
BACHELOR’S THESIS COMPUTING SCIENCE

Tackling the Far Output
Distinction Problem

Author:
Tomas Woldu
s1024181

Supervisor:
prof. dr. Frits Vaandrager

f.vaandrager@cs.ru.nl

Second reader:
dr. Jurriaan Rot

j.rot@cs.ru.nl

June 11, 2023

mailto:f.vaandrager@cs.ru.nl
mailto:j.rot@cs.ru.nl

Abstract

Active automata learning is a technique used to learn models using member-
ship/equivalence queries. Active learning consists of two phases, namely the
exploration phase and testing phase. In the exploration phase, the learner
constructs a hypothesis of the SUL (system under learning) by posing mem-
bership queries to the SUL. In the testing phase, the correctness of the con-
structed hypothesis is tested by posing equivalence queries and a counter-
example is produced if a difference is observed, otherwise the learning is
concluded. When learning models that exhibit far output distinction be-
havior, finding counter-examples between the constructed hypothesis and
the SUL requires exploring many long test sequences, of which only one
may refine the hypothesis further. In this thesis, we explore the impact that
the inclusion of the most occurring subsequences in the test sequence may
have in the learning of such models. We extract the most occurring sub-
sequences from a generalized suffix tree built from the logs/traces of such
models. We test our approach by running experiments on a family of Mealy
machine that exhibit the far output distinction behavior. We conclude that
our approach indeed helps with the learning of models that exhibit the far
output distinction behavior.

Contents

1 Introduction 3
1.1 Far output distinction behavior 4
1.2 Our solution to the problem 5

2 Background 7
2.1 Mealy machines . 7
2.2 Access sequence set . 7
2.3 Characterization set . 7
2.4 Active automata learning . 8

3 Suffix Tree 9
3.1 Definitions . 9
3.2 Ukkonen’s Algorithm . 11

4 Generalized suffix tree algorithm 15
4.1 Generalized suffix tree algorithm 15

4.1.1 Are N different terminal characters for N strings re-
quired ? . 16

4.1.2 How to avoid adding the in-between strings occurring
suffixes into tree ? . 16

4.1.3 Complexity analysis of algorithm 3 17
4.2 Most occurring substring of minimum length n algorithm . . 18

4.2.1 Complexity analysis of Algorithm 4 & Algorithm 5 . . 19

5 Codewords case study 22
5.1 Codewords family . 22
5.2 Motivation . 23

6 Experimental Results 25
6.1 Experiment environment . 25
6.2 Traces for the codewords models 25
6.3 Experiment setting . 26
6.4 Characteristic of codewords models 27
6.5 Results . 27

1

6.5.1 k = 0 . 27
6.5.2 k > 0 . 27

6.6 Conclusion . 27

7 Conclusions & Future work 31
7.1 Future works . 31

2

Chapter 1

Introduction

Specifying behaviors of large scale software components such as ASML’s
TWINSCANmachine is complex due to these components often consisting of
many other interacting components under the hood. However, representing
these components using a Mealy machine and applying the concept of the
active automata learning can help us derive behavioral specifications of these
components.

Active automata learning can be traced back to Angulin’s seminal paper[2]
on learning regular set through queries and counterexamples. Since then, the
concept of active learning has been successfully applied in many fields across
computer science. Common problems in computer science such as finding
bugs in software[1], finding security vulnerabilities in network protocol[4]
have been explored using active automata learning. The concept of active
automata learning was also applied in evaluating whether legacy software
and refactored implementation behave the same [6].

While active automata learning have been applied successfully in some of
the aforementioned problems, there are also instances where active automata
learning was not successful, for instance the learning of some of the industrial
cyber-physical components in Aslam’s thesis [3]. Although the application
of automata learning is quite effective, there are some components that
were not learned using state-of-the-art learning and testing algorithms. A
key problem, as pointed out by Aslam, is what is called the far output
distinction behavior exhibited by some of the components. In this thesis,
we are attempting to solve this very problem. The components as well
as the hypothesis models are represented by Mealy machines. From this
section onwards, we refer to components as models. The following sections
will introduce the problem and guide you through the hypothesis of the
proposed solution we have experimented with in this thesis.

3

Figure 1.1: Far-output-distinction example [3]

1.1 Far output distinction behavior

Models where earlier choices affect the behavior much later on are said to
show the far output distinction behavior. For completeness and ease of
understanding, we point to Figure 1.1 provided in Aslam’s thesis, which
displays a structural difference in the learned and reference model for one
of the component that exhibit the far-output distinction behavior (FODB).
Figure 1.1 (a) is the reference model and Figure 1.1 (b) is the learned model.
As we can see from the figure, the path coloured green is missed by the
algorithm, because a choice made in state 1 has an effect much later on.
Hence, the algorithm fails to explore the path a1b2b4b6, that distinguishes
state 2 from state 6.

The active automata learning cycle consists of the following steps:

1. The model learning algorithm (learner) constructs a hypothesis model
of the unknown component, referred to as system under learning (SUL).

2. Conformance testing techniques (CTT) are then used to construct test
suites, which are used to check for equivalence between the hypothe-
sis model and the SUL. If a counterexample is found, the hypothesis
model is then refined and the learning cycle continues. Otherwise, the
learning ends.

A test suite T is usually constructed as a product of three sets namely an
access sequence set A, permutation of input symbols I≤n up to length n and
characterization set C for a n complete test suite, where n is the number
of extra states a hypothesis may have. A test suite T is a n complete test
suite if the hypothesis has at most n extra states with respect to SUL and
the hypothesis passes T. A hypothesis passes T if there is no difference in
output observed between the hypothesis and SUL. A counterexample for

4

models with FODB consists of a long sequence of inputs capable of getting
the system into states where different outputs can be seen. Finding these
counterexamples has proven to be an expensive operation as, for a model
with x input symbols, there are xm combinations of sequences of length
m. In the worst case, of all the possible combinations, only one serves as a
counter example that can further refine the hypothesis model [3]. The search
space for these input sequences explodes exponentially with the increase of
m.

1.2 Our solution to the problem

The key problem lies in the use of conformance testing algorithms, which
try randomly generated input sequences in efforts to find a counter-example.
Our approach would be to extend this notion by including the subsequences
(SS) of inputs that occur frequently from the logs of these models and use
these subsequences as infixes during test generation. The test suite T then
becomes a product of A, I≤n, S and C, where S is a set of the most occurring
subsequences of at least length k. A test t = w.x.y.z ∈ T (. here represents
concatenation) will then have w ∈ A, x ∈ I≤n, y ∈ S & z ∈ C. We can
easily obtain these frequently occurring subsequences by:

• Constructing a generalized suffix tree (GST) from the inputs that oc-
cur in the logs/traces of these models.

• Extracting a set of frequently occurring subsequence from the gener-
alized suffix tree.

Figure 1.2 displays the schematic view of our solution to the problem.
The blue in the schema denotes the solution discussed above, whereas the
black denotes the learning oracle. The research question to be answered in
this thesis is as follows: How does the addition of frequently occurring
subsequences in to the test sequences impact the learning of models
that exhibit the far-output distinction behavior?

Chapter 3 and Chapter 4 will cover the algorithms used to generate a
generalized suffix tree and extract subsequences from the GST. Chapter 5
will introduce and motivate the choice to conduct our experiments with
the code-words family of Mealy machines. Succeeding this chapter comes
Chapter 6 where we will discuss the setup of the experiments and discuss
results of our experiment. Lastly, we end the document with Chapter 7 that
discusses the conclusion from our experiments.

All the code related to generalized suffix tree can be found in the fol-
lowing repository https://github.com/Tomas2496/gsuffix. All the code
regarding the experiments can be found in https://gitlab.science.ru.

nl/bharat/tomas_bsc_thesis.

5

https://github.com/Tomas2496/gsuffix
https://gitlab.science.ru.nl/bharat/tomas_bsc_thesis
https://gitlab.science.ru.nl/bharat/tomas_bsc_thesis

Figure 1.2: A schematic view of the solution

6

Chapter 2

Background

2.1 Mealy machines

We use the definition of Mealy machine from [7]. A Mealy machine M is
defined as a 6-tuple ⟨S, s0,Σ,Ω, δ, λ⟩ where,

• S is a finite nonempty set of states.

• s0 ∈ S is the initial state.

• Σ is a finite input alphabet.

• Ω is a finite output alphabet.

• δ : S × Σ→ S is the transition function.

• λ : S × Σ→ Ω is the output function.

We extend δ to δ∗ : S × Σ∗ → S to handle sequences of input symbols.
Similarly, we do the same with λ, hence λ∗ : S × Σ∗ → Ω∗, where Ω∗ is the
set of sequence of output symbols.

2.2 Access sequence set

For a Mealy machineM = ⟨S, s0,Σ,Ω, δ, λ⟩, an access sequence for a state
s ∈ S is a sequence of input symbols i ∈ Σ∗ such that δ∗(s0, i) = s. An
access sequence set A ⊆ Σ∗ is a set that contains an access sequence for
every state s ∈ S inM.

2.3 Characterization set

For a Mealy machine M = ⟨S, s0,Σ,Ω, δ, λ⟩, i ∈ Σ∗ is a separating input
sequence for states s, s′ ∈ S, s ̸= s′ if λ∗(s, i) ̸= λ∗(s′, i). A characterization
set C ⊆ Σ is a set of separating input sequence for every s, s′ ∈ S and s ̸= s′.

7

Figure 2.1: The active learning cycle

2.4 Active automata learning

Active learning is a black box technique used to learn models using query-
response mechanism [3]. The queries are then responded to appropriately
and correctly by oracles that fulfill the minimally adequate teacher (MAT)
model [2, 7]. Active automata learning comprises the learning algorithm
(learner) and the model to be learned, commonly referred to as system
under learning (SUL). There are two kinds of queries :

1. Membership queries are utilized to retrieve behavioral information
on the SUL. The learner queries the oracle with input sequences and
the oracle responds with the corresponding output sequences. These
output sequences are collected and analyzed to construct a hypothesis
of the SUL [7].

2. Equivalence queries are used to check for equivalence between the
hypothesis and the SUL. A counter example is returned if there are
diverging behaviors between the hypothesis and SUL. The counter ex-
ample is further used to refine the hypothesis [7]. Otherwise, a boolean
is returned to signify that the hypothesis and SUL are equivalent.

Figure 2.1 shows a schematic representation of the active learning cycle.
The red edges represent the membership queries. The blue edges represent
equivalence queries. The orange edges represent part of the equivalence
queries the tester makes to check for equivalence. The tester has full access
to the hypothesis model and can query input sequences to it. The tester
queries the SUL with input sequence i that is part of a test suite that is
constructed for equivalence checking between the hypothesis and the SUL.
The SUL responds with the output sequence o for the queried input sequence
i. The tester then compares o with the output sequence retrieved when the
hypothesis model is fed with i. Based on the comparison, the tester then
responds to the learner with a counter example or with a boolean signifying
that the hypothesis and SUL are equivalent.

8

Chapter 3

Suffix Tree

The chapter introduces the suffix tree data-structure and Ukkonen’s algo-
rithm that is one of the most popular algorithms used to construct a suffix
tree for a given word ω. Furthermore, this chapter introduces terminolo-
gies, symbols and definitions that are vital in understanding the upcoming
chapters.

3.1 Definitions

Definition 2.1.1. A tree is a directed graph G = (V, E), such that V con-
tains a vertex γ, such that for each v ∈ V there is a unique path from γ to v.

Definition 2.1.2. A k-ary tree is a tree where all nodes have an upper
bound on the number of child nodes, namely k. When the edge labels con-
tain more than one symbol, the k-ary tree is called compressed, for instance,
the edge labels of a suffix tree over word ω are subsequences of ω.

A suffix tree is a compressed k-ary tree for word ω where k = |Σ|, where Σ is
the alphabet of word ω. A suffix tree stores all the suffixes of a given string
over the alphabet Σ. In this thesis, we are going to use an altered version
of the definition provided by Ukkonen [8] for suffix-tree. In Ukkonen’s [8]
definition, he introduces the notion of an auxiliary state ⊥, that we do not
utilize in this thesis for simplicity purposes. Throughout this document, we
will use STree(ci) to denote suffix tree for some word ω until the character ci.

Definition 2.1.3. A suffix-tree can be defined using a 5-tuple ⟨Q, root, F, g, f⟩,
where

• Q is a set of (explicit/branching) states of the suffix-tree.

• root is a state representing the root of the tree.

• F is a set of leaf states of the tree, F ⊂ Q.

9

• g is a transition function that takes a reference pair of a state as input
and transitions to the appropriate state in the tree.

• f is a function that of type Q → Q that gives the suffix link of the
given state.

The numbers in the leaf state corresponds to the start index of the suffix,
for instance in fig 3.2 the leaf state with index 2 represents the suffix nse$
of word sense$.

There are two types of states in a suffix tree :

• Branching states (Inner nodes and root) and leaf states are explicit
states.

• Implicit states are present in the edge labels. Consider the edge with
label nse$ in fig:3.2. The edges in a suffix tree are compressed, there-
fore there are hidden states in edges. These states can be seen in
fig:3.1.

Figure 3.1: Implicit states of edge nse$

We are going to follow Ukkonen’s way [8] of referencing states, as it goes
very well with understanding the algorithm. We use the reference pair (s, w)
to refer to an explicit or implicit state r of a suffix tree, where s denotes an
explicit state that is an ancestor of r and w denotes the string that is written
out by the transitions from s to r in the appropriate suffix tree. When s is
r’s nearest ancestor (making w the shortest feasible), a reference pair is said
to be canonical. The canonical reference pair for an explicit r is, of course,
(r, ϵ). Once more, we encode the string w as a pair of pointers (k, p) so
that tk...tp = ω. A reference pair (s, w) acquires the form (s, (k, p)) in this
manner. The symbol for the pair (s, ϵ) is (s, (p, p)).

A suffix tree for a set of strings over the alphabet Σ is called a gener-
alized suffix tree. The leaf state of a generalized suffix tree stores a pair,
(wordNumber, startIndex) as it can be seen in figure 3.3.

Definition 2.2.3. Let state a and b be two states such that the path to a
is xα and the path to state b is α, where |x| = 1 and |α| >= 0 then there is
an edge from state a to b and this edge is called suffix link. Suffix links are
represented by dotted arrows, as can be seen in figure 3.2.

10

Figure 3.2: Suffix tree for the string sense$

3.2 Ukkonen’s Algorithm

Ukkonen’s algorithm is an online algorithm that builds the suffix tree, travers-
ing the string character by character from left to right. Let ω = cici+1.....cn
be a string over some alphabet Σ. The core idea behind Ukkonen’s algo-
rithm is building STree(ci+1) from STree(ci) and so forth until the end of
the string. The algorithm does this by traversing the boundary path.

Definition 2.3.1. A boundary path is the path that starts from the deepest
state and ends up at the root following the suffix links. Boundary path can
be seen in figure 3.4.

Definition 2.3.2. An open transition is the transition that leads to a leaf
state s ∈ F . In Ukkonen’s algorithm, while building suffix tree for string
ω, every leaf state x’s reference pair is (a, (y,∞)), where the end index is
updated to |ω| − 1 when the tree is built.

Definition 2.3.3. An active point is the first state that is not reached by
an open transition along the boundary path.

Definition 2.3.4. End point is the state that already have x transition
when x is being inserted in the suffix tree.

To understand how Ukkonen’s algorithm works, let’s illustrate the work-
ing of the algorithm with an example, let W = c1c2....ci−1ci be a word over
the alphabet Σ and STree(ci−1) be the tree we currently have. To extend
STree(ci−1), the algorithm traverses the boundary path by adding a ci tran-
sition to each of the states it encounters along the path. However, there are
two main groups of states to which ci transitions must be added as Lemma
1 [8] states. The one group consists of states reached by open transitions
and the other group consists of states starting from the active point until

11

Figure 3.3: Generalized suffix tree for the string essence$ and sense$

the end-point.

• Group 1 Open transitions states : The transition leading to this
state is an open transition and we just append the end index of the
reference pair for this state.

• Group 2 States from Active point till end point :

– Case 2a : If the next character on the edge is ci then adjust the
suffix link for the next extension.

– Case 2b : Make the current state explicit if it is not explicit by
branching the current transition in two transitions. One transi-
tion leading to the old transition and another transition for new
open ci transition. Following that, adjust the suffix link for the
next extension.

Definition 2.3.5. An explicit suffix tree for a string ω over alphabet Σ is
a suffix tree that contains all the suffixes of ω explicitly. In Laymen’s term,
there is a path from the root to a leaf for every suffix of ω.

Definition 2.3.6. Canonical reference pair : Let (r, (s, e)) be the reference
pair of the state w then (r, (s, e)) is canonical if r is the closest explicit
ancestor of state w and s is the updated accordingly but e remains the
same.

12

Figure 3.4: Suffix tree of string sense with boundary path visible in red
dotted arrows

Each string ω that must be added be terminated with a unique terminal
character to ensure the construction of an explicit suffix tree. The reason
that a unique terminal character say $ makes a tree explicit is because it
enforces the addition of $ transition, thereby ensuring the explicit presence
of each suffix of the string ω. The above steps are repeated by making sure
that the reference pair to the states are canonical before adding the next
transitions. The complete Ukkonen’s algorithm in pseudocode can be seen
down below. In our implementation, canonize and update are both combined
in to a single procedure called run phase. The run time complexity as stated
in [8] is O(n), where is the length of the string ω for which the suffix tree is
being built.

Algorithm 1 Ukkonen algorithm, where ω is string over some alphabet Σ
and $ is terminal character
1: procedure Ukkonen(root, ω$)
2: for i ∈ ω do run phase(i)
3: end for
4: dfs to add leaf state indices
5: end procedure

13

Algorithm 2 The procedure that extends the tree with i

1: procedure run phase(i ∈ Σ ∪ {$})
2: while there exists a suffix to be added do
3: if active point is implicit state then
4: if active point not canonical then
5: canonize active point
6: continue
7: end if
8: if the next character on transition is i then
9: update active point

10: break
11: end if
12: create new inner state with transition i.
13: update active point
14: update suffix link
15: else
16: if transition i exists then
17: update the active point
18: break
19: end if
20: add transition i to the active point
21: update active point
22: update suffix link
23: end if
24: end while
25: end procedure

14

Chapter 4

Generalized suffix tree
algorithm

This chapter describes the algorithm that we use to construct a generalized
suffix tree. Moreover, this chapter also includes the algorithm that is used
to extract the most occurring substring of minimum length n from a given
generalized suffix tree.

4.1 Generalized suffix tree algorithm

This section explains the algorithm used to generate a generalized suffix
tree. The algorithm used is an extension of Ukkonen’s algorithm for on-line
construction of suffix tree [8], this algorithm was explained in Chapter 3.

Before we jump to our approach, our approach combines the two meth-
ods suggested in Gusfield’s book [5]. The first approach concatenates all the
strings ω with different terminal character t and run Ukkonen’s algorithm
described in algorithm 1 in chapter 3. However, this tree contains suffixes
that occur in-between two strings. The second approach, that is immune to
this issue, is to add each string ω terminated with a terminal character t one
after the other to the tree by first running down the tree until a mismatch
occurs and then running Ukkonen’s algorithm from the mismatched charac-
ter. The issue with the second approach is that the labels in the transitions
may correspond to different strings, thus the labels of transitions have to
store the string that resulted in the creation of the transition. The approach
we assume in this thesis is the combination of the two methods described in
Gusfield’s book [5].

The basic idea behind the algorithm is to concatenate all (ω0, ω1,, ωn)
n strings using different unique terminal characters (t0, t1,tn) for each
string ωi, 0 ≤ i ≤ n to get Ω = ω0t0ω1t1...ωntn. Following this, we construct
a suffix tree for the string Ω. However, this method requires the removal
of the suffixes that occur between the strings, as a generalized suffix tree

15

should only contain suffixes of the strings ωi, 0 ≤ i ≤ n. Therefore, some
transitions need to be pruned.

There are two questions that need to be answered in order for us to
understand the need for the unique terminal characters and the removal of
the in-between strings occurring suffix that we do not require our tree to
store. These questions are as follows :-

4.1.1 Are N different terminal characters for N strings re-
quired ?

The idea behind requiring a unique terminal character is to make the current
suffix tree explicit. Let Ω = ω1t1ω2t2 be a concatenation of two strings with
unique terminal characters t1 and t2 respectively. After string ω1t1 has been
added to the tree we have all suffixes of ω1 in the tree explicitly and the root
is the active point. We then proceed to add the second string ω1t2. We can
take two things away from the above mini run-through of the algorithm and
they are as follows :

• We need at-least one unique terminal character.

• We need to start at root for adding the next string.

These two above points do pose the following question. How does the tree
know that a character x is unique to it?

The root of a tree has x transitions x ≥ 0. All these transitions must
be unique. If there is a transition y ∈ Σ from the root of the tree then the
character y is not unique to the tree.

Since Ukkonen’s algorithm uses the boundary path to add the transitions,
this implies that the root gets the new transitions at the end. Therefore,
if we skip adding the unique terminal character t transition to the root of
the tree, t always remains unique to the tree. Consequently, for n different
strings we do not require n different unique terminal characters.

4.1.2 How to avoid adding the in-between strings occurring
suffixes into tree ?

In Ukkonen’s algorithm, the end index of all leaf states x are updated only
after the tree is built. This works perfectly in Ukkonen’s algorithm because
we are dealing with only one string ω which consequently have only a single
end index which is |ω| − 1. However, when dealing with multiple strings,
we have multiple end indices in the leaf states of a generalized suffix tree.
Moreover, the active point is not always the root at the start of adding the
suffixes of the next string. This happens when we add a suffix to the tree
that is already present in the tree. To account for these cases, we do the
following :

16

• Since each string is separated by a terminal character t, we can update
the end index of a leaf state when we reach the end of a string in the
run of the algorithm.

• We reset the active point back to root for adding the next string.

After applying the following changes the pseudocode for the extension
of Ukkonen’s algorithm for generalized suffix tree looks is given below. The
run phase(i ∈ Σ ∪ {$}) procedure remains mostly the same with just an
addition of the following code after line 15.

1: if active point is root and i is $ then
2: break
3: end if

Algorithm 3 Ukkonen, where Ω is a string over some Σ ∪ {$} and $ is
terminal character
1: procedure Ukkonen(root, Ω)
2: for i = 0, 1, . . . , |Ω| − 1 do
3: if i ≥ 1 and Ω[i− 1] = $ then
4: update the end index of leaf states
5: reset active point
6: end if
7: run phase(i)
8: end for
9: dfs to add leaf state indices

10: end procedure

4.1.3 Complexity analysis of algorithm 3

We divide the complexity analysis of Algorithm 3 in two following parts.

Lines 1 - 8

The input to the generalized suffix tree algorithm Ω and we construct the
tree traversing each character from left to right using Ukkonen’s algorithm.
Therefore, run-time complexity of lines 1-8 of the Algorithm 3 is O(|Ω|).

Line 9

We know that there are n leaf states for a suffix tree for a string ω of length
n. Since the number of internal states i increases the number of leaf states
n by at least 1, we can say that n− 1 ≥ i. We also know that there is only
1 incoming transition to every state except the root, so this means that the
total number of transitions t is equal to the sum of i and number of leaves

17

n. Therefore, t = n+n−1 = 2n−1. There are 2n−1 transitions and 2n−1
states other than the root. The total number of transitions and states in a
suffix tree built for a string ω of length n is 2(2n− 1) + 1 = 4n− 1.

Similarly, a generalized suffix tree built for Ω will have at most |Ω| − n
leaf states. Repeating the above calculation for a generalized suffix, we
conclude that the total number of states (including root) and transitions for
a generalized suffix tree built for Ω is 4(|Ω| − n)− 1.

All things considered Algorithm 3 in the worst case have a run time
complexity of O(4(|Ω| − n)− 1).

4.2 Most occurring substring of minimum length
n algorithm

We are given a generalized suffix tree from which we must extract the most
occurring substring of minimal length n. Let’s break down the problem
statement i.e. most occurring substring of minimum length n by first ex-
tracting the most occurring substring regardless of the length and then fol-
lowing that focusing on the length of the substring. As previously done
throughout this thesis, we first analyze the problem statement using a sim-
ple construction of a generalized suffix tree which is a suffix tree.

The most occurring substring on a suffix tree is found on a state x ̸= root
that is ancestor to the most leaf states. This is the case because we only
create inner states when at-least two sub strings having common prefix.
Therefore, the most occurring substring on a suffix tree is found on the
transition leading to such state x. This can be easily extracted by traversing
the tree bottom-up using depth-first-search and keeping a frequency count
on each state.

To extend this approach to a generalized suffix tree, we need to take into
account that two sub strings can have a common path and hence traversing
this path once, as is the case with a simple suffix tree, does not consider that
the prospect of this path occurring twice in the string Ω. Consequently, we
need to traverse the tree multiple times to get the correct frequency count
of each state. To get the correct frequency count, we traverse every valid
suffix present in Ω. In that way, we account for the correct frequency count
of each state.

Now that we have the frequency count on each state, we can easily extract
the most occurring substring of minimum length n by finding the transitions
that lead to the states that occur the most frequent and that are of at least
of length n. We can then extract the substring using the start and end in-
dex of the transition that leads to these most frequent states. The resulting
algorithm is given Algorithm 4. Algorithm 4 can be extended to extract
most occurring substrings that occur at least r times the most occurring
substring. The value of r ranges from 0.1 to 0.9, therefore 0.1 ≤ r ≤ 0.9.

18

Algorithm 5 is the algorithm that extracts most occurring substrings.

Algorithm 4 Most occurring substring of minimum length n

1: DFS to set occurrences count for every state
2: node← root
3: vector ← {} ▷ stores a pair of start index and length of substring
4: string dept← 0 ▷ stores the transition depth so far
5: highest frequency ← 0 ▷ keeps track of most frequent state
6: procedure Most frequent subs(node, vector, string dept, high-

est frequency, n)
7: for i ∈ node transitions do
8: Most frequent subs(i, vector, string dept +

i.transition depth, highest frequency, n)
9: end for

10: if string dept < n or (node is leaf state and string dept == mini-
mum) then

11: return
12: end if
13: length← node.isLeaf ? string dept− 1 : string dept
14: if node.occurrence count == highest frequency then
15: vector.push({node.end index - string dept + 1, length})
16: end if
17: if node.occurrence count > highest frequency then
18: vector ← {}
19: highest frequency ← node.occurrence count
20: vector.push({node.end index - string dept + 1, length})
21: end if
22: end procedure

4.2.1 Complexity analysis of Algorithm 4 & Algorithm 5

Since both the algorithms are dominated by the same part of the algorithm
in terms of complexity, we just analyze the time complexity of one of the
algorithms, namely Algorithm 4. We divide the complexity analysis of Al-
gorithm 4 in two following parts.

Line 1

As mentioned earlier in this document that a single traversal of the gener-
alized suffix tree for Ω does not suffice to set the occurrences count of the
states accurately. There are at most |Ω|−n suffixes in the tree because there
are at most |Ω| − n leaf states. Traversing a suffix of length m in a gener-
alized suffix tree takes at most m steps. Therefore, traversing all |Ω| − n

19

Algorithm 5 Most occurring substrings of minimum length n

1: DFS to set occurrences count for every state
2: node← root
3: vector ← {} ▷ stores a pair of start index and length of substring
4: string dept← 0 ▷ stores the transition depth so far
5: highest frequency ← 0 ▷ keeps track of most frequent state
6: procedure Most frequent subs(node, vector, string dept, high-

est frequency, n, r)
7: for i ∈ node transitions do
8: Most frequent subs(i, vector, string dept +

i.transition depth, highest frequency, n, r)
9: end for

10: if string dept < n or (node is leaf state and string dept == mini-
mum) then

11: return
12: end if
13: length← node.isLeaf ? string dept− 1 : string dept
14: if node.occurrence count == highest frequency then
15: vector.push({node.end index - string dept + 1, length})
16: else if node.occurrence count > highest frequency then
17: remove all substrings whose occurrence count is less than r ×

highest frequency from vector
18: highest frequency ← node.occurrence count
19: vector.push({node.end index - string dept + 1, length})
20: else
21: if node.occurence count ≥ r × highest frequency then
22: vector.push({node.end index - string dept + 1, length})
23: end if
24: end if
25: end procedure

20

suffixes will take m ∗ (|Ω| − n), where m is the length longest suffix present
in the tree. All in all, the run time complexity of Line 1 is O(m ∗ (|Ω| −n)).

Line 2 - 25

The procedure does a simple one pass depth first traversal of the generalized
suffix tree of a string Ω of length n. Therefore, the run-time complexity of
the procedure is the same as the one discussed in Section 4.1.3 which is
O(4(|Ω| − n)− 1).

All in all, the worst case run-time complexity of the algorithm is O(m ∗
|Ω|).

21

Chapter 5

Codewords case study

Besides the ASML models to test our hypothesis, we would like to test
our hypothesis using smaller Mealy machine that also exhibit the far-out
distinction problem. This chapter provides in detail the family of Mealy
machines we have come up with that exhibit the far output distinction
problem.

5.1 Codewords family

This section will detail how the states and the transitions in the codewords
family of Mealy machine are formed. Imagine we are at an arcade and we
stumble on this machine that has a finite set of prizes P, and in order to win
a prize p ∈ P , we must guess the codeword c ∈ C from the set of codewords
C mapped to the prize.

Codeword c for a prize p is a sequence of inputs from I. Let f : P → C
be a bijective function that maps prizes in P to codewords in set C. We also
impose a condition on the set of codewords such that a codeword of one
prize p is not the prefix of another code-word for another prize p′. Hence,
the set C is a so-called prefix code such that for b, b′ ∈ P : if f(b) is a prefix
of f(b′) then b = b′.

There also exists a special input prize in I, that tells us the prizes we
have won so far. The outputs of this Mealy machine on every input i other
than the special input prize is -. The output for input prize is the set of
prizes won so far.

The states of these Mealy machines consists of a tuple (s, w), where
s ⊆ P and w ∈ I∗ such that w is a prefix of a word in C. The number of
states in this Mealy machines can be calculated as follows:

• The different number of subsets of s is power set of P = 2|P |.

• Let the number of prefixes of codewords in C including the empty
prefix be = q.

22

• The total number of states is given by q.2|P | .

Similarly, the number of transitions is calculated as follows:

• The number of states as given above = q.2|P | .

• The number of inputs is |I|.

• The total number of transition is q.2|P |.|I|

For this class of Mealy machines, we have I = {0, 1, . . . , 9} ∪ {prize}.
Therefore, the number of transitions becomes 11q.2|P |.

Let S be the set of states of this Mealy machine. The transitions function
δ : S × I → S is defined as follows : for s ∈ S , x ∈ I, b ∈ P , w ∈ I∗ and ϵ
denotes the empty sequence.

δ((s, w), x) =

(s, wx), if wx is proper prefix of codeword f(b), for some b ∈ P

(s ∪ b, ϵ), if f(b) = wx, for some b ∈ P

(∅, ϵ), if w = ϵ and x is not a prefix of any codewords

(s, w), otherwise

5.2 Motivation

In the figure 5.1, we can see a Mealy machine for two prizes, whose code
words are 11 and 22. For the clarity of the figure, p is used instead of
the special input prize and the prizes won are represented in the form of
binary sequence where each index corresponds to each prize, for example
00 represents no prize won and 01 represents second prize won. From the
figure itself, we can make up why this is family of Mealy machines exhibit
the far-output distinction behavior problem for Mealy machine with large
amount of prizes.

The paths of interest in this family of Mealy machines are the paths that
lead to all prize winning state which labeled as 9 in figure 5.1. This state
can be reached via two paths namely, 0-2-3-4-9 and 0-1-6-8-9. The number
of such paths is just the permutation of codewords, where the number of
elements and sample size are equal. Hence, for n codewords there are n! such
paths that lead to a winning state. In this small example, the lengths of
these paths and the number of such paths is small that the learning algorithm
can easily learn them. Therefore, since the factorial function grows rapidly,
the active automata learning oracle will have difficulty learning the Mealy
machines of this family with large amount of prizes.

23

Figure 5.1: A Mealy machine for two prizes with codewords 11 22.

24

Chapter 6

Experimental Results

This chapter starts with a description of the environment used to carry out
the experiments. Furthermore, it presents the results of these experiments.

6.1 Experiment environment

We will first begin by explaining the schematic view of the environment that
is used to carry out the experiments. We will test our hypothesis against
the codewords case that we introduced in Chapter 5.

Figure 6.1 depicts the environment from top to bottom, starting at the
top where codewords for the prizes and a positive integer n are supplied to
a script that generates a model (Mealy machine) (labeled as model in Fig:
6.1) for the respective codewords and a traces file that contains n traces
that end up in a winning state.

We build a generalized suffix tree (GST) using the generated traces file
and a positive integer m which is the minimum length of the most occurring
subsequences we want to extract from GST.

We then proceed to feed the most occurring subsequences (SS) and the
model to the learning oracle that consists of SUL, learner and the tester. In
the experiments conducted, we use the L# [9] learning algorithm.

6.2 Traces for the codewords models

The script that produces the traces file is fed with an integer n and the
codewords. Each trace (TR) is an iteration of a junk (J) trace and a random
prize winning trace (RPWT). J traces are valid traces of the model which
may or may not win a prize. RPWT are traces for prizes selected at random.
The length of a J trace is at most 10 and it is randomly chosen. The
total length (TRL) of TR is determined randomly using a random number
generator. Let codewordi be the ith codeword and x be the number of
codewords supplied to the script then :

25

Figure 6.1: Schematic view of experiment process

x∑
i=1

|codewordi| ≤ TRL ≤ 10×
x∑

i=1

|codewordi|

TR may or may not win all the prizes, hence at the end of the TR the
traces for remaining prizes that are not won are added.

6.3 Experiment setting

We experiment on the models of the codewords in two settings, namely with
subsequences (WSS) and without subsequences (WOSS). The difference in
both the settings is in the way test suite T is constructed. The test suite
for WOSS is T = A · I≤k ·C and the test suite for WSS is T = A · I≤k ·S ·C.
Therefore, a test in the WOSS setting has a prefix from A, first infix from
I≤k, second infix from S and a suffix from C. The sets A, I≤k, S, C are set of
access sequences, set of permutations of input symbols up to length k, set of
SS and set of characterization sequences C respectively. We experimented
on both settings with k = 0. We also experimented on WOSS setting with
k > 0 to compare the number of equivalence queries with that of the WSS
setting.

26

6.4 Characteristic of codewords models

We chose the models of codewords to be uniform in terms of the length of
each codeword. The choice for this was to reduce the size of the S. We chose
the length of codewords l to be at least 4 and the number of codewords c
to be at least 2. We then gradually increase l and c to get more complex
models. We wanted these models to be in the sweet spot between not too
complex and not too trivial. This was mainly to do with the time frame of
this project. As such, the models have l ∈ {4, 5, 6, 7, 8} and c ∈ {2, 3, 4}.

6.5 Results

In this section, we discuss the results of the experiments we ran. Each
experiment consisted of learning the codewords model in WSS and WOSS
setting. We set k = 0 in the WSS setting. The following two discusses the
results when k = 0 and k > 0 in the WOSS setting.

6.5.1 k = 0

For k = 0, the WOSS setting failed to learn any of the models given in Table
6.1. The WSS setting learned all the models given in Table 6.1 and as such
the length of the SS used is reported under column s of Table 6.1. The SS
that are used are presented in Table 6.4. We set s to be the length of the
codewords, so that the GST can extract the codewords that were used to
construct the model.

6.5.2 k > 0

For k > 0, we were able to learn some of the smaller models as presented
in Table 6.3. Since these models were also learned in the WSS setting, we
decided to report the number of membership and equivalence queries that
were queried in both the settings as presented in Table 6.3 and Table 6.2.
We also reported the number of queries for some of the more complex models
in WOSS setting because in comparison with the WSS setting, they were
immense. Despite the large number of queries, the WOSS setting still failed
to learn the models. Figure 6.2 shows the equivalence queries with respect
to the length of codewords in both the settings.

6.6 Conclusion

From the experiments we have conducted, we can say that the knowledge
of the most occurring subsequences do definitely help us in learning models
that belong to the codewords family. Lastly, we conclude that the addition
of the most occurring input subsequences in to the test sequences definitely

27

Model name # states # traces l c codewords s

4 2 20 28 20 4 2 1234 5678 4

4 3 50 80 50 4 3 1234 5678 9438 4

4 4 75 208 75 4 4 1234 5678 9438 2165 4

5 2 20 35 20 5 2 12345 67892 5

5 3 50 103 50 5 3 12345 67892 43716 5

5 4 75 271 75 5 4 12345 67892 43716 51794 5

6 2 20 43 20 6 2 123459 678924 6

6 3 50 127 50 6 3 123459 678924 437168 6

7 2 20 51 20 7 2 1234593 6789244 7

7 3 50 151 50 7 3 1234593 6789244 4371681 7

8 2 20 59 20 8 2 12345936 67892442 8

9 2 20 67 20 9 2 123459361 678924429 9

Table 6.1: Codewords models for experiment

help us reach states that were not reached prior to the inclusion of these
sequences. Setting s = l does extract all the codewords of a said model from
the GST. Therefore, the findings of the experiment conducted do claim
in support of our hypothesis which states that the inclusion of the most
occurring subsequences do help with learning models that exhibit the far
output distinction behavior.

Model name Membership queries Equivalence queries Learned

4 2 20 980 115 Yes

4 3 50 3921 4963 Yes

5 2 20 1642 41 Yes

5 3 50 6077 4733 Yes

6 2 20 2238 174 Yes

7 2 20 2852 2142 Yes

8 2 20 3826 240 Yes

9 2 20 4458 485 Yes

Table 6.2: Membership & Equivalence queries in WSS setting

28

Model name Membership queries Equivalence queries k Learned

4 2 20 920 6859 2 Yes

4 3 50 3748 41715 2 Yes

5 2 20 1541 18876 2 Yes

5 3 50 5192 1193855 3 Yes

6 2 20 1627 493556 3 No

7 2 20 1719 613348 3 No

8 2 20 2371 63608123 5 No

9 2 20 2508 59770207 5 No

Table 6.3: Membership & Equivalence queries in WOSS setting with k > 0

Figure 6.2: Equivalence queries with respect to length of codewords

29

Model Most occurring subsequences

4 2 20
1234 45678 6781 6781234
2345 781234 5678 81234

4 3 50
1234 12345 81234 2345 234567

2345678 34567 345678 4567 45678 9438 5678

5 2 20
12345 23456 212345 78921 789212345

67892 89212345 9212345

5 3 50
43716 4567892 67892 34567892

12345 243716 23456 234567892 56789 567892

5 4 75

1651794 12345 51794 567892
651794 67892 23456 234567 234567892
243716 34567 34567892 37165 371651

371651794 4567892 43716 437165 71651 71651794 78924

6 2 20
59678924 8924123459 678924
6789241 678924123459 123459

789241 78924123459 9678924 924123459 24123459 4123459

6 3 50
678924 437168 459678924 3459678924 9678924

8123459 234596 23459678924 59678924 123459 1234596

7 2 20
6789244 7892441 7892441234593

892441234593 92441234593 2441234593 441234593 41234593 1234593

7 3 50

5936789244 6789244 936789244 11234593
1234593 12345936 123459367 45936789244
4371681 2345936 23459367 2345936789244
2345934 36789244 3459367 345936789244

8 2 20
12345936 44212345936 4212345936 212345936

244212345936 9244212345936 67892442 89244212345936 789244212345936

8 3 50
23459366 234593667 234593667892442 3667892442
34593667 34593667892442 667892442 67892442

43716819 4593667892442 93667892442 12345936 593667892442

9 2 20 9123459361 123459361 678924429

9 3 50

123459361 1678924429 234593614 234593616
23459361678924429 345936167 3459361678924429 361678924429
437168194 459361678924429 59361678924429 9361678924429

61678924429 678924429

Table 6.4: Most occurring subsequences

30

Chapter 7

Conclusions & Future work

In conclusion, we explored the idea of extending test sequences with the
most occurring subsequences to help us learn models that exhibit the far
output distinction behavior. We defined and specified a family of Mealy
machines called codewords that exhibit the far output distinction behavior.
We obtained the set of most occurring subsequences by building a general-
ized suffix tree of the input sequences that we obtain from the logs of these
models. For the codewords family of Mealy machine, we generated valid
traces of the models which were used to generate the generalized suffix tree.
We used an extension of Ukkonen’s algorithm, proposed by Gusfield [5], to
build a generalized suffix tree. We ran experiments on the codewords family
of Mealy machine in two settings. In the first setting, we tried to learn the
models without the inclusion of the most occurring subsequences in the test
sequences. Conversely, in the second setting we included the most occurring
subsequences in test sequences. We found the second setting required much
fewer queries to learn the models. Therefore, we conclude that the inclusion
of the most occurring subsequences in test sequences help with learning of
models that exhibit the far output distinction behavior.

7.1 Future works

In this thesis, we experimented our method with the codewords family of
Mealy machines. The number of input symbols in these models is capped at
10. This makes them easier to experiment with it compared to the ASML
models. Moreover, the knowledge of long input sequences that cause the
far output distinction behavior gives an upper-hand in finding appropriate
candidates for the length of subsequences to utilize. However, this is not the
case with the ASML models. The application of our method to learn the
ASML models can possibly help with learning of the model or help expose
new behavior that these models exhibit.

31

https://automata.cs.ru.nl/BenchmarkASMLRERS-YangEtAl2019/Description
https://automata.cs.ru.nl/BenchmarkASMLRERS-YangEtAl2019/Description

Bibliography

[1] Fides Aarts, Joeri de Ruiter, and Erik Poll. Formal models of bank cards
for free. In Sixth IEEE International Conference on Software Testing,
Verification and Validation, ICST 2013 Workshops Proceedings, Luxem-
bourg, Luxembourg, March 18-22, 2013, pages 461–468. IEEE Computer
Society, 2013.

[2] D. Angluin. Learning regular sets from queries and counterexamples.
Inform. Comput., 75(2):87–106, November 1987.

[3] Kousar Aslam. Deriving behavioral specifications of industrial software
components. PhD thesis, Eindhoven University of Technology, June 2021.
Proefschrift.

[4] Paul Fiterau-Brostean, Ramon Janssen, and Frits W. Vaandrager.
Learning fragments of the TCP network protocol. In Frédéric Lang
and Francesco Flammini, editors, Formal Methods for Industrial Crit-
ical Systems - 19th International Conference, FMICS 2014, Florence,
Italy, September 11-12, 2014. Proceedings, volume 8718 of Lecture Notes
in Computer Science, pages 78–93. Springer, 2014.

[5] Dan Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge
University Press, 1997.

[6] Mathijs Schuts, Jozef Hooman, and Frits W. Vaandrager. Refactoring
of legacy software using model learning and equivalence checking: An
industrial experience report. In Erika Ábrahám and Marieke Huisman,
editors, Integrated Formal Methods - 12th International Conference, IFM
2016, Reykjavik, Iceland, June 1-5, 2016, Proceedings, volume 9681 of
Lecture Notes in Computer Science, pages 311–325. Springer, 2016.

[7] Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to active
automata learning from a practical perspective. In Marco Bernardo and
Valérie Issarny, editors, Formal Methods for Eternal Networked Software
Systems - 11th International School on Formal Methods for the Design
of Computer, Communication and Software Systems, SFM 2011, Berti-
noro, Italy, June 13-18, 2011. Advanced Lectures, volume 6659 of Lecture
Notes in Computer Science, pages 256–296. Springer, 2011.

32

[8] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–
260, 1995.

[9] Frits W. Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten
Wißmann. A new approach for active automata learning based on apart-
ness. In Dana Fisman and Grigore Rosu, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Con-
ference, TACAS 2022, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, Part I, volume 13243 of Lecture Notes in
Computer Science, pages 223–243. Springer, 2022.

33

	Introduction
	Far output distinction behavior
	Our solution to the problem

	Background
	Mealy machines
	Access sequence set
	Characterization set
	Active automata learning

	Suffix Tree
	Definitions
	Ukkonen's Algorithm

	Generalized suffix tree algorithm
	Generalized suffix tree algorithm
	Are N different terminal characters for N strings required ?
	How to avoid adding the in-between strings occurring suffixes into tree ?
	Complexity analysis of algorithm 3

	Most occurring substring of minimum length n algorithm
	Complexity analysis of Algorithm 4 & Algorithm 5

	Codewords case study
	Codewords family
	Motivation

	Experimental Results
	Experiment environment
	Traces for the codewords models
	Experiment setting
	Characteristic of codewords models
	Results
	k = 0
	k > 0

	Conclusion

	Conclusions & Future work
	Future works

