
Bachelor thesis
Computing Science

Radboud University

Mosaic as a SAT problem

Author:
Thijs de Jong
s1015438

First supervisor/assessor:
dr. C.L.M. Kop

C.Kop@cs.ru.nl

Second assessor:
dr. J.S.L. Junges

sebastian.junges@ru.nl

March 24, 2023

Abstract

Mosaic is a logic puzzle that has been proven to be an NP-Complete problem.
This means that the problem is both in NP and NP-Hard. In this thesis,
our aim is to encode the Mosaic puzzle as a Boolean Satisfiability (SAT)
problem in two different ways and solve it using a SAT solver. Using this,
an efficient way to generate new Mosaic puzzles will be developed. We will
test the performance of both encodings, as well as try to optimize one of
them. We also look into optimizing the generation method. We find no
improvement to the original methods.

Contents

1 Introduction 2

2 Preliminary Knowledge 3
2.1 Mosaic . 3
2.2 Normal forms in boolean logic 4
2.3 Tseitin Transformation . 5
2.4 Solving Boolean Satisfiability Problems 7
2.5 Unit Propagation . 8

3 Naive solution to the SAT problem of Mosaic 9
3.1 Encoding Mosaic into a boolean formula 9
3.2 Converting the encoding to a CNF 12
3.3 Creating a solution . 12

4 Generating puzzles 13
4.1 Checking if a puzzle has a unique solution 13
4.2 Generating puzzles using the SAT encoding 14

5 A better solution to the SAT problem 18
5.1 Why we need a better encoding 18
5.2 The Sequential Counter encoding 19
5.3 Extending the Sequential Counter encoding 23
5.4 Applying the Sequential Counter encoding 23

6 Experiments 26
6.1 Comparison of both encodings 27
6.2 Optimizing the improved encoding 31
6.3 A different approach to generating puzzles 34

7 Related Work 43

8 Conclusions and Future Work 44

1

Chapter 1

Introduction

Logical puzzles have been around for quite a while now. They were first
introduced in the late 19th century by Lewis Caroll [17]. Some of the most
well-known logical puzzles include Sudoku and Master-Mind, while there
is an extensive list of logical puzzles that are less known to the public, like
Flood, Towers, and Mosaic. Even though the puzzles look nothing alike, they
all share the same characteristics; the puzzles are fairly easy to understand
and have a small set of rules and restrictions, but the difficulty to solve them
can range from very easy to extremely difficult.

Logical puzzles like Sudoku and Mosaic have been proven to be NP-
Complete [15] [10]. NP-Complete problems are defined by two rules. The
first rule is that problem p is in NP, or the Non-deterministic Polynomial
time complexity class. This set contains problems where solutions can be
verified in polynomial time. The second rule is that problem p is in NP-Hard,
meaning that every problem in NP is reducible to problem p in polynomial
time: problem p is at least as hard as the hardest problem in NP.

NP-Complete problems can be reduced to other NP-Complete problems.
This means that solving certain problems in the NP-Complete class ex-
tremely fast can be useful for other NP-Complete problems, or even applied
to real life problems. In this thesis, we will reduce the Mosaic logic puzzle to
another NP-Complete problem, namely the SAT problem, which is known
as the first problem proven to be NP-Complete [7].

We will start by reviewing some preliminary knowledge on the rules of
Mosaic and boolean formulas (Chapter 2). Next, we will discuss a naive en-
coding for translating the Mosaic logic puzzle to a SAT problem (Chapter 3)
and a way to generate puzzles (Chapter 4). After that, we will look into
a better solution for encoding the Mosaic logic puzzle (Chapter 5). Then,
we will compare both encodings, and look into other factors that might
speed up the encoding (Chapter 6). To complete, we will compare our work
with existing work (Chapter 7), summarize the research, and look at future
research (Chapter 8).

2

Chapter 2

Preliminary Knowledge

2.1 Mosaic
Mosaic is a logic puzzle wherein the player must reveal a picture in the style
of pixel art by using clues to find out what ’pixels’ to colour. It consists of
a grid of any size, where the cells in the grid are either empty or contain a
number between 0 and 9. The goal of the puzzle is to find a filling pattern
of black and white squares, where the colour of the cells gets decided by the
numbers in the puzzle. These numbers are clues for how many black cells
there are around the cell with the clue, including the cell with the clue itself,
so that the number of black cells matches the clue. When all clues have the
correct number of black cells around them, the puzzle is solved. Figure 2.1a
shows an example of a puzzle, with the solution in figure 2.1b.

(a) (b)

Figure 2.1: A full-size example of an unsolved Mosaic, with the solution
next to it

3

For a Mosaic to be valid, it needs to be uniquely solvable. In other words,
there should be only one solution possible. This implies that clues cannot
contradict each other, as no solution will be possible. Next to that, this also
means that every cell must contain a clue, or there must be at least one
clue in the surrounding cells. If this is not the case, there would be multiple
solutions possible. A simple example of solving a Mosaic puzzle is shown in
figure 2.2.

The puzzle goes by other names, like Fill-A-Pix, as implemented by
ConceptisPuzzles [1], who adopted this puzzle, after Trevor Truran invented
the puzzle in the 1980s, based on Conway’s Game of Life [2]. Fill-A-Pix,
and thus Mosaic, is an NP-Complete puzzle [10].

Figure 2.2: A step-by-step example of solving a Mosaic puzzle.

2.2 Normal forms in boolean logic
In boolean logic, formulas are created with variables that can either be true
or false, and operations that link those variables. The three main operations
are the conjunction, or AND, the disjunction, or OR, and the negation, or
NOT. The symbols used are ∧, ∨, and ¬ respectively. With the variables
and operations, boolean formulas can be created.

Since boolean formulas can be very complex, they can be rewritten in
a way that is easier to work with. When a boolean formula is rewritten
in a way it can not be rewritten any further, it is called a Normal Form.
Depending on how the formula gets rewritten, the Normal Form can be
different. There are two important normal forms; the Conjunctive Normal
Form (CNF), and the Disjunctive Normal Form (DNF).

A CNF formula is a formula where there are conjunctions between all
clauses, and the clauses exist of disjunctions of literals. A literal is a variable
or a negated variable. An example of a CNF formula is:

A ∧ (B ∨ ¬C) ∧ (D ∨ E ∨ F) (2.3)

A DNF formula is the opposite of a CNF formula, namely a formula
where there are disjunctions between all clauses, and the clauses consist of
conjunctions of literals. A literal is still a variable or a negated variable. An
example of a DNF formula is:

(A ∧B) ∨ (B ∧ C ∧ ¬D) ∨ E (2.4)

4

Every formula in boolean logic can be converted to an equivalent formula
that is in CNF or DNF. The conversion to CNF or DNF can be done by
using logical equivalences [8]. Logical equivalences are achieved when two
formulas have the same truth value in every model but are not the same
formula. This is denoted as p ≡ q.

For Mosaic, we will need to convert DNF formulas to CNF formulas. To
achieve this, the following logical equivalences are needed:

Name Equivalence
Double negation law ¬(¬(p)) ≡ p

Distributive laws
1

2

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

De Morgan’s laws
1

2

¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

Absorption laws
1

2

p ∨ (p ∧ q) ≡ p

p ∧ (p ∨ q) ≡ p

We can apply these rules to boolean formulas to convert them to CNF
formulas. We want for example convert the following formula to a CNF
formula:

(A ∧B) ∨ (B ∧ C ∧ ¬D) ∨ E (2.5)

By applying the logical equivalences as described before, this formula
will be converted to the following CNF formula:

(B ∨A ∨ E) ∧ (C ∨A ∨ E) ∧ (¬D ∨A ∨ E)

∧(B ∨ E) ∧ (C ∨B ∨ E) ∧ (¬D ∨B ∨ E)
(2.6)

For the conversion of a formula to a CNF, we can apply the Distributive
law 1 and De Morgan’s law 1. If we want to convert a formula to a DNF, we
can apply the Distributive law 2 and De Morgan’s law 2. If we would use
both laws for conversion to a normal form, there would never be a normal
form, as we could infinitely apply a law to convert the formula.

2.3 Tseitin Transformation
Another way of converting boolean formulas to CNF is by applying the
Tseitin transformation. Where transforming boolean formulas with logical
equivalences can result in exponential sizes of the formula, with the Tseitin
transformation, the formula size grows linearly relative to the original for-
mula’s size, and the transformation can be done in linear time [19].

5

The Tseitin transformation works as follows. Take a formula ϕ, and
assign every subformula in ϕ to a new variable xi, starting with the formula
itself. Literals do not need to be assigned to a new variable, as they can
keep their name. Then, the original formula can be expressed as follows:

x1 ∧ (x1 ≡ ...) ∧ (x2 ≡ ...) ∧ (x3 ≡ ...) (2.7)

Now, every subformula can be transformed into a CNF formula, using
the following conversions:

Formula CNF
p ≡ ¬q (p ∨ q) ∧ (¬p ∨ ¬q)
p ≡ q ∧ r (¬p ∨ q) ∧ (¬p ∨ r) ∧ (p ∨ ¬q ∨ ¬r)
p ≡ q ∨ r (p ∨ ¬q) ∧ (p ∨ ¬r) ∧ (¬p ∨ q ∨ r)

p ≡ q → r (p ∨ q) ∧ (p ∨ ¬r) ∧ (¬p ∨ ¬q ∨ r)

Example 2.3.1. We will convert the following formula to a CNF formula

ϕ := p → ((q ∨ r) ∧ s) (2.8)

The subformulas of this formula will look as follows:

x1 ≡ (p → ((q ∨ r) ∧ s))

x2 ≡ ((q ∨ r) ∧ s)

x3 ≡ (q ∨ r)

(2.9)

Now, the original formula can be expressed as the following:

T (ϕ) := x1 ∧ (x1 ≡ p → x2) ∧ (x2 ≡ x3 ∧ s) ∧ (x3 ≡ q ∨ r) (2.10)

Rewriting this with the transformations in the table above gives:

T (ϕ) := x1

∧(x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬p ∨ x2)

∧(¬x2 ∨ x3) ∧ (¬x2 ∨ s) ∧ (x2 ∨ ¬x3 ∨ ¬s)
∧(x3 ∨ ¬q) ∧ (x3 ∨ ¬r) ∧ (¬x3 ∨ q ∨ r)

(2.11)

Which is a CNF formula.

6

2.4 Solving Boolean Satisfiability Problems
The Boolean Satisfiability Problem, also known as and hereafter referred to
as the SAT problem, is the problem of determining whether there exists a
solution of a boolean formula where all the variables in the boolean formula
are either true or false, such that the boolean formula will evaluate to
true. If this is the case, the boolean formula is satisfiable. Otherwise,
the boolean formula is unsatisfiable. SAT is the first problem known to be
NP-Complete [7].

Multiple so-called SAT solvers have been developed to automatically
solve SAT problems. A SAT solver takes a CNF formula as input, checks
whether the formula is satisfiable, and then outputs either unsatisfiable, or
satisfiable together with a solution to let the formula evaluate to true. Even
if there are multiple solutions for a formula, the SAT solver only displays
one, as its primary task is just to check whether the formula is satisfiable.

For the Mosaic puzzle, we will be using the Sat4j java library [13], which
is a library that can solve SAT problems in java. Like most SAT solvers,
Sat4j uses the Dimacs format as input [4]. The Dimacs format is a way of
writing CNF formulas such that SAT solvers can easily process the formulas.
Converting a CNF formula to the Dimacs format is fairly straightforward;
all literals are written as an integer and negations are written as negative
integers. One line in the Dimacs format can be seen as a clause, where all
integers are connected by disjunctions. Each line ends with a 0, and all lines
(clauses) are connected by conjunctions. A Dimacs file starts with the line
'p cnf <variables> <clauses>', where <variables> and <clauses> are
replaced by the total number of variables and clauses in the CNF formula.

Example 2.4.1. Suppose we have the following CNF formula, which we
want to rewrite to the Dimacs format:

A ∧ (B ∨ ¬C) ∧ (C ∨D ∨ E ∨ ¬F) (2.12)

This could then be rewritten to the following:

p cnf 6 3
1 0
2 -3 0
3 4 5 -6 0

7

2.5 Unit Propagation
Unit propagation, or unit clause propagation, is a way of simplifying boolean
formulas that is broadly used by SAT solvers to speed up the evaluation of
a formula significantly [5] [14]. The process of unit propagation uses unit
clauses (clauses that consist of a single literal) in a CNF to simplify the
entire CNF. Since each clause needs to be satisfied in order to let the entire
CNF be satisfiable, we know that a single literal l must be satisfied. Using
this information, we can simplify the rest of the CNF based on two rules:

1. every clause containing the literal l is removed, except for the unit
clause itself;

2. the negated literal ¬l is removed in every clause.

Rule 1 applies since a clause consists of a disjunction of literals, and since
literal l is already satisfied, the entire clause is satisfied.

Rule 2 applies since the negated literal ¬l can never contribute to the
clause being satisfied, so there is no need to evaluate it anymore.

The same applies for a negated literal ¬l as unit clause, but then every
clause containing the literal ¬l is removed, and the literal l is removed from
every clause, since the negated negated literal is the literal itself again.

Example 2.5.1. Suppose the following CNF where we want to apply unit
propagation to simplify the CNF:

(¬A ∨B) ∧ (A ∨ C) ∧ (B ∨ ¬C) ∧A (2.13)

We have the unit clause A, so unit propagation can be applied to simplify
this CNF. The clause (A ∨ C) can be removed altogether according to rule
1. In the first clause (¬A∨B), we can remove ¬A according to rule 2. The
resulting CNF will be:

B ∧ (B ∨ ¬C) ∧A (2.14)

Now, a new unit clause is introduced, namely B, meaning we can apply
unit propagation once more to remove the clause (B ∨ ¬C), according to
rule 1. We then end up with the following CNF:

B ∧A (2.15)

8

Chapter 3

Naive solution to the SAT
problem of Mosaic

We will use a SAT solver to solve Mosaic, as described in chapter 2.4. To be
able to do this, we need to convert the puzzle to a CNF formula, such that
it can be solvable with a SAT solver. In this chapter, we will look into a
way to encode Mosaic puzzles as a SAT problem in order to convert it into
a CNF formula, to solve it using a SAT solver.

In order to achieve this, we divide the problem into three steps. The first
step is to find a viable method to encode the Mosaic puzzle into a boolean
formula. Next, we can use the Tseitin transformation to convert this formula
to a CNF formula. This CNF formula can then be used as input for a SAT
solver. The SAT solver outputs a solution as a string if the CNF formula
is satisfiable. This solution can then be converted back to a solution of the
Mosaic puzzle.

3.1 Encoding Mosaic into a boolean formula
To be able to encode the Mosaic into a boolean formula, we will have to
break down the Mosaic. A Mosaic consists of a grid with width w and
height h, having a total of w*h cells. Usually, the height and the width have
the same value, but this does not have to be the case. Cells have an x and
a y coordinate. For each cell, the cell can contain a value v, telling us how
many black cells there should be around this cell, including itself. This value
has to be between -1 and 9, where -1 means that the cell does not contain a
clue. In the case that there is no clue, the number of black cells surrounding
this cell can only be determined by looking at clues in the surrounding cells.
A cell has up to 9 neighbours, including itself.

To encode the Mosaic to a boolean formula, we define a variable for ev-
ery cell in the Mosaic puzzle. A cell variable can be defined as cx,y, where
x and y are the coordinates of the respective cell. For instance, a cell on

9

coordinates (3,4) would be represented as c3,4. If c3,4 evaluates to true by
the SAT solver, the cell linked to the variable c3,4, which has coordinates
(3,4), should be black in order to achieve a solution. If c3,4 evaluates to
false, the linked cell should be white. We can use this later on to convert
the valuation of the SAT solver to a solution.

To create a boolean formula for the entire grid, we have to look at a
single cell, encode the clue of this cell as a boolean formula over the cell
variables, repeat this for every cell containing a clue, and append all the
formulas together. In order to find the boolean formula for one cell, we
first look at the surrounding cells of this particular cell and store those in
an array. This includes the cell itself. This is done by checking in every
possible direction (orthogonal and diagonal) whether there is a cell.

Using the surrounding cells, we can create a boolean formula for the cell.
Since the clue of the cell equals the number of surrounding cells that should
be black, the easiest way to make a boolean formula that evaluates which
cells should be black in order to find a solution is by listing all possible
combinations of the surrounding cells, where there are as many black cells
as the clue value, and the remaining cells are white. In the encoding, cells
can be denoted as their respective variable, where black cells are just the
variable, and white cells are the negated variable.

Example 3.1.1. We will use figure 3.1 as an example. We will look at
the cell with coordinates (1,0), which has variable c1,0. In the figure, this
cell is coloured red. The array of the variables of the surrounding cells is
{c0,0, c1,0, c2,0, c0,1, c1,1, c2,1}. The clue of the cell is 2, so we need to find all
possible combinations of the surrounding cells, where 2 of the cells are black
and 4 of the cells are white. All of these possible combinations can be seen
in figure 3.3.

Figure 3.1: An example configuration of a Mosaic puzzle

If we put all these combinations together, we get the following boolean
formula:

10

(c0,0 ∧ c1,0 ∧ ¬c2,0 ∧ ¬c0,1 ∧ ¬c1,1 ∧ ¬c2,1)∨
(c0,0 ∧ ¬c1,0 ∧ c2,0 ∧ ¬c0,1 ∧ ¬c1,1 ∧ ¬c2,1)∨
(c0,0 ∧ ¬c1,0 ∧ ¬c2,0 ∧ c0,1 ∧ ¬c1,1 ∧ ¬c2,1)∨
(c0,0 ∧ ¬c1,0 ∧ ¬c2,0 ∧ ¬c0,1 ∧ c1,1 ∧ ¬c2,1)∨
(c0,0 ∧ ¬c1,0 ∧ ¬c2,0 ∧ ¬c0,1 ∧ ¬c1,1 ∧ c2,1)∨
(¬c0,0 ∧ c1,0 ∧ c2,0 ∧ ¬c0,1 ∧ ¬c1,1 ∧ ¬c2,1)∨
(¬c0,0 ∧ c1,0 ∧ ¬c2,0 ∧ c0,1 ∧ ¬c1,1 ∧ ¬c2,1)∨
(¬c0,0 ∧ c1,0 ∧ ¬c2,0 ∧ ¬c0,1 ∧ c1,1 ∧ ¬c2,1)∨
(¬c0,0 ∧ c1,0 ∧ ¬c2,0 ∧ ¬c0,1 ∧ ¬c1,1 ∧ c2,1)∨
(¬c0,0 ∧ ¬c1,0 ∧ c2,0 ∧ c0,1 ∧ ¬c1,1 ∧ ¬c2,1)∨
(¬c0,0 ∧ ¬c1,0 ∧ c2,0 ∧ ¬c0,1 ∧ c1,1 ∧ ¬c2,1)∨
(¬c0,0 ∧ ¬c1,0 ∧ c2,0 ∧ ¬c0,1 ∧ ¬c1,1 ∧ c2,1)∨
(¬c0,0 ∧ ¬c1,0 ∧ ¬c2,0 ∧ c0,1 ∧ c1,1 ∧ ¬c2,1)∨
(¬c0,0 ∧ ¬c1,0 ∧ ¬c2,0 ∧ c0,1 ∧ ¬c1,1 ∧ c2,1)∨
(¬c0,0 ∧ ¬c1,0 ∧ ¬c2,0 ∧ ¬c0,1 ∧ c1,1 ∧ c2,1)

(3.2)

Figure 3.3: All possible solutions for the cell on coordinates (1,0), with
variable c1,0 and clue 2

We now have a boolean formula of one cell. The boolean formula needs
to be converted to a CNF formula to be able to rewrite it to Dimacs format
and use it in a SAT solver.

11

3.2 Converting the encoding to a CNF
There are two ways of converting a boolean formula to a CNF, as explained
in chapter 2.2. The first way is by using logical equivalences, but using
this would result in an exponential growth in equation size. Instead, we
will be using the Tseitin transformation, as it outputs a formula whose
size grows linearly, because it makes use of auxiliary variables [6]. The
Tseitin transformation is explained in chapter 2.3. If we apply the Tseitin
transformation to the boolean formula, we will get as output a CNF formula.

Lastly, we can repeat this way of encoding a cell for all cells in a Mosaic
puzzle. To achieve this, we will loop through every cell in the puzzle. If the
cell contains a clue, we can create an array with variables of the surrounding
cells, list all the possible solutions, and convert the resulting boolean formula
to a CNF using the Tseitin transformation. The resulting CNF will be
added to the general encoding for the puzzle. Concatenations of CNFs can
be arranged by using a conjunction. This way, a concatenation of CNFs will
stay a CNF.

3.3 Creating a solution
Now that we have a CNF formula for a Mosaic puzzle, we can rewrite the
entire CNF formula to the Dimacs format. This Dimacs file can be entered
into a SAT solver. If the given CNF formula is satisfiable, the SAT solver re-
turns a list of positive and negative numbers corresponding to the variables.
The list shows a valuation to the entered CNF formula, which can be seen
as a solution to the given Mosaic puzzle. For instance, if the returned list is
(1,-2,-3,5), the variables 1 and 5 have been evaluated to true, 2 and 3
have been evaluated to false, and variable 4 can be either true or false.
Since the variables correspond with the cells in the Mosaic puzzle, we can
easily see which cells should be black, and which cells should be white.

In order to confirm that the SAT solver is correct, 35 different con-
figurations have been downloaded from Simon Tatham’s Portable Puzzle
Collection [3], and the answer that the SAT solver came up with has been
checked with non-SAT code whether all the clues comply to the require-
ments. Those test configurations were of all sizes, starting at 5x5 and going
up to 100x100.

12

Chapter 4

Generating puzzles

4.1 Checking if a puzzle has a unique solution
In order to be able to generate uniquely solvable puzzles, we need to be able
to check if a given configuration of a puzzle is unique. This can be done
by adding the boolean formula that states that the known solution is not
a possible solution anymore for this configuration to the encoding of the
mosaic puzzle. This can be seen as ’blocking’ the actual solution from being
a solution. With this, we can check whether the current configuration of the
game is uniquely solvable. If the CNF is satisfiable, there is another solution
for the game, making it nonunique. This can be done at any given point in
the generation process.

Example 4.1.1. Suppose we have a simple original configuration, shown in
figure 4.1, for which we want to check whether it is unique.

Figure 4.1: Simple starting configuration of a Mosaic

To do so, we need to add the boolean formula that states that the cur-
rent correct solution is not possible anymore as a solution. This way, if
the SAT solver evaluates the encoded puzzle to unsatisfiable, there is no
other solution, and the configuration of the puzzle is unique. If the SAT
solver evaluates the encoded puzzle to satisfiable, together with a list of

13

which variables have to be true and which false, there is another solution
next to the known solution. The solution of the given configuration can be
written down as the following CNF:

¬c0,0 ∧ ¬c1,0 ∧ ¬c2,0 ∧ c3,0 ∧ ¬c4,0∧
¬c0,1 ∧ ¬c1,1 ∧ ¬c2,1 ∧ ¬c3,1 ∧ c4,1∧

c0,2 ∧ c1,2 ∧ ¬c2,2 ∧ c3,2 ∧ ¬c4,2∧
c0,3 ∧ ¬c1,3 ∧ c2,3 ∧ ¬c3,3 ∧ c4,3∧
c0,4 ∧ c1,4 ∧ ¬c2,4 ∧ ¬c3,4 ∧ ¬c4,4

(4.2)

Here, cx,y is a variable linked to the corresponding cell on coordinates
(x,y) in the 5x5 grid. If the SAT solver evaluates this CNF to true, it rep-
resents the solution that can be seen in figure 4.1. We now add this solution
to the CNF, but in a way that it will never be possible to be the solution.
This can be done by negating boolean formula 4.2:

¬(¬c0,0 ∧ ¬c1,0 ∧ · · · ∧ c1,2 ∧ ¬c2,2 ∧ c3,2 ∧ · · · ∧ ¬c3,4 ∧ ¬c4,4) (4.3)

To add this boolean formula to the encoding, it needs to be a clause for
a CNF. We can transform this boolean formula to a formula with only dis-
junctions by applying De Morgan’s law and the double negation law, which
are introduced in chapter 2.2:

(c0,0 ∨ c1,0 ∨ · · · ∨ ¬c1,2 ∨ c2,2 ∨ ¬c3,2 ∨ · · · ∨ c3,4 ∨ c4,4) (4.4)

We can now append this clause to our encoding, so that the unique
solution will not be possible as a solution anymore.

4.2 Generating puzzles using the SAT encoding
In order to generate a puzzle, some steps have to be taken. First, a grid has
to be generated of any chosen size, where every cell in the grid is either black
or white. This will be determined randomly. After that, for every cell, the
correct clue value will be filled in, depending on the number of black cells
surrounding the cell, including the cell itself. Once the entire grid is filled
with clues, we first check whether the original solution is unique using the
method described in chapter 4.1. If this is not the case, we will regenerate
the starting grid and the corresponding clues, until we have found a unique
original solution.

We can now check for every cell whether the clue is important for a
unique solution, so that we can remove clues in order to get a puzzle with
the least number of clues needed. For every cell in the puzzle, we will try to
remove the clue in the cell from the puzzle, and try to evaluate the encoding
of the puzzle with the SAT solver again. If the SAT solver can’t find a

14

solution, the puzzle is still uniquely solvable, since the correct solution is
blocked, so the clue will stay removed. If it can find a solution, the clue
will be put back in the puzzle, as this clue is important for making the
puzzle uniquely solvable. This will be done for every cell in the puzzle,
going from left to right, from top to bottom. When for every cell it has been
checked whether the clue is important for the unique solutions, the result is
a configuration of the Mosaic puzzle that is uniquely solvable.

Example 4.2.1. In this example, we will show the steps taken to generate
a Mosaic puzzle. The size of the puzzle that will be generated is 5x5. To
start with, we will set every cell in the 5x5 grid to black or white randomly.
The result can be seen in figure 4.5.

Figure 4.5: Setting all cells randomly to either black or white

After this is done, we will fill every cell in the 5x5 grid with its cor-
responding clue. This can be done by counting the number of black cells
surrounding the cell, including the cell itself. The result of this can be seen
in figure 4.6.

Figure 4.6: Computing the clues for all cells

Now that we have a basic configuration of the Mosaic, we first check
whether this original configuration is unique according to chapter 4.1, which
is the case. After this, we can start with the removal of the clues that are

15

not necessary for a unique solution. We will try to remove clues one by one,
convert the new configuration to an encoding, and try to solve this encoding
with a SAT solver. This will be done from left to right, top to bottom.
The clue of the first cell with coordinates (0,0) can be removed, as can be
seen in figure 4.7a, since without this clue, the configuration is still uniquely
solvable, as the SAT solver evaluates to unsatisfiable. The same goes for
the second cell, with coordinates (1,0), as can be seen in figure 4.7b.

(a) (b)

Figure 4.7: The first clues can be removed since the new configuration is
still uniquely solvable without them

We can continue this removal of clues until the 7th cell. At this cell,
with coordinates (1,1), we can see that upon removal, a solution other
than the original solution is possible. The original solution can be seen in
figure 4.8a, and the new solution, found by the SAT solver, in figure 4.8b.
The red cell is the cell from which the clue got removed. The top left cell,
on coordinates (0,0), can be either black or white, without interfering with
any clue, meaning that the clue in the cell on coordinates (1,1) is important
for a unique solution. We can continue the removal of clues this way to end
up with a uniquely solvable configuration of a Mosaic puzzle, which can be
seen in figure 4.9.

16

(a) (b)

Figure 4.8: Two different solutions are possible upon removal of the clue in
the cell indicated with red

Figure 4.9: A uniquely solvable generated configuration of a Mosaic puzzle

17

Chapter 5

A better solution to the SAT
problem

5.1 Why we need a better encoding
In chapter 3, we have explained how SAT solvers work, and how they are
used to solve the Mosaic puzzle. However, the encoding we have used is not
the best and can be improved upon. In this chapter, we will explain why
we need a better encoding and how we can improve the encoding.

The problem with the current implementation is that the number of
variables in one DNF grows based on a binomial distribution. This is because
the number of clauses in the DNF is based on a binomial coefficient, where
the problem can be seen as

(
n
k

)
, where n is the number of surrounding cells

including the cell itself of the cell we want the DNF for, and k is the value of
the clue in the cell. To simplify the problem, we have k squares of which n
should be coloured black. In the case

(
9
1

)
, so a 3x3 grid where the clue in the

middle is 1, the number of clauses in the DNF is 9, which is not that much
of a problem. But when the clue in the middle is 5, so

(
9
5

)
, the number of

clauses in the DNF is 126, which is already a lot. After this step, the DNF
still needs to be converted to a CNF using the Tseitin transformation, which
causes the number of clauses to grow to 1145 for every such clue, making
the encoding very slow.

The solution to this problem is to find an encoding which makes use of
auxiliary variables to reduce the number of clauses in the CNF. Instead of
trying to list all the possible combinations of black squares, we can use aux-
iliary variables to make sure that the number of black squares is equal to the
clue, without actually knowing which squares are black. This way, we can
reduce the number of clauses in the CNF significantly, to 144 for such a clue.

18

5.2 The Sequential Counter encoding
The Sequential Counter encoding is an encoding created by C. Sinz [18],
which uses auxiliary variables to verify the at-most-k constraint in a sequence
of variables, where at most k variables can be true.

The idea of the encoding is as follows: we have a sequence of variables
{x1, x2, . . . , xn}, where each variable can be either true or false. We want
to make sure that the number of true variables is at most k. To do this, we
create a counter si for each variable, consisting of k booleans1. The segments
of the counter will be named si,seg, where i is the number of the variable,
and seg shows which segment in the counter the variable represents. For x1,
the counter would be {s1,1, s1,2, . . . , s1,k}. The goal of such a counter is to
keep track of the number of variables that are true.

The Sequential Counter can be seen as follows; we will loop through the
initial sequence of variables, and check whether the variable is true. If the
variable is true, we will add 1 to the respective counter by setting the first
segment that is false to true and copy this counter to the next variable’s
counter. If the variable is false, we only copy the current counter to the
next variable’s counter. This way, we can make sure that the last counter
has the same number of true variables as the sequence.

Example 5.2.1. Suppose we have a se-
quence of variables X≤4 = {x1, x2, x3, x4}
where x1 and x3 are true, with the at-
most-4 constraint. We will loop through
the variables in X≤4, checking whether a
variable is true. In this case, x1 is true, so
we set the first false segment in the respec-
tive counter to true and copy the counter
to the counter of x2. x2 is false, so we only
copy the segments from the counter of x2
to x3. x3 is true, so we set the first false
segment in the counter of x3 to true, and
copy all segments to the counter of x4. x4
is false, and since it is the last variable,
we do not need to copy the counter to the
next counter anymore.

1Though the paper by C. Sinz does not explicitly mention the number of segments a
counter has, the encoding never uses variables in the counter after the kth segment, even
when there are n variables set to true. This is why we choose for the counters to have k
segments.

19

The Sequential Counter encoding can be written as the following formula,
which is a CNF:

(¬x1 ∨ s1,1) ∧ (¬xn ∨ ¬sn−1,k) ∧
∧

1<j≤k

(¬s1,j)∧

∧
1<i<n

(
(¬xi ∨ si,1) ∧ (¬si−1,1 ∨ si,1) ∧ (¬xi ∨ ¬si−1,k)∧

∧
1<j≤k

(
(¬xi ∨ ¬si−1,j−1 ∨ si,j) ∧ (¬si−1,j ∨ si,j)

)) (5.1)

While this formula can easily be implemented in an encoding for a SAT
solver, understanding it is more difficult. Therefore, we can rewrite every
individual clause in the CNF with the rule:

¬A ∨B ≡ A → B (5.2)

The arrow means that A implies B. What this essentially entails is that
if A is true, B is also true. If A is false, B can be either true of false. For
example, the first clause in the CNF states (¬x1 ∨ s1,1). This means that if
x1 is true, s1,1 must also be true, effectively stating that counter s1 is set to
1. If x1 is false, s1,1 can be either true or false. Rewriting every clause to
this form gives us:

(x1 → s1,1)

(xn → ¬sn−1,k)

(¬s1,j) for 1 < j ≤ k

(xi → si,1)

(si−1,1 → si,1)

(xi → ¬si−1,k)

((xi ∧ si−1,j−1) → si,j)

(si−1,j → si,j)

}
for 1 < j ≤ k


for 1 < i < n

(5.3)

Example 5.2.2. Suppose we want to check in a sequence of variables if at-
most-3 applies. We have a sequence of variables X≤3 = {x1, x2, x3, x4, x5},
where the SAT solver evaluates {x1, x3, x5} to true. We create a counter for
each variable, which is a sequence of 3 booleans, since k = 3:

s1 = {s1,1, s1,2, s1,3}
s2 = {s2,1, s2,2, s2,3}
s3 = {s3,1, s3,2, s3,3}
s4 = {s4,1, s4,2, s4,3}
s5 = {s5,1, s5,2, s5,3}

(5.4)

20

We can now convert this to a boolean formula with the clauses in either
disjunction form or implicit form. Since implicit boolean formulas are more
readable and understandable, we will use these. In table 5.6, a step-by-step
of the boolean formula can be seen. Even though the SAT solver does not
really evaluate the boolean formula this way, this is the most understandable
way to show what exactly happens. Following is a small explanation of the
steps in 5.6, together with a visual representation of the counters.

The SAT solver evaluated {x1, x3, x5} to
true. Using this, line 1 states that s1,1 needs to
be evaluated to true as well, which can be seen
in the counter of x1. Segments s1,2 and s1,3 are
evaluated to false. x2 is evaluated to false,
but since s1,1 is evaluated to true, s2,1 is as well
(line 6), and the segment from the counter of x1
is copied to the counter of x2. Jumping forward
to line 15, x3 is evaluated to true, so s3,1 is as
well. Line 17 assures that the counter of x3 did
not already have 3 variables evaluated to true.
In line 19, s3,2 is evaluated to true, since the
previous counter (x2) had s2,1 evaluated to true,
and x3 is also evaluated to true. This essentially
increases the counter of x3 by one. The same pro-
cess happens for the counters of x4 and x5, where
x4 is evaluated to false, so the counter is the
same as the counter of x3, and x5 is evaluated to
true, so its respective counter gets increased by
one. Lastly, on line 25, s4,3 is evaluated to false,
since x5 is evaluated to true. This ensures that it
is not the case that both the at-most-3 constraint
has been satisfied in the counter of x4 and at the
same time x5 is also evaluated to true.

When trying to evaluate boolean formula 5.6, we end up with the fol-
lowing truth values for the counters:

s1 = {s1,1,¬s1,2,¬s1,3}
s2 = {s2,1,¬s2,2,¬s2,3}
s3 = {s3,1, s3,2,¬s3,3}
s4 = {s4,1, s4,2,¬s4,3}
s5 = {s5,1, s5,2, s5,3}

(5.5)

Since we can find a valid evaluation of the boolean formula, the variable
sequence X≤3 complies with the at-most-3 constraint.

21

1 (x1 → s1,1) x1 is true, so s1,1 must also be true
2 (¬s1,2) s1,2 must be false
3 (¬s1,3) s1,3 must be false
4 i = 2

5 (x2 → s2,1) x2 is false, s2,1 is unknown

6 (s1,1 → s2,1)
s1,1 is true, so s2,1 must also be true

(copying s1 to s2)
7 (x2 → ¬s1,3) x2 is false, s1,3 is also false
8 j = 2

9 ((x2 ∧ s1,1) → s2,2) x2 is false, so s2,2 is unknown
10 (s1,2 → s2,2) s1,2 is false
11 j = 3

12 ((x2 ∧ s1,3) → s2,3) x2 is false, s2,3 is unknown
13 (s1,3 → s2,3) s1,3 is false
14 i = 3

15 (x3 → s3,1) x3 is true, so s3,1 must also be true
16 (s2,1 → s3,1) both are true

17 (x3 → ¬s2,3)
x3 is true, so s2,3 must be false (stating that the

previous counter was not equal to 3)
18 j = 2

19 ((x3 ∧ s2,1) → s3,2)
both are true, so s3,2 is also true

(s3 now has 2 true values)
20 (s2,2 → s3,2) s2,2 is false
21 j = 3

22 ((x3 ∧ s2,2) → s3,3) s2,2 is false, so s3,3 is unknown
23 (s2,3 → s3,3) s2,3 is false
24 ... repeat for i = 4 and i = 5

25 (x5 → ¬s4,3)
x5 is true, so s4,3 cannot be true, otherwise
there are more than 3 variables true in X≤3

(5.6)

22

5.3 Extending the Sequential Counter encoding
The Sequential Counter encoding can be extended from an at-most-k con-
straint to an exactly-k constraint. In order to achieve this, we will add the
following clauses to the CNF:

(x1 ∨ ¬s1,1) ∧ (sn,k) ∧
∧

1<i<n

(
(¬si,1 ∨ xi ∨ si−1,1)

∧
1<j≤k

(
(xi ∨ si−1,j ∨ ¬si,j) ∧ (si−1,j−1 ∨ si−1,j ∨ ¬si,j)

)) (5.7)

These clauses check whether the last counter has the kth segment set to
true, which means that there are exactly k out of n variables true. Next to
that, the clauses also ensure that if a segment is set to true, every segment in
that counter before this segment is also true. This is needed because other-
wise, the SAT solver would evaluate segment sn,k to true without necessarily
evaluating the right number of variables to true. We can again rewrite the
clauses to implicit form to make it easier to understand:

(s1,1 → x1)

(sn,k)

(si,1 → (xi ∨ si−1,1))

(si,j → (xi ∨ si−1,j))

(si,j → (si−1,j−1 ∨ si−1,j))

}
for 1 < j ≤ k

 for 1 < i < n

(5.8)

5.4 Applying the Sequential Counter encoding
We can now apply the (extended) Sequential Counter encoding to our SAT
encoding. We will use the Sequential Counter encoding for the exactly-k
constraint. A cell with a clue is essentially the same problem as having
exactly k out of n variables set to true. In this case, the clue in the cell is
k, and a cell variable is set to true if it should be black in the solution.

For a cell containing a clue, we will create a counter for each of the
surrounding cells, including the cell itself. The variables in the encoding
will be the variables of the cells, denoted as cx,y, where x and y are the
coordinates of the cell. The segments of the counter will be changed to
sx,y,seg, where seg will still show which segment in the counter the vari-
able represents. We will then encode this to a CNF with the formulas that
are defined in sections 5.2 and 5.3. This will be done for every clue in the
Mosaic configuration such that we end up with a CNF of the Mosaic, en-
coded using the Sequential Counter encoding. We can then evaluate this
CNF formula with a SAT solver in the same way as described in chapter 3.3.

23

Example 5.4.1. Let’s say we have the following configuration, depicted in
figure 5.10. The cell in the middle (c1,1) contains clue 5, meaning that there
should be 5 black squares in the surrounding cells. We will start by creating
counters for all cells:

s0,0 = {s0,0,1, s0,0,2, . . . , s0,0,5}
s1,0 = {s1,0,1, s1,0,2, . . . , s1,0,5}

. . .

s2,2 = {s2,2,1, s2,2,2, . . . , s2,2,5}

(5.9)

Now, we will encode the configuration of the Mosaic into a SAT encoding
using the Extended Sequential Counter encoding as explained in chapter 5.3.
Using this encoding, the SAT solver needs to evaluate the 5 segments of the
last counter to true (s2,2,1, s2,2,2, s2,2,3, s2,2,4, s2,2,5), meaning that exactly 5
out of the 9 cell variables have been evaluated to true.

When the SAT solver tries to evaluate 6 cell variables to true, like in fig-
ure 5.11, the SAT solver will evaluate the encoding as unsatisfiable, because
of the clause (¬x2,2 ∨ ¬s1,2,5). This clause states that the last cell variable
can’t be true, or the second-last counter can’t have segment 5 being true.
In this example, both are true, so this valuation is invalid.

A valid evaluation of the SAT solver can be seen in figure 5.12, where the
SAT solver has evaluated 5 of the cell variables to true, and the 5 segments
of the last counter have been evaluated to true.

Figure 5.10: A simple configuration

24

Figure 5.11: Invalid solution to the configuration with counters

Figure 5.12: Valid solution to the configuration with counters

25

Chapter 6

Experiments

In this chapter, we will look into both encodings and ways to optimize the
encodings, as well as optimise the generation of puzzles. As explained in
the previous chapters, there are two ways of encoding the CNF of a Mosaic
puzzle; the naive encoding and the improved encoding. While the improved
encoding uses fewer clauses and variables to encode the Mosaic puzzle, thus
making solving a puzzle faster, it is also more complex.

We will look into solving and generating puzzles in different sizes and
compare the time it takes, and the number of clauses they use. Next to
that, we will try and generate puzzles with the naive encoding, and solve
them with the improved encoding, and vice versa. We will also look at
optimizing the improved encoding, by removing obsolete variables, and look
if this makes any difference. Lastly, we will look at the way of generating
puzzles. As explained in chapter 4, puzzles are now generated by checking
every clue from left to right, top to bottom. A clear pattern can be seen
here regarding clues that can be removed. We will try a different way of
generating puzzles and will generate and solve the puzzles again with both
methods.

26

6.1 Comparison of both encodings
To compare both encodings, we have downloaded 100 different puzzles from
Simon Tatham’s Portable Puzzle Collection [3], for the sizes n ∗ n, where
n = {5, 10, 15, 25, 50, 100}, giving a total of 600 puzzles for one encoding to
solve. These puzzles are generated to be humanly solvable. We solved the
downloaded puzzles with both encodings, and noted the total time it took
to solve the puzzle. This includes both the creation of the encoding, as well
as running the encoding with the SAT solver. After that, we took the mean
per encoding per size, as well as the minimum time and the maximum time.
The results can be seen in table 6.1 and figure 6.2.

Size Encoding Mean (ms) Minimum (ms) Maximum (ms)
5x5 Naive 5.94 2 32
5x5 Improved 3.44 2 11

10x10 Naive 14.51 9 25
10x10 Improved 5.58 4 7

15x15 Naive 35.46 26 55
15x15 Improved 10.34 8 14

25x25 Naive 117.57 90 158
25x25 Improved 26.85 22 31

50x50 Naive 781.3 637 904
50x50 Improved 182.01 155 225

100x100 Naive 3282.03 3051 4202
100x100 Improved 795.89 696 902

Table 6.1: Results of solving 100 human-solvable puzzles with both encod-
ings

27

Figure 6.2: Results of solving 100 human-solvable puzzles with both encod-
ings

Next, we compared the generation speed of the different encodings, and
solved the generated puzzles with the other encoding. To test the limits of
the generation methods, we gave both encodings 10 minutes to generate as
many puzzles as possible. Both encodings did this for different sizes n ∗ n,
up to the point where both encodings could not generate a puzzle within 10
minutes anymore. After that, the other encoding solved all the puzzles. In
order to make sure that the results are accurate, and that it is not the case
that one poorly generated puzzle messes with the results, this process has
been run ten times, and the average of the mean, min and max time have
been taken. Next to that, the standard deviation is calculated over all data
for that encoding and size. The results are listed in tables 6.3 and 6.4 and
visualised in figures 6.5 and 6.6.

Here, we can again see that the improved encoding is significantly faster
than the naive encoding. Where the improved encoding can generate around
10 puzzles of size 25x25 within 10 minutes, the naive encoding can’t even
generate a single puzzle. The naive encoding might be more straightforward
to use and implement, but the improved encoding is significantly faster.
While the difference is not huge for smaller puzzles, the naive encoding is
no match for the improved encoding when the puzzles are even somewhat
bigger.

28

In terms of solving the generated puzzles, not too much special is go-
ing on. The improved encoding still solves puzzles generated by the naive
encoding faster than the naive encoding can solve puzzles generated by the
improved encoding, as expected.

Size Encoding
(generating)

No. of
puzzles

Mean (ms) Std. dev. Min (ms) Max (ms)

5 Naive 5322.1 112.83 32.38 17.3 490.9
5 Improved 15055.9 39.84 9.73 8.8 254.0

10 Naive 90.1 6621.46 4537.69 1918.1 27875.3
10 Improved 800 753.62 187.12 393.5 1771.3

15 Naive 10.3 55032.31 31798.58 26176.6 119305.4
15 Improved 125.4 4793.54 1019.01 3052.9 8289.7

20 Naive 2.1 238230.58 78116.75 201728.9 272103.6
20 Improved 31.5 18931.08 3617.32 12712.5 26506.2

25 Naive 0.3 503974.67 85739.03 503974.67 503974.67
25 Improved 10.1 57382.01 11281.54 42959.1 73638.2

Table 6.3: Generating puzzles with both encodings, with a time limit of 10
minutes

Size Encoding
(solving)

Mean (ms) Std. dev. Min (ms) Max (ms)

5 Improved 1.67 1.11 0.0 44.0
5 Naive 4.86 2.3 0.0 76.4

10 Improved 6.57 3.57 2.9 25.2
10 Naive 86.89 108.37 8.8 1178.7

15 Improved 20.65 10.45 11.3 39.6
15 Naive 359.5 295.76 52.7 1892.3

20 Improved 53.27 17.3 47.7 58.8
20 Naive 842.28 444.76 289.5 2100.9

25 Improved 115.67 65.43 115.67 115.67
25 Naive 1589.06 698.74 808.5 2950.0

Table 6.4: Solving the generated puzzles with the other encoding

29

Figure 6.5: Generating puzzles with both encodings, with a time limit of 10
minutes

Figure 6.6: Solving the generated puzzles with the other encoding

30

6.2 Optimizing the improved encoding
Next, we try to optimize the improved encoding. Currently, in the improved
method, counters are implemented for every cell. These counters can all
count up to the value of the clue k, meaning they consist of k variables.
This means that for one single clue in a 3x3 grid, there are k ∗ 9 variables,
plus the 9 variables of the cells.

While all cells do need a counter, not every cell necessarily needs a
counter that can count up to k. In theory, the first cell’s counter can only
be 0, when there is a white square, or 1 when there is a black square. The
counter of the second cell can only be 0, 1, or 2, depending on the first
and second cells. If we continue this logic, every cell only needs a counter
that goes up to the number of cell it is, or k. This way, only (min(i, k)) ∗ 9
variables are needed for the counters in a 3x3 grid, instead of k ∗ 9. As
a result, there are also fewer clauses in this encoding. This because the
improved encoding contains clauses which check segments of the first few
counters that cannot possibly be evaluated to true. By removing those
segments, we can also remove those clauses. Since there are fewer variables
and clauses, we expected to see this back in the generation and solving speed.

To test this, we again solved the downloaded puzzles from Simon Tatham’s
Portable Puzzle Collection [3], for the sizes n∗n, where n = {5, 10, 15, 25, 50,
100}. After that, we generated as many puzzles as possible within 10 min-
utes, for different sizes. We again ran this ten times to ensure that the
results are not influenced by one poorly generated puzzle, and calculated
the average of the mean, minimum and maximum times, together with the
standard deviation over all data. The results can be found in tables 6.7
and 6.8, and are compared to the initial encodings in figures 6.9 and 6.10.

Even though it was first expected that the optimized version of the im-
proved encoding would significantly speed things up, since it uses half as
many variables as the original version of the improved encoding, this is not
the case. The optimized encoding speeds up the process of solving the 100
puzzles in different sizes, albeit by a little.

When it comes to generating puzzles, the ’optimized’ encoding is slightly
faster to the original improved encoding for smaller puzzles, but as the puz-
zles get bigger, the ’optimized’ encoding becomes slower than the original
improved encoding, but not statistically significantly. The ’optimized’ en-
coding can generate 105% of the total number of puzzles that the original
improved encoding can generate at size 5. At size 25, the difference between
the encodings is insignificant.

Even though the optimized encoding has fewer variables and clauses,
the speed of solving and generating puzzles has not increased significantly.
As explained above, the improved encoding contains clauses which check
segments that cannot possibly be evaluated to true. Since we know that,

31

the clauses {(¬s1,j) for 1 < j ≤ k} are added, which evaluate all segments
except the first in the first counter to false. This way, by unit propagation,
as explained in chapter 2.5, these segment variables are removed from the
CNF. Hence, unit propagation likely causes the speed of the initial improved
encoding come very close to the speed of the optimized encoding.

Size Mean (ms) Minimum (ms) Maximum (ms)
5 3,51 2 51
10 5,57 4 71
15 9,14 7 13
25 23,34 20 28
50 155,84 135 200
100 714,92 598 801

Table 6.7: Solving 100 human-solvable puzzles with the optimized encoding

Size No. of
puzzles

Mean (ms) Std. dev. Min (ms) Max (ms)

5 15896.7 37.75 8.69 11.1 256.0
10 823.9 731.38 195.89 393.0 1942.6
15 128.5 4680.55 1076.15 2741.8 8515.4
20 32 18493.64 3974.59 12509.0 27303.5
25 9.8 58403.89 14191.49 40875.2 79933.5

Table 6.8: Generating puzzles with the optimized encoding, with a time
limit of 10 minutes

32

Figure 6.9: Solving 100 human-solvable puzzles with the optimized encoding,
compared to the other encodings

Figure 6.10: Generating puzzles with the optimized encoding with a time
limit of 10 minutes, compared to the other encodings

33

6.3 A different approach to generating puzzles
Now that we looked into different encodings and optimization methods, we
will lastly look into a different way of generating the puzzles. Currently,
as explained in chapter 4, puzzles are generated by filling the entire grid
with randomly chosen black and white squares, filling in the corresponding
clue, and trying to remove clues one by one based on if this clue influences
the uniqueness of the puzzle. The checking and removing of the clues is
currently done from left to right, top to bottom. This way, a clear pattern
can be seen regarding the generated puzzle. As can be seen in figure 6.11a,
the top and left edges of the puzzle are empty, while further down and to
the right, the number of clues becomes more dense.

Since the clues at the edges and in the corner have fewer neighbours to
check, it is expected that having more clues on the edge and fewer clues in
the middle speeds up the generation and solving process. A new approach to
generating puzzles will be to randomize the process of checking and removing
clues. This is done by creating an array of all possible coordinates and letting
the generator pick a random coordinate pair from this array as clue to check.
When the clue is checked, and either removed or put back in the puzzle, the
coordinates will be removed from the array. This is done until the entire
array is empty. As can be seen in figure 6.11b, there is a much more gradual
division of the clues in the final generated puzzle.

With this new way of generating puzzles, we again generated and solved
puzzles with both (original) encodings. The results of this can be seen in
tables 6.12 and 6.13, and are compared to the original method in figures 6.14
and 6.15.

(a) Left-right top-bottom generation (b) Random generation

Figure 6.11: Two differently generated puzzles, using the same starting con-
figuration

34

The new approach to generating puzzles was chosen in order to make
the clue distribution within the puzzles more even, since the first method of
generating puzzles had little clues at the edges. The expectation was that
generating puzzles using this method and solving those puzzles would be
faster than the original method of generating puzzles, as clues around the
edges have fewer neighbouring cells than clues in the middle of the puzzles.

As can be seen in figures 6.14 and 6.15, not only is generating puzzles
with either encoding slower than the initial method, but the generated puz-
zles are also more difficult to solve for both encodings. A reason for this
could be that the randomly generated puzzles have more clues than puz-
zles generated from the top-left to bottom-right, as almost all the clues at
the edges can be removed while still maintaining a uniquely solvable puzzle.
This means that there are more clues to encode in every step of the encoding
phase of the puzzle to a CNF. Next to that, the resulting CNF after every
step is bigger, because it has more clues, thus slowing the SAT solver down.

Size Encoding
(generating)

No. of
puzzles

Mean (ms) Std. dev. Min (ms) Max (ms)

5 Naive 5501.9 109.01 32.73 19.6 481.9
5 Improved 15434.5 38.85 9.94 8.7 242.9

10 Naive 62.4 9589.27 6414.43 2423.5 33220.1
10 Improved 638.6 941.22 281.96 394.5 2349.2

15 Naive 5 106890.41 49371.84 56356.9 178055.3
15 Improved 77.4 7760.28 2278.43 4109.0 14915.0

20 Naive 0.3 389355.33 160065.68 389355.33 389355.33
20 Improved 16.3 35760.11 10674.75 23144.9 61143.3

25 Naive 0 nan nan nan nan
25 Improved 4.6 121047.4 26314.89 98810.7 146461.0

Table 6.12: Generating puzzles with the random generation

35

Size Encoding
(solving)

Mean (ms) Std. dev. Min (ms) Max (ms)

5 Improved 1.64 1.07 0.0 41.7
5 Naive 4.65 2.03 0.0 67.1

10 Improved 9.45 5.28 3.8 31.0
10 Naive 139.33 149.32 10.1 1348.8

15 Improved 34.54 12.66 22.4 50.7
15 Naive 923.98 734.95 106.6 3842.7

20 Improved 123.67 103.65 123.67 123.67
20 Naive 2632.07 1709.27 947.7 6725.2

25 Improved nan nan nan nan
25 Naive 5794.16 2869.64 3428.1 9922.4

Table 6.13: Solving the randomly generated puzzles

Figure 6.14: Generating puzzles with the random generation, compared to
the initial method of generating puzzles for both encodings

36

Figure 6.15: Solving the randomly generated puzzles, compared to solving
the initially generated puzzles, with both methods

Even though the random generation method did not speed up the gen-
eration process, it did give new insights into possible generation methods.
The generation process could be altered in a way that, instead of randomly
selecting clues to check for removal, we could first check all ’easy’ clues
(0,1,8,9), such that the resulting configuration for the puzzle will be harder.
The opposite can also be done; first checking all ’hard’ clues (4,5,6), in order
to make the puzzle easier. Next to that, instead of randomly determining
the colour of the cells (black or white) we can select them based on an im-
age, such that the solution of the puzzle will show a pixel-art like image.
Examples of all three possible generation methods can be seen in figures 6.16
and 6.17.

37

(a) Removing easy clues first to generate
a harder puzzle

(b) Removing hard clues first to gener-
ate an easier puzzle

Figure 6.16: Generating different difficulties of puzzles

Figure 6.17: Puzzle generated with pixel-art as solution, together with the
solution

For the two new generation methods, in which we can alter the difficulty
of the generated puzzles, we again generated and solved puzzles with both
(original) encodings, with a time limit of 10 minutes, where just as before,
we ran this ten times to ensure that the results are not influenced by one
poorly generated puzzle. We calculated the average of the mean, minimum
and maximum times, together with the standard deviation over all data. The
results can be seen in tables 6.18 and 6.19, and are visualised in figure 6.20.

38

Size Encoding
(generating)

No. of
puzzles

Mean (ms) Std. dev. Min (ms) Max (ms)

5 Naive Easy 7512.9 79.86 30.93 12.3 392.9
5 Naive Hard 4354.8 137.84 59.45 19.3 661.4

10 Naive Easy 135.3 4422.79 2963.56 1080.7 17965.6
10 Naive Hard 26.9 21848.72 13570.58 5962.6 59461.4

15 Naive Easy 13.6 42538.08 21053.07 17856.1 93300.0
15 Naive Hard 1.6 308155.15 87960.52 298146.7 318163.6

20 Naive Easy 2.6 197638.42 63902.42 156714.5 234063.8
20 Naive Hard 0.0 nan nan nan nan

25 Naive Easy 0.7 473787.57 66808.5 473787.57 473787.57
25 Naive Hard 0.0 nan nan nan nan

Table 6.18: Generating puzzles with the naive encoding, for an easy and a
hard difficulty

Size Encoding
(generating)

No. of
puzzles

Mean (ms) Std. dev. Min (ms) Max (ms)

5 Improved Easy 19212.6 31.18 8.62 8.4 240.8
5 Improved Hard 15639.6 38.34 9.68 12.8 271.1

10 Improved Easy 911.5 658.85 181.69 310.0 1629.8
10 Improved Hard 522.6 1151.13 368.2 515.6 2998.8

15 Improved Easy 125.4 4786.58 1205.38 2610.4 8927.6
15 Improved Hard 51.6 11575.71 3561.29 6457.4 21690.2

20 Improved Easy 29.4 20211.47 4994.43 12618.3 33642.2
20 Improved Hard 9.0 63312.94 19572.93 39935.5 102090.0

25 Improved Easy 8.7 65783.13 12685.16 48038.2 83436.3
25 Improved Hard 2.3 235797.58 75853.75 213285.6 259053.6

Table 6.19: Generating puzzles with the improved encoding, for an easy and
a hard difficulty

39

Figure 6.20: Generating puzzles with different difficulties, for both the naive
and the improved encoding

From the tables and the boxplot it is already clear that for both the naive
and the improved encoding, generating easy puzzles (where we first remove
clues 4,5,6) is significantly faster than generating hard puzzles (where we
first remove clues 0,1,8,9).

We also solved the generated puzzles with the other encoding, of which
the results can be seen in tables 6.21 and 6.22, and are visualised in fig-
ure 6.23. Here, again it is very clear that puzzles generated in an easy way
not only look easier, but are also easier for the SAT solver to solve. For a
Mosaic puzzle of size 25x25, the naive encoding can solve a puzzle generated
to be easy 20 times as fast on average as a puzzle generated to be hard. The
most obvious explanation for this is that the easier puzzles contain more
clues that require fewer clauses to solve these clues. So overall, encoding
puzzles that are generated to be easy results in boolean formulas with fewer
clauses, making the boolean formulas easier for the SAT solver as well.

40

Size Encoding
(solving)

Mean (ms) Std. dev. Min (ms) Max (ms)

5 Improved Easy 0.96 0.92 0.0 40.5
5 Improved Hard 1.3 1.05 0.0 36.9

10 Improved Easy 6.14 3.36 2.2 23.7
10 Improved Hard 14.53 10.0 4.9 40.7

15 Improved Easy 23.3 14.36 11.3 55.8
15 Improved Hard 87.95 42.15 76.0 99.9

20 Improved Easy 63.98 23.64 49.1 79.5
20 Improved Hard nan nan nan nan

25 Improved Easy 124.43 26.84 124.43 124.43
25 Improved Hard nan nan nan nan

Table 6.21: Solving the naively generated puzzles with the improved encod-
ing, for an easy and a hard difficulty

Size Encoding
(solving)

Mean (ms) Std. dev. Min (ms) Max (ms)

5 Naive Easy 2.25 1.71 0.0 61.4
5 Naive Hard 4.74 3.74 0.0 79.0

10 Naive Easy 49.73 56.14 5.3 618.6
10 Naive Hard 335.56 363.84 18.7 3366.3

15 Naive Easy 231.42 186.1 29.7 1232.1
15 Naive Hard 2751.71 1990.73 443.0 9477.2

20 Naive Easy 628.45 453.24 147.9 2231.2
20 Naive Hard 9718.94 6147.92 3769.9 22254.7

25 Naive Easy 1267.36 645.5 542.2 2396.0
25 Naive Hard 24037.65 15983.97 18401.6 31295.5

Table 6.22: Solving the improved generated puzzles with the naive encoding,
for an easy and a hard difficulty

41

Figure 6.23: Solving the generated puzzles of different difficulties, for both
the naive and the improved encoding

42

Chapter 7

Related Work

While Mosaic, also known as Fill-a-Pix, has already been approached as a
logic puzzle to be solved with a SAT solver [16] and has been proven to
be NP-Complete [17], no research can be found of finding ways to improve
the already existing encodings of the Mosaic puzzle, as well as a way of
generating Mosaic puzzles.

Since the invention of the Cook-Levin theorem, stating that the SAT
problem is NP-Complete [7], a lot of research has been conducted on the
SAT problem. In the JSAT Journal1, much of this research is bundled. Next
to that, there exist annual SAT Competitions2, in which new SAT solvers
are promoted and compared to already existing SAT solvers.

Logic puzzles are particularly popular concerning reducing problems to
the SAT problem. The most famous logic puzzle, Sudoku, has been studied
multiple times now [12] [15] [22]. Next to Sudoku, multiple other logic
puzzles have been reduced to the SAT problem. Examples include Flood-
It [21], Kamaji [9], the Binary puzzle [20] and Skyscrapers [11]. Mosaic has,
just like Skyscrapers, extra difficulty in generating puzzles. Where with
Sudoku, a solution can be generated and clues can be removed, with Mosaic
and Skyscrapers, there are two layers of generation. This is because these
puzzles do not only have a solution but also clues to come to this solution.
In order to generate a puzzle, first a solution needs to be generated, after
which all clues need to be calculated, while for Sudoku, only a solution needs
to be generated in order to generate a puzzle. This makes generating puzzles
more difficult.

1http://jsatjournal.org/
2http://www.satcompetition.org/

43

Chapter 8

Conclusions and Future
Work

In this thesis, two different encodings for encoding the Mosaic puzzle as
a SAT problem were introduced and tested against each other, for solving
as well as generating puzzles. The experiments showed that the improved
encoding is significantly faster than the original naive encoding, both with
solving and generating the puzzles.

After testing both encodings, we tried to optimize the improved encoding
by removing obsolete variables in the counters of the cells, but it turned
out that this resulted in an encoding that was just as fast as the original
improved encoding.

Lastly, we looked into a different way of generating the puzzles, by ran-
domly removing clues instead of doing it in the same order every time.
While the generated puzzles looked a lot more like the puzzles from Simon
Tatham’s Portable Puzzle Collection[3], it turned out that not only generat-
ing puzzles this way was slower, but the puzzles generated in this way were
also more difficult to solve. From this, we can conclude that both optimiz-
ing the improved encoding as well as optimizing the generation method were
not successful, though this did give us new insights for generating different
difficulties of puzzles. when generating puzzles in an easy way, it does not
only look easier, but it is also easier for the SAT solver to solve such puzzles.

Future research could be done to create a more reliable way of generating
puzzles, for both humanly and non-humanly solvable puzzles. Experiments
could also include letting humans try to solve the puzzles generated with
the different generation methods.

Currently, the way of generating puzzles focuses on checking every cell
once and returns one single uniquely solvable puzzle. Future research could
be done to generate puzzles with the least amount of clues needed, or the
number of clues needed on average for a certain size.

44

Bibliography

[1] Fill-a-pix. https://www.conceptispuzzles.com/index.aspx?uri=
puzzle/fill-a-pix, 2022.

[2] Mosaic. https://www.puzzler.com/puzzles-a-z/mosaic, 2022.

[3] Mosaic, from simon tatham’s portable puzzle collection. https://www.
chiark.greenend.org.uk/~sgtatham/puzzles/js/mosaic.html,
2022.

[4] SAT competition 2009: Benchmark submission guidelines. http:
//www.satcompetition.org/2009/format-benchmarks2009.html,
2022.

[5] A. Biere, M. Heule, H. Van Maaren, and T. Walsh, editors. Chapter 4:
Conflict-driven clause learning SAT solvers, pages 133–182. Frontiers
in Artificial Intelligence and Applications. IOS Press BV, 2021.

[6] U. Bubeck and H. Büning. The power of auxiliary variables for proposi-
tional and quantified boolean formulas. Studies in Logic, 3:1–23, 2010.

[7] S. A. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing,
STOC ’71, page 151–158, New York, NY, USA, 1971. Association for
Computing Machinery.

[8] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 2 edition, 2002.

[9] J. de Ruiter. On jigsaw sudoku puzzles and related topics. 2010.

[10] Y. Higuchi and K. Kimura. Np-completeness of fill-a-pix and σ2 p-
completeness of its fewest clues problem. IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sciences,
E102A(11):1490–1496, 2019.

[11] L. Kolijn. Generating and solving skyscrapers puzzles using a SAT
solver. 2022.

45

https://www.conceptispuzzles.com/index.aspx?uri=puzzle/fill-a-pix
https://www.conceptispuzzles.com/index.aspx?uri=puzzle/fill-a-pix
https://www.puzzler.com/puzzles-a-z/mosaic
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/mosaic.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/mosaic.html
http://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.satcompetition.org/2009/format-benchmarks2009.html

[12] G. Kwon and H. Jain. Optimized CNF encoding for sudoku puzzles.
01 2006.

[13] D. Le Berre and A. Parrain. The Sat4j library, release 2.2. Journal on
Satisfiability, Boolean Modeling and Computation, 7:59–64, 2010. 2-3.

[14] C.-M. Li and L. Anbulagan. Heuristics based on unit propagation for
satisfiability problems. 1, 04 2000.

[15] I. Lynce and J. Ouaknine. Sudoku as a SAT problem. 01 2006.

[16] A. Myat, K. K. Htwe, and N. Funabiki. Fill-a-pix puzzle as a SAT prob-
lem. 2019 International Conference on Advanced Information Technolo-
gies (ICAIT), pages 244–249, 2019.

[17] J. Rosenhouse and J. Beineke. The Mathematics of Various Entertain-
ing Subjects: Research in Games, Graphs, Counting, and Complexity,
Volume 2. Princeton University Press, 09 2017.

[18] C. Sinz. Towards an optimal CNF encoding of boolean cardinality
constraints. In P. van Beek, editor, Principles and Practice of Con-
straint Programming - CP 2005, pages 827–831, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[19] G. S. Tseitin. On the complexity of derivation in propositional calculus.
1983.

[20] P. Utomo and G. Pellikaan. Binary puzzle as a SAT problem. 2017.

[21] M. van Stiphout. Flood-it as a SAT problem. bachelor thesis, Faculty
of Science, Radboud University, Nijmegen, The Netherlands, 2020.

[22] T. Weber. A SAT-based sudoku solver. In LPAR, pages 11–15, 2005.

46

	Introduction
	Preliminary Knowledge
	Mosaic
	Normal forms in boolean logic
	Tseitin Transformation
	Solving Boolean Satisfiability Problems
	Unit Propagation

	Naive solution to the SAT problem of Mosaic
	Encoding Mosaic into a boolean formula
	Converting the encoding to a CNF
	Creating a solution

	Generating puzzles
	Checking if a puzzle has a unique solution
	Generating puzzles using the SAT encoding

	A better solution to the SAT problem
	Why we need a better encoding
	The Sequential Counter encoding
	Extending the Sequential Counter encoding
	Applying the Sequential Counter encoding

	Experiments
	Comparison of both encodings
	Optimizing the improved encoding
	A different approach to generating puzzles

	Related Work
	Conclusions and Future Work

