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Abstract

The Rust programming language provides many safety guarantees compared
to other languages. For example, Rust prevents use-after-free’s and double
free’s. However, Rust programs are not checked for functional correctness or
absence of unrecoverable errors such as failing assertions or integer overows.
The auto-active program verier called Prusti promises to ll this gap. This
report describes a case study of using Prusti on a non-trivial Rust program: a
key-value store implementation using binary search. This implementation is
especially challenging due to its use of so-called borrowing. We present the
verication of this store, the end result of which is the Rust program annotated
with the created specication. We also present a list of limitations encountered
in the verication process.
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Chapter 1

Introduction

Rust is a general-purpose programming language. Its rst stable version was
released in 2015 (Rust contributors, 2023c). It quickly gained popularity, and is
increasingly used. For example, 9.5% of the Firefox browser is written in Rust.
For the last seven years, respondents of the yearly Stack OverFlow survey have
indicated they love Rust the most of all programming languages. In 2022, 87%
of developers using Rust said they want to continue using it (Stack Overow,
2022).

The eciency of the code produced by its compiler is competitive to that of
C++, thanks to Rust’s static typing, its optimizing compiler, and the absence
of a garbage collector. But dierent from C++, Rust is memory safe, meaning
that Rust programs are protected from bugs related to memory access. For
example, Rust programs are guaranteed not to be aected by double-free’s, use-
after-free’s (attempting to dereference a pointer after it has been freed), and
data races. This memory safety is provided by Rust’s type checker, including
the so-called borrow checker, the component that enforces strict rules for the
use of variables in a program.

Yet, there are some problematic programs that Rust does not prevent the
programmer from writing. A well-formed Rust program could still give an
output that does not adhere to the program’s specication as intended by the
programmer or get into an unrecoverable error state called a panic.

For example, the following Rust code, accepted by the compiler, does not
give the correct output, because of a small mistake: b and a are mistakenly
switched.
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1 fn max(a: i32, b: i32) -> i32 {
2 if a > b {
3 b
4 } else {
5 a
6 }
7 }

And the following Rust code, accepted by the compiler, causes a panic, due to
out-of-bounds indexing:

1 let a = [0, 1, 2];
2 let x = a[3];

To verify the absence of such problems, program veriers exist. In this report
we focus on one of them: Prusti (Astrauskas et al., 2019). Prusti is specically
made for usage with Rust.

We must make a clear distinction between how the Rust compiler works and
how Prusti works. The Rust compiler decides whether a piece of source code
is well-typed, or invalid (the source code does not describe a well-typed Rust
program).

Rust source code

Either well-typed or not well-typed

Rust compiler

Prusti takes in such awell-typed Rust program, with a specication, and tries to
prove that the program is correct. It either outputs that the program is correct,
or it outputs that it could not prove 1 the correctness of the program. In this
process, Prusti does not run the program, but only statically analyses it.

1Note that ‘Could not prove’ is very dierent from ‘proven to be false’! If Prusti cannot prove
a program’s correctness, the program might still be correct.
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Well-typed Rust program with specification

Either correct or could not prove

Prusti

Prusti is an auto-active program verier. The term auto-active, coined by Leino
andMoskal, 2010, specieswhen in the process of verication the user provides
guidance. If using an auto-active verier, the user can give guidance, but only
before the verier is ran. This guidance is often in the form of annotations
added to the program. Auto-active veriers can be thought of to lie in between
automatic veriers (no user guidance) and interactive (user guidance after the
verier has started).

Prusti combines the information from Rust’s type system with user added
annotations to automatically verify the correctness of the program “without
exposing the underlying formal logic, allowing users to work exclusively at
the level of abstraction of the programming language. This enables a new kind
of verication tool, with the potential to impact a wide audience and allow
the Rust community to benet from state-of-the-art verication techniques”
(Astrauskas et al., 2019).

Although the approach has the potential of impacting a wide audience, we
are not aware of widespread usage of Prusti except from usage by Prusti
developers.

To gain insight in the practical usage of Prusti, we present in this report a case
study on the verication of a non-trivial Rust program, namely a key-value
store implementation based on binary search.

This implementation includes functions that return pointers. These pointers
can be used to modify the value of the variable it refers to. The verication
of such functions is challenging, while this pattern is common in Rust code.
Prusti has a mechanism for this.

The verication was an iterative process. Both the code and the specication
were changed multiple times based on Prusti errors. Sometimes a change had
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to be made because the specication was found to be incorrect. In other cases,
the change was necessary because Prusti did not support some feature of Rust,
or was not unable to prove a seemingly correct specication.

Contributions. The main two contributions of this work are:

• The verication of a key-value store implementation in Rust, in chapter 4.
This includes both the Rust code, which is an implementation of binary
search, and the added Prusti annotations, which contain the specication
for this store.

This verication is challenging because one of the functions returns an
interior pointer that can be used to mutate a value in the key-value store.
Also, the verication requires knowledge of both Rust and Prusti. Prusti’s
lacking documentation makes obtaining this knowledge dicult.

This verication shows that Prusti can be used, and how, to verify the
correctness of a non-trivial program.

• A list of problems encountered while using Prusti, including possible
workarounds and/or (proposed) solutions, in chapter 5. This list is the
result of many failed verication attempts. It can be used to improve
Prusti and similar program veriers. It also can be used for rst time
users of Prusti as a guide for overcoming or avoiding obstacles.

Outline. Chapter 2 introduces the Rust programming language. The reader
familiar with Rust may want to skim it. Chapter 3 introduces the basics of
the Prusti program verier. In chapter 4 we discuss the implementation of
a key-value store in Rust, and its verication using Prusti. The limitations of
Prusti that were encountered in the process are listed in chapter 5. Related
work is discussed in chapter 6. Chapter 7 concludes this report, and mentions
possible future work.
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Chapter 2

Rust fundamentals

In this chapter we discuss the fundamentals of the Rust programming language.
The reader familiar with Rust may skip this section.

The diagrams and examples in this chapter are heavily inspired by the diagrams
and examples in the chapter ‘Understanding Ownership’ from the book ‘The
Rust Programming Language’ (Klabnik & Nichols, 2022b).

2.1 Basic Rust syntax

The syntax of Rust is similar to the syntax of other imperative programming
languages, like C.

The following piece of Rust code to calculate the 15’th bonacci number demon-
strates some syntactic features of Rust.

1 fn fib(n: u64) -> u64 {
2 if n < 2 {
3 return n;
4 }
5 return fib(n - 1) + fib(n - 2);
6 }
7

8 fn main() {
9 let n = 15;
10 println!("{}", fib(n));
11 }
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Functions are dened with the keyword fn , and types are written behind the
name instead of before it. Also, variables must be introduced using the let

keyword.

Expression-based. For programmers new to Rust, it might be surprising
that Rust is expression-based. This means that most syntactic constructs are
expressions. For example, the ‘block’-expression (notated with curly braces)
evaluates to the last value in the block:

1 let duration_ms = {
2 let duration_s = 11;
3 duration_s * 1000
4 };
5 assert!(duration_ms == 11_000);

And the ‘if’-expression evaluates to the value of the evaluated branch:

1 let x = if false {
2 a
3 } else {
4 b
5 };
6 assert!(x == b);

So using this feature of Rust, the fib function can also be written without the
return statement, like this:

1 fn fib(n: u64) -> u64 {
2 if n < 2 {
3 n
4 } else {
5 fib(n - 1) + fib(n - 2)
6 }
7 }

2.2 Copy and move

Consider the following piece of Rust code:
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1 let a = 5;
2 let mut b = a;
3 b += 1;
4 println!("{}", a);

Like you might expect, it prints 5. When executing let mut b = a , Rust as-
signs a copy of a ’s value ( 5 ) to b . After that, changing b ’s value does not
aect the value of a . The following diagram shows the nal state.

5 6

a b

Now consider this similar piece of Rust code:

1 let a = String::from("rust");
2 let mut b = a;
3 b.push('!');
4 println!("{}", a);

It is similar to the previous example, but with a heap-allocated string instead
of an integer. It might seem like a good program at rst glance, but the Rust
compiler will not accept this. This is because the code contains a serious
programming error! Let us go through the code line by line:

1. let a = String::from("rust");

Executing this line, Rust allocates a buer on the heap, and puts the
string "rust" in that buer. It then stores the pointer to the buer, the
length of the string, and the buer’s capacity in a .

buffer

a

length

capacity

4

4

'r'

'u'

's'

't'

2. let mut b = a;
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Executing this second line, Rust copies the buer, length, and capacity of
a to b . Now, both a and b point to the same buer.

buffer

a

length

capacity

4

4

'r'

'u'

's'

't'

buffer

b

length

capacity

4

4

3. b.push('!');

The function push is called to add the character '!' at the end of b .
The length is already equal to the capacity, so the buer is reallocated,
which very likely means that the buer will be put somewhere else in
memory, making the old location invalid. Therefore push updates b to
point to the new location.

buffer

a

length

capacity

4

4

'r'

'u'

's'

't'

'!'

buffer

b

length

capacity

5

8

?

4. println!("{}", a);

Here a problem arises. Printing a can cause the program to crash or
misbehave in some other way, because a points to memory it may not
access anymore.

Rust prevents this problem by disallowing the usage of a after copying the
value of a to b . Actually, Rust does not call this a copy, but calls it a move.
Rust will move any value it cannot copy.
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But how can we change this program such that Rust does accept it? We have
two options: Cloning (explained in section 2.3) or taking a unique reference
(explain in section 2.4).

2.3 Clone

Cloning is very similar to copying. It is the explicit version of what C++ does by
default. A clone of a heap-allocated resource does not copy the pointer, but it
leads to a new heap allocation of an identical resource.

Have a look at the following Rust code:

1 let a = String::from("rust");
2 let mut b = a.clone();
3 b.push('!');
4 println!("{}", a);

This piece of code is identical to the code in the previous section, but with one
dierence: the value of a is not moved but cloned. And while Rust did not
accept the previous example, it does accept this one.

We will go through the example line by line.

1. let a = String::from("rust");

Again, just like in the example in the previous section, the rst line puts
the string "rust" on the heap.

buffer

a

length

capacity

4

4

'r'

'u'

's'

't'

2. let mut b = a.clone();

This second line is where the clone happens. The value of a is cloned,
and the clone is assigned to b .
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buffer

a

length

capacity

4

4

'r'

'u'

's'

't'

buffer

b

length

capacity

4

4

'r'

'u'

's'

't'

3. b.push('!');

On this line, the character ’!’ is added to the end of the string value of b .

buffer

a

length

capacity

4

4

'r'

'u'

's'

't'

buffer

b

length

capacity

5

8

'r'

'u'

's'

't'

'!'

4. println!("{}", a);

When this line is executed, the value of a , "rust!" will be printed.

2.4 Unique reference

Unique references are a way to have full access to a variable without owning
the variable, similar to pointers in C++. They are called unique because there
may exist at most one unique reference to a particular variable at a time.

Have a look at the following piece of Rust code:
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1 let mut a = String::from("rust");
2 let b = &mut a;
3 b.push('!');
4 println!("{}", a);

In the example above, a unique reference to a is assigned to b . Then, a

can be modied through b . At the end, "rust!" will be printed, because the
value of a was modied.

We will walk through the example again line by line:

1. let mut a = String::from("rust");

Exactly like before, the string "rust" is placed on the heap.

buffer

a

length

capacity

4

4

'r'

'u'

's'

't'

2. let b = &mut a;

buffer

a

length

capacity

4

4

'r'

'u'

's'

't'

b

When this line is executed, an unique reference to a is assigned to b .

3. b.push('!');
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buffer

a

length

capacity

5

8

'r'

'u'

's'

't'

b '!'

The push function is called with the value of b , which is a reference to
a . Inside the push function a dereference occurs and the dereferenced
value will be changed.

4. println!("{}", a);

When this line is executed, the value of a , "rust!" will be printed.

2.4.1 Lifetimes

The lifetime of a variable in a program is the part of the program where that
variable can be used. More specically, the lifetime begins when the variable is
created and it ends when it is destroyed (Rust By Example contributors, 2023).
1

The lifetimes of a unique reference to a value may not overlap with the lifetime
of another reference to that value. So whereas this program is ne:

1 let mut v = vec!['a', 'b'];
2

3 let first = &mut v[0]; // Begin lifetime 'first'
4 *first = 'x';
5 // End lifetime 'first'
6

7 let second = &mut v[1]; // Begin lifetime 'second'
8 *second = 'y';
9 // end lifetime 'second'
10

11 assert!(v == vec!['x', 'y']);

1If a variable with a reference is destroyed then that reference is said to expire.
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The following program is rejected by Rust, because the lifetime of the rst
unique reference would overlap with the lifetime of the second unique refer-
ence:

1 let mut v = vec!['a', 'b'];
2 let first = &mut v[0];
3 let second = &mut v[1];
4 if *first == *second {
5 println!("The two characters are equal");
6 }

We can make this example work by using shared references, which we discuss
in section 2.5.

2.5 Shared reference

Shared references are similar to unique references, but with the dierence
that there may exist more than one shared reference at a time to the same
value. In other words: the lifetimes of shared references to the same variable
may overlap.

1 let v = vec!['a', 'b'];
2 let first = &v[0];
3 let second = &v[1];
4 if *first == *second {
5 println!("The two characters are equal");
6 }

However, there is a restriction to shared references when compared to unique
references: whenever a shared reference to a value exists, that value may not
be mutated.

Take for example the following program, which Rust rejects:

1 let mut v = vec!['a', 'b'];
2 let first = &v[0];
3 v.push('c');
4 println!("{}", first);

15



Rust will show the following error:

1 error[E0502]: cannot borrow `v` as mutable because it is also
2 borrowed as immutable
3

4 --> src/main.rs:3:4
5 |
6 2 | let first = &v[0];
7 | - immutable borrow occurs here
8 3 | v.push('c');
9 | ^^^^^^^^^^^ mutable borrow occurs here
10 4 | println!("{}", first);
11 | ----- immutable borrow later used here

It is good that Rust rejects this program, because it does contain a mistake:
exactly the same mistake as described earlier in section 2.2.

2.6 Slice

Slices are similar to references, but refer to a contiguous sequence of elements
rather than just a single element (Klabnik & Nichols, 2022a).

The following is an example of a slice in Rust:

1 let a = ['a', 'b', 'c', 'd'];
2 let s = &a[..];
3 println!("first: {}, length: {}", s[0], s.len());

Executing the code will show ‘rst: a, length: 4’.

Just like references, slices can be shared or unique. Whereas a shared slice, like
the one above, is created with the notation &s[..] , a unique slice is created
with the notation &mut s[..] . Unique slices allow mutation:

1 let mut a2 = ['a', 'b', 'c', 'd'];
2 let s2 = &mut a2[..];
3 s2[1] = 'x';
4 assert!(a2[1] == 'x');
5 // just like with unique references, s2 may not be used here anymore

16



2.6.1 Subslice

Subslicing is taking a slice and producing a smaller subslice that refers to a
part of the original slice.

For example, given the slice s from the example above, &s[1..3] gives a
slice of length 2 that starts at the second element of s .

a b c d es:

subslice(s, 1, 3): b c

subslice(s, 1, 5): b c d e

0 1 2 3 4

0 1

0 1 2 3

Subslicing can be done on both shared and unique slices. Subslicing a shared
slice gives a new shared slice, and subslicing a unique slice gives a new unique
slice.

2.7 Panic

While Rust is memory safe and does not have undened behavior, a Rust
program can still get into an unrecoverable error state, called a panic.

Important to note is the dierence between panics and undened behavior.
Undened behavior means that anything could happen. In practice, this often
results in security issues, crashes, or odd behavior of the program. A panic
on the other hand, is clearly dened. The program halts completely, and
directly.

There are several ways in Rust to cause such a panic. Here, we will discuss the
most common causes of a panic.

2.7.1 Integer overow

Consider the following example of Rust code:
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1 fn successor(x: i32) -> i32 {
2 x + 1
3 }

Rust accepts this memory-safe program, but it does have a aw: it results
in an integer overow if x is the largest possible value of i32 . Calling
successor(i32::MAX) will result in a panic2.

Another function that might overow is the following:

1 fn negate(x: i32) -> i32 {
2 -x
3 }

It will overow if x is the smallest possible value of i32 , namely i32::MIN ,
because there is no i32 -value that is the negation of that smallest value.

2.7.2 Integer underow

The following function has a similar issue:

1 fn predecessor(x: i32) -> i32 {
2 x - 1
3 }

Calling this function with i32::MIN will cause a panic, because i32::MIN

already is the lowest possible value of i32 .

2.7.3 Out of bounds index

The following is a valid Rust program:

1 fn head(s: &[i32]) -> i32 {
2 s[0]
3 }

2This is true for programs compiled in Debug mode. If the programs is compiled in Release
mode, then an overow does not cause a panic.
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It denes a function head that takes a slice of 32-bit signed integers and returns
the rst of those integers. However, this panics in the case that s is empty,
because then the rst element (at index 0) does not exist.

2.7.4 Assertion

A Rust program might contain an assertion. An assertion always has a boolean
condition. If this condition evaluates to false , then the program panics.

Programmers can use assertions to add conditions to their program. For ex-
ample, the following implementation of the bonacci function is not well
dened for negative inputs. Therefore an assertion was added to ensure that
the function will not be called with a negative input.

1 fn fib(n: i64) -> i64 {
2 assert!(n >= 0);
3

4 if n < 2 {
5 n
6 }
7 else {
8 fib(n - 1) + fib(n - 2)
9 }
10 }
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Chapter 3

Prusti fundamentals

In this chapter we discuss the fundamentals of the Prusti auto-active program
verier.

We rst discuss an example Rust program (section 3.1) and use Prusti to prove
some properties of this program (section 3.2–3.5). At the end of this chapter
we will discuss Prusti’s logical syntax 3.6.

The idea to use the max function later in this chapter is taken from the ‘Basic
Usage’ section of the Prusti user guide (The Viper Project, 2023a).

3.1 Recurring example

Have a look at the following Rust implementation of the absolute function. It
is the recurring example in the following sections.

Note that the absolute function is dened twice, as abs (directly) and abs_composed

(in terms of the max function).
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1 fn max(a: i32, b: i32) -> i32 {
2 if a > b {
3 a
4 } else {
5 b
6 }
7 }
8

9 fn abs(x: i32) -> i32 {
10 if x < 0 {
11 -x
12 } else {
13 x
14 }
15 }
16

17 pub fn abs_composed(x: i32) -> i32 {
18 max(x, -x)
19 }

We use Prusti to prove the following properties of this program:

1. The functions do not panic as long as some pre-conditions hold. We prove
this using Prusti’s pre-conditions in section 3.2.

2. The result of the max function is greater than or equal to both of its
parameters. Also, the result of abs and of abs_composed is always
greater than or equal to zero. We prove this using Prusti’s post-conditions
in section 3.3.

3. abs , max and abs_composed are pure: they does not produce side
eects and their output is deterministically based on its input. We prove
this using Prusti’s pure-annotation in section 3.4.

4. For any input, abs_composed gives the same result as abs does for that
input. We prove this using a pure function in a Prusti specication in
section 3.5.

3.2 Pre-condition for panic absence

We want to prove the absence of panics in our example.
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Of course, the abs function and the abs_composed function will panic in one
case, namely if x is equal to i32::MIN (the smallest possible value of i32 ),
because that would cause an overow when negating x .

A solution for this is requiring that x may not be i32::MIN . That is what
we will do. We do this in Prusti by adding a pre-condition to the abs and
abs_composed functions.

Prusti will use pre-conditions in two ways:

1. Prusti veries that the pre-condition holds whenever the function is
called.

2. Prusti may use the pre-condition as an assumption when proving prop-
erties of the function.

The syntax of a Prusti pre-condition is very similar to the syntax of a boolean
Rust expression. In the expression, the function’s parameters may be used.
The expression must be written just before the function inside an annotation
called requires .

To ensure that x is not i32::MIN , we use the pre-condition x != i32::MIN ,
like this:

1 #[requires(x != i32::MIN)]
2 fn abs(x: i32) -> i32 {
3 if x < 0 {
4 -x
5 } else {
6 x
7 }
8 }
9

10 #[requires(x != i32::MIN)]
11 pub fn abs_composed(x: i32) -> i32 {
12 max(x, -x)
13 }

3.3 Post-condition for functional correctness

We want to prove functional correctness of these three functions. In other
words, we want that their output always adheres to our specication.
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Consider the following specication for abs . Firstly, the result of the max
function must be greater than or equal to both of its parameters (3.1). Secondly,
both the abs function and the abs_composed function must always give a
non-negative result (3.2 and 3.3).

∀𝑥 𝑦.max(𝑥, 𝑦) ≥ 𝑥 ∧max(𝑥, 𝑦) ≥ 𝑦 (3.1)

∀𝑥. abs(𝑥) ≥ 0 (3.2)

∀𝑥. abs_composed(𝑥) ≥ 0 (3.3)

Prusti can verify this specication by itself. We just have to add our specica-
tion to the program using a special syntax.

Like with pre-conditions, in Prusti a post-condition is written as a Rust boolean
expression. There is one addition: in a post-condition there is a special variable
called result , which represents the value that the function returns. Also, the
name of the post-condition annotation is ‘ensures’.

So in Prusti syntax, our specication looks as follows:

1 #[ensures(result >= x && result >= y)]
2 fn max(x: i32, y: i32) -> i32 {
3 if x > y {
4 x
5 } else {
6 y
7 }
8 }
9

10 #[requires(x != i32::MIN)]
11 #[ensures(result >= 0)]
12 fn abs(x: i32) -> i32 {
13 if x < 0 {
14 -x
15 } else {
16 x
17 }
18 }
19

20 #[requires(x != i32::MIN)]
21 #[ensures(result >= 0)]
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22 pub fn abs_composed(x: i32) -> i32 {
23 max(x, -x)
24 }

When proving a specication of a function, Prusti uses:

1. That function’s pre-conditions as assumptions,

2. the semantics of the function, and

3. the specications of other functions.

Prusti proves this automatically. To gain insight in why this works, we now
discuss, quite informally, why we should believe that Prusti is right.

Post-condition on the max function

∀𝑥 𝑦.max(𝑥, 𝑦) ≥ 𝑥 ∧max(𝑥, 𝑦) ≥ 𝑦

To prove this rst part of our specication, we must work with the semantics
of the max function.

Recall the max function:

1 fn max(x: i32, y: i32) -> i32 {
2 if x > y {
3 x
4 } else {
5 y
6 }
7 }

For some given x and y , if x > y then in calculating max(x, y) the rst
branch will be taken and max(x, y) == x . Trivially, we now know that 𝑥 ≥
𝑥∧𝑥 ≥ 𝑦. Substituting using max(x, y) == x gives us exactly what we needed
to prove: max(𝑥, 𝑦) ≥ 𝑥 ∧max(𝑥, 𝑦) ≥ 𝑦.

If it is not the case that x > y then in calculating max(x, y) the second branch
will be taken and max(x, y) == y . Trivially, we now know that 𝑦 ≥ 𝑥∧ 𝑦 ≥ 𝑦.
Substituting using max(x, y) == y gives us exactly what we needed to prove:
max(𝑥, 𝑦) ≥ 𝑥 ∧max(𝑥, 𝑦) ≥ 𝑦.
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Post-condition on the abs function

∀𝑥. abs(𝑥) ≥ 0

To prove this rst part of our specication, we can use the semantics of abs

and we can use the precondition of abs .

Recall the abs function:

1 fn abs(x: i32) -> i32 {
2 if x < 0 {
3 -x
4 } else {
5 x
6 }
7 }

Looking at this function denition we can see that if x is a negative number,
then it will be negated, thus giving a positive number. And in the case that x

already is a positive number, then it remains unchanged.

Therefore we can conclude that indeed abs(x) will always be greater or equal
to 0 .

Post-condition on the abs-composed function

∀𝑥. abs_composed(𝑥) ≥ 0

To prove this rst part of our specication, we can use the semantics of
abs_composed , its pre-condition, and the specication of max .

Recall the abs_composed function:

1 fn abs_composed(x: i32) -> i32 {
2 max(x, -x)
3 }

We may use the previously proven specication of the max function here,
namely:

∀𝑥 𝑦.max(𝑥, 𝑦) ≥ 𝑥 ∧max(𝑥, 𝑦) ≥ 𝑦
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Using this specication for this specic call gives:

max(𝑥,−𝑥) ≥ 𝑥 ∧max(𝑥,−𝑥) ≥ −𝑥

Combining this with the fact that either −𝑥 ≥ 0 or 𝑥 ≥ 0 lets us conclude that
max(𝑥,−𝑥) ≥ 0, and therefore abs_composed(𝑥) ≥ 0.

3.4 Purity

Denition of purity. A pure function must have these two properties:

1. It does not produce side-eects.

2. Its output is deterministically based on the inputs.

A function that is not pure is called ‘impure’.

In Prusti, pure functions canbeused inside of pre-conditions andpost-conditions.
This makes them specically useful.

Prusti will try to verify a function’s purity if the ‘pure’-attribute is added to
that function. It can prove purity of functions with the following two proper-
ties:

1. All functions it calls are pure.

2. All parameter types must be copyable.

Examples of pure functions. max , abs and abs_composed are all pure, as
they do not produce side eects and their outputs are deterministically based
on their inputs.

After adding the pure annotation to them, Prusti can prove their purity.

1 #[pure]
2 #[ensures(result >= x && result >= y)]
3 fn max(x: i32, y: i32) -> i32 {
4 if x > y {
5 x
6 } else {
7 y
8 }
9 }
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1 #[pure]
2 #[requires(x != i32::MIN)]
3 #[ensures(result >= 0)]
4 fn abs(x: i32) -> i32 {
5 if x < 0 {
6 -x
7 } else {
8 x
9 }
10 }

1 #[pure]
2 #[requires(x != i32::MIN)]
3 #[ensures(result >= 0)]
4 pub fn abs_composed(x: i32) -> i32 {
5 max(x, -x)
6 }

Examples of impure functions.

•1 fn greet() {
2 println!("Hello, world!");
3 }

This function is not pure because it has side-eects: it prints ‘Hello,
world!’.

Prusti will reject the purity of this function because it uses an impure
function, namely the print function.

•1 fn update(x: &mut i32) {
2 *x += 1;
3 }

This function is not pure because it has side-eects: it mutates the value
of a variable it does not own1.

1note the does not own part. Local mutable variables are considered pure by Prusti.

27



Prusti rejects the purity of this function because the mutable reference
does not implement copy.

•1 fn roll_die() -> u8 {
2 random_byte() % 6 + 1
3 }

This function is not pure because its result is non-deterministic: calling
the function multiple times gives dierent results.

Prusti will reject the purity of this function because it uses an impure
function, namely the random_byte function.

3.5 Equivalence of the abs-functions

We want to prove that abs_composed gives the same result as abs , for every
input. In other words:

∀𝑥 𝑦. abs_composed(𝑥) = abs(𝑥)

Prusti can prove this, but only if the abs function and the abs_composed

functions are pure, because only pure functions may be used in specica-
tions.

The annotated program is as follows:

1 #[pure]
2 #[requires(x > i32::MIN)]
3 fn abs(x: i32) -> i32 {
4 if x < 0 {
5 -x
6 } else {
7 x
8 }
9 }
10

11 #[pure]
12 fn max(a: i32, b: i32) -> i32 {
13 if a > b {
14 a
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15 } else {
16 b
17 }
18 }
19

20 #[pure]
21 #[requires(x > i32::MIN)]
22 #[ensures(result == abs(x))]
23 pub fn abs_composed(x: i32) -> i32 {
24 max(x, -x)
25 }

3.6 Prusti’s logical syntax

The following is the same max function as described earlier, but with a more
complete specication:

1 #[ensures(result == a || result == b)]
2 #[ensures(result >= a && result >= b)]
3 fn max(a: i32, b: i32) -> i32 {
4 if a > b {
5 a
6 } else {
7 b
8 }
9 }

Its specication, described in natural language, is as follows:

1. The result is equal to at least one of the two input values.

2. The result is greater than or equal to both of the input values.

We now dene a max-function that does not just work on two values, but on
any number of values:

1 fn slice_max(s: &[i32]) -> i32 {
2 let n = s.len();
3

4 if n == 1 {
5 s[0]
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6 } else {
7 max(s[0], slice_max(subslice(s, 1, n)))
8 }
9 }

We would like to give this function a specication similar to the specication
of the two-parameter max-function:

1. The result is equal to at least one of the input values.

2. The result is greater than or equal to all of the input values.

For thisweuse the exists and forall quantiers, and an implication ( ==> ):

1 #[requires(s.len() > 0)]
2 #[ensures(exists(|i: usize| i < s.len() && s[i] == result))]
3 #[ensures(forall(|i: usize| i < s.len() ==> s[i] <= result))]
4 fn slice_max(s: &[i32]) -> i32 {
5 let n = s.len();
6

7 if n == 1 {
8 s[0]
9 } else {
10 max(s[0], slice_max(subslice(s, 1, n)))
11 }
12 }

The following table, directly taken from the Prusti user guide (The Viper Project,
2023b) lists all parts of the syntax. The parts we will use are printed in a bold
font:
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Syntax Meaning

old(...) Value of expression in a previous state

... ==> ... Implication

... <== ... Implication

... <==> ... Biconditional

... === ... Snapshot equality

... !== ... Snapshot inequality

forall(...) Universal quantier

exists(...) Existential quantier

... |= ... Specication entailment
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Chapter 4

Verication of a key-value
store

In this chapter, we take a Rust program and prove its correctness using Prusti.
We do this to gain knowledge of the practical use of Prusti to verify the correct-
ness of a non-trivial program.

The Rust program we look at is an implementation of a key-value store.

The product of our work is a specication for this store. This specication
must:

• Be automatically veriable by Prusti;

• Connect to our intuitive idea of how a key-value store should behave;

• Be usable in the verication of code that uses this store.

This chapter is subdivided into six sections:

• Section 4.1 describes the concept of a key-value store.

• Section 4.2 describes the Rust implementation: the data structure and
the implemented variant of binary search.

• Section 4.3 introduces an example usage of the implementation, as well
as an intuitive description the implementation’s specication.

• In section 4.4 we take a step back and cover the concept of ‘pledges’. We
take two examples of Rust functions that return a mutable reference,
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and learn how ‘pledges’ help in proving their correctness. This concept
is used in the remainder of this chapter.

• Section 4.5 describes the actual specication in Prusti syntax, which we
add to our store implementation.

4.1 Store

The Rust program which we will look at is an implementation of a key-value
store. A key-value store is a mapping from keys to values, for example:

𝑎 ↦→ 𝑥

𝑏 ↦→ 𝑦

𝑐 ↦→ 𝑧

The following operations are commonly dened on a store:

• An operation to get for a specic key the corresponding value. For exam-
ple: ‘what does the key 𝑎 point to?’ gives 𝑥.

• An operation to check whether a key exists in the store. For example:
‘Does the key 𝑑 exist in the store?’ gives ‘no’.

• An operation to update a value corresponding to a key. For example:
‘update the value of the key 𝑏 to 𝑞’ gives the following store:

𝑎 ↦→ 𝑥

𝑏 ↦→ 𝑞

𝑐 ↦→ 𝑧

• An operation to add a new key-value pair to the store. For example: ‘add
the pair 𝑑 ↦→ 𝑥’.

For this case study, we will only implement and verify the rst three opera-
tions.

4.2 Rust store implementation

4.2.1 Data structure

We encode the key-value store in Rust as a slice of tuples, where each tuple
is a key-value pair. The rst element of the tuple is the key, and the second
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element of the tuple is the value.

This slice of pairs must be sorted based on the key, in increasing order. This is
important because we apply binary search on these pairs.

As an example, the following store:

1 ↦→ 'a'

3 ↦→ 'x'

5 ↦→ 'y'

Is encoded in Rust as follows:

[(1, 'a'), (3, 'x'), (5, 'y')]

Note that we choose to give the keys the type i32 (a 32-bit signed integer),
and the values the type char (a character, for example 'a' or ':' ). There
is no particular reason for choosing these types, except for the fact that it is
important that the keys can be compared with each other. This is the case for
i32 .

4.2.2 The ‘contains’ operation

The rst operationwe implement is the operation to decide if the store contains
a certain key. The implementation is as follows:
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1 pub fn contains(
2 pairs: &[(i32, char)],
3 key: i32
4 ) -> bool {
5 let n = pairs.len();
6 if n == 0 {
7 return false;
8 }
9

10 let mid = n / 2;
11

12 if key < pairs[mid].0 {
13 contains(subslice(pairs, 0, mid), key)
14 } else if key == pairs[mid].0 {
15 true
16 } else {
17 contains(subslice(pairs, mid + 1, n), key)
18 }
19 }

In the base case, pairs is the empty slice ( pairs.len() = 0). The empty slice
of course does not contain any key, so we can return false .

If pairs is not empty, then we rst determine the middle of the slice. After
that, we compare the value of the key we are looking for with the value of the
key that is at the middle.

If the key we are looking for has a smaller value than the one in the middle,
then we restrict searching to just the left half of pairs , by rst creating a slice
for the left half, and subsequently calling the same contains function on this
left half.

If the value of the key we search for matches the value of the key in the middle,
then we are done and we can return true, because we know that the store
contains the key.

And in the third case, if the value of the key we are looking for is greater than
de value of the key in the middle, then we restrict the search to the right half
of pairs .

For the reader familiar with the Rust programming language, it might stand
out that the subslice function used here is not a standard Rust function, and
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that pairs[mid..] could be written instead of subslice(pairs, 0, mid) , as
well as pairs[mid+1..] instead of subslice(pairs, mid+1, n) . However, at
the moment of writing, the built in Prusti specication for this notation is not
strong enough for us to use later in this chapter to prove the specication we
want to prove. That is why we use this subslice wrapper function, which we
will give our own, trusted (meaning unveried by Prusti), specication.

subslice is dened as follows:

1 #[trusted]
2 #[requires(start <= end && end <= s.len())]
3 #[ensures(result.len() == end - start)]
4 #[ensures(result.len() <= s.len())]
5 #[ensures(forall(|i: usize|
6 i < result.len() ==> result[i] === s[start + i]))]
7 #[ensures(forall(|i: usize|
8 start <= i && i < end ==> s[i] === result[i - start]))]
9 fn subslice<T>(s: &[T], start: usize, end: usize) -> &[T] {
10 &s[start..end]
11 }

4.2.3 The ‘get’ operation

The second operation we implement is the operation to get, for a certain key,
the corresponding value.

This function too uses the just described subslice function.

1 pub fn get(
2 pairs: &[(i32, char)],
3 key: i32
4 ) -> &char {
5 let mid = pairs.len() / 2;
6

7 if key < pairs[mid].0 {
8 get(subslice(pairs, 0, mid), key)
9 } else if key == pairs[mid].0 {
10 &pairs[mid].1
11 } else {
12 get(subslice(pairs, mid + 1, pairs.len()), key)
13 }
14 }
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Important to notice here is that, unlike the contains function, get does
not check if the slice is empty. This is because get assumes that the store
contains the key. We will later in this chapter convert that assumption to a
pre-condition.

When the key is found, a reference will be returned to the corresponding value.
The notation t.1 , where t is a tuple, means: take the value in the tuple on
index 1, 0-indexed, so the second value.

4.2.4 The ‘get-mut’ operation

The third operation, get-mut, is very similar to the ‘get’ operation, with the
dierence that ‘get-mut’ returns amutable reference, meaning that the user of
‘get-mut’ can change the value of the variable it refers to, eectively updating
the store.

‘get-mut’ is implemented as follows:

1 pub fn get_mut(
2 pairs: &mut [(i32, char)],
3 key: i32
4 ) -> &mut char {
5 let n = pairs.len();
6 let mid = n / 2;
7

8 if key < pairs[mid].0 {
9 get_mut(subslice_mut(pairs, 0, mid), key)
10 } else if key == pairs[mid].0 {
11 snd_mut(index_mut(pairs, mid))
12 } else {
13 get_mut(subslice_mut(pairs, mid + 1, n), key)
14 }
15 }

In the same manner as with the subslice function, where we wrapped a
standard Rust functionality, we do that here with the subslice_mut function
(the mutable counterpart of subslice ), index_mut , and snd_mut . Again, we
do this to be able to add an extra (sometimes trusted) specication to these
functions, because at the time of writing Prusti does not give us strong enough
of a specication.
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These three functions are implemented as follows:

1 #[trusted]
2 #[requires(index < s.len())]
3 #[ensures(*result === old(&s)[index])]
4 #[after_expiry(
5 s.len() == old(&s).len()
6 &&
7 forall(|i: usize|
8 i < s.len() && index != i
9 ==>
10 s[i] === old(&s)[i])
11 &&
12 s[index] === *before_expiry(result)
13 )]
14 fn index_mut<T>(s: &mut [T], index: usize) -> &mut T {
15 &mut s[index]
16 }

1 #[ensures(*result === old(&tuple).1)]
2 #[after_expiry(
3 tuple.0 === old(&tuple).0
4 &&
5 tuple.1 === *before_expiry(result)
6 )]
7 fn snd_mut<T, U>(tuple: &mut (T, U)) -> &mut U {
8 &mut tuple.1
9 }
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1 #[trusted]
2 #[requires(start <= end && end <= s.len())]
3 #[ensures(result.len() == end - start)]
4 #[ensures(forall(|i: usize|
5 i < result.len() ==> result[i] === old(&s)[start + i]))]
6 #[ensures(forall(|i: usize|
7 start <= i && i < end ==> old(&s)[i] === result[i - start]))]
8 #[after_expiry(
9 s.len() == old(&s).len()
10 &&
11 // The values outside the start..end range don't change
12 forall(|i: usize|
13 (i < start || (end <= i && i < s.len()))
14 ==>
15 s[i] === old(&s)[i])
16 &&
17 // The values inside the start..end range are equal to
18 // the full result range
19 forall(|i: usize|
20 start <= i && i < end
21 ==>
22 s[i] === before_expiry(result)[i - start])
23 )]
24 fn subslice_mut<T>(
25 s: &mut [T],
26 start: usize,
27 end: usize
28 ) -> &mut [T] {
29 &mut s[start..end]
30 }

4.3 Example and intuitive specication

We now look at an example of code using our key-value store. We do this for
two reasons:

1. To gain insight in how the store is used and how it should behave.

2. To be able to test the end product, the specication of the store implemen-
tation, against this example. Prusti must be able to verify this example.
This will give us more certainty that the specication is sensible and that
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other usages of the store implementation could be veried as well.

In our example, we use each operation at least one. We addmultiple assertions
with our ideas of how this store should work.

Note that this example is arbitrary, made such that it meets these requirements.
On its own, it is not an interesting program.

This is the example:

1 let mut pairs_array = [(0, 'a'), (2, 'c'), (10, 'd')];
2 let pairs = as_mut_slice(&mut pairs_array);
3

4 assert!(contains(pairs, 2));
5 assert!(!contains(pairs, 3));
6

7 let r0 = get(pairs, 0);
8 assert!(*r0 == 'a');
9

10 let r1 = get_mut(pairs, 2);
11 assert!(*r1 == 'c');
12 *r1 = 'h';
13

14 let r2 = get_mut(pairs, 0);
15 assert!(*r2 == 'a');
16

17 let r3 = get(pairs, 2);
18 assert!(*r3 == 'h');

4.3.1 Intuitive specication

Based on knowledge of the implementation, expectations of a key-value store,
and the example usage, we now draw up an intuitive specication.

Contains

For the contains function to work properly, it requires that the pairs it is given
are incrementally sorted by key.

We expect the contains function to return true if and only if there exists an
element in the slice that has a key that matches the key value given to the
contains function.
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Get

For the get function to work properly, the pairs must be sorted by key, incre-
mentally. Also, the key value that is searched for must exist in the pairs. Finally,
the keys must be unique.

We expect the value of the result to be the value that corresponds to the key in
the store.

Get-mut

For the get-mut function to work properly, the pairs must be sorted by key,
incrementally. Also the key value that is searched for must be in the pairs.
Finally, the keys must be unique.

We expect the value of the result to be the value that corresponds to the key, in
the pairs.

We also expect the get-mut function to not change any key in the store.

Finally, we expect that the return value is a mutable reference to the value
that corresponds to the key. So if the returned mutable reference is used to
mutate its referent, and update it to some value 𝑥, we then expect that the pair
in the store with a matching key now has the value 𝑥.

4.4 Pledges

We take a step back from our key-value store to cover the concept of ‘pledges’,
because we need this concept later in the chapter.

The challenge here is themutability of references to a piece of a larger reference.
We must include in the specication how changes in the returned mutable
reference inuence the original, input, larger reference.

Pledges allow us to draw up such a specication.

4.4.1 Snd

Take for example the wrapper-function snd_mut , which takes a mutable refer-
ence to a tuple and returns a mutable reference to the second element of that
tuple:
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1 fn snd_mut<T, U>(tuple: &mut (T, U)) -> &mut U {
2 &mut tuple.1
3 }

Here is an example of using the snd_mut function:

1 let mut tuple = ('a', 2);
2

3 let r = snd_mut(&mut tuple);
4 *r += 1;
5

6 assert!(tuple.0 == 'a');
7 assert!(tuple.1 == 3);

But which specicationmust we give to snd_mut to verify this example?

The rst important thing to include in the specication is that the returned
value matches the value in the tuple. Pledges are not needed for this. The
following post-condition suces:

1 #[ensures(*result === old(tuple).1)]

Note the usage of the function old , which is part of the Prusti notation. Here,
it is needed because we want to refer to the value of the tuple as it was given
to the function, not the value as it is now.

But now how do we prove that the two assertions succeed? For that we must
include in our specication how modifying the value the result references,
inuences the value of the full tuple. We do this with a pledge:

1 #[after_expiry(
2 tuple.0 === old(&tuple).0
3 &&
4 tuple.1 === *before_expiry(result)
5 )]

This says that after the expiry of the returned value, the rst value of the tuple
is unchanged, and the second value of the tuple is equal to the value that the
returned reference referred to just before it expired.
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This is sucient to prove the example usage of snd_mut .

4.4.2 Index

Another function in which we use pledges is index_mut . This function takes
a mutable slice and an index in that slice, and then gives back a mutable
reference to the element on that index.

The implementation is as follows:

1 fn index_mut<T>(s: &mut [T], index: usize) -> &mut T {
2 &mut s[index]
3 }

It is simply a wrapper around the standard Rust indexing. We create this
wrapper because Prusti currently does not seem to support such a mutable
indexing function. We give this wrapper a trusted specication.

This index_mut can be used to read or update an element from a slice. This is
an example of that:

1 let mut array = [15, 16, 18];
2 let s = as_mut_slice(&mut array);
3

4 let r = index_mut(s, 1);
5 assert!(*r == 16);
6 *r += 1;
7

8 assert!(s[0] == 15);
9 assert!(s[1] == 17);
10 assert!(s[2] == 18);

Which specication must be added to index_mut to be able to verify this
example?

Firstly, the precondition index < s.len() must be added. This pre-condition
is needed to prevent a panic due to out-of-bounds indexing:

1 #[requires(index < s.len())]
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Secondly, for the assert!(*r == 16) to succeed, a post-condition must be
added that states that the value of the returned reference matches the value
on the index location:

1 #[ensures(*result === old(&s)[index])]

Finally, Prusti’s concept of pledges is needed to prove that the last three as-
sertions succeed. To reiterate: with an after_expiry we give a specication
that says something about the mutable reference arguments directly after the
returned mutable reference expires (also see section 2.4.1 on lifetimes).

Without an after_expiry , Prusti cannot say anything about s after the re-
turned borrow expires. The only information it then has, is that it has the
type ‘slice of T’. In other words: after expiry, the original slice s can be any-
thing.

So the following must be specied with regard to s :

1. The length is the same as before index_mut was called;

2. Each element on an index other than index has the value it had before
index_mut was called;

3. On the index index is now the value the returned reference referred to
just before it expired.

Translated to Prusti syntax:

1 #[after_expiry(
2 s.len() == old(&s).len()
3 &&
4 forall(|i: usize|
5 i < s.len() && index != i
6 ==>
7 s[i] === old(&s)[i])
8 &&
9 s[index] === *before_expiry(result)
10 )]

This specication is enough for Prusti to prove the example, and will later
be a sucient specication when verifying the complete specication of the
store.
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4.5 Prusti specication

In this section we discuss the specication in Prusti syntax, which we add to
our store implementation. We rst introduce predicates (section 4.5.1) which
will help in specication for contains (section 4.5.2), get (section 4.5.3) and
get_mut (section 4.5.4).

4.5.1 Predicates

In this sectionwe take the intuitive specication aswedescribed earlier (section
4.3) and convert it into pre-conditions, post-conditions and pledges, notated in
Prusti syntax.

First we dene three predicates. These will make the remainder of the speci-
cation more readable, because their usage will reduce unnecessary repetition.
The usage of predicates will also make it more clear how the intuitive speci-
cation matches the specication in Prusti syntax.

Increasing

The rst predicate is ‘increasing’. Simply said: a slice of pairs is increasing
if it is sorted in increasing order of keys. Or more formally: A sequence of
key-value pairs is increasing if and only if every pair 𝑥 occurring before (to the
left) of some pair 𝑦, it holds that the key of 𝑥 is smaller than the key of 𝑦.

Note that for every sequence of increasing pairs, it also holds that the keys
are unique. Because if there would be two of the same keys then of course it
would not hold that one of these keys is smaller than the other.

In Prusti, the predicate is dened as follows:

1 predicate! {
2 fn increasing(
3 pairs: &[(i32, char)],
4 ) -> bool {
5 forall(|i: usize, j: usize|
6 (i < j && j < pairs.len() ==> pairs[i].0 < pairs[j].0))
7 }
8 }

The attentive reader might notice that this denition deviates from the usual
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denition, where every two adjacent elements are comparedwith each other.

That denition is logically equivalent to the rst denition. The reason for
using the rst denition is a practical one. Prusti seems to more easily verify
specications with this denition.

Has key

The second predicate is called has_key . A sequence of pairs has a certain
key if it contains a pair with that key. More formally: A sequence pairs has
a certain key if and only if there exists an index smaller than the length of
pairs for which on that index there exists a pair with a matching key.

In Prusti, the predicate is dened as follows:

1 predicate! {
2 fn has_key(
3 pairs: &[(i32, char)],
4 key: i32
5 ) -> bool {
6 exists(|i: usize|
7 i < pairs.len() && pairs[i].0 === key,
8 triggers=[(pairs[i],)])
9 }
10 }

The added ‘triggers’ help Prusti in verication and are not logically adding
anything to the specication. We are not entirely clear on what triggers do,
because they are not mentioned in Prusti’s documentation. But they are cer-
tainly essential here. In essence they seem to help in nding a particular value
for the exists .

Maps

The third and last predicate is called maps . We say that a slice of pairsmaps
the key 𝑘 to the value 𝑣 if every pair in the slice with a key that matches 𝑘, has
a value that matches 𝑣. Or, more formally said: a slice of pairs maps the key
𝑘 to the value 𝑣 if and only if for every index i smaller than the amount of
pairs, it holds that if the key of the pair on index i matches the key k , then
the value of the pair on index i matches v .
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This denition might seem to weak, because it does not require a matching
key to be in the pairs at all. Also, it does not require key uniqueness. However,
this predicate will be combined with the predicates increasing (providing
uniqueness) and has_key . Having these requirements in ‘maps’ as well would
be redundant.

In Prusti, the predicate is dened as follows:

1 predicate! {
2 fn maps(
3 pairs: &[(i32, char)],
4 key: i32,
5 value: char
6 ) -> bool {
7 forall(|i: usize|
8 i < pairs.len() && pairs[i].0 === key
9 ==>
10 pairs[i].1 === value)
11 }
12 }

4.5.2 Specication of contains

Recall our intuitive specication of contains as described in section 4.3.

We stated that for the function to work properly, it is essential that the pairs
are sorted, increasingly 1 , by key. We add this requirement in the form of a
pre-condition.

1 #[requires(increasing(pairs))]

We also stated that the contains function must return true if and only if there
is a pair for which the key matches. We add this requirement as a post-
condition.

1 #[ensures(result == has_key(pairs, key))]

1Note that requiring the pairs are increasing is stronger than necessary here. Nondecreas-
ingness (sorted, but may contain duplicates) would suce. We still use increasing , because
a well-formed store should not contain any duplicates anyway.
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This concludes the specication of contains .

1 #[requires(increasing(pairs))]
2 #[ensures(result == has_key(pairs, key))]
3 pub fn contains(
4 pairs: &[(i32, char)],
5 key: i32
6 ) -> bool {
7 let n = pairs.len();
8 if n == 0 {
9 return false;
10 }
11

12 let mid = n / 2;
13

14 if key < pairs[mid].0 {
15 contains(subslice(pairs, 0, mid), key)
16 } else if key == pairs[mid].0 {
17 true
18 } else {
19 contains(subslice(pairs, mid + 1, n), key)
20 }
21 }

4.5.3 Specication of get

Recall from the intuitive specication that for get to work properly, the pairs
must be increasingly sorted, by key. Also, the keysmust be unique. Futhermore,
the key searched for must be in the pairs. We convert those requirements to
the following Prusti pre-condition:

1 #[requires(increasing(pairs))]
2 #[requires(has_key(pairs, key))]

We also stated that the result should be a reference to a value that belongs to
the key. This can be converted into the following post-condition:

1 #[ensures(maps(pairs, key, *result))]

This is the complete specication of get :
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1 #[requires(increasing(pairs))]
2 #[requires(has_key(pairs, key))]
3 #[ensures(maps(pairs, key, *result))]
4 pub fn get(
5 pairs: &[(i32, char)],
6 key: i32
7 ) -> &char {
8 let mid = pairs.len() / 2;
9

10 if key < pairs[mid].0 {
11 get(subslice(pairs, 0, mid), key)
12 } else if key == pairs[mid].0 {
13 &pairs[mid].1
14 } else {
15 get(subslice(pairs, mid + 1, pairs.len()), key)
16 }
17 }

4.5.4 Specication of get_mut

Recall from the intuitive specication that the specication of get_mut is
very similar to that of get , but with some extra requirements, regarding
mutability.

We rst copy the specication of get :

1 #[requires(increasing(pairs))]
2 #[requires(has_key(pairs, key))]
3 #[ensures(maps(old(pairs), key, *result))]

The specication above does not exactly match the specication of get : it
contains the expression old(pairs) where the specication of get contains
just pairs . This is because pairs is now a mutable reference, and its referent
could be changed in the meantime.

Now, we have yet to extend the specication to say something about the value
of pairs directly after the expiry of the returned mutable reference. For this
we need a pledge in Prusti.

We can say about pairs the following at the moment the returned borrow
expires:
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1. The length of pairs is the same as before get_mut was called;

2. All keys are the same as before get_mut was called;

3. All values for which the corresponding key does not match are the same
as before get_mut was called;

4. The pair for which the key matches now has a value that is equal to the
value of the returned reference just before it expired.

These four properties can be written in Prusti as follows:

1 #[after_expiry(
2 pairs.len() == old(pairs.len())
3 &&
4 // Keys don't change
5 forall(|i: usize|
6 i < pairs.len()
7 ==>
8 pairs[i].0 === old(&pairs)[i].0)
9 &&
10 // Pairs with non-matching keys don't change
11 forall(|i: usize|
12 i < pairs.len() && pairs[i].0 != key
13 ==>
14 pairs[i] === old(&pairs)[i])
15 &&
16 maps(pairs, key, *before_expiry(result))
17 )]

And with that we complete the specication of get_mut :

1 #[requires(increasing(pairs))]
2 #[requires(has_key(pairs, key))]
3 #[ensures(maps(old(pairs), key, *result))]
4 #[after_expiry(
5 pairs.len() == old(pairs.len())
6 &&
7 // Keys don't change
8 forall(|i: usize|
9 i < pairs.len()
10 ==>
11 pairs[i].0 === old(&pairs)[i].0)
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12 &&
13 // Pairs with non-matching keys don't change
14 forall(|i: usize|
15 i < pairs.len() && pairs[i].0 != key
16 ==>
17 pairs[i] === old(&pairs)[i])
18 &&
19 maps(pairs, key, *before_expiry(result))
20 )]
21 pub fn get_mut(
22 pairs: &mut [(i32, char)],
23 key: i32
24 ) -> &mut char {
25 let n = pairs.len();
26 let mid = n / 2;
27

28 if key < pairs[mid].0 {
29 get_mut(subslice_mut(pairs, 0, mid), key)
30 } else if key == pairs[mid].0 {
31 snd_mut(index_mut(pairs, mid))
32 } else {
33 get_mut(subslice_mut(pairs, mid + 1, n), key)
34 }
35 }

4.6 Conclusion

Returning to the implementation’s usage example (section 4.3), we see that
Prusti proves its correctness, using the specication of the key-value store.

The specication we created connects to our intuition, and is easily readable
thanks to the use of predicates.

The proof rests on several trusted specications that had to be added because,
at the time of writing, Prusti does not provide them. So if we trust Prusti to
convincingly prove the correctness of the program, just these assumptions
have to be manually checked with great care.
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Chapter 5

Prusti limitations

In this chapter we discuss a list of limitations encountered while creating
the case study. For each of the limitations, we discuss both the problem and
possible workarounds or solutions.

The limitations are split into two categories. The rst is all limitations related to
borrowing (section 5.1), the second is all other limitations (section 5.2).

5.1 Borrowing

5.1.1 Borrow splitting

Recall from chapter 4 the snd_mut function:

1 #[ensures(*result === old(tuple).1)]
2 #[after_expiry(
3 tuple.0 === old(&tuple).0
4 &&
5 tuple.1 === *before_expiry(result)
6 )]
7 fn snd_mut<T, U>(tuple: &mut (T, U)) -> &mut U {
8 &mut tuple.1
9 }

snd_mut takes a unique reference to a tuple of values and returns a unique
reference to the second value. This worked in chapter 4 for the specic use
case. But it would be much nicer to use a more general and reusable function
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instead. Namely a function that takes a unique reference to a tuple of values
and returns a tuple of two unique references, one for each value.

This is possible in Rust:

1 fn split_mut<T, U>(tuple: &mut (T, U)) -> (&mut T, &mut U) {
2 (&mut tuple.0, &mut tuple.1)
3 }

Unfortunately, Prusti does not support Rust’s borrow splitting. Borrow splitting
is taking a reference and splitting it into separate references such that they do
not overlap in the reachable memory.

Upon trying to verify this example, Prusti gives the following error: ‘[Prusti:
unsupported feature] the encoding of pledges does not support this kind of
reborrowing’.

Even giving the function a trusted specication does not help. The following
example fails with a Prusti error as well: ‘Details: Type Tuple([&mut char,
&mut i32]) can not be dereferenced’.

1 #[trusted]
2 #[ensures(
3 *result.0 === old(&tuple).0
4 &&
5 *result.1 === old(&tuple).1
6 )]
7 #[after_expiry(
8 tuple.0 === *before_expiry(result.0)
9 &&
10 tuple.1 === *before_expiry(result.1)
11 )]
12 fn split_mut<T, U>(tuple: &mut (T, U)) -> (&mut T, &mut U) {
13 (&mut tuple.0, &mut tuple.1)
14 }
15

16 fn test_it() {
17 let mut pair = ('a', 2);
18 let (l, r) = split_mut(&mut pair);
19 *l = 'b';
20 assert!(pair.0 == 'b');
21 }
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Theworkaround for this problem is to change the Rust program. A possibility is
to change it such that just one sub-reference is taken, and then another, instead
of splitting into two references. That is what we did in chapter 4. Another form
of this is to have a ‘getter’ and a ‘setter’ function to update the values instead
of splitting.

5.1.2 Structs with reference elds

Prusti also does not support structs with reference elds. The most common
example of that is a reference wrapped in an Option type. Take for example
the following function on which Prusti fails, although it is valid and idiomatic
Rust code:

1 pub fn first(s: &[i32]) -> Option<&i32> {
2 if s.len() == 0 {
3 None
4 } else {
5 Some(&s[0])
6 }
7 }

A workaround for this particular problem, where optionally a reference is
returned, is to change the Rust function to always return the reference. A
pre-condition can then be added to guard against the case where a None type
would have been returned:

1 use prusti_contracts::*;
2

3 #[requires(s.len() > 0)]
4 pub fn first(s: &[i32]) -> &i32 {
5 &s[0]
6 }

5.1.3 Two-phase borrows

Prusti does not support two-phase borrows. Take for example the following
valid piece of Rust code:
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1 subslice_mut(pairs, 0, pairs.len());

Two-phase borrows are a ‘more permissive version of mutable borrows that
allow nested method calls. Such borrows rst act as shared borrows in a
“reservation” phase and can later be "activated" into a full mutable borrow’
(Rust contributors, 2018).

To understand two-phase borrows, it helps to rst look at an expanded form
of the function calls in the above example:

1 subslice_mut(&mut pairs, slice::len(&pairs));

Two references are taken of pairs , of which one is a unique reference. This
expanded form is therefore rejected by Rust’s borrow checker.

But in this specic case, the usage is safe, because of Rust’s evaluation order
(Rust contributors, 2023a): the argument, and therefore the slice::len func-
tion is evaluated before the subslice_mut function is called. To handle this,
Rust internally uses two-phase borrows.

Prusti will say about the rst example that ‘Two-phase borrows are not sup-
ported’. The workaround for this problem is to bind variables to a name, like
this:

1 let mut v = vec![];
2 let n = v.len();
3 v.push(n);

5.1.4 Mutable slice indexing

Prusti does not support mutable slice indexing. For example, Prusti can not
verify the following program:

1 #[requires(s.len() > 0)]
2 pub fn head(s: &mut [i32]) -> &mut i32 {
3 &mut s[0]
4 }
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The workaround is to wrap the mutable slice index function into a trusted
function and give it a specication. The trusted function can then be used
instead.

1 #[trusted]
2 #[requires(index < s.len())]
3 #[ensures(*result == old(s[index]))]
4 #[after_expiry(
5 s.len() == old(s.len())
6 &&
7 forall(|i: usize|
8 (i < s.len() && index != i) ==> s[i] == old(s[i]))
9 &&
10 s[index] == before_expiry(*result)
11 )]
12 pub fn index_mut(s: &mut [i32], index: usize) -> &mut i32 {
13 &mut s[index]
14 }

A more permanent solution would be to include this specication in Prusti
itself.

5.2 Other limitations

5.2.1 usize guarantees

In Rust, the size of the usize integer type is ‘how many bytes it takes to
reference any location in memory’ (Rust contributors, 2023b). Therefore, there
will never be an integer overow in the following code:

1 enum List<T> {
2 Nil,
3 Cons(T, Box<List<T>>),
4 }
5

6 impl<T> List<T> {
7 fn len(&self) -> usize {
8 match self {
9 List::Nil => 0,
10 List::Cons(_, next) => {
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11 // overflow will never happen here, but
12 // how to convince prusti of that?
13 next.len() + 1
14 }
15 }
16 }
17 }

But Prusti is not able to prove this.

This problem is not specic to Prusti. Extensive formal semantics of C and
Rust in proof assistants, like CompCert (Leroy & Blazy, 2008), RustBelt (Jung
et al., 2018a), and the semantics of C by Krebbers (Krebbers, 2015), assume an
unbounded memory model, i.e., an innite address space. This means that
these semantics allow for lists that are bigger than usize::MAX so one cannot
prove that overow does not happen in this example.

5.2.2 Multiple after-expiries

Prusti fails with an ‘unexpected error’ when trying to verify a program with
multiple after_expiry annotations on the same function, like this one:

1 #[after_expiry(true)]
2 #[after_expiry(true)]
3 fn id(x: &mut i32) -> &mut i32 {
4 x
5 }

The above should not fail, or at least a descriptive error message should be
shown.

The x is to write just one after_expiry , possible with multiple statements
separated by a conjunction ( && ).

A GitHub issue was created for this problem 1.
1https://github.com/viperproject/prusti-dev/issues/1190
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5.2.3 Assert that false cannot be proved

While writing a trusted specication, it is very useful to temporarily insert an
assert!(false) into the program to check if the verication with Prusti now
fails. If it does not fail, then we know that the specication contained an error:
for example, the precondition might be contradictory.

An ergonomic improvement would be to have a statement that achieves this
that does not have to be removed.

5.2.4 Trigger documentation

A rst time Prusti user might nd out that to prove some statements in Prusti,
it seems to be necessary to add a prusti_assert that exactly repeats a known
fact. For example, Prusti fails to verify the following example:

1 #[requires(pairs.len() > 0)]
2 #[ensures(result ==> exists(|i: usize| pairs[i].0 == key))]
3 pub fn head_match_first(pairs: &[(i32, char)], key: i32) -> bool {
4 if pairs[0].0 == key {
5 true
6 } else {
7 false
8 }
9 }

But, perhaps surprisingly, just one minor change xes that:

1 #[requires(pairs.len() > 0)]
2 #[ensures(result ==> exists(|i: usize| pairs[i].0 == key))]
3 pub fn head_match_first(pairs: &[(i32, char)], key: i32) -> bool {
4 if pairs[0].0 == key {
5 prusti_assert!(pairs[0].0 == key);
6 true
7 } else {
8 false
9 }
10 }

It turns out that this is due to Prusti automatically choosing a trigger. This
choice was inuenced by the prusti_assert .
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The x is to manually set a trigger, such that the exists line looks like
this:

1 #[ensures(
2 result
3 ==>
4 exists(|i: usize| pairs[i].0 == key, triggers=[(pairs[i],)])
5 )]

However, this is not documented. A GitHub issue exists for this 2.

5.2.5 Missing termination check on pure functions

We can write a pure function in Prusti that does not terminate. Take for
example this function, which Prusti accepts as a good pure function:

1 #[pure]
2 pub fn nonterminating_pure() -> i32 {
3 nonterminating_pure()
4 }

We can now add an ensures(..) about the result:

1 #[pure]
2 #[ensures(result == 10)]
3 pub fn nonterminating_pure() -> i32 {
4 nonterminating_pure()
5 }

This is ne, because the ensures is about partial correctness, and the function
never terminates.

Going further, we can ensure any partial correctness property of this func-
tion:

1 #[pure]
2 #[ensures(result == 10)]
3 #[ensures(result == 8)]
4 #[ensures(false)]

2https://github.com/viperproject/prusti-dev/issues/1285
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5 pub fn nonterminating_pure() -> i32 {
6 nonterminating_pure()
7 }

We can then use this nonterminating_pure in another proof (here for foo ),
and prove anything there as well:

1 #[pure]
2 #[ensures(result == 10)]
3 #[ensures(result == 8)]
4 #[ensures(false)]
5 pub fn nonterminating_pure() -> i32 {
6 nonterminating_pure()
7 }
8

9 #[ensures(false)]
10 #[ensures(nonterminating_pure() == 7)]
11 pub fn foo() {
12 }

The example above is problematic. No assumptions were explicitly introduced.
Yet, we can add ensures(false) to foo .

This could be prevented by requiring that pure functions must be proven to
terminate, but Prusti currently has no such check.
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Chapter 6

Related work

In this chapter, we discuss related work. The focus lies on verication tools
similar to Prusti. This means that we will mostly discuss veriers for Rust
programs, and specically static analysis tools.

This chapter is partly based on an online list of Rust verication tools (“Rust
verication tools”, 2021).

6.1 Rust verication

6.1.1 Dynamic verication tools

Dynamic verication tools run the code under inspection in the verication
process.

MIRI is an interpreter for Rust’s intermediate representation (MIRI contrib-
utors, 2023). It checks for undened behavior while running. MIRI can, for
example, detect out-of-bound memory accesses, use-after-free, and invalid
usages of uninitialized data.

Loom (loom contributors, 2023) and Shuttle (shuttle contributors, 2023) are
both dynamic concurrency checkers. They can be used to nd bugs related to
concurrency. They work by controlling the scheduling of each thread. Loom
exhaustively checks all thread scheduling permutations, while trying to re-
duce the search space. Shuttle, on the other hand, checks randomly selected
permutations guided by heuristics, trading soundness for scalability.

Proptest is a property testing framework (Proptest contributors, 2023). It can
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be used to test, for arbitrary inputs, that certain user-dened properties hold.
When it nds an input for which the program crashes or the property does not
hold, it automatically nds theminimal test case to reproduce the failure.

6.1.2 Static verication tools

Static verication tools, like Prusti, do not run the code under inspection
in the verication process, but rather statically analyze it. They generally
provide more assurances than dynamic verication tools, but may require
more expertise to use.

A common architecture for program veriers is to rst generate a set of veri-
cation conditions, and then process them (Leino & Moskal, 2010).

This notion helps us categorize program veriers based on nature of user-
interaction. We distinguish three categories (Leino & Moskal, 2010):

1. Automatic: the user does not provide input to guide the program verier;

2. Auto-active: the user provides guiding input before the generation of the
verication conditions.

3. Interactive: the user provides guiding input after the generation of the
verication conditions;

Automatic

Automatic program veriers just take the source code as input, possibly with
an added specication. The tool then attempts to verify the code’s correctness
without any guidance from the user.

Clippy (Clippy contributors, 2023c) is a linter for Rust that nds known, com-
mon mistakes in the source code (Clippy contributors, 2023a). It is a very
popular tool, and it already includes more than 550 lints (Clippy contributors,
2023b).

KANI is a model checker, ‘particularly useful for verifying unsafe code in
Rust’ (The Kani Rust Verier, 2023). It veries memory safety of unsafe code,
absence of unexpected behaviour like integer overows, and the absence of
panics (including failing user-specied statements). The user must write a
‘proof harness’, similar to a test, but with the dierence that it can be used to
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check a function’s correctness for all valid inputs instead of some particular
input.

Crux-mir is a tool for static symbolic execution of Rust code (Galois, Inc., 2022).
Just like KANI it also tries to prove that a test passes for all valid inputs, and
not just for some particular inputs. It seems to have less of a focus on unsafe
code than KANI does.

Crust can check unsafe code. It ‘combines exhaustive test generation and
bounded model checking’ (Toman et al., 2015). The Crust project is no longer
maintained (Toman et al., 2022).

MIRAI is ‘an abstract interpreter for the Rust compiler’s mid-level intermediate
representation (MIR)’ (Facebook, Inc., 2023). It can both check for panics, and
it can check for functional correctness properties, added as annotations to the
Rust program.

Auto-active

Generally, auto-active program veriers do not just allow the user to add a
specication to the source code, but also allow the user to add hints to the code
to guide the tool.

Right now there are two big auto-active program veriers for Rust: Prusti,
which is the subject of this report, and Creusot.

Creusot (Denis et al., 2022) is an auto-active verication tool. Like Prusti, it
allows the user to annotate the Rust program with a specication, including
for example loop invariants. Creusot takes such an annotated program and
translates it to the Why3 language. CreuSAT (Skotåm, 2022) is a veried SAT
solver. It is a big example of Creusot used in practice.

Interactive

Interactive program veriers are guided by the user in the process of verica-
tion. This guidance is often in the form of the user choosing tactics.

Electrolysis translates Rust programs to denitions in the Lean theorem prover
(de Moura et al., 2015; Ullrich, 2016, 2017a, 2017b).

Aeneas (Ho & Protzenko, 2022) translates Rust programs into a pure lambda
calculus. This functionally equivalent program can then be proved in a theo-
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rem prover of the users choice. Right now only an F* backend is implemented,
and a Coq backend is in the works. Aeneas explicitly does not focus on proving
unsafe-blocks, it “shines on non-unsafe Rust programs, and can be comple-
mented by more advanced tools such as RustBelt for unsafe parts.” Aeneas
also does not tackle interior mutability, leaving that to future work. In Aeneas,
no annotations are added to the Rust code. Instead, it expects the user to guide
the theorem prover if needed after translation.

Rustbelt (Jung et al., 2018b) provides a ‘formal (and machine-checked) safety
proof for a language representing a realistic subset of Rust.’ The proof can be
used to verify the correctness of Rust libraries using unsafe features.

RustHornBelt is ‘the rst machine-checked proof of soundness for RustHorn-
style verication’ (Matsushita et al., 2022). It uses and extends RustBelt’s model
to reason about both safety and semantics.

6.2 Verication for other low-level languages

Rust provides a lot of safety guarantees by default. For this reason, Rust pro-
gram verication can omit the checks for some program properties and even
use them as assumptions. Therefore, the verication of programs is more
involved for other low-level languages that do not have these safety guarantees
that Rust provides by default, like C.

6.2.1 Verifast

Verifast (Jacobs & Piessens, 2008) is an auto-active verication tool for C and
Java. It is based on separation logic (Reynolds, 2002), and forward symbolic
execution. To use it, users must add annotations to the source program. There
are many examples of its usage (Jacobs, 2011), including the verication of a
Java Chat Server (Cuypers et al., 2009), and the verication of cryptographic
protocol implementations in C (Vanspauwen & Jacobs, 2015).
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Chapter 7

Conclusions and future work

In this report, we discussed the case study of verifying a key-value store us-
ing Prusti. This shows how Prusti can be used to verify a non-trivial Rust
program.

We also presented a list of limitations encountered in the process of verify-
ing the key-value store. This can help users of Prusti, and it can aid in the
development of Prusti and similar program veriers.

Further research directions include comparing Creusot to Prusti by verifying
the same key-value store using Creusot. Other future research could be the
verication of a similar, bigger program, for example an implementation of a
hash table, and discuss what challenges arise. Finally, one could take one or
more of the limitations from section 5 and x them.
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