
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

A feasibility study on analyzing and predicting client-side energy
consumption of web browsing

Author:
Stefan Weijers
s1032454

First supervisor/assessor:
Dr. Bernard van Gastel

Second assessor:
Dr. Twan van Laarhoven

August 22, 2023

Acknowledgements

Firstly, I want to express my gratitude towards professor Bernard van Gastel
for his support during the project, it was ambitious, but we got through it.
I also want to thank my friend Wim Selles, for providing support when I
struggled to figure out JavaScript.

Finally, I want to thank my family, my friends and my girlfriend for sup-
porting me from the start and always believing in me, even when I doubted
myself.

1

Abstract

This paper attempts to prove the feasibility of predicting the client side
energy consumption of loading webpages on Google Chrome, Mozilla Firefox
and Apple Webkit. We achieve this by collecting energy consumption data
and a collection of features of the measured websites and then training a
neural network using the energy consumption as classes, treating this as a
classification problem. We use K-Fold cross-validation in order to validate
the neural networks performance, showing us that while changes are needed
when it comes to features and data amount, it is in fact possible to predict
this energy consumption with reasonable accuracy.

Contents

1 Introduction 3

2 Validity 5
2.1 Browsing emulation . 5

2.1.1 Playwright . 5
2.1.2 Rendering . 6

2.2 Exclusion and Measurement 6
2.2.1 Attributes . 6
2.2.2 Idle energy consumption 7

2.3 Prediction . 8
2.3.1 What is TINN? . 8
2.3.2 Why TINN? . 8
2.3.3 Difficulties . 9
2.3.4 Validation . 9

3 Measuring 10
3.1 Testing Setup . 10
3.2 How do we actually measure 10

3.2.1 Idle Energy Consumption 11
3.2.2 Data Gathering . 12

4 Predicting 15
4.1 Data Input . 15

4.1.1 Data formatting . 15
4.1.2 Data object . 16

4.2 Training and Validation . 16
4.2.1 Generating K-Folds 16
4.2.2 Training . 17
4.2.3 Validation . 18

5 Results 20
5.1 Energy Consumption . 20
5.2 Network Accuracy and Error 20
5.3 Improvements . 21

1

5.3.1 Overfitting . 21
5.3.2 Optimizing runtime 22
5.3.3 Lack of Data . 24
5.3.4 Possible Alternatives 25

6 Related Work 26
6.1 websitecarbon.com . 26
6.2 Energy Wars - Chrome vs. Firefox 27

7 Applications 29
7.1 Browser extension . 29
7.2 Other Scenarios . 29

8 Discussion 31
8.1 Results . 31
8.2 Improving the measuring process 31
8.3 Improving the prediction accuracy 32
8.4 What’s next? . 32

8.4.1 Expanding existing research 32
8.4.2 Browser feature . 32

A Sample output from server 36

B Sample Data 37
B.1 Successful measurement . 37
B.2 Error when connecting to website 37
B.3 Unstable idle . 38
B.4 Fluctuated idle . 38

C ODROID-H3+ Specifications 39

D Python script for adapting data 40

2

Chapter 1

Introduction

In today’s trend of sustainability, we want to find ways we can improve our
energy consumption when doing everyday tasks. Web browsing, among oth-
ers, stands out as one of the most prevalent activities performed by users. In
2022, China alone had over 1 billion users using the internet, and the US had
307 million. [1]. Consequently, users are engaged in various online activities,
such as browsing the web, checking their emails, looking up the weather or
browsing through news websites. For instance, the website ad.nl, the web-
site of the Dutch newspaper ”Algemeen Dagblad”, is the 11th most visited
website in the Netherlands according to data published by DataForSEO.[2]

This research aims to establish a proof of concept of estimating the client-
side energy consumption of loading a website, by making use of abstract
metrics and a neural network. Any metric we use should be easily adjustable
for new browsers and hardware. In order to gather data for this purpose,
we limit ourselves to the Top 1000 websites by traffic in the Netherlands, as
published by DataForSEO.[2] The browsers we will be analyzing are Google
Chrome, Mozilla Firefox and Apple Webkit. We chose these three browsers
because of their development history and their technical differences. This,
in all, leads us to the following research question:

Is it feasible to predict client-sided energy usage of load-
ing a webpage?

In order to establish a compelling proof of concept, this research will de-
velop a measuring methodology to evaluate client-side energy consumption
on desktops and then generate a dataset by automating this method on the
top 1000 websites mentioned before, making use of GitLab CI/CD. Then,
this dataset will be used to train a neural network, which can then serve as
a proof of concept, provided the accuracy meets the desired criteria.

In order to tackle our research question, it is important we first discuss
important considerations that have to be made with respect to validity of
our research (see Chapter 2). Keeping these considerations in mind, we

3

ad.nl

establish our methodology and prediction methods making sure we adhere
to our conditions established in Chapter 2 (see Chapter 3 and 4). We then
discuss our results and possible improvements, giving suggestions on what to
improve in order to achieve a higher accuracy (see Chapter 5. In chapter 6 we
explore related work, comparing our conclusions to what other researchers
achieved and elaborating how we expand on their research. After this, we
argue how our research can be applied to daily use, showing why our research
is important (see Chapter 7).

4

Chapter 2

Validity

In this Chapter, we will be discussing the challenges with respect to validity.
We attempt to prove that our research is, in fact, a valid method of answering
the research question posed by us in Chapter 1.

2.1 Browsing emulation

In order to answer the research question, we need to obtain data on client-
sided energy consumption. However, since we want to automate this process,
it will be running on a server. This already leads us to a problem; There is
no screen to display the page on. Given we want to run the data-collection
script on this server, it is crucial that what we use accurately depicts a
user’s behavior when loading a webpage, in a display-less environment. In
this section, we will justify that our implementation is an adequate method
for depicting this behavior.

2.1.1 Playwright

Playwright1 is a library developed by Microsoft with the purpose of end-
to-end testing for web apps. It provides a headless browser instance, al-
lowing automated loading of webpages through scripting. Playwright exclu-
sively supports are Google Chrome, Firefox and Apple Webkit. A headless
browser instance refers to a browser without any graphical interface. With
Playwright, we can efficiently emulate browser behavior and automatically
load our webpages. In Playwright, you begin by creating a new ”page” and
then proceed to navigate to the desired site. This process mirrors the typ-
ical user experience when opening a new tab and navigating to a website.
Therefore, we believe using playwright is an accurate depiction of this part
of the browsing process.

1playwright.dev: Playwright, developed by Microsoft

5

https://playwright.dev/

2.1.2 Rendering

Playwright has a lot of built in functions that can be used on loaded pages.
Two relevant options for the purpose of rendering the page were
.screenshot({fullPage: true}) and .pdf. We decided against .pdf, as
making a pdf of a webpage is an entirely different process to the user loading
up the website. In order to load a page, we have to use page.goto(). This
loads the webpage and renders the webpage in the viewport as defined. We
defined the viewport as 1920x1080, as this the most common desktop reso-
lution worldwide. 2. If goto is given the option waitUntil: networkidle,
it will only finish when every element of the page is loaded. When calling
.screenshot({fullPage: true}) over a page, playwright manually scrolls
through the page, making screenshots of every slice and then stiches these
together. We decided to only use goto using the option ”networkidle”, as
we believe this is the closest to what a normal user would do when loading
a webpage. Using screenshot would result in unrepresentative CPU usage
relative to a normal user, which would make our method unrepresentative.

2.2 Exclusion and Measurement

With so many steps to keep in mind, it is also important that steps are
excluded from our final energy measurement. Starting up the browser, for
example, should not be included in the final measurement. A comprehensive
list of all excluded processes include:

• Browser launch

• New Tab Launch

• Energy calculation

• Screenshot verification

• Idle energy consumed by the machine

More information on how these processes are excluded from measuring
can be found in Chapter 3

2.2.1 Attributes

In order to predict the energy usage, we need attributes in our dataset. We
will be discussing all 6 attributes we are using, explaining why we chose
them for our final dataset.

2As retrieved from statcounter: https://gs.statcounter.com/screen-resolution-stats

6

https://gs.statcounter.com/screen-resolution-stats

Time

We make use of the time it took the browser to load the page, we use this
because of the implication that if a website took long to load, it will probably
cause a higher energy consumption.

Body size

We also make use of the response body size, this will give us an indication
of the size of the webpage that is loaded by the browser, a larger body size
should imply higher energy consumption, as there is a bigger file to load.

Scripts

Even though the content of scripts within a webpage can vary massively, we
believe the presence of scripts can still indicate either higher or lower energy
consumption. For example, lack of images on a webpage but presence of
scripts could imply the images are loaded through a script. Therefore we
decided on including the amount of scripts in the data provided to the neural
network.

Images

Images on a webpage could, in theory, lead to higher energy consump-
tion when loading a webpage, since a picture needs to be rendered and
the browser has to download the pictures and then display them.

DIVs

The amount of DIVs on a page should give us an indication of how many
elements there are on the webpage, which could help the neural network
predict the energy usage.

Buttons

When manually analyzing the gathered data, there was a big variety in
amount of buttons between webpages. Therefore, we decided on including
this data in the data we provide to the neural network.

2.2.2 Idle energy consumption

Something important to keep in mind is that a computer has background
processes that also take up energy. These processes and their energy con-
sumption should by all means be accounted for. We want to make sure the
idle energy consumption is stable for at least 10 seconds before measuring.
This way we assure that it is stable during measurement and we can account

7

for it in the final calculation. Technical details on how this is achieved can
be found in Chapter 3

2.3 Prediction

The second step of answering our research question involves researching
methods for predicting this energy usage. One of these methods is using
neural networks in order to predict the energy consumption

2.3.1 What is TINN?

TINN (Tiny Neural Network), is a 200 line dependency-free neural network
written in C, developed by Gustav Louw[3]. It has one hidden layer, and
uses sigmoidal activation for its neurons. Sigmoidal activation is one of many
ways to calculate whether a neuron activates or not. The exact mathematical
formula can be found on sites such as wikipedia3, but in TINN’s source code
it is defined as follows:

// Activation function.

static float act(const float a)

{

return 1.0f / (1.0f + expf(-a));

}

}

A TINN network takes arrays of floats in order to train itself. It performs
this training process using forward and backwards propagation. Backwards
propagation is the process of performing a backward pass through the model
to adjust neuron weights according to the target prediction and actual pre-
diction. Forward propagation is simply giving the network data and having
it generate a prediction. By going back and forth enough times, we train
the neural network, which gives us a trained neural network that, in theory,
predicts the energy usage accordingly.

2.3.2 Why TINN?

In order to answer the research question, we need to obtain a proof of concept
that some framework is capable of predicting the energy usage of webpages
on the client-side. Given TINN’s minimalism, it is ideal to research if it is,
in fact, feasible to predict energy usage with TINN. If it is possible with
TINN’s tiny architecture (only one hidden layer), or at least promising, it is
very plausible that a more fleshed out neural network library would be able
to more accurately predict the energy usage. However, if TINN proves to

3Wikipedia page for Sigmoid Function

8

https://en.wikipedia.org/wiki/Sigmoid_function

be a reliable library for prediction, it can even be used for applications in
embedded systems. More info on this can be found in Chapter 7.

2.3.3 Difficulties

While TINN offers a lightweight and efficient solution for neural network im-
plementations, it also comes with some limitations. Firstly, due to its focus
on being compact, TINN lacks some advanced features present in more com-
prehensive neural network frameworks, like having multiple hidden layers,
being able to predict actual values, making use of loss functions, support-
ing mini-batching, among others. TINN is limited to class prediction, using
neuron activation. This, we believe, is adequate for providing a feasibility
proof. If TINN can predict the range the energy usage will be in, it would
be a positive result.

2.3.4 Validation

In order to validate that our neural network is adequate, we need to apply
some validation technique to our network. We decided on using K-Fold
cross-validation for this purpose, given its simplicity and reliabilty.[4][5] K-
Fold validation splits the dataset into a given k amount of ”folds”, which
are basically subsets of the dataset. For our dataset, we split into 10, given
its size. We iterate over the 5 folds, where every iteration our testing set
is the fold we iterate on, and the training set is the remaining 4 folds. We
keep track of two performance metrics in every iteration; the average error,
and the percentage that the network guessed correctly. At the end, we
take the average of every iterations performance metric in order to assess
the performance of the network. In order to prove feasibility, we want an
accuracy of around 50%. Exact implementations can be found in Chapter
4.

9

Chapter 3

Measuring

3.1 Testing Setup

In order to measure the energy, we make use of a specialized setup using an
ODROID-H3+ and a INA260. The INA260 sits between the power supply
of the ODROID and the ODROID itself. The ODROID-H3+ is a x86 64-bit
single board computer, which we utilize as a server. Specifications can be
found in Appendix C.

A note on the INA260

We want to make sure that the INA260 is a proper method of measuring
energy usage so it is important to confirm the accuracy. From the datasheet
provided by Texas Instruments1, we can derive that the maximum error
is 0.15%, while it usually is around 0.02%. We believe this a sufficient
percentage for us to derive valid conclusions from the output of the INA260.

The server that runs on the Odroid is a Debian server that runs on the
latest version. The server makes it’s energy data available by responding
to HTTP post requests. The information is returned in JSON format, an
example can be found in the appendix.

3.2 How do we actually measure

In order to measure the energy usage of a browser rendering a webpage, we
have to consider many factors involved in the process. A few of note:

• The browser starting up should not be part of the measuring process.

• Processes in the background might make the data invalid

1Datasheet found at https://www.ti.com/product/INA260

10

https://www.ti.com/product/INA260

• Idle consumption of energy should not be included in the total energy
consumed.

The browser is started before any measurements are done. We also make
sure to make the program sleep after starting the browser in order to let the
CPU come to a ’resting’ state. After trial and error, we found that 10
seconds of sleep was enough to keep the idle energy consumption consistent.
In order to make sure that our data is not affected by background processes,
we make sure to do idle energy checks before and after the render is made,
to make sure the idle consumption is consistent, this will be described in
more detail later on. In order to make sure that idle energy consumption
is not included, we make use of the number of measurements between the
measurement captured before the render and the measurement captured
after the render. Before rendering, we capture two measurements of the
(hopefully) idle energy consumption at that point. In the system, this is
called electricity_consumed_current. We then take the difference in
amount of measurements between these two points, and then multiply the
idle energy consumed by this amount. This should give us the total amount
of idle energy consumed by the machine during the render. If we then simply
substract the overal total found by this number of idle energy, we get the
energy consumed by the browser.

3.2.1 Idle Energy Consumption

As mentioned in Chapter 2, we want to make sure that the idle energy
consumption is monitored throughout the measurement. This is especially
important because fluctuations in background consumption can wildly af-
fect results. If idle consumption were to rise or drop massively during the
rendering process, the results would be skewed, and end up higher or lower.
In order to avert this risk, we make sure the idle is stable for 10 seconds
before doing our measurements. This is done as following:

async function stabilize(baseline){

var attempts = 0;

var last_bound = Date.now();

while ((Date.now() - last_bound) < 10000){

await sleep(100);

var idle = (await getEnergy(energyStats)).cur

if (Math.abs(idle - baseline) > 1){

last_bound = Date.now();

}

if (attempts >= 600){

return -1;

}

11

attempts = attempts + 1;

}

return 0;

}

This function checks every 0.1 seconds if the idle has gone out of bounds,
if it does not go out of bounds for 10 seconds, we call it stable and continue
with the render.

This returns −1 if the idle energy did not stabilize within 60 seconds,
and 0 otherwise. This way, we can assure that the idle energy consumption
is stable before rendering, making us able to use it. We do one extra check
after rendering, to make sure that the idle consumption after is not too far
from the idle consumption before rendering.

3.2.2 Data Gathering

The main interest is of course the energy consumption. However, in order
to give the neural network enough data to predict the energy consumption,
we need to give it certain attributes. We keep track of the amount of scripts
within a page, the amount of images, the amount of divs, and the amount
of buttons. We believe these elements give a good rough indication of whats
apparent on a page. Manual analysis also showed that in sample date these
variables varied a lot between different pages. We also measure the time it
took to load the page, and the body size of the response. An example of
how a data entry looks can be found in Appendix B.

Page Content

We collect page content (SCRIPT,IMG,DIV,BUTTON) using a javascript
library called JSDOM2. We take the page content from the webpage using
the Playwright API, then we load this into a dom object using the library.
Then, we can simply count how many elements that are that match the
tagnames we provide. We turn this information into a dictionary, to then
transform this into a JSON string using JSON.stringify()

function createElementList(document, elementlist){

results = {}

for (let i in elementlist){

var list = document.getElementsByTagName(elementlist[i])

results[elementlist[i]] = list.length

}

return results;

}

2JSDOM Github Page can be found at https://github.com/jsdom/jsdom

12

https://github.com/jsdom/jsdom

var content = await page.content();

const { document } = (new JSDOM(content)).window;

var elements = createElementList(document, ["SCRIPT", "IMG", "DIV", "BUTTON"])

var pageContent = JSON.stringify(elements);

Body size and Time

In order to measure time, we simply make use of Date.now() right before
and after loading the page. For body size, we use a listener on page. This
listener calls its defined function when the request is finished (recieved a
response). We then use an inbuilt function on the response data, which
gives us the body size. Of course, this can error, in which case we set it to
0.

var bodysize;

page.on("requestfinished", async data => {

try {

bodysize = (await data.sizes()).responseBodySize;

} catch (e) {

console.log('Failed to get body size, error: ', e)

bodysize = 0

}

})

Data structure

An example of the structuring can be found in Appendix B.1, every url is
an entry in a JSON file, with its attributes being as follows:

• screenshot: Succesful/Failed - Shows whether taking screenshot was
successful or not

• bodySize: Integer - Response body size in bytes

• time: Integer - Loading time in milliseconds

• adjusted_total: Float - Raw total energy consumed subtracted by
the idle energy consumed

• total: Float - Raw total energy consumed

• idle1: Float - Idle energy consumption before render

13

• idle2: Float - Idle energy consumption after render

• pageContent: Collection - Page content as described in section 3.2.3

Of course, as mentioned before, things can go wrong during the mea-
suring process, if this is the case the entry is changed, depending on what
happened. In the case of a connection error, the url is simply paired with a
simple string saying ”errored” (see Appendix B.2).

In the case of the script not being able to stabilize the idle, the script
ends the measurement and outputs the baseline idle used, and the last idle
measured during stabilizing. An example can be found in Appendix B.3.

In the last case, the idle energy consumption after measuring differs too
much from the idle energy consumption before measuring. In this case, the
script outputs the site with status ”fluctuated” along with the baseline idle
used, the idle energy consumption before measuring and the idle energy
consumption after measuring. An example can be found in Appendix B.4.

14

Chapter 4

Predicting

In this chapter we will describe how we attempt to assess the performance
of TINN on our dataset, making use of K-Fold cross-validation. We will
also describe how we can then use TINN in order to predict energy usage
on websites that are not present in the dataset.

It is important to note that the base for the code used in this paragraph
is taken from the example program contained within official TINN GitHub
Repo.[3]

4.1 Data Input

4.1.1 Data formatting

In order to properly input our data into the neural network for training, we
have a secondary output from the script which is simply a .txt file with the
data in a slightly different format from the JSON file. It simply puts all data
points on a single line, without labels. In order, they are: time, body size,
scripts, images, divs, buttons, energy usage. (see Appendix (B.1)). How-
ever, this is not quite enough, as TINN is only capable of class prediction.
Therefore, we divide the possibilities for every entries’ energy consumption
into 6.

• Below 10 - ”A”

• Between 10 and 20 - ”B”

• Between 20 and 30 - ”C”

• Between 30 and 40 - ”D”

• Between 40 and 50 - ”E”

• Above 50 - ”F”

15

We give them the labels A - F in order to resemble the European energy
label (Not accurately represented)1.

Using a python script, which can be found in Appendix D, we transform
our raw data to data that the neural network can use in order to train and
predict the energy usage.

4.1.2 Data object

In order to properly store the data within C, we make use of a C struct called
Data. This was taken from the example provided in the github repository
of TINN. [3]

typedef struct

{

// 2D floating point array of input.

float** in;

// 2D floating point array of target.

float** tg;

// Number of inputs to neural network.

int nips;

// Number of outputs to neural network.

int nops;

// Number of rows in file (number of sets for neural network).

int rows;

}

Data;

The input are the attributes, the target is the actual class of the at-
tributes (the energy usage). nips is the number of attributes we input into
the network, nops the amount of possible classes.

4.2 Training and Validation

4.2.1 Generating K-Folds

In order to perform K-Fold cross validation we need to generate 10 folds,
where 9 are used for testing. We want to use all folds for testing at least
once. We do this by looping the following code 10 times.

int start_index = fold * fold_size;

const Data train_fold = ndata(train_data.nips, train_data.nops, train_data.rows

- fold_size);

1More info to be found at: commision.europa.eu

16

https://commission.europa.eu/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and-ecodesign/about_en

const Data test_fold = ndata(train_data.nips, train_data.nops, fold_size);

int train_i = 0, test_i = 0;

for (int i = 0; i < train_data.rows; i++){

if (i >= start_index && i < start_index + fold_size){

test_fold.in[test_i] = train_data.in[i];

test_fold.tg[test_i] = train_data.tg[i];

test_i++;

} else {

train_fold.in[train_i] = train_data.in[i];

train_fold.tg[train_i] = train_data.tg[i];

train_i++;

}

}

Where fold_size is the amount of rows divided by the amount of folds.
We store the data within the test fold in a Data object called test_fold,
and all other data is stored in a training dataset.

4.2.2 Training

We then train for 1024 iterations, and every iteration we anneal our learning
rate by multiplying it by the anneal rate, which we set to 0.99. We shuffle
our data every iteration, and then use TINN’s xttrain function to train the
network. This is implemented as follows:

for(int i = 0; i < iterations; i++) {

shuffle(train_fold);

float error = 0.0f;

for(int j = 0; j < train_fold.rows; j++)

{

const float* const in = train_fold.in[j];

const float* const tg = train_fold.tg[j];

error += xttrain(tinn, in, tg, rate);

}

printf("error %.12f :: learning rate %f\n",

(double) error / train_fold.rows,

(double) rate);

rate *= anneal;

}

We shuffle the train data before hand, making sure we vary our data,
then we train our network using the built-in function, and then at the end

17

we anneal the learning rate at a rate such that at the end of all learning
cycles, the learning rate is close to 0. We do this because if the learning
rate stays too high, the network fails to properly train and the accuracy
will drop. This was discovered using trial-and-error. We discovered that an
anneal rate of 0.99 and 1024 served as a good amount, since this gave us the
highest accuracy that we could find.

4.2.3 Validation

In order to validate the trained network, we use the network to predict
our test fold, to then calculate the total error, and the percentage of correct
guesses. We store these for every fold, to then calculate the average accuracy
and average error of all folds, which gives us an adequate insight into the
performance of TINN on our dataset. The validation is done as follows:

int correct = 0;

float pd_error = 0.0f;

for (int i = 0; i < test_fold.rows; i++){

const float* const in = test_fold.in[i];

const float* const tg = test_fold.tg[i];

const float* const pd = xtpredict(tinn, in);

int correct_pd = correct_pred(tg, pd, test_fold.nops);

if (correct_pd == 0) {

correct++;

}

json_print(json_out, in, tg, pd, test_fold.nips, test_fold.nops);

pd_error += error(tg, pd, test_fold.nops);

}

printf("Average error: %.12f - Percentage correct: %f \n",

(double) pd_error / test_fold.rows, (double) correct / test_fold.rows);

errors[fold] = (float) pd_error / test_fold.rows;

accuracy[fold] = (float) correct / test_fold.rows;

The correct_pred function simply compares the prediction to the target
and returns 0 if the prediction is correct, and -1 otherwise. We simply count
the amount of correct predictions and calculate the accuracy by taking the
percentage of correct guesses compared to the total amount of entries. We
also take the average error.

The final calculation of the average is done as follows:

float e_sum = 0;

float a_sum = 0;

18

for (int i = 0; i < NUM_FOLDS; i++){

e_sum += errors[i];

a_sum += accuracy[i];

}

printf("Avg Error: %.12f - Avg Accuracy: %.12f \n",

(double) e_sum / NUM_FOLDS, (double) a_sum / NUM_FOLDS);

We sum all the errors and accuracies and then simply take the average
of all of these.

This way, we get a proper performance metric of our neural network.

19

Chapter 5

Results

5.1 Energy Consumption

When looking at our energy data, we can draw conclusions about the energy
use when comparing the different browsers we measured. Chrome seems to
use the least energy, with 15,74 kWh adjusted average used for loading a
webpage. Firefox comes second, with 21,55 kWh used. Webkit is last, with
35,84 kWh used. It should be noted that the average non-adjusted usage for
Firefox was higher than Webkit and Chrome, although this does not mean
anything for our results, given we remove the idle energy from the total. The
results as mentioned can be viewed in Figure 5.1. Something worth noting
was that on average across all browsers, YouTube ends up being one of the
most energy intensive websites out of all 1000 websites, with an average of
79,28 kWh used. This is highly likely to be the result of many video previews
and many images being loaded on YouTube’s home page.

5.2 Network Accuracy and Error

When evaluating TINN’s performance, we used K-Fold cross validation.
This gives us an average error and an average accuracy. We plot these
for every browser in Figure 5.3 and 5.2. As visible, Firefox is the most
predictable, with TINN struggling the most for Webkit. Possible reasons
for this occuring will be discussed in section 5.3. We can also deduce that
the average accuracy for Firefox is just over 40%. This shows that it is, in
fact, slightly feasible for a neural network to predict the energy consump-
tion of loading webpages given we improve the accuracy and gather more
data. While it might appear to be infeasible for Webkit, we believe it is still
feasible to predict energy consumption for this browser. The reasons for
this are discussed in section 5.3. In section 5.3, we will also discuss how we
can improve the accuracy on TINN, or use different frameworks for better
results.

20

Figure 5.1: Graph displaying adjusted average total versus the non-adjusted
total for all measured browsers

Figure 5.2: Average Accuracy plotted for Chrome/Firefox/Webkit

5.3 Improvements

5.3.1 Overfitting

By analyzing the data we gathered from the neural network, we were able
to analyze how the network predicted. By keeping track of every prediction,
we were able to plot the predictions compared to the actual classes. In
the graphs for Chrome and Firefox in Figures 5.4 and 5.5, we can see that
the neural network overfitted on the E class, as visible. Overfitting in the

21

Figure 5.3: Average Error plotted for Chrome/Firefox/Webkit

context of neural network means that there is a lack of diverse data being
fed to the neural network, which results in the neural network having a bias
towards one class. This can be seen in the graph for Firefox too (Figure
5.5, for example, there is barely any data where the energy class is A, yet
there is a significant amount of data that belongs to class E. With more
data, this problem can be solved, as the neural network can train itself
better on the different types of classes. Of course, it is not a guarantee that
there is such power efficient websites, in which case we should aim to add
more attributes to the data we provide to the neural network, which we will
disclose in the next section. By adding more attributes to the data, we give
the neural network more data to base it’s prediction on, which should in
theory improve the accuracy.

5.3.2 Optimizing runtime

The script we developed for automation includes a lot of sleeps in an attempt
to let the CPU stabilize. This, in combination with the idle stabilization we
describe in Chapter 3, makes it such that the time used per website ends
up being somewhere between 1-3 minutes on average. This, in combination
with the scope of 1000 websites over 3 different browsers, resulted in a total
run-time of 51 hours during the final measurement that was done.

Because of this, we ended up with a smaller dataset than we would have
liked. If the idle cannot be stabilized, we abort the measurement for that
website and move on to the next. This results in less data, which of course
could be resolved by simply running the pipeline again via GitLab CI/CD,
but as a consequence of having a 51 hour runtime, this was not doable with

22

Figure 5.4: Predictions versus actual values plotted for predictions based on
data gathered from Google Chrome

Figure 5.5: Predictions versus actual values plotted for predictions based on
data gathered from Mozilla Firefox

our time constraints.
Further research should look at if these sleeps are necessary for the CPU

to stabilize, or whether our idle stablization is enough. If the runtime can
be improved upon by removing unnecessary sleeps, this would enable easier
filling of gaps, by re-running the measurement until the idle energy con-
sumption is stable enough.

23

Figure 5.6: Predictions versus actual values plotted for predictions based on
data gathered from Apple Webkit

5.3.3 Lack of Data

As mentioned in the previous section, further research should aim to include
more attributes. Attributes that could prove to be relevant are metrics such
as RAM usage, the amount of DOM nodes. Ideally, we would have liked
to include these metrics, but time constraints prevented us from including
these in the scope of the research.

Another issue we had during measurement is that when measuring the
energy usage of WebKit, the script often struggled to stabilize the idle energy
consumption as described in Chapter 3. This meant that we had around 550
entries for webkit compared to the 1000 websites we attempted to measure.
If there was more data available, by measuring more websites and possibly
giving the script more time to stabilize, we might have seen different results
when it comes to accuracy and error. It is also visible that due to lack
of data, predictions for Webkit were much more widespread, as visible in
Figure 5.6 showing the neural network struggled to train itself on the limited
dataset.

Body size

The way we measure response body size can be improved upon. Some web-
sites returned a response body size below 10 bytes, which possible indicates
that some websites either do not respond with the entire website, or that we
accidentally caught a redirect. We, however, had enough datapoints with a
body size that seemed reasonable, meaning we still could use this metric for
the predictions.

24

5.3.4 Possible Alternatives

When looking at possible alternatives for TINN in the context of finding
a neural network library for future work, there is ample options. In this
section, we will delve into two specific alternatives, namely KANN and Ten-
sorFlow.

KANN, a lightweight C library for artificial neural networks[6], stands
out as an alternative for those wanting to retain the lightweight aspect of
TINN. KANN provides much more flexibility and more features, such as the
implementation of shared weights, while retaining it’s lightweight aspect.
The most notable similarity with TINN is that it is both lightweight and
also implemented in C.

For scenarios where the lightweight attribute is not a primary considera-
tion, TensorFlow emerges as an alternative among widely employed machine
learning libraries [7]. Developed for both Python and JavaScript, Tensor-
Flow boasts an all-encompassing machine learning platform renowned for
its robustness and user-friendly nature. It also provides pre-trained models,
among other features. TensorFlow’s flexibility would make up for TINN’s
simplicity. It allows developers to create multiple hidden layers, their own
loss functions, etc. This allows for more experimentation with different pre-
diction methods. TensorFlow also seamlessly integrates with data science
libraries such as scikit-learn, which serves as more flexibility compared to
TINN.

25

Chapter 6

Related Work

Related research on this topic can be categorized into two domains, studies
aiming to solve a similar problem and studies employing similar methods.
Related research aiming to solve a similar problem investigates a generalized
method for energy consumption calculation, utilizing the energy usage of the
data centre among other aspects related to the server-side of a webpage. In
Section 6.1, this is further explained. On the other hand, research employing
similar methods explores energy consumption differences between Google
Chrome and Firefox

6.1 websitecarbon.com

websitecarbon.com is a website that allows you to fill in any website, which
the website will then use to calculate the exact carbon emissions from that
website. As mentioned in the ”how does it work?” section of the website,
they use 5 data points to calculate the energy usage.

• Data Transfer over the wire

• Energy intensity of web data

• Energy source used by the data centre

• Carbon Intensity of electricity

• Website traffic

The calculation is done based on research done by Chris Adams, Rym
Baouendi, Tim Frick, Tom Greenwood and Dryden Williams, which was
published on the website sustainablewebdesign.org.[8] They attempt to cre-
ate an general formula of estimation for the carbon intensity of webpages.

In order to represent a comprehensive footprint, they define the widest
system boundaries available. In order to provide greater insight, they seg-
ment the impact to sub-systems, they define these as: [8]

26

• Consumer device use, which is end users interacting with a product.

• Network use, which is data transferred along the network.

• Data Center use, which is energy required to house and serve data.

• Hardware Production, which is embodied energy used in the creation
of embedded chips, use of data centers, use of networks, and the use
of consumer communication devices.

They assign percentages to these systems, to then define a general for-
mula for calculating the carbon footprint. Exact details on these formulas
can be found on the sustainable web design website.[8] These percentages
and values they use in order to create a generalized formula are extracted
from research done by Anders Andrae.[9]. This research is a continuation
of earlier research done by Andrae in cooperation with Tomas Elder.[10].
In this research, they use similar system definitions as mentioned before.
When looking at customer device use, which is similar to what we research,
they use average values in order to calculate the total energy consumed.
While the scope of this research is quite broad, our is much more precise.
We attempt to create a proof of concept for a method of measuring specifi-
cally browser energy usage on singular devices. In theory, we expand on this
research by providing more accurate energy measurements for consumer de-
vices. If we were able to accurately predict the energy for every device this
would remove ambiguity on the energy used by consumer device use, mak-
ing for more accurate estimations. More accurate estimations would then in
turn lead to more accurate estimations of the carbon footprint of websites
using the research done by the researchers at sustainablewebdesign.org.

6.2 Energy Wars - Chrome vs. Firefox

In research done by João de Macedo, João Alóıso, Nelson Gonçalves, Rui
Pereira and João Saraiva,[11] they emplore a similar method to our research
in order to figure out if either Chrome or Firefox is more energy efficient.
They emplore Selenium, a similar library to Playwright in order to emulate
a few common operations done by users. These are:

• Browsing YouTube

• Live Streaming on Twitch

• Browsing Social media

They use these operations and the energy consumption in order to answer
the final question, this being which browser is the most energy efficient
overall. To measure this energy consumption, they use Intel’s RAPL in order

27

to monitor the energy consumption during script execution.[11]. In order to
assure validity, they kill most background processes to assure preciseness.
This is similar to what we attempt, however our method is more rigid and
could prove to be a proper method of assuring preciseness. The research
covers 3 cases. Our research expands on this by applying our script to 1000
websites. This way, we have more data to assure that the comparison is done
fairly. By gathering more data, we can more accurately see the difference
between the 3 browsers. It is interesting to note that de Macedo et al.
conclude that Chrome can be more energy efficient, but is less consistent
than Firefox, we conclude that Chrome is the most energy efficient without
any big fluctuations. More data could possibly strengthen this conclusion.

28

Chapter 7

Applications

When it comes to applying our research, there is ample opportunities. A pos-
sible use case is using a trained neural network to create a browser extension,
serving as an information tool for developers and clients to get information
about their current usage. The methodology can also be applied to other
scenarios.

7.1 Browser extension

As previously mentioned, we can make use of our trained neural networks in
order develop a browser extension that predicts website energy usage in real-
time. This extension would analyze websites as they load, by extracting data
similarly to our scripts. The extension would then use the neural network to
generate and display predictions, providing insights into the websites energy
efficiency for developers and clients. Notably, this tool expands upon the
carbon footprint calculator mentioned in Chapter 6 by offering insights for
locally hosted websites, making it valuable in development environments.
For clients, it offers an easier way of figuring out the energy usage of the
sites they are visiting, due to the ease of use a simple browser extension
brings, compared to having to entire every single url into a website like
websitecarbon.com.

7.2 Other Scenarios

Our methodology can be applied in various scenarios. If we want to predict
the energy cost of rendering an image in a rendering program such as Cinema
4D or Blender, then we can employ a method similar to the one defined in
Chapter 3. Adjusting the data we collect and gathering a sufficient amount
of data enables us to then train a neural network in order to be able to
predict the energy cost of rendering an image, or even multiple frames.
Predicting rendering energy usage as mentioned before only serves as an

29

example, however, with a sufficient amount of data, our approach can be
applied to predict the energy cost of other scenarios as well.

30

Chapter 8

Discussion

In this paper, we established a methodology for measuring the client sided
energy consumption, which we then use to gather data for the purpose of
training a neural network developed using TINN.

8.1 Results

After analyzing our gathered data, we conclude that Webkit is the least
energy efficient out of all browsers, using around 35,84 kWh on average
when loading a webpage. Chrome is the most energy efficient, only using
15,74 kWh on average when loading a webpage. Firefox is in the middle
with 21,55 kWh used on average. (see Chapter 5).

We trained 3 neural networks, one for each browser, and compared their
accuracies and average errors. We concluded that for both Firefox and
Google Chrome, the accuracy of our neural network is around 40% on av-
erage. For webkit however, this percentage was around 25%. By improving
our data collection, or making improvements to the neural network imple-
mentation, this percentage can be improved. (see Section 5.3).

8.2 Improving the measuring process

When it comes to the gathering of data, further research should firstly take
our improvements as described in Section 5.3 in mind. In order to speed
up measurements, future work should attempt to optimize the measurement
process, either by speeding up the idle energy stabilization process or remov-
ing sleeps from the script, as we mention in section 5.3. By implementing
these improvements, more data can be gathered more consistently by simply
retrying more often, solving one of the issues we mention in section 5.3.3,
namely that the script often struggled to stabilize the idle often, causing
lack of data. The measurement process can also be improved upon, as men-
tioned in section 5.3.3, future research should look into better methods for

31

measuring the body size of a webpage.

8.3 Improving the prediction accuracy

When trying to expand on the research done on predicting the energy usage,
it is vital that data collection is improved as mentioned in chapter 5. As
mentioned before, if data collection is improved, the problem of lack of data
can be solved. This, in turn, solves the problem of overfitting, as the neural
network has more cases to train itself with.

Furthermore, accuracy can be improved by providing the neural net-
work with more attributes (see section 5.3.3). If more varied data can be
obtained, the neural network is able to train itself to lower its average error
and heighten its average accuracy.

Further research could also explore other machine learning frameworks.
We limited ourselves to TINN, but other frameworks such as TensorFlow or
KANN could serve as great alternatives for TINN. (see Chapter 5 section
5.3.4 for more details) More experimentation should reveal what framework
is suited best for solving the problem of predicting client-sided energy usage.

8.4 What’s next?

8.4.1 Expanding existing research

Our research can be used to expand upon already existing research. As men-
tioned in Chapter 6, we expand on the research done by Chris Adams, Rym
Baouendi, Tim Frick, Tom Greenwood and Dryden Williams [8] by provid-
ing more accurate energy measurements for consumer devices. By improving
the accuracy of our neural network, we are able to remove the ambiguity
on the energy used by consumer device use, causing the methodology as
described by Adams et. al to have a higher accuracy.

8.4.2 Browser feature

As mentioned in Chapter 7, one can make use of a trained neural network to
develop a browser extension. We believe that this should become a standard
feature in browsers, for developers. Having this feature will enable develop-
ers to create a website keeping sustainability in mind. Providing developers
with insights into their website’s energy consumption through the browser
could incentivize them to explore more sustainable methods for the website’s
development.

It is important to discuss when the neural network is applicable in the
context of a browser feature/extension. Given the extensions main purpose
is to provide a rough estimate, we believe that the network is useful when
its accuracy reaches at least 50 percent. This way, the estimation should be

32

sufficient to make the developer aware of their website’s performance and
make appropriate changes.

In conclusion, we can argue that it is, in fact, feasible to predict the
energy consumption of loading a webpage, given improvements to data col-
lection and predicting. A trained neural network can be used in order to
create awareness under developers, by creating a browser extension or even
introducing it as a browser feature that gives developers a rough estimation
of how energy sufficient it is, aiding them in the development process.

33

Bibliography

[1] A. Petrosyan, “Internet users worldwide
2022,” https://www.statista.com/statistics/271411/
number-of-internet-users-in-selected-countries/, 2023.

[2] DataForSEO, “Top 1000 websites,” https://dataforseo.com/
top-1000-websites, 2023.

[3] G. Louw, “Tinn: A tiny neural network li-
brary,” https://github.com/glouw/tinn, 2020, commit:
815225a8f11c7aff2f3d008cb19980f40dc60de6.

[4] D. Anguita, A. Ghio, S. Ridella, and D. Sterpi, “K-fold cross validation
for error rate estimate in support vector machines.” in DMIN, 2009,
pp. 291–297.

[5] M. Kaariainen, “Semi-supervised model selection based on cross-
validation,” in The 2006 IEEE International Joint Conference on Neu-
ral Network Proceedings, 2006, pp. 1894–1899.

[6] AttractiveChaos, “Kann: A lightweight c library for artificial neu-
ral networks,” https://github.com/attractivechaos/kann, 2021, com-
mit: f71236a82af2187820fabd9b1aba3138b8a4de04.

[7] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[8] C. Adams, R. Baouendi, T. Frick, T. Greenwood, and D. Williams,
“Calculating digital emissions,” https://sustainablewebdesign.org/
calculating-digital-emissions/, 2022.

34

https://www.statista.com/statistics/271411/number-of-internet-users-in-selected-countries/
https://www.statista.com/statistics/271411/number-of-internet-users-in-selected-countries/
https://dataforseo.com/top-1000-websites
https://dataforseo.com/top-1000-websites
https://github.com/glouw/tinn
https://github.com/attractivechaos/kann
https://www.tensorflow.org/
https://sustainablewebdesign.org/calculating-digital-emissions/
https://sustainablewebdesign.org/calculating-digital-emissions/

[9] A. S. Andrae, “New perspectives on internet electricity use in 2030,”
Engineering and Applied Science Letter, vol. 3, no. 2, p. 19–31, 2020.

[10] A. Andrae and T. Edler, “On global electricity usage of communication
technology: Trends to 2030,” Challenges, vol. 6, no. 1, p. 117–157, 2015.

[11] J. a. de Macedo, J. a. Alóısio, N. Gonçalves, R. Pereira, and J. a.
Saraiva, “Energy wars - chrome vs. firefox: Which browser is more
energy efficient?” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’20. New
York, NY, USA: Association for Computing Machinery, 2021, p.
159–165. [Online]. Available: https://doi.org/10.1145/3417113.3423000

35

https://doi.org/10.1145/3417113.3423000

Appendix A

Sample output from server

{

"electricity_consumed_current":3.5045375999999999,

"measurements":549950,

"electricity_consumed_total":1536312.6284292329,

"power_draw":2.7599999999999998

}

• electricity_consumed_current is the electricity measured right be-
fore this is displayed.

• measurements is the total amount of measurements done so far

• electricity_consumed_total is the total amount of electricity con-
sumed by the server1

36

Appendix B

Sample Data

B.1 Successful measurement

JSON Format:

"https://wikipedia.org":

{

"screenshot": succesful,

"bodySize": "2839",

"time": "945",

"adjusted_total": "5.8281984000607565",

"total": "26.055475200060755",

"idle1": "2.6918912",

"idle2": "2.2474752",

"pageContent":

{

"SCRIPT":4,

"IMG":1,

"DIV":87,

"BUTTON":2

}

}

TXT Format (Neural network input):

https://wikipedia.org 945 2839 4 1 87 2 5.8281984000607565

B.2 Error when connecting to website

"https://officiele-overheidspublicaties.nl": "errrored"

Sample data output when connection to website errors.

37

B.3 Unstable idle

"https://jetcamp.com":

{

"status": "unstable idle",

"baseline": "8.634368",

"last idle": "3.0220288"

}

Sample data output when idle can not be stabilized before measurements.
Baseline is energy usage measured before starting rendering, last idle is the
last idle measured before exiting.

B.4 Fluctuated idle

"https://weerplaza.nl":

{

"status": "fluctuated",

"baseline": "2.2728704",

"idle1": "3.110912",

"idle2": "2.0951039999999996"

}

Sample data output when idle energy consumption after measuring dif-
fers too much (>1) from the idle energy consumption before measuring.

38

Appendix C

ODROID-H3+ Specifications

The specifications of the ODROID-H3+ machine used are listed here: 1

• Intel® Quad-Core Processor Jasper Lake N6005 has a base clock of
2GHz and a boost clock of 3.3GHz with 1.5MB L2 and 4MB L3 cache
by a 10 nm process.

• Up to 64GB Dual-channel Memory DDR4 PC4-23400 (2933MT/s)

• Two SO-DIMM slots, up to 32GB per slot

• PCIe 3.0 x 4 lanes for one M.2 NVMe storage

• 2 x 2.5Gbit Ethernet ports

• 2 x SATA 3.0 ports

• SSE4.2 accelerator (SMM, FPU, NX, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, AES)

• Intel UHD Graphics 32 EUs Turbo 900MHz

• HDMI 2.0 and DP 1.2 multiple video outputs

1Specifications are gathered from hardkernel.com (Link)

39

https://www.hardkernel.com/shop/odroid-h3-plus/

Appendix D

Python script for adapting
data

def filecreate(filename):

newfile = open("{}-new.txt".format(filename), "a")

with open("{}.txt".format(filename)) as f:

for line in f:

split = line.split(" ")

to_append = split[1:-1]

value = float(split[-1])

if value <= 10.0:

to_append += [1,0,0,0,0,0]

elif 10.0 < value <= 20.0:

to_append += [0,1,0,0,0,0]

elif 20.0 < value <= 30.0:

to_append += [0,0,1,0,0,0]

elif 30.0 < value <= 40.0:

to_append += [0,0,0,1,0,0]

elif 40.0 < value <= 50.0:

to_append += [0,0,0,0,1,0]

else:

to_append += [0,0,0,0,0,1]

for val in to_append:

newfile.write(str(val) + " ")

newfile.write("\n")

40

	Introduction
	Validity
	Browsing emulation
	Playwright
	Rendering

	Exclusion and Measurement
	Attributes
	Idle energy consumption

	Prediction
	What is TINN?
	Why TINN?
	Difficulties
	Validation

	Measuring
	Testing Setup
	How do we actually measure
	Idle Energy Consumption
	Data Gathering

	Predicting
	Data Input
	Data formatting
	Data object

	Training and Validation
	Generating K-Folds
	Training
	Validation

	Results
	Energy Consumption
	Network Accuracy and Error
	Improvements
	Overfitting
	Optimizing runtime
	Lack of Data
	Possible Alternatives

	Related Work
	websitecarbon.com
	Energy Wars - Chrome vs. Firefox

	Applications
	Browser extension
	Other Scenarios

	Discussion
	Results
	Improving the measuring process
	Improving the prediction accuracy
	What's next?
	Expanding existing research
	Browser feature

	Sample output from server
	Sample Data
	Successful measurement
	Error when connecting to website
	Unstable idle
	Fluctuated idle

	ODROID-H3+ Specifications
	Python script for adapting data

