://doi.org/10.22028/D291-31946
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151

Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L.,
& Dreyer, D. (2015). Iris: Monoids and invariants as an orthogonal
basis for concurrent reasoning. In S. K. Rajamani & D. Walker
(Eds.), Proceedings of the 42nd annual ACM SIGPLAN-SIGACT
symposium on principles of programming languages, POPL 2015,
mumbai, india, january 15-17, 2015 (pp. 637–650). ACM. https:
//doi.org/10.1145/2676726.2676980

Krebbers, R., Timany, A., & Birkedal, L. (2017). Interactive proofs in
higher-order concurrent separation logic. In G. Castagna & A. D.
Gordon (Eds.), Proceedings of the 44th ACM SIGPLAN symposium
on principles of programming languages, POPL 2017, paris, france,
january 18-20, 2017 (pp. 205–217). ACM. https://doi.org/10.1145/
3009837.3009855

Nguyen, H. H., & Chin, W. (2008). Enhancing program verification with
lemmas. In A. Gupta & S. Malik (Eds.), Computer aided verification,
20th international conference, CAV 2008, princeton, nj, usa, july
7-14, 2008, proceedings (pp. 355–369, Vol. 5123). Springer. https:
//doi.org/10.1007/978-3-540-70545-1\ 34

O’Hearn, P. W. (2007). Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375 (1-3), 271–307. https://doi.org/10.1016/j.tcs.2006.
12.035

O’Hearn, P. W., Reynolds, J. C., & Yang, H. (2001). Local reasoning about
programs that alter data structures. Proceedings of the 15th Interna-
tional Workshop on Computer Science Logic, 1–19.

Reynolds, J. (2002). Separation logic: A logic for shared mutable data
structures. Proceedings 17th Annual IEEE Symposium on Logic in
Computer Science, 55–74. https ://doi .org/10 .1109/LICS.2002 .
1029817

Spies, S., Gäher, L., Tassarotti, J., Jung, R., Krebbers, R., Birkedal, L., &
Dreyer, D. (2022). Later credits: Resourceful reasoning for the later
modality. Proc. ACM Program. Lang., 6 (ICFP). https://doi.org/10.
1145/3547631

Svendsen, K., & Birkedal, L. (2014). Impredicative concurrent abstract
predicates. In Z. Shao (Ed.), Programming languages and systems -
23rd european symposium on programming, ESOP 2014, held as part
of the european joint conferences on theory and practice of software,
ETAPS 2014, grenoble, france, april 5-13, 2014, proceedings (pp. 149–
168, Vol. 8410). Springer. https://doi.org/10.1007/978-3-642-54833-
8 9

The Iris Team. (2022). The Iris 4.0 reference [https://plv.mpi-sws.org/iris/
appendix-4.0.pdf].

The Iris Team. (2023, February 16). The iris coq development (Version dev.2023-
02-16.2.bcedf1c7). https://gitlab.mpi-sws.org/iris/iris/

68

https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1007/978-3-540-70545-1_34
https://doi.org/10.1007/978-3-540-70545-1_34
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3547631
https://doi.org/10.1145/3547631
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-54833-8_9
https://plv.mpi-sws.org/iris/appendix-4.0.pdf
https://plv.mpi-sws.org/iris/appendix-4.0.pdf
https://gitlab.mpi-sws.org/iris/iris/

Turon, A., Dreyer, D., & Birkedal, L. (2013). Unifying refinement and hoare-
style reasoning in a logic for higher-order concurrency. In G. Morrisett
& T. Uustalu (Eds.), ACM SIGPLAN international conference on
functional programming, icfp’13, boston, ma, USA - september 25 - 27,
2013 (pp. 377–390). ACM. https://doi.org/10.1145/2500365.2500600

Turon, A., Thamsborg, J., Ahmed, A., Birkedal, L., & Dreyer, D. (2013).
Logical relations for fine-grained concurrency. In R. Giacobazzi & R.
Cousot (Eds.), The 40th annual ACM SIGPLAN-SIGACT symposium
on principles of programming languages, POPL ’13, rome, italy -
january 23 - 25, 2013 (pp. 343–356). ACM. https://doi.org/10.1145/
2429069.2429111

van Collem, S. (2023). Verifying a barrier using Iris. Zenodo. https://doi.
org/10.5281/zenodo.7749189

Wickerson, J., Dodds, M., & Parkinson, M. J. (2010). Explicit stabilisa-
tion for modular rely-guarantee reasoning. In A. D. Gordon (Ed.),
Programming languages and systems, 19th european symposium on
programming, ESOP 2010, held as part of the joint european con-
ferences on theory and practice of software, ETAPS 2010, paphos,
cyprus, march 20-28, 2010. proceedings (pp. 610–629, Vol. 6012).
Springer. https://doi.org/10.1007/978-3-642-11957-6\ 32

69

https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1145/2429069.2429111
https://doi.org/10.5281/zenodo.7749189
https://doi.org/10.5281/zenodo.7749189
https://doi.org/10.1007/978-3-642-11957-6_32

	1 Introduction
	2 Preliminaries
	2.1 HeapLang
	2.2 Hoare and separation logic
	2.3 Proving specifications

	3 Simple Barrier
	3.1 Implementation
	3.2 Specification
	3.3 Verification
	3.3.1 Verification of New Barrier-Spec
	3.3.2 Verification of Signal-Spec
	3.3.3 Verification of Wait-Spec

	4 Chainable Barrier
	4.1 Key features
	4.1.1 Receive splitting
	4.1.2 Send splitting
	4.1.3 Chains and renunciation

	4.2 Implementation
	4.3 Specification
	4.4 Intuitive verification
	4.4.1 Invariant
	4.4.2 Barrier creation
	4.4.3 Send splitting
	4.4.4 Receive splitting
	4.4.5 Signalling
	4.4.6 Extending
	4.4.7 Renunciation
	4.4.8 Receiving

	5 Formalization
	5.1 Authoritative ordering
	5.2 Definitions

	6 Related Work
	7 Conclusions and Future Work

