
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Creating Better Error Messages by Improving Their Presentation

Author:
Thomas Rhemrev
s1045660

First supervisor/assessor:
Dr. Mara Saeli

Second assessor:
Prof. Erik Barendsen

Abstract

First-year computer science students frequently encounter difficulties in programming.
A major contributing factor to these challenges is the presence of unclear and vague
error messages. These unhelpful error messages are an especially big problem for novice
programmers, as they lack the necessary experience to immediately see what is going
wrong and are therefore dependent on error messages to solve errors. In this thesis,
we present several ways in which the presentation of error messages can be improved
to make them more helpful for novice programmers. We then go on to implement and
evaluate some of these methods. Finally, we provide evidence that indicates that they
are an improvement upon standard error messages.

Contents

1 Introduction and related works 2
1.1 Theoretical Background . 6

2 Methods 8
2.1 Survey . 8
2.2 Evaluation of the Enhancements . 9

2.2.1 Assignment . 9
2.2.2 Evaluation Interview . 10

3 Analyzing the survey data 12
3.1 Current Errors . 12
3.2 Enhanced Errors . 14

4 Design 17
4.1 DrJava . 17
4.2 Enhanced Error Messages . 18

5 Results 21

6 Conclusion and Discussion 24
6.1 Findings . 24
6.2 limitations . 27
6.3 future work . 27
6.4 conclusion . 27

A Survey i

B Assignment x
B.0.1 Class Main . x
B.0.2 Class Rectangle . xi

C Evaluation Interview xiii

1

Chapter 1

Introduction and related works

In a multi-institutional study, McCracken et al[15] showed that first-year computing
science students are not nearly as proficient at programming as their teachers expect.
One of the hurdles novices face when learning how to program is cryptic and unclear
compiler error messages [4, 22]. The feedback compiler error messages give is especially
important to novices, as they do not yet have enough experience to immediately under-
stand what might be going wrong, so the error messages given by the compiler are often
their primary guidance while debugging [3]. Barik et al[2] provide empirical evidence
that students spend a substantial portion of their time (13-25%) on error messages, but
find them difficult to understand and frustrating to deal with.

The process of fixing an error can be split up into 3 steps [14]. First, programmers
have to identify the location of the error in the program. Second, they have to understand
the mistake that was made, and finally, they have to fix the error. A good error message
should help the programmer with all 3 of these steps.

Methods for improving error messages can be split into two main categories: changing
their contents or changing their presentation [4]. The first of these methods focuses on
improving the text of the error messages. This can, for example, be done by replacing
technical jargon to make the messages easier to understand, or by making preliminary
suggestions as to how to fix the error[3]. The second method keeps the wording of the
errors the same but focuses on other ways they can be improved. This can for example be
done by highlighting the part of the code where the error occurs, underlining important
terms in the error message, or by linking to documentation.

Many authors have suggested improvements that focus on enhancing the contents
of error messages. Becker [3] proposed an enhanced Java compiler called Decaf, and
investigated its effectiveness in reducing student errors. Decaf provides a natural lan-
guage interpretation of the error message, as well as a potential solution to the error if
available. This enhanced message is shown together with the original message in order
to allow the student to get used to standard error messages. When testing the results
of the compiler, Becker found a small but significant decrease in the overall number
of errors and the number of repeated errors for students using the Decaf editor when
compared to a control group.

2

Pettit et al[17] provided enhanced errors that were similar to those made by Becker
[3]. The compiler gives an explanation of the error in simple English and provides a
potential solution. In contrast to Becker’s study, they found no evidence that enhanced
error messages reduced the number of repeated errors committed by novices.

Denny et al [5] implemented enhanced error messages as a part of their CodeWrite
program [6], a tool designed to help students practice writing Java code. These enhanced
messages contain a detailed explanation of what is most likely causing the error. It also
shows a piece of example code with an error of the same type, side-by-side with the
correct implementation of that code snippet and an explanation as to how it was fixed.
In an evaluation of the effectiveness of these enhanced messages, they again found no
significant effects.

Watson et al [25] created Bluefix, a tool that automatically uses crowdsourced infor-
mation to help students diagnose and fix errors. This tool was specifically aimed to help
students learn, and gave more detailed and specific information if a student has been
stuck on a certain error for a long time, so it can not be used as a general-purpose error
message.

Also making use of crowd-sourced information, Thiselton and Treude [21] introduced
Pycee, an extension that automatically queries Stack Overflow to generate more helpful
error messages.

There has been comparatively little research into ways to improve the presentation
of error messages. Many programming environments provide some presentational error
cues to programmers. Some IDEs, such as Eclipse and VS Code, mark the offending
code by underlining it with squiggly lines, which makes it easier to locate your mistake.
VS Code also shows the error message in a pop-up box when hovering over a piece of
erroneous code. However, little research has been done to test the effectiveness of these
measures.

Another development environment that improves the presentation of error messages
is BlueJ[13]. BlueJ is an environment specifically created to help novice programmers
learn Java. It shows error messages in a pop-up box to ensure programmers will see them,
similar to what VS Code does. It also only shows one error message at a time to help
novices only focus on a single error at once. On top of this, it provides other improve-
ments such as providing students with boilerplate code when creating classes/objects
and using graphs to give students a clear overview of how different classes are related.
Research indicates that BlueJ does improve the performance of students [8]. However,
since it contains many other improvements on top of the error messages, it is not clear
if the changes made to the messages were actually helpful for students. In fact, one of
the student complaints mentioned in the paper is that “the error messages are not very
helpful in the compiler”.

Because research into enhancing the content of error messages is inconclusive and
has not produced the desired results, it might be valuable to focus on the presentation.
Some tools have been developed that improve both the content and the presentation
(see Table 1.1). For this research, however, we will focus solely on improving the pre-
sentation of error messages. The goal is to investigate the effect of the presentation on

3

the effectiveness of error messages, and the thesis will aim to suggest some methods in
which this presentation might be improved. It will also test if these proposed methods
improve student performance.

The research question that will be guiding this thesis is: “What are characteristics
related to error message presentation that can be used to improve the effectiveness of
error messages for novice programmers?”. For this research, novice programmers will
be first-year computing science students. In particular, we will be investigating students
who are currently following the first-year Object-oriented programming (Java) course at
Radboud University.

The research will start by doing a literature review to come up with ways in which
the presentation of error messages can be improved. Next, we will conduct a survey
among first-year computing science students. This survey will help gather information
on how they use error methods and what struggles they have with them. It will also
allow us to get user feedback on the potential enhancements identified in the literature
review. We will then use this data to design and implement a set of enhanced error
messages. Finally, we will be conducting an experiment to evaluate the effectiveness of
these enhanced error messages

The structure of this thesis will be as follows. The remaining part of chapter one
will be used to provide a theoretical background and explain the theory behind the
enhancements that will be investigated during this research. Chapter 2 will explain the
methodology followed for our research. Chapter 3 will display the results of the survey.
Chapter 4 will describe the set of enhanced error messages we created. Chapter 5 will
show the results of our experiment. Finally, in Chapter 6 we will discuss our findings
and draw conclusions.

4

Content Presentation

Readability Examples Suggestions Highlight Location Amount

Decaf[3] Displays a nat-
ural language
interpretation
alongside the
original error

- For a select num-
ber of errors

- - -

Codewrite[6] Explains the
error in simple
terms

provides exam-
ples of similar
errors

- - - -

Athene[17] Displays a nat-
ural language
interpretation
alongside the
original error

- Provides poten-
tial solutions for
a select number
of errors

- - Only shows one
error at a time

Expresso[9] Provides simple
explanations for
common errors
not caught by a
normal compiler

- Yes - - -

Pycee[21] Shows expla-
nations of the
error by querying
Stack Overflow

Provides Exam-
ples gathered
from Stack Over-
flow

Provides solu-
tions from Stack
Overflow

- - -

BlueJ[13] Gives shorter er-
ror messages

- Provides sugges-
tions for a select
few errors

Underlines of-
fending code in
red

Shows error mes-
sage in a pop-up
box next to the
offending code

Only shows one
error at a time

Eclipse - - provides hints
when the user
clicks the light-
bulb icon

Highlights of-
fending code
with a red squig-
gly line

- -

VSCode - - provides a “Quick
Fix” for select
types of errors

Highlights the of-
fending code in
real-time

Shows error mes-
sage in a pop-
up when hovering
over highlighted
code

-

Table 1.1: Types of improvements provided by some error enhancement tools as well as
some popular programming environments

5

1.1 Theoretical Background

The Cognitive Fit theory [24] proposes that performance on problem-solving tasks goes
up if the problem is represented in a way that matches the task. The original study
investigated the effects of using graphs vs tables, but the underlying theory might still
be useful in creating better error messages.

You can apply this theory to error messages by matching the style of the error
messages to the style of the code. For example, this could be done via matching font
style and colors.

Another cognitive theory that might be helpful is the cognitive load theory [20].
According to this theory, there are two types of memory: long-term memory, which
holds information for long periods of time, and working memory, which is highly volatile.
This working memory has a finite capacity for efficiently processing input when problem-
solving. By reducing the cognitive load of error messages, students have more capacity
left for solving the errors.

Most of the previously mentioned studies did not account for cognitive load. The
effects of high cognitive load in these enhancements have been given as a possible ex-
planation for why “better” error messages, such as those created by Denny at al [5] or
Pettit et al [17], do not improve student performance [18]. Hundhausen et al [10] provide
3 principles that can be used to reduce cognitive load in error messages:

• Reduce redundancy in the information presented so that the reader does not un-
necessarily process the same information multiple times

• Use multiple modalities (i.e visual and auditory).

• Place information that is necessary for the programming task physically close to
where the task is being completed.

These guidelines give us a few ways in which the cognitive load of error messages can
be improved. The first of these guidelines, reducing redundancy, can be implemented
by only showing one error message at a time, as is done in BlueJ [13]. Not only does
this reduce the cognitive load, but is also helps the programmer focus on the error
and prevents them from being overwhelmed. Additionally, consolidating error messages
of the same type into one single message could also help in reducing redundancy, as
suggested by Hundhausen et al[10].

Hundhausen et al[10] also gave a suggestion for how the second principle, presenting
the information across multiple modalities, can be used to improve the presentation of
error messages. Namely, they suggest that it can be done by having the machine read
the error out loud, and by visually highlighting the error on the screen.

Finally, according to Hundhausen et al [10], the last of these guidelines, placing
necessary information close to the task, can be done by physically placing the error
message close to the offending code.

Placing information near the code might be helpful in more ways outside of reducing
the cognitive load. The importance of providing context to error messages has been

6

brought up before in the literature, for example by Nienaltowski et al[16]. This context
can include things like the location of the offending code or the variables involved in the
error. Barik [1] has suggested that displaying the error message inside the text editor,
right next to the line that caused the error, can help to provide this necessary context.

Most compilers provide unique message identifiers for each type of error message.
These can be used to find additional information, including a more detailed explanation
of the error, an explanation as to what might have caused it, and suggestions for how
the error can be fixed. This information is usually hidden behind an online search or
several clicks through documentation. Becker et al [4] suggest that easy access to this
supplemental information might help novice programmers better understand and fix the
error. This idea is further supported by Kadekar et al[12], who found evidence that
linking to additional information in error messages reduces the amount of time it takes
to fix an error.

Alternatively, Hundhausen et al [10] have suggested that placing this additional
information next to the error message might help reduce cognitive load, as it would
mean that the programmer no longer has to dedicate their processing capacity towards
finding this information.

7

Chapter 2

Methods

As was mentioned in the introduction, this thesis will suggest some methods for improv-
ing the presentation of compiler error messages. This chapter will describe how these
enhancements are designed and evaluated.

2.1 Survey

For this thesis, we will be designing error messages that are better suited for novice
programmers. Before designing these enhanced errors, we want to gain some insight into
how students interact with and think about error messages. For this, we will be using a
survey. This section will describe what information we aim to obtain from this survey
and also describes how we will learn that information. The full survey can be found in
Appendix A.

The survey will be run on first-year computing science students following the course
“Object Oriented Programming” at Radboud University. These students are currently
learning the Java programming language. Since our error messages are designed to be
used by novice programmers, the students targeted by the survey should be a good
representation of our target audience.

First, we want to know how students normally interact with error messages. We are
especially interested in how and when they use error messages. This will tell us what our
error messages should be able to do. It also helps guide what areas our improvements
should focus on. These insights will be gained by asking students to describe the process
they go through when debugging compiler errors.

Second, we want to know what the students think of the current error messages.
Knowing their opinion on error messages lets us identify problem areas with error mes-
sages and again helps guide our improvements. It also provides a point of comparison
that will be used when evaluating our enhanced error messages. This information will
be gained by asking the students to rate the effectiveness of current error messages in
helping them find, understand and fix the errors. These are the three main goals of error
messages, as described by Lazonder et al[14]. We also ask students to mention problems
they might have with error messages, and ask them to come up with enhancements of

8

their own.
Finally, we want the student’s opinion on some of the potential improvements as

described in section 1.1. To do this, we create a mock-up for each suggested improve-
ment and ask students to rate them. We also show a standard error message and ask
the students to rate it. The ratings of the suggested changes and the standard error
messages are compared to see if students prefer these enhancements over the standard
error messages.

2.2 Evaluation of the Enhancements

Based on the results obtained from the survey, we will design a set of enhanced error
messages. This section will describe how the error messages created in this study are
evaluated. Because we only have a small number of participants for this part of the
research, this is done using qualitative research. First, the participants are given a small
programming assignment to complete using our enhanced error messages. The students
are given 20 minutes to complete the assignment. They are then asked some questions
about their experience with the enhanced error messages in an interview.

The experiment has three participants. Again, all participants are first-year comput-
ing science students following the object-oriented programming course at the Radboud
university

The assignment is completed in a think-aloud study. This means that the partic-
ipants are asked to verbalize their thought processes as they are working through the
assignment. We also record their screen as they are programming, which provides us
with additional information on their process. The idea of using a think-aloud experiment
to capture a programmer’s experience was first explored by Vessey[23] while studying
the debugging habits of experts. In our case, we use a similar setup to get an idea of
how novice programmers make their way through the assignment.

This setup allows us to get a good idea of how the participants interact with the
enhanced error messages. It tells us if they actually interacted with the error messages
and if the messages worked as intended. Knowing the participant’s thought processes
also shows us the effects of the error messages on this thought process. It also helps
provide context to the participant’s answers to the questionnaire.

2.2.1 Assignment

The assignment given to the students consists of a piece of broken code. Specifically, the
program contains ten compiler errors. We have chosen to use this setup as it ensures
that students will encounter error messages during the experiment. The code of the
assignment, including the errors introduced, can be found in Appendix B.

The program is a simple application that sorts rectangles by their area. It consists
of two classes: Rectangle and Main. The Rectangle class represents a rectangle object
with its width and height as private variables. It provides methods to calculate the area
of the rectangle and retrieve its dimensions.

9

Error Message Mistake Introduced

“illegal start of expression” Declare the static variable rectangles inside the
static method main

“; expected” Removed ; at the end of the line

“) expected” Added ; after the updation in the for-loop

“invalid method declaration; return type required” Removed return type from function definition

“cannot find symbol” Removed the definition of scanner

“incompatible types” Pass a character to equalsIgnoreCase, which re-
quires a string input

“illegal start of expression” Declare the static variable n inside the static method
sortRectanglesByArea

“{ expected” Removed opening brace after class definition

“incompatible types” Define Width and Height as integers but try to pass
a double to them.

“not a statement” Removed the return before width * height;

Table 2.1: List of compiler errors introduced in the assignment

The Main class contains the main method and serves as the entry point of the pro-
gram. It allows the user to input rectangle objects by providing their width and height.
The rectangles are stored in a list. The program then prints the rectangles before sorting
them by their area. After sorting, it displays the rectangles again to show the sorted or-
der. The main class includes the readRectanglesFromInput method, which allows the
user to input rectangles, the sortRectanglesByArea method, which sorts the rectangles
by their area using a bubble sort algorithm, and finally the printRectangles method,
which prints a list of rectangles.

As we said before, we introduce ten compiler errors into the program. These errors
are chosen from the twenty most common errors among novice programmers, as found
by Jackson et al[11]. The list of errors introduced can be found in Table 2.1.

Six of these error messages are unique, meaning that that specific error occurs only
once in the program. The “illegal start of expression” and “incompatible types” errors
occur twice in the program. This is done to test the effect of the enhanced error messages
on repeated errors.

2.2.2 Evaluation Interview

After the participants have finished the assignment, we want to know what they thought
of our enhanced error messages. To get this information, participants will be interviewed
and asked questions on the effects of the enhancements we made to the error messages.
The full list of questions used to guide the interview can be found in Appendix C.

We first want to know how effective the enhanced error messages are in performing
the three main tasks of error messages[14]. This tells us what the strong and weak

10

points of our error messages are. To do this, we again ask the participants to rate
the effectiveness of the error messages in helping them locate, understand and solve the
errors. These questions were also asked about standard error messages in the first survey,
which allows us to compare the results.

Next, we want to know what the participants thought of the enhancements we made.
To get this information we ask them for their opinions on each of the individual im-
provements we have implemented. This will allow us to get gain insight into how useful
each of them was in practice. It will also tell us something about the effect they had on
the participants’ error-solving process.

Finally, we want to know about any problems the participants might have with the
enhanced error messages. Therefore, we ask them to mention any shortcomings our
enhancements might have and ask if anything was missing. This can help in evaluating
the error messages and might guide the design of any potential future iterations of the
enhanced error messages.

11

Chapter 3

Analyzing the survey data

In this section, we will be analyzing the data generated by our survey. The analysis
is split in two parts. First, we take a look at students’ experiences and opinions on
current error messages. Second, we analyze the rating given to the suggested changes
and compare them to the rating given to current error messages.

3.1 Current Errors

Looking at the data, we see that the majority of the respondents (roughly 85%) make
use of error messages when trying to solve an error. However, this number does not
paint the full picture. Almost half of these students do not actually read the error
message. Instead, they only use them to find the location of the error. They then use
other methods to actually try to find what was causing the error.

The most popular other method is looking up the error online. 18 out of the 21
responses mention the use of an online search engine or Q&A platform such as Stack
Overflow as a part of their error-solving process. Worryingly, many students indicate
that they simply copy-paste the error message into a search engine without even trying
to read and understand it for themselves.

Another popular debugging method is using manual debugging. This usually involves
putting print statements at various points in the code, and seeing what if the program
prints out a result. This way, the students see what parts of the code are run and what
kind of results this code produces. This information helps them to pinpoint the problem
and provides important clues as to the nature of the error. survey results indicate that
this method of manual debugging is used more often than the actual debugger that
comes built-in with practically all IDEs.

Additionally, the results show that students see locating the error as an important
job of the error message. This observation is further backed by results shown later on
in this section, where students indicate that locating the error is one of the most helpful

12

Figure 3.1: visualization of respondent’s ratings of the effectiveness of current error
messages in helping them locate, understand and fix errors

aspects of error messages. On top of this, as we will see later on, enhancements that are
focused on making it easier to locate the error are given the highest ratings by students.
As described by Lazonder and van der Mei[14], error messages have 3 main jobs. They
have to help the programmer find, understand and solve errors. According to the survey,
most students think that error messages are good at helping to locate the error, giving
them an average rating of 7 in this category (see Figure 3.1). However, students find
that current error messages are ineffective in helping them understand and solve errors,
rating them an average of 5,1 and 4,7 in these two categories respectively(again, see
Figure 3.1).

This observation is further backed up by the questions where students were asked to
mention the most and least helpful aspects of error messages. 14 out of the 21 respon-
dents named helping them find the error as the most helpful aspect of error messages.
On the other hand, one of the most common complaints was that error messages were
vague, generic, or otherwise unclear. Many respondents mentioned that they often need
to google the error message to understand what it means. Additionally, many of the
enhancements suggested by the students include some form of rephrasing the error mes-
sages to make them easier to understand.

13

Figure 3.2: Ratings given by students to various proposed enhancements

3.2 Enhanced Errors

In the survey, we ask students to rate 7 potential improvements that could be made to
the presentation of error messages. The improvements we ask about will be described
below. Appendix A includes the mockups shown in the survey.

The first two improvements we included were meant to make it easier to locate the
error. The first one underlines the mistake with a red squiggly line, similar to how text
editors like Microsoft Word underline spelling mistakes. This method of underlining
mistakes should be familiar to students. The second one highlights the entire line in a
bright color and highlights the specific token that is causing the error in red.

The next few improvements are meant to reduce cognitive load and are based on the
3 design principles for reducing cognitive load as described by Hundhausen et al [10].

The third potential improvement included in the survey is one where we only show one
error at a time to the programmer. This improvement is based on the principle of limiting
the amount of information shown to the user. The fourth proposed improvement involves
making the program read the error message out loud and is based on the principle of using
multiple modalities. The fifth improvement provides a link to relevant documentation.
This follows the principle of placing relevant information nearby where the task is being
completed and is further supported by research conducted by Kadekar et al[12].

The sixth suggested improvement places the error message physically close to the
erroneous code. This improvement is also based on the principle of placing relevant
information close to where the task is being completed. On top of this, placing the error
close to the code also helps provide context, as suggested by Barik[1].

14

The 7th and final proposed enhancement is based on the cognitive fit theory[24]. It
involves displaying the error message in the same style as the rest of the code.

Finally, we also ask students to rate a normal unenhanced error message, which will
be used as a point of comparison to the seven proposed improvements.

The ratings given by the responding students can be seen in Figure 3.2. The “Error
Highlighted” Enhancement is a clear favorite among respondents. Students indicate that
they like that it made it easier to quickly locate the mistake. Students prefer it over
the “Error Underlined” enhancement because the highlighting makes it stand out more
and is therefore easier to find when compared to the underlining. However, a minority
of responses indicate that they prefer the simplicity of the underlining.

The “One error at a time” enhancement is also preferred over standard error mes-
sages. Students who rated it highly mentioned that it helps them focus on the problem
at hand.

Both the “Message close to errors” and “Link to documentation” enhancements have
an average rating that is roughly equal to the standard error messages. The spread in
ratings given to these enhancements is however much wider when compared to the other
proposals. This indicates that they were somewhat controversial, as many students
either gave them very high or low ratings.

For the “Message close to errors”, many of the people who like it mention that it
helps them in locating the error message. This is an unforeseen additional benefit of
the enhancement on top of providing context and reducing cognitive load. On the other
hand, the respondents who dislike the proposal mainly dislike the fact that it breaks up
the flow of the code, thereby actually making it more difficult to see the full context of
the error.

In the case of “Link to documentation”, many of the students who like it say that
it makes it easier to understand what is going wrong. It also saves them time, as many
of them also indicated that they already use external resources such as Google as an
integral part of their error-solving process. Linking the relevant information directly
in the error messages saves them a few clicks. The people who dislike it mention that
such functionality would make the error message too busy. Some also say that such a
feature would not be useful, as websites such as Stack Overflow do a much better job of
providing relevant information than the standard documentation.

The “Matching Fonts” and “Read the error out loud” both receive scores that are
much lower than the standard base error message. For Matching fonts, participants
report that it is too similar to normal output which makes it difficult to see that there
even is an error. In the case of reading the error out loud, they report that it would just
be distracting to them, while not providing any real benefits.

In general, a significant portion of the respondents stressed that they rate simplicity
and subtlety above all else. These people dislike changes that introduce extra distractors,
such as reading the error out loud and putting the message next to the error. On the
other hand, they like the underlining and showing one error at a time, as they make
things simpler, or provide big benefits without adding additional distractions. Cutting
down on unnecessary stimuli and distractors massively decreases the cognitive load,

15

which in theory should improve student performance.
Many of the most well-liked improvements focus on making it easier to find the

location of the errors. This is noteworthy, as students also indicate that helping you
locate the error is already one of the strong points of current error messages. Locating
the mistake is already seen by many students as the most important job of error messages,
so it makes sense that improvements that make this easier are rated highly.

16

Chapter 4

Design

As a part of our research, we implement error messages with enhanced presentation.
This section will describe the enhanced error messages made for this study. It will show
the design choices we made and explain the rationale behind them.

4.1 DrJava

In order for us to implement the enhanced error messages, we need an IDE. Since creating
an IDE from scratch is very time-consuming, we have instead chosen to use an existing
IDE as a base to build our enhanced error messages on top off. For this base, we have
chosen to use DrJava[7]. This section will describe the DrJava environment.

We have chosen to use DrJava as a base because it is designed to be relatively
lightweight. DrJava is designed to be as simple as possible so that students do not have
to spend valuable time learning and getting used to the complexities of other popular
IDEs. For us, this simplicity means that the environment is a blank slate on which we
can add our own enhancements. The lack of many complicated features also means that
there are few outside variables influencing our experiment. We do not want participants
to base their opinion of our enhancements on features that are built into the IDE, but
on the presentational enhancements made for our experiment.

The DrJava interface consists of two main panes: The interactions pane and the defi-
nitions pane. In the definitions pane, the user can enter and edit class definitions. In the
interactions pane, the user can input Java expressions and statements and immediately
see their results.

The interactions pane is built around a Read-Evaluate-Print Loop(REPL)[19]. It
takes single user inputs, executes them, and immediately returns the results to the user.
A REPL facilitates incremental development.

For our purposes, the definitions pane is more important, as that is where most
of the coding happens, and where most of the presentational changes are displayed.
The DrJava editor supports a small number of features. Like most other IDEs, it has
automatic indentation and keyword highlighting.

17

One less common feature DrJava has is parenthesis matching. When the user clicks
on or in between a set of parentheses, it will highlight the area in between them. This
helps the user quickly find where the parentheses open and close. Unfortunately, we had
to disable this feature for our implementation. This is for two main reasons. First of
all, it is a feature that is not present in most other IDEs and introduces an additional
outside variable in our experiments. When we let students use our implementation, we
do not want them to factor this feature into their ratings of the experience. Secondly,
it clashes with some of the presentational enhancements, namely the error highlighting,
that we have implemented.

4.2 Enhanced Error Messages

For this research, we have implemented a number of presentational changes to the error
message. These enhancements are based on prior research described in section 1.1 and
on the data obtained from the survey as laid out in section section 3.

Of the potential improvements mentioned in section 1.1, we have chosen to implement
2: Highlighting the error and only showing one error at a time. These are the suggestions
that have the most support among novice programmers according to our survey.

In the survey, many students indicate that locating the code is the most important
job of an error message. Respondents were asked to rate two suggested changes that are
meant to make it easier for the user to locate the error. The first one marks the error
by underlining it with a squiggly red line. The second one highlights the line where the
error occurs. Of these, the second one is the most popular, which is why we chose to
implement it in our enhanced error messages.

When an error occurs, the line of code that is causing the error is highlighted in
orange. Additionally, the token that is causing the error is highlighted in red. When
you click elsewhere in the editor, the highlighting disappears. It appears again when
the user either clicks on the line that is causing the error or on the error message. This
highlighting can be turned off by toggling the “Highlight source” button in the bottom
right.

As mentioned in section 3, we found that many students do not use error messages
in the way they are intended. Many only use them to locate the error or immediately
copy the error into an online search engine. They do not meaningfully interact with the
error message. One of the aims of our enhanced errors is to make students actually read
and pay attention to the error messages.

One major reason students do not actually read the error messages is that they find
them vague and confusing. This problem can be tackled using the cognitive load theory.
Reducing the cognitive load generated by error messages may make it easier for students
to interpret and understand error messages. Therefore, the enhancement of showing
only one error message at a time should make it easier for students to understand the
error, as it aims to reduce the cognitive load.

In the survey, we ask students to rate a total of 5 suggested changes that aim to
reduce the cognitive load produced by error messages. Most of these are given low or

18

Figure 4.1: A screenshot showing our enhanced error messages

19

middling ratings. However, one of them, showing only one error message at a time, has
a lot of support from students.

As you can see in Figure 4.1 the console now only displays a single error at a time.
You can switch between the errors by pressing the up and down buttons to the right of
the console. Switching to a different error also highlights this new error. The first line
of the console tells you how many errors there are in the program, and shows you which
error you are currently focused on.

Additionally, we have made some changes to the styling of the error messages to
make students more likely to meaningfully interact with them. The beginning of each
line is bolded and has been given a darker color, which makes it easier for students to
differentiate between the line that tells you the error location and the rest of the error
message. On top of this, the part of the message that explains what the error is is
underlined, which immediately draws the user’s attention.

Finally, the survey found that many students use a roundabout way of manually
debugging, instead of using the built-in debugger that is already present in practically
every IDE. To help solve this, we have implemented a feature that is meant to point the
user to the built-in debugger.

When the program sees that the user gets the same error more than 3 times in a
row, it shows a popup reminding the programmer to use the debugger. We chose to only
show this message after 3 consecutive errors, as it is a sign that the user is either stuck
on the error or is trying to manually debug.

20

Chapter 5

Results

This section will describe the results obtained in the experiment described in section 2.2.
The experiment was performed on 3 first-year computing science students. Two of these
students managed to complete the entire assignment. The third student got through
most of the assignment, but got stuck on one particular error.

In the experimental error messages, we included 4 different enhancements. First, we
have the program show only one error message at a time. This feature saw heavy use
during the experiment. We often saw that, when students got stuck at a certain error,
they used the feature to move on to the next error, thereby splitting the large problem
into several smaller ones. This change seemed to be well received, with one participant
specifically saying “This switching around is quite handy”.

The main goal of this feature was to reduce the cognitive load produced by the
program. The effects of the enhancement on cognitive load can be seen in the experiment.
On a few occasions, the participants mention how it helped them focus on the problem.
In particular, during the following interviews, one participant stated that the enhanced
error messages felt “better than normal” when solving errors. When asked why, they
answered “I think maybe that you only show one error lets me focus more on that error ’.
Another participant said that “it really helped me focus on the errors and not get [...]
distracted”

On top of this, all of the participants said that splitting the assignment into smaller
tasks stopped them from feeling overwhelmed by the large number of errors. One of
them also mentioned that “it is easier to solve the problems separately”.

However, one of the students said that the setup was not very intuitive. Because it
only showed one error, it looked that they were closer to completing the assignment than
they actually were, and they found the navigation to be somewhat confusing. However,
they did admit that this problem could be helped with more exposure to the setup, as
you would naturally become used to only viewing one error at a once if you worked with
it for a longer period of time. When asking students to rate the enhancement, they gave
it an average rating of 8.

The second enhancement made to the experimental error messages was in the highlight-

21

ing. In the experiment, both the line and the token that caused the error are highlighted
in different colors.

During the experiment, we saw that the participants used the highlighting to find the
exact location of the errors. On a few occasions, the participants explicitly mentioned
that the highlighting helped them with this. This can be seen in quotes said during the
experiment such as “that probably means that this static is wrong. You can tell by the
highlighting.” or “it [the highlighting] really helped in finding the error”.

The importance of highlighting could also be seen in cases where it was absent. On
a specific point in the assignment, one of the participants turned the highlighting off
because its color clashed with the keyword highlighting. After they had finished this
section and moved on to the next error, they initially forgot to turn the highlighting
back on. When trying to fix the next error they said “where [has] the error gone?”.
They could only find it again after turning the highlighting back on. This indicates the
importance of the highlighting when locating errors.

During the interviews conducted after finishing the experiment, participants praised
the feature. One said that “Especially the highlighting was very clear, you could quickly
see where the error was”, while another mentioned that “it showed exactly where the
error was”. Overall, this feature received a rating of 8, and one of the participants
explicitly said that it was better than normal.

The third change we made to the experimental error messages was in the styling. We
changed the color, bolded the start of each sentence, and underlined the most important
part of the error message. This was meant to have two effects. First, it was supposed
to encourage the user to read the error messages.

The effects of the enhancements on reading error messages can be seen during the
experiment. We see a lot of cases where participants said “it says illegal start of expres-
sion” or “so it is Illegal start of expression”. In fact, all participants consistently read
the error message out loud before working on it.

This can also be seen in cases of repeated errors. For example, participants said things
like “that is the same problem”, showing that they recognize the error and remember
seeing it before. They were then able to use this information to quickly solve the repeated
error.

The second goal of this enhancement was to prevent the number of times participants
use the internet. During the experiment, the three subjects used the internet a combined
5 times. These internet searches can be split up into two categories. First, all participants
used the internet to find out how to define a scanner in Java. Second, two of the
participants used the Internet to clarify how some of the methods used in the assignment
worked. One of them searched “Methods for list”, while another looked up “parseDouble
output”.

During the subsequent interviews, the participants mentioned that especially the
underlining of important parts of the error message helped. One of them said “it is
useful, because you are immediately focused on the problem. The rest is only additional
information”, while another said “I think the underlining because it draws your attention

22

to the most important parts”. This student also mentioned that the styling “makes the
error stand out and it grabs your attention”. The final student however said that “it
was better than normal, but I don’t think it had a big effect”. Overall, the participants
gave the styling an average rating of 7,5. They also said that, of the changes made to
the styling, the underlining was the most helpful. This is because it draws attention to
the most important part of the error message.

The fourth and final enhancement present in the experimental error messages was that
it points the user towards the debugger when it detects they are stuck on a certain error.
All three of the participants initially reacted to this enhancement with confusion. After
further questioning, it was revealed that they never learned what a debugger was and
that they did not know how to use it.

In the interviews conducted after the experiment, we asked the participants to rate
how effective they thought the error messages were in locating, understanding, and
solving the errors respectively. The effectiveness in locating the error message received
an average rating of 9. All three participants mentioned how especially the highlighting
was very helpful in locating the error messages. The understanding received a rating of
7.6, but two of the participants mentioned that they thought that the error messages
were too vague at times. Finally, the effectiveness of solving the error messages received
an average rating of 7,3. Again, participants noted that sometimes the error messages
were too vague or unclear to be able to solve them quickly.

When asked about problems or shortcomings of the enhanced error messages as pre-
sented in the experiment, two of the students still mentioned that the error messages
were not always clear or easy to understand. There were also some mentions of imple-
mentation issues. One participant mentioned that the highlighting seemed to be off at
times, and all students noticed that the color of the highlighting sometimes clashed with
the keyword highlighting.

There were also some mentions of things that could have been implemented differ-
ently. One of the students said that it would be better if the highlighting was auto-
matically turned off while typing, as it was distracting. Another participant suggested
making the highlight color different for different categories of errors, to allow the user
to quickly differentiate between them. Finally, one student suggested creating keyboard
shortcuts to toggle highlighting and switch between errors.

Besides these smaller quality-of-life improvements, two other large-scale design changes
were suggested. First, one student mentioned linking to documentation in the error mes-
sage. Second, someone suggested adding examples to the error message.

23

Chapter 6

Conclusion and Discussion

In this section, We first present our main findings based on the results presented earlier.
We then discuss limitations in this research and potential future research directions.
Finally, the chapter will end with a conclusion.

6.1 Findings

Overall, It seems that the changes made to the error messages had a positive effect on
students. In the end, this resulted in 2 of the 3 participants being able to complete the
assignment within the time limit. The third participant got stuck on one particular error
but handled the other ones with relative ease.

During the experiment, we asked students to rate the effectiveness of the enhanced
error messages in helping them locate, understand and solve the errors. In the survey
conducted earlier, students were asked to rate current standard error messages in these
same categories. A comparison of these two results can be found in Figure 6.1.

As you can see, the enhanced error messages received higher ratings across the board.
There was one student who both filled in the first survey and participated in the experi-
ment. When comparing the ratings this student gave to both the standard en enhanced
error messages, we see that they gave the same rating for their effectiveness in locat-
ing the error, while they rated the enhanced error messages higher in the other two
categories. While this data seems to indicate that the enhanced error messages are an
improvement upon standard error messages, it is important to keep in mind that we
only had 3 participants for the experiment and that the data is therefore not conclusive.
For the rest of this section, we will be providing more qualitative evidence to back up
this claim.

In the experimental error messages, we made four major changes. For three of the
four changes made, we can immediately see that they had their intended effect.

For the feature where the program only displays one error message at a time, its
main goal was to reduce the cognitive load produced by the program. As you can see
in the results, the participants mentioned that it helped them focus, with one of them
even specifically mentioning that it felt better than normal.

24

Figure 6.1: Comparison of the effectiveness ratings given to standard and enhanced error
messages

The idea was that, by reducing the cognitive load produced, students would be better
able to understand the error messages, and thereby have an easier time solving them.
This understanding of error messages was found to be a big problem for students in
earlier studies [4, 22]. The results indicate that the enhanced error messages performed
better in these aspects than standard error messages, but there were still problems.
While participants did mention that it felt better than normal, they still found that the
error messages were unclear or vague at times.

Besides its small effects on cognitive load, participants also found that the feature
helped them divide the assignment into smaller sub-problems, which made it easier to
solve and prevented them from being overwhelmed.

For the highlighting, we again see that the participants found them to be very useful.
In the first survey, students indicated that locating the error was one of the most im-
portant jobs of the error messages, which is made easier by this highlighting. As shown
in the results, the participants made heavy use of the highlighting when locating errors.
This was also confirmed in the subsequent interviews, where students again praised the
highlighting for making it easy to locate the error.

The goal of the updated styling was twofold. First, its aim was to make participants
read the error messages. During the initial survey, we found that many students don’t
actually read the error message, and instead only use it to find the error’s location. The
idea behind the enhancement was to draw the user’s attention toward the error message
by underlining the most important part.

As you can see in the results, the enhancements succeeded in accomplishing this
goal. All three of the participants consistently read the error messages when solving the

25

errors. It also became clear that the students actively remembered the error messages,
as they were able to recognize repeated error messages. They were also able to use the
knowledge gained while working on the first instance of the error to quickly solve the
repeated error.

The second goal of this enhancement was to reduce the users’ reliance on the internet.
During the survey, we found that many students simply copied the error message into an
internet search engine, again without reading the error message. As shown in the results
section, we counted a combined total of 5 internet searches during the experiments.
Notably, none of these searches were cases where the user copied the entire error message.
This is a noticeable improvement upon the behavior described by students in the first
survey

The final enhancement made to the error messages, pointing to the debugger when
the program detects the user is stuck on a certain error, did not work as well as the
others. This was due to the fact that the students had never learned how to use a
debugger, and could therefore not really make good use of the feature.

During the first survey, we found that students rarely made use of the debugger,
instead using a method we referred to as ”manual debugging“. At the time, we assumed
that this was because they forgot about it during programming, which we aimed to fix by
suggesting they use the debugger when stuck at an error. However, it has now become
clear that this lack of usage was instead caused by a gap in their education. Pointing
to the debugger in the error message might still be helpful, as it encourages the user to
learn about the debugger. However, we did not have enough time for this during the
experiment, so participants were told to ignore it.

While the participants were generally positive about the enhanced error messages,
they did still find some shortcomings. As mentioned before, they still found that the
error messages were not always clear or easy to understand. This was already a common
complaint with standard error messages. In the enhanced error messages, we tried to
make the errors easier to understand using cognitive load, but it seems like this was not
enough.

As mentioned in the results, there were also some mentions of things that could be
implemented better. These were smaller quality-of-life improvements that would be nice
to have, but their absence does not really take away from the overall quality of the error
messages.

Finally, there were two larger improvements that could be made to the error messages
mentioned in the interviews. First, one student mentioned linking to documentation in
the error message. This feature was included in the first survey but was not implemented
in the enhanced error messages because it only received middling support. Second,
someone suggested adding examples to the error message, which is a change in content
and therefore out of scope for this study.

26

6.2 limitations

For our implementation of the enhanced error messages, we chose to use the DrJava
IDE[7] as a base. This decision was made due to time constraints, as implementing an
IDE from scratch is extremely time-consuming. While we deliberately chose to use a
relatively lightweight and barebones IDE as a base, it still contained some features that
could have influenced the participants’ opinions of the enhanced error messages

There were more outside factors that might have affected the results of the experi-
ment. The fact that participants were aware of the fact that we were investigating error
messages, combined with the fact that the researcher was on a call with the participant
while completing the assignment, might have influenced their behavior. For example,
it could have made them pay more attention to the error messages than they normally
would.

6.3 future work

While the findings seem to indicate that the enhancements improved participants per-
formance, it is important to keep in mind the experiment only has a small number of
participants. A larger-scale study, similar to those performed by Becker [3] or Pettit et
al[17], is needed to confirm these conclusions. This is left for further research.

It is also important to note that, while the results look promising, it also looks like
it is not enough to solve all problems students have with error messages. During the
experiment, participants still said that they found the error messages to be difficult
to understand at times. It seems like a combination of both content and presentation
enhancements is needed to fully solve this problem. Studying the effects of the presen-
tational enhancements presented here combined with content enhancements is also left
as future work.

In this study, we have chosen to investigate only four different enhancements in depth.
Some of the enhancements that were mentioned during this thesis, but that were not
included in the final product, could also prove to be useful changes. In particular, the
“Linking to documentation” and “Placing the error message close to the error” seem to
be good candidates for further investigation. Both of these received middling support
in the survey, but saw high variance in their ratings. the “Linking to documentation”
enhancement was also mentioned as a potential improvement by a student during the
experiment. Researching the effects of these enhancements is also left for future research.

6.4 conclusion

First-year computing science students often struggle with programming. One of the
biggest reasons for this is unclear and frustrating error messages. In this thesis, we
aimed to find out how presentational enhancements could be used to improve compiler
error messages. In the end, we have identified 3 enhancements that seemed to have a
positive effect on users.

27

First, we found that highlighting the line and token that caused the error will help the
user to quickly and effectively locate the mistake. Second, we found that updating the
styling of the error messages can encourage users to actively read the error messages.
Finally, we found that only showing one error at a time can help the user focus and
prevent them from being overwhelmed by large numbers of errors.

28

Bibliography

[1] Titus Barik. “Error Messages as Rational Reconstructions.” In: (2018-03-29). url:
http://www.lib.ncsu.edu/resolver/1840.20/35439.

[2] Titus Barik et al. “Do Developers Read Compiler Error Messages?” In: 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE). 2017,
pp. 575–585. doi: 10.1109/ICSE.2017.59.

[3] Brett A. Becker. “An Effective Approach to Enhancing Compiler Error Messages”.
In: Proceedings of the 47th ACM Technical Symposium on Computing Science Ed-
ucation. SIGCSE ’16. Memphis, Tennessee, USA: Association for Computing Ma-
chinery, 2016, pp. 126–131. isbn: 9781450336857. doi: 10.1145/2839509.2844584.
url: https://doi.org/10.1145/2839509.2844584.

[4] Brett A. Becker et al. “Compiler Error Messages Considered Unhelpful: The Land-
scape of Text-Based Programming Error Message Research”. In: Proceedings of the
Working Group Reports on Innovation and Technology in Computer Science Edu-
cation. ITiCSE-WGR ’19. Aberdeen, Scotland Uk: Association for Computing Ma-
chinery, 2019, pp. 177–210. isbn: 9781450375672. doi: 10.1145/3344429.3372508.
url: https://doi.org/10.1145/3344429.3372508.

[5] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. “Enhancing Syntax Er-
ror Messages Appears Ineffectual”. In: Proceedings of the 2014 Conference on Inno-
vation Technology in Computer Science Education. ITiCSE ’14. Uppsala, Sweden:
Association for Computing Machinery, 2014, pp. 273–278. isbn: 9781450328333.
doi: 10.1145/2591708.2591748. url: https://doi.org/10.1145/2591708.
2591748.

[6] Paul Denny et al. “CodeWrite: Supporting Student-Driven Practice of Java”. In:
Proceedings of the 42nd ACM Technical Symposium on Computer Science Ed-
ucation. SIGCSE ’11. Dallas, TX, USA: Association for Computing Machinery,
2011, pp. 471–476. isbn: 9781450305006. doi: 10.1145/1953163.1953299. url:
https://doi.org/10.1145/1953163.1953299.

[7] Robert Cartwright Eric Allen and Brian Stoler. “DrJava: A lightweight pedagogic
environment for Java”. In: (2001).

[8] Dianne Hagan and Selby Markham. “Teaching Java with the BlueJ environment”.
In: Proceedings of Australasian Society for Computers in Learning in Tertiary
Education Conference ASCILITE. 2000.

29

http://www.lib.ncsu.edu/resolver/1840.20/35439
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/1953163.1953299
https://doi.org/10.1145/1953163.1953299

[9] Maria Hristova et al. “Identifying and Correcting Java Programming Errors for
Introductory Computer Science Students”. In: SIGCSE Bull. 35.1 (Jan. 2003),
pp. 153–156. issn: 0097-8418. doi: 10.1145/792548.611956. url: https://doi.
org/10.1145/792548.611956.

[10] C. D. Hundhausen, D. M. Olivares, and A. S. Carter. “IDE-Based Learning An-
alytics for Computing Education: A Process Model, Critical Review, and Re-
search Agenda”. In: ACM Trans. Comput. Educ. 17.3 (Aug. 2017). doi: 10.1145/
3105759. url: https://doi.org/10.1145/3105759.

[11] J. Jackson, M. Cobb, and C. Carver. “Identifying Top Java Errors for Novice
Programmers”. In: Proceedings Frontiers in Education 35th Annual Conference.
2005, T4C–T4C. doi: 10.1109/FIE.2005.1611967.

[12] Harsha B. M. Kadekar, Sohum Sohoni, and Scotty D. Craig. “Effects of Error
Messages on Students’ Ability to Understand and Fix Programming Errors”. In:
2018 IEEE Frontiers in Education Conference (FIE). 2018, pp. 1–8. doi: 10.1109/
FIE.2018.8658629.

[13] Michael Kölling et al. “The BlueJ System and its Pedagogy”. In: Computer Science
Education 13.4 (2003), pp. 249–268. doi: 10 . 1076 / csed . 13 . 4 . 249 . 17496.
eprint: https://doi.org/10.1076/csed.13.4.249.17496. url: https:
//doi.org/10.1076/csed.13.4.249.17496.

[14] Ard W. Lazonder and Hans van der Meij. “Error-information in tutorial doc-
umentation: Supporting users’ errors to facilitate initial skill learning”. In: In-
ternational Journal of Human-Computer Studies 42.2 (1995), pp. 185–206. issn:
1071-5819. doi: https://doi.org/10.1006/ijhc.1995.1009. url: https:
//www.sciencedirect.com/science/article/pii/S1071581985710099.

[15] Michael McCracken et al. “A Multi-National, Multi-Institutional Study of Assess-
ment of Programming Skills of First-Year CS Students”. In: SIGCSE Bull. 33.4
(Dec. 2001), pp. 125–180. issn: 0097-8418. doi: 10.1145/572139.572181. url:
https://doi.org/10.1145/572139.572181.

[16] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. “Compiler Er-
ror Messages: What Can Help Novices?” In: Proceedings of the 39th SIGCSE Tech-
nical Symposium on Computer Science Education. SIGCSE ’08. Portland, OR,
USA: Association for Computing Machinery, 2008, pp. 168–172. isbn: 9781595937995.
doi: 10.1145/1352135.1352192. url: https://doi.org/10.1145/1352135.
1352192.

[17] Raymond S. Pettit, John Homer, and Roger Gee. “Do Enhanced Compiler Error
Messages Help Students? Results Inconclusive.” In: Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education. SIGCSE ’17. Seat-
tle, Washington, USA: Association for Computing Machinery, 2017, pp. 465–470.
isbn: 9781450346986. doi: 10.1145/3017680.3017768. url: https://doi.org/
10.1145/3017680.3017768.

30

https://doi.org/10.1145/792548.611956
https://doi.org/10.1145/792548.611956
https://doi.org/10.1145/792548.611956
https://doi.org/10.1145/3105759
https://doi.org/10.1145/3105759
https://doi.org/10.1145/3105759
https://doi.org/10.1109/FIE.2005.1611967
https://doi.org/10.1109/FIE.2018.8658629
https://doi.org/10.1109/FIE.2018.8658629
https://doi.org/10.1076/csed.13.4.249.17496
https://doi.org/10.1076/csed.13.4.249.17496
https://doi.org/10.1076/csed.13.4.249.17496
https://doi.org/10.1076/csed.13.4.249.17496
https://doi.org/https://doi.org/10.1006/ijhc.1995.1009
https://www.sciencedirect.com/science/article/pii/S1071581985710099
https://www.sciencedirect.com/science/article/pii/S1071581985710099
https://doi.org/10.1145/572139.572181
https://doi.org/10.1145/572139.572181
https://doi.org/10.1145/1352135.1352192
https://doi.org/10.1145/1352135.1352192
https://doi.org/10.1145/1352135.1352192
https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1145/3017680.3017768

[18] James Prather et al. “On Novices’ Interaction with Compiler Error Messages: A
Human Factors Approach”. In: Proceedings of the 2017 ACM Conference on Inter-
national Computing Education Research. ICER ’17. Tacoma, Washington, USA:
Association for Computing Machinery, 2017, pp. 74–82. isbn: 9781450349680. doi:
10.1145/3105726.3106169. url: https://doi.org/10.1145/3105726.3106169.

[19] Erik Sandewall. “Programming in an Interactive Environment: The “Lisp” Experi-
ence”. In: ACM Comput. Surv. 10.1 (Mar. 1978), pp. 35–71. issn: 0360-0300. doi:
10.1145/356715.356719. url: https://doi.org/10.1145/356715.356719.

[20] John Sweller. “Cognitive load during problem solving: Effects on learning”. In:
Cognitive Science 12.2 (1988), pp. 257–285. issn: 0364-0213. doi: https://doi.
org/10.1016/0364-0213(88)90023-7. url: https://www.sciencedirect.com/
science/article/pii/0364021388900237.

[21] E. Thiselton and C. Treude. “Enhancing Python Compiler Error Messages via
Stack”. In: 2019 ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement (ESEM). Los Alamitos, CA, USA: IEEE Computer
Society, Sept. 2019, pp. 1–12. doi: 10.1109/ESEM.2019.8870155. url: https:
//doi.ieeecomputersociety.org/10.1109/ESEM.2019.8870155.

[22] V. Javier Traver. “On Compiler Error Messages: What They Say and What They
Mean”. In: Advances in Human-Computer Interaction 2010 (Jan. 2010). doi: 10.
1155/2010/602570.

[23] Iris Vessey. “Expertise in debugging computer programs: A process analysis”. In:
International Journal of Man-Machine Studies 23.5 (1985), pp. 459–494. issn:
0020-7373. doi: https://doi.org/10.1016/S0020-7373(85)80054-7. url:
https://www.sciencedirect.com/science/article/pii/S0020737385800547.

[24] Iris Vessey and Dennis Galletta. “Cognitive Fit: An Empirical Study of Informa-
tion Acquisition”. In: Information Systems Research 2.1 (1991), pp. 63–84. issn:
10477047, 15265536. url: http://www.jstor.org/stable/23010613 (visited on
02/13/2023).

[25] Christopher Watson, Frederick W. B. Li, and Jamie L. Godwin. “BlueFix: Using
Crowd-Sourced Feedback to Support Programming Students in Error Diagnosis
and Repair”. In: Advances in Web-Based Learning - ICWL 2012. Ed. by Elvira
Popescu et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 228–239.
isbn: 978-3-642-33642-3.

31

https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/356715.356719
https://doi.org/10.1145/356715.356719
https://doi.org/https://doi.org/10.1016/0364-0213(88)90023-7
https://doi.org/https://doi.org/10.1016/0364-0213(88)90023-7
https://www.sciencedirect.com/science/article/pii/0364021388900237
https://www.sciencedirect.com/science/article/pii/0364021388900237
https://doi.org/10.1109/ESEM.2019.8870155
https://doi.ieeecomputersociety.org/10.1109/ESEM.2019.8870155
https://doi.ieeecomputersociety.org/10.1109/ESEM.2019.8870155
https://doi.org/10.1155/2010/602570
https://doi.org/10.1155/2010/602570
https://doi.org/https://doi.org/10.1016/S0020-7373(85)80054-7
https://www.sciencedirect.com/science/article/pii/S0020737385800547
http://www.jstor.org/stable/23010613

Appendix A

Survey

This appendix will list the questions asked in the survey
1.) Please describe the process you go through when trying to debug an
error

2.) How effective do you think current error messages are in helping you
identify the location of the erroneous code?

This question asked students to give a rating between 1 and 10

3.) How effective do you think current error messages are in helping you
understand what is going wrong?

This question asked students to give a rating between 1 and 10

4.) How effective do you think current error messages are in helping fix the
error?

This question asked students to give a rating between 1 and 10

5.) What aspects of error messages do you find the most helpful? Please
explain your answer.

6.) What aspects of error messages do you find the least helpful? Please
explain your answer.

Below, we show a program that finds the largest of 3 numbers. The code contains 2
errors. In the following questions, we will show different ways of presenting the resulting
error messages. Please rate each of them on a scale from 1 to 10.

i

7.) Base Message

ii

8.) Error Underlined
We underline the error with red squigly lines.

iii

9.) Error Highlighted
We highlight both the error and the line in which the error occurs

iv

10.) One error at a time
We only show one error message at a time.

v

11.) Message close to errors
We place the error message right next to the error

vi

12.) Matching fonts
We match the style and font of the error message with the style of the code

vii

13.) Read the error out loud
We provide a button that makes the program read the error out loud

viii

14.) Link to documentation
We provide a link to the relevant documentation

15.) Please explain your reasoning for why you liked the improvement that
you rated the highest

please also mention what change you rated the highest in your answer

16.) Please explain your reasoning for why you disliked the improvement
that you gave the lowest rating

please also mention what error you rated the lowest in your answer

17.) Do you have any other suggestions on how error messages can be im-
proved?

ix

Appendix B

Assignment

This appendix will show the code of the programming assignment used in the evaluation
of the error messages

B.0.1 Class Main

1 import java.util.ArrayList;

2 import java.util.List;

3 import java.util.Scanner;

4

5 class Main {

6 public static void main(String[] args) {

7

8

9 // Read rectangles from user input

10 //Syntax Error 1: Define static variable inside static method

11 static List<Rectangle> rectangles = readRectanglesFromInput();

12

13 System.out.println("Before sorting:");

14 printRectangles(rectangles);

15

16 // Sort the rectangles by area from smallest to largest

17 sortRectanglesByArea(rectangles);

18

19 //Syntax Error 2: removed ;

20 System.out.println("\nAfter sorting:")

21 printRectangles(rectangles);

22 }

23

24 public static void printRectangles(List<Rectangle> rectangles) {

25 //Compiler Error 3: Added ; after updation

26 for (int i = 0; i<rectangles.size(); i++;) {

27 System.out.println("Width: " + rectangles.get(i).getWidth() + ", Height: " +

rectangles.get(i).getHeight() + ", Area: " +

rectangles.get(i).getArea());

↪→

↪→

28 }

29 }

30 //Compiler Error 4: removed return type

x

31 public static readRectanglesFromInput() {

32 List<Rectangle> rectangles = new ArrayList<>();

33 System.out.println("Enter rectangles (format: width, height), one per line

(Enter 'q' to finish):");↪→

34 while (true) {

35 //Compiler Error 5: Use scanner without defining it

36 String input = scanner.nextLine().trim();

37 //Compiler Error 6: define q as a character instead of a string

38 if (input.equalsIgnoreCase('q')) {

39 break;

40 }

41

42 try {

43 String[] dimensions = input.split(",");

44 double width = Double.parseDouble(dimensions[0].trim());

45 double height = Double.parseDouble(dimensions[1].trim());

46 Rectangle rectangle = new Rectangle(width, height);

47 rectangles.add(rectangle);

48 } catch (Exception e) {

49 System.out.println("Invalid input format. Please try again.");

50 }

51 }

52

53 return rectangles;

54 }

55

56 public static void sortRectanglesByArea(List<Rectangle> rectangles) {

57 //Compiler Error 7: Define static variable inside static method

58 static int n = rectangles.size();

59 for (int i = 0; i < n - 1; i++) {

60 for (int j = 0; j < n - i - 1; j++) {

61 if (rectangles.get(j).getArea() > rectangles.get(j + 1).getArea()) {

62 Rectangle temp = rectangles.get(j);

63 rectangles.set(j, rectangles.get(j + 1));

64 rectangles.set(j + 1, temp);

65 }

66 }

67 }

68 }

69 }

B.0.2 Class Rectangle

1 //Compiler Error 8: removed { in class declaration

2 public class Rectangle

3 private double width;

4 private double height;

5

6 //Compiler Error 9: Constructor takes int instead of double

7 public Rectangle(int width, int height) {

8 this.width = width;

9 this.height = height;

10 }

xi

11

12 public double getArea() {

13 //Compiler Error 10: removed return statement

14 width * height;

15 }

16

17 public double getWidth() {

18 return width;

19 }

20

21 public double getHeight() {

22 return height;

23 }

24 }

xii

Appendix C

Evaluation Interview

This appendix will list the questions asked in the evaluation interview held with students
after they have completed the assignment using the enhanced error messages

1.) How effective do you think the enhanced error messages were in helping
you identify the location of the erroneous code?

This question asked students to give a rating between 1 and 10

2.) How effective do you think think the enhanced error messages were are
in helping you understand what is going wrong?

This question asked students to give a rating between 1 and 10

3.) How effective do you think think the enhanced error messages were in
helping you solve the error?

This question asked students to give a rating between 1 and 10

The next 4 questions will describe 4 enhancements made to the error messages of the
IDE you just used. Please give me your opinion on each of them.

4.) Highlighted the error
In the enhanced error messages, the line of the error was highlighted. Additionally,

the token that caused the error is highlighted in red.

5.) One error at a time
In the enhanced error messages, we only showed one error message at a time.

6.) Error Styling
In the enhancements, we changed the styling of the error messages. We bolded the

beginning and underlined the most important part of the message.

xiii

7.) Pointing to the debugger
In the enhanced error messages, we count how often you repeat the same error. If we

find that you are stuck on an error(get the same message 3+ times in a row), we point
the user toward the built-in debugger

8.) What do you think were the biggest weak spots of the enhanced error
messages

9.) Do you think that anything was missing in the enhanced error messages

xiv

	Introduction and related works
	Theoretical Background

	Methods
	Survey
	Evaluation of the Enhancements
	Assignment
	Evaluation Interview

	Analyzing the survey data
	Current Errors
	Enhanced Errors

	Design
	DrJava
	Enhanced Error Messages

	Results
	Conclusion and Discussion
	Findings
	limitations
	future work
	conclusion

	Survey
	Assignment
	Class Main
	Class Rectangle

	Evaluation Interview

