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Abstract

Sleep onset is the sleep stage in which you transition from wakefulness to
sleep. This sleep stage is interesting for optimising power naps, detecting
sleep disorders or performing Targeted Dream Incubation for example. Tar-
geted Dream Incubation is a practice where one’s dreams are steered towards
a certain topic. Currently, sleep onset can only be accurately detected by
medical-grade equipment, which must be operated by trained professionals.
If sleep onset can be measured by a smartwatch, people can do these mea-
surements at home, without the need for expensive equipment or personnel.

This thesis explores a setup with which a smartwatch can detect sleep
onset. The smartwatch we chose in this thesis is the Fitbit Sense. We used
this smartwatch to obtain actigraphy data and heart rate data to determine
sleep onset. We conducted an experiment in which participants were asked
to take a power nap while wearing the smartwatch. Afterwards, we used two
algorithms to convert the obtained data from the accelerometer and heart
rate sensor into analysable data about sleep. We compared these results
with the subjective experiences of the subjects and at the end, the setup of
the experiment was evaluated. The setup used in the thesis is not suitable
for measuring sleep onset with a smartwatch. The used algorithms are not
accurate enough to detect sleep onset, but we expect that the algorithms
are accurate enough once they are adjusted to personal sleeping behaviour.
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Chapter 1

Introduction

Sleep onset is a sleep stage, which is the transition from wakefulness to sleep.
It has been researched in a recent paper from Horowitz et al. [1] for exam-
ple. This paper explores how sleep onset is used to influence our dreams.
Horowitz et. al. created a device called Dormio, which performs Targeted
Dream Incubation (TDI). TDI is a practice in which you try to steer one’s
dream towards a certain topic. This is done by repeatedly exposing the sub-
ject to auditory stimuli during sleep onset. In this sleep stage, up to 70%
of people experience dreams [2] while they still process external informa-
tion [3,4]. This means that if the subject is exposed to stimuli during sleep
onset, there is a chance that their brain incorporates these stimuli into their
dream. This can, for example, be useful for reducing nightmares or it can
help solve problems in our daily life [5]. As Horowitz et al. [1] noted, TDI
is still a relatively new concept in science, so there is much to be explored.
This means that research in sleep onset benefits research in TDI.

TDI is not the only reason why sleep onset is an interesting sleep stage.
It also helps detect certain sleep disorders. The usefulness of sleep onset is
important in daytime sleepiness tests like the Multiple Sleep Latency Test
(MSLT) and the Maintenance of Wakefulness Test (MWT) [6]. These tests
are used to measure excessive daytime sleepiness in patients. Detecting sleep
onset is an important part of both tests because it indicates how long it takes
for someone to fall asleep (MSLT) or whether the person is awake (MWT).
The results of these tests indicate whether a patient has certain sleep dis-
orders like narcolepsy, idiopathic hypersomnia or sleep deprivation. These
tests are important for diagnosing sleep disorders and finding appropriate
treatments.

Sleep onset is also interesting for optimising power naps [7]. Research
on power naps concludes that the optimal time for a power nap is around
10 to 30 minutes [7, 8]. This length generally reduces some fatigue, with-
out entering deep sleep (Section 2.1). This is beneficial because if you get
woken up while in deep sleep, you can suffer from sleep inertia, achieving
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the opposite of the purpose of power naps. It can, however, be difficult to
achieve this optimal sleep time since you cannot determine beforehand at
what speed you fall asleep and when you are drifting into deep sleep. If
you can measure sleep onset accurately, you can optimize the effectiveness
of a power nap by making sure you do not enter deep sleep. This generally
improves cognitive performance directly after the nap. [9].

While you enter sleep onset, some physiological changes occur. For exam-
ple, your heart rate drops, your movement subsides and your brain activity
changes [3, 4]. If you accurately measure these physiological changes, you
can detect sleep onset. The golden standard for doing this is Polysomnog-
raphy (PSG, section 2.2.5). PSG is a method that involves complex devices
and it requires specific expertise to operate these devices and evaluate the
obtained data [10]. Examples of such devices measure brainwaves or eye
movement. Because of the complexity, it is mostly done in laboratories and
it must be supervised by experts. This is very costly and time-consuming,
so it is not accessible to the general public.

Several doors open once the general public has access to a relatively
precise method of detecting sleep onset. They can optimize their power
naps and perform some kind of TDI by themselves. Moreover, basic sleep
disorder detection can be done at home with adapted versions of MSLT and
MWT. This can speed up the process of detecting anomalies because the
patient does not have to go to a laboratory as often to be investigated.

Wearable devices are useful for measuring sleep onset because almost all
smartwatches have sensors that monitor heart rate or movement for example.
This means that some of the physiological changes that occur during sleep
onset can be detected by a smartwatch. Scott et al. [7] combine the results
of 71 papers that try to determine sleep onset with a variety of wearable
devices. However, most devices are either medical devices, outdated devices
or both. Because of this, it is interesting to see whether a relatively new
smartwatch can detect sleep onset accurately.

This thesis first elaborates upon some background information and re-
lated work (Chapter 2). After this, it discusses why the Fitbit Sense has
been chosen for this research (Chapter 3). This is followed by an explanation
of the used algorithms, the program to obtain the data and the procedure of
the experiments (Chapter 4). Then, the results of the experiments are shown
and interpreted (Chapter 5). In the conclusion, there is a reflection on the
executed research and there are suggestions for further research (Chapter
6).
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Chapter 2

Background: Sleep

This chapter first gives background information on the terminology used in
this thesis in the domain of sleep. Afterwards, it explores important related
works to this thesis.

2.1 Sleep cycle and sleep stages

Every time we go to sleep, we enter a sleep cycle. Such a sleep cycle consists
of different stages. These stages are classified into three categories: wake,
non-REM sleep and REM sleep [11, 12]. REM is an abbreviation for Rapid
Eye Movement. It gets its name from the fact that during this sleep stage
your eyes are moving rapidly [13].

Non-REM sleep is subdivided into three stages: N1, N2 and N3 [11].
N1 sleep is the first sleep stage that occurs when you are falling asleep. It
is also called ‘the gateway to sleep’ because of that. N1 sleep lasts mostly
between 1 and 7 minutes. It is characterised by a change in brainwaves and
a decrease in blood pressure, heart rate, core body temperature and muscle
tension. [3]. N2 sleep is the sleep stage that occurs after N1 sleep as well
as between N3 sleep and REM sleep. It generally lasts between 10 and 25
minutes. In this stage, a sleeper is less easily woken up than in N1 sleep, but
they can still process external information. N2 sleep is characterised by a
further decrease in heart rate, blood pressure and body temperature as well
as some unique patterns in brain waves [4]. Together, N1 sleep and the first
occurrence of N2 sleep in a sleep cycle are considered sleep onset as they
prepare your body to enter deep sleep. N3 sleep is considered deep sleep
and it is generally the third sleep stage that occurs during sleep, after N2
sleep. Characteristics of N3 sleep are a further decrease in blood pressure
and heart rate. Besides this, blood flow is directed more to the muscles so
that they can restore. As a result, the blood flow to the brain is decreased.
Because of this, the sleeper is often disoriented and confused when woken
up in this stage [14].
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Lastly, there is Rapid Eye Movement sleep or REM sleep. During this
sleep stage, the heart rate increases, respiration becomes irregular and the
brain is active. Because of these reasons, it is often called ’active sleep’.
REM sleep is considered a highly important sleep stage because it aids
in emotional processing, memory consolidation and brain development for
example. REM sleep is often the last sleep stage in a sleep cycle [13]. After
REM sleep, the cycle starts over and you shortly enter N1 sleep again.

This completes the basic background on sleep stages. Many sleep stages
are more complex than described above. It is, however, not in the scope
of this thesis to go in dept into these sleep stages. This thesis is about
detecting sleep onset so we focus mostly on sleep stages N1 and N2.

2.2 Sleep measuring methods

As discussed above, sleep is divided into different stages, each with different
physiological characteristics. In this section, we first discuss how a period of
sleep is divided into parts to make classification easier. After that, we discuss
methods that are used to detect the changes in physiological characteristics
of each sleep epoch.

2.2.1 Sleep Epoch

In sleep research, sleep is measured using periods called sleep epochs. A
sleep epoch is part of a longer recording of sleep. It depends on the study
how long an epoch is, but generally, a duration of 30 seconds is used [11].
The data obtained in one epoch is combined to determine what sleep stage
a subject is in for example. In this thesis, a sleep epoch is 30 seconds.

2.2.2 Actigraphy

Actigraphy is a method used to track sleep using motor activities. It is the
most used measuring technique in sleep research in combination with wear-
able devices [7]. Actigraphy measures motor activities with an accelerom-
eter. An accelerometer measures movement in terms of acceleration. The
acceleration is measured in m/s2. Sometimes the letter g is used for accel-
eration, which is the standard gravitational acceleration of 9,81 m/s2.

Because actigraphy is a widely used measuring technique, there is a
clear view of what it is good at and what it is not good at. Actigraphy is
often viewed as relatively accurate when monitoring whole nights of sleep
for several days or weeks. However, as Scott et. al show in their paper, the
state in which you lay still while being awake is often classified as sleep by
actigraphy. This results in an overestimation of Total Sleep Time (TST)
and an underestimation of wakefulness. Despite this, we decided to use
actigraphy as a way to measure sleep onset.
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2.2.3 Blood-oxygen saturation (spO2)

Blood-oxygen saturation (spO2) is a measurement of how saturated your
blood is with oxygen. SpO2 is mostly measured using pulse oximetry, where
a small clip is placed on the index finger. From the pulse of the bloodstream,
the sensor in the clip measures the saturation of oxygen. In smartwatches,
spO2 is also measured using the pulse of the bloodstream. Instead of on a
finger, a smartwatch measures spO2 on the wrist. This is less accurate than
measuring it on the fingers because the blood vessels are further away from
the surface of the wrist, compared to blood vessels in the finger [15]. Blood
needs to have a certain level of oxygen for organs to function. Normally,
spO2 varies between 95% to 100%. This percentage slightly decreases when
in sleep because of the decreased respirational activity. Generally, it drops
to between 90% and 96% [16]. This is why it is an interesting parameter to
measure sleep.

2.2.4 Heart Rate (HR)

As said in section 2.1, heart rate changes while asleep. It drops during sleep
onset, which makes it an interesting parameter to detect sleep onset.

There are typically two types of heart rate sensors used in smartwatches:
photoplethysmography (PPG) and Electrocardiography (ECG). These two
sensors measure heart rate in two different ways: one with reflections of light
and the other one with electrical activity.

Photoplethysmography (PPG)

Photoplethysmography (PPG) is the standard heart rate sensor in smart-
watches. This technique uses the reflection of light to determine for example
the heart rate. The reflection of light is influenced by the volume of the blood
flow. The variation in the blood flow changes the reflection intensity, with
which PPG determines HR. This is an indirect way of measuring heart rate
because it uses the pressure of blood flow instead of the beat of the heart
itself. PPG needs a high concentration of blood vessels to take measure-
ments. Because of this, it is generally not that accurate in measuring small
changes in heart rate, but it is a good way to monitor heart rate for one or
multiple successive days [17].

Electrocardiography (ECG)

Electrocardiography (ECG) measures heart rate based on the electric activ-
ity the heart produces each time it contracts. It is a relatively new method to
measure heart rate in smartwatches. Medical grade ECG requires patients
to place electrodes on the skin near the heart, so it is as close to the source
of the electrical activity as possible. With wearables such as smartwatches,
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this is different, because it measures from the wrist and it does not make use
of electrodes. This means that ECG measurements from smartwatches are
less accurate than ECG measurements from medical devices. It is, however,
more accurate in measuring heart rate than PPG [17].

2.2.5 Polysomnography (PSG)

Today, polysomnography (PSG) is considered to be the golden standard
for measuring and monitoring everything involving sleep. It is often used
in sleep research and in detecting sleeping disorders in patients. A typical
PSG measurement takes into account brain activity, eye movement, mus-
cle response, heart rate, blood-oxygen saturation and respiratory activity.
Because of this, PSG is a complex method to measure sleep and it needs
experts who calibrate and operate the measuring devices. The results also
have to be interpreted by a trained professional or a sophisticated algorithm.
The advantage of such a diverse set of parameters is that it accurately de-
tects patterns and abnormalities in a patient’s sleeping behaviour [10]. The
complexity of PSG makes it an accurate, but inaccessible method to mea-
sure and monitor sleep at home. This means that this thesis does not make
use of PSG.

2.3 Related work

Scott et al. combine the results of 71 papers about the accuracy of measuring
sleep onset with wearable devices [7]. These devices mainly are actigraphy
devices, but also devices that measure eye movement or brain waves are
included. For this thesis, the findings on actigraphy are most relevant. They
found that the results of the different devices and algorithms varied a lot.
Some papers reported actigraphy devices to be very accurate, while others
found a lot of variation in the performance of their actigraphy devices. This
wide variation in results had several reasons, but the most important one
was that the results depend heavily on the individual tested. Everyone has
different sleeping behaviour, so one algorithm does not do the job. This is
why Scott et. al. concluded that the algorithm of actigraphy devices should
be adjusted to the individual for the best results. Because of this, we try to
find algorithms that automatically adjust to the subject.

An example of a study in which HR is used to identify sleep stages is
Fonseca et. al. [18]. In this study, they used PPG to identify sleep stages.
Their findings are that PPG is a promising technique to monitor sleep for
long-term sleep monitoring. It does, however, need some more research to
find out if it can be used as a cheap and more accessible alternative to PSG.
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Chapter 3

Selection of the smartwatch

There is an extensive variety of wearable devices capable of measuring sleep
accessible to the general public: activity trackers, smartwatches, headbands,
rings or earplugs for example. We decided to focus on smartwatches because
this kind of device is owned by many people and on most smartwatches, app
development is supported. This chapter talks about which smartwatch is
chosen and why. Because of a limitation in time and resources, we decided
to only consider one smartwatch instead of multiple. Considering multiple
watches and comparing their results is something that can be done in future
research.

3.1 Smartwatch

Once we decided to execute this research with a smartwatch, we needed to
find the most suitable one for us. We determined this by considering the
following:

• The watch should be useful for the general public. It should
be compatible with most smartphones.

• Sensors. The watch should have sensors that are useful for detecting
sleep. See Chapter 2 for a detailed description of the useful sensors.
We need an accelerometer and a heart rate sensor that measures heart
rate (HR) and if possible blood-oxygen saturation (spO2)

• Accessibility to Sensor data. We need the data from the sensors
to apply our algorithms to it.

Table 3.1 contains an overview of smartwatches that were considered, as well
as a more elaborate explanation. Note that this list is not exhaustive. Some
watches were already disregarded after noticing that one of the conditions
was not met. This means that further research on the devices was not done
and thus some information in the table is not filled in. Besides, we did
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not consider every watch that is available on the market. We limited our
search scope to brands that are well-known and watches that were generally
reviewed positively.

In the table are a few abbreviations. In column ‘sensors’, ‘acc’ means
accelerometer. In the column ‘Verdict’, X means not useful and O means
useful.

Smartwatch Compatible Sensors Sensor
access

Verdict

Apple watches Only iOS - - X

Garmin
Vivowatch 4

Android, iOS PPG, acc,
spO2

- X

Samsung
Galaxy Watch
4

Android, iOS PPG, acc,
spO2

Need Priv-
ileged
Health
SDK

X

Samsung
Galaxy Watch
5

Android, iOS PPG, acc,
spO2

Need Priv-
ileged
Health
SDK

X

Fitbit Versa 3 Android, iOS PPG, acc,
spO2

Direct
access
to sensors

X

Fitbit Versa 4 Android, iOS PPG, acc,
spO2

Development
not
supported

X

Fitbit Sense Android, iOS PPG, acc,
spO2

Direct
access
to sensors

O

Fitbit Sense 2 Android, iOS PPG, acc,
spO2

Development
not
supported

X

Table 3.1: Smartwatches that were considered for this research

To determine whether or not a smartwatch is accessible to the general
public, we focused on compatibility. This is important to make sure that
we do not include watches that can only be used with a specific brand or
version of a smartphone. With this criterion, we quickly exclude Apple
watches since they are only compatible with iPhones.

Besides compatibility, an important aspect of the smartwatch is which
physical sensors it contains. Physical sensors that are most useful for the
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research are an accelerometer and a heart rate sensor. Especially the heart
rate sensor is interesting because there are two versions of it. After some
research, however, we found out that watches that did contain an ECG
sensor did not use it to monitor the heart rate passively. It is only used when
the user launches a specific application where the heart rate is measured for
only 30 seconds. With this application, the user is required to wear the
watch on one wrist while also pressing two buttons or sensors on the watch
with the index finger and thumb of the other hand. Naturally, this process
is not useful if participants need to fall asleep, so we have to use PPG to
measure the heart rate.

Besides the accelerometer and the heart rate sensor, we also want the
data for Blood-oxygen saturation (spO2). After some searching, we found
the following candidates:

• Samsung Galaxy Watch 4

• Samsung Galaxy Watch 5

• Fitbit Sense

• Fitbit Sense 2

Finally, we have to make sure that we can access the data from the
sensors. For the accelerometer, this is the acceleration of the watch in m/s2

and for the heart rate sensor, this is the heart rate in beats per minute
(BPM). The calculation of the blood-oxygen saturation is quite difficult.
Because of this, we want to use the values for spO2 provided by the API
of the watch. After some research, we discovered that both the Samsung
watches and the Fitbit watches were not able to provide spO2 data. We
cannot use the Samsung watches because we need access to their Privileged
Health SDK to obtain spO2 data. At the time of writing, they do not accept
new partnerships, so we cannot make use of the SDK. The Fitbit devices
need a calibration time of one hour, which is too long for the research we
intended to do (see section 4.3). This means that we cannot use spO2 data
in our research and thus we do not consider accessibility to spO2 data in
our choice for a smartwatch. This is why we only use actigraphy and heart
rate to determine sleep onset in this thesis.

We disregarded the Fitbit Sense 2 because it does not support the de-
velopment of third-party apps. The Fitbit Sense, the Samsung Watch 4 and
the Samsung Watch 5 all have extensive documentation, with all the things
we need [19,20]. Because of this, there is little difference between the devices
for our research. In the end, we decided to pick the Fitbit Sense, because
we already looked into working with the Fitbit Sense 2 before we discovered
that it does not support the development of third-party apps.

This concludes our research on which smartwatch we choose for this
research. The Fitbit Sense passes most requirements we set. So, despite the
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disadvantage of not being able to measure spO2 in real-time or the heart
rate with ECG, the Fitbit Sense is the smartwatch we use for this research.
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Chapter 4

Setup of the experiment

This chapter discusses the methods of the research. It first discusses what
algorithms are used, followed by the design of the application. After this,
the procedure of the experiment is explained.

4.1 Algorithms

For the research, we use the accelerometer and the heart rate sensor to
determine sleep onset. To get useful results from these sensors, we need a
way to interpret the obtained data. For this we found algorithms to convert
the raw data of the sensors into useful data. This section first discusses
the algorithm for actigraphy, which uses the accelerometer. After this, it
elaborates upon the algorithm for interpreting the heart rate. Finally, it
explains how the results of both algorithms are combined to draw useful
conclusions.

4.1.1 Actigraphy

The paper of Scott et. al. covers many different papers that use some
kind of actigraphy device [7]. We looked for usable actigraphy algorithms
between these papers. Many of these papers use a medical device with
an algorithm that is provided by the manufacturer of the wearable. These
algorithms are specific to the device and are not open source in most cases so
we cannot use the algorithms these devices used. A few papers did mention
which algorithm they used and after some research, we found the following
algorithms:

• Cole Kripke algorithm [21]

• Sadeh algorithm [22]

• Algorithm of Kuo [23]
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The algorithms of Cole-Kripke [21] and Sadeh [22] were used in multiple
papers. They are viewed as standards in sleep-wake identification using
actigraphy and they have been evaluated thoroughly. Both of these algo-
rithms consider the values of several epochs before and after the current
epoch. The algorithm of Cole-Kripke has a separate weight for each of the
epochs that are considered. The algorithm of Sadeh uses a polynomial with
calculations like the mean activity and standard deviation of activities dur-
ing multiple epochs. Because of this dependence on several epochs after the
current epoch, the algorithms are not that useful to measure sleep onset in
real-time. Besides, both algorithms use specific medical actigraphy devices
that compute an activity score. The activity score is based on how often
the intensity of movement is higher than a threshold value within an epoch.
It is not clear from the papers or the webpage of the manufacturer of the
devices what this threshold is or how it is computed. Because of these two
reasons, both of these algorithms cannot be used for this research.

This leaves us with the algorithm of Kuo et al. [23]. This algorithm
computes a threshold, instead of using set ones. In addition to this, the
algorithm they created is elaborately described and the results of it were
promising. It has not been tested and evaluated as thoroughly as the other
two. Despite this, we decided to use this algorithm because it fits this
research after a few modifications.

The algorithm of Kuo et. al.

The algorithm of Kuo et. al. uses two methods to determine whether the
subject is asleep or not. The first method uses the peak-to-peak inter-
val. Peaks in this context are peaks in the acceleration of the device. The
peak-to-peak interval method computes the minimal interval between two
successive peaks in each epoch. It only considers peaks that exceed a certain
threshold. In this case, the threshold is a range around the mean actigra-
phy values of the epoch that is considered. The values of the range in this
research are the same as in the paper: 3.35mg above and below the mean.
Here, 1g = 9.81 m/s2, which is the nominal gravitational acceleration. The
calculation of the peak-to-peak interval can be seen in equation 4.1.

PPi =

min (tj+1 − tj), N ≥ 3

0, otherwise
(4.1)

Where PPi is the peak-to-peak interval in epoch i. tj and tj+1 are the
times of the jth and j+1th peak within epoch i, which are higher than the
threshold. N is the number of peaks above the threshold. If there are fewer
than 3 peaks in an epoch it is considered noise.
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When this is computed, the algorithm determines if epoch i is considered
as ‘active’, based on the peak-to-peak interval. If PPi < 11 seconds, the
current epoch is scored as ‘active’ (or 1), otherwise it is scored as ‘not-
active’ (or 0). This is not stored in a Boolean because we use this value in
the next step for the calculation. See equation 4.2.

Activity PPi =

1, PPi < 11

0, otherwise
(4.2)

Finally, the algorithm determines the Movement Density (MD) per epoch.
MD is calculated using the epochs before and after the current epoch. This
is called the window size. In the paper, Kuo et al. differentiate between a
large, medium and small window size. A large window size is used for people
that are known to move a lot in their sleep and a small window size is used
for people that don’t move as much in their sleep. The medium size is used
to determine whether the subjects need a large or small window size. For
simplicity, we decided to only use the small window size in our experiment.
This is because we only have a limited time to obtain data per participant.
A larger window size would slow down the process of determining sleep on-
set. In the paper, the small window size is set to 15 epochs. This means
that it considers the current epoch, the preceding 7 epochs (3,5 minutes)
and the following 7 epochs (also 3.5 minutes). This window size is still too
big for determining sleep onset in real-time, especially if we need to consider
the 7 epochs after the current epoch. This is why we decided to consider
2 window sizes. One window size is the original window size of 15, used in
the paper. The second window size will not consider the epochs after the
current epoch, so the window size is 8. We use both window sizes so we can
compare their results to see if there are differences between them.

To calculate the MD, we compute the sum of Activity PPi and divide
that over the window size. If there are less than 7 epochs before the current
epoch, that amount of epochs is considered. This holds for both window
sizes. For the window size of 15, we also need to check whether there are
7 epochs after the current epoch. If there are fewer than 7, the remaining
amount of epochs is considered. See equation 4.3 for the situation with a
window size of 8 and equation 4.4 for a window size of 15.

MDPP
i =



(
i∑
1
Activity PPj

)
/i, when 1 ≤ i < w(

i∑
i−w

Activity PPj

)
/w, otherwise

(4.3)
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MD
PP
i =



(
i+⌊w/2⌋∑

1
Activity PPj

)
/(w − ⌊w/2⌋ + i), when 1 ≤ i ≤ ⌊w/2⌋

(
i+⌊w/2⌋∑
i−⌊w/2⌋

Activity PPj

)
/w, when ⌊w/2⌋ < i < L − ⌊w/2⌋

(
L∑

k−⌊w/2⌋
Activity PPj

)
/(w − ⌊w/2⌋ + L − i), when L − ⌊w/2⌋ ≤ i ≤ L

(4.4)

Where i is the current epoch, L is the total amount of epochs and w is
the window size. This concludes the first method of the algorithm. Now we
take a look at the second method: the maximum magnitude.

The maximum magnitude is calculated in a straightforward way. It first
checks whether a peak is above the threshold value (3.35mg). If the peak
is above the threshold, it compares the value of the peak with the current
maximum value. If the new value is higher, it becomes the new maximum
value, if it is not higher, the maximum value stays the same. See equation
4.5.

Maxi =

max ACC(t), t ∈ epoch i and ACC(t) > T

0, otherwise
(4.5)

Where Maxi is the maximum magnitude in epoch i, t is the time of the
peak and T is the threshold value.

After this, the algorithm determines whether the current epoch is clas-
sified as ’active’ or ’not-active’. If Maxi = 0, the current epoch is classified
as ’not-active’ (or 0), otherwise it is classified as ’active’. Again, this value
is not stored in a Boolean because it is used in the calculation of the next
step. See equation 4.6.

Activity Maxi =

1, Maxi ̸= 0

0, Maxi = 0
(4.6)

After this computation, we also compute the MD of the current epoch,
based upon Maxi. Also here, we use the 2 window sizes as discussed in the
first part of this algorithm. This calculation is similar to that of the MD of
the Peak to Peak interval. See equation 4.7 for the situation with window
size 8 and equation 4.8 for window size 15.

MDMax
i =



(
i∑
1
Activity Maxj

)
/i, when 1 ≤ i < w(

i∑
i−w

Activity Maxj

)
/w, otherwise

(4.7)
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MD
Max
i =



(
i+⌊w/2⌋∑

1
Activity Maxj

)
/(w − ⌊w/2⌋ + i), when 1 ≤ i ≤ ⌊w/2⌋

(
i+⌊w/2⌋∑
i−⌊w/2⌋

Activity Maxj

)
/w, when ⌊w/2⌋ < i < L − ⌊w/2⌋

(
L∑

k−⌊w/2⌋
Activity Maxj

)
/(w − ⌊w/2⌋ + L − i), when L − ⌊w/2⌋ ≤ i ≤ L

(4.8)

Where i is the current epoch, L is the total amount of epochs and w is
the window size. This concludes the second method of this algorithm.

For the final part of the algorithm, we deviate from the algorithm pro-
posed by Kuo et al. In their paper, Kuo et al. [23] make use of four rules
to determine whether the subject is asleep or awake. This binary classifica-
tion is not in line with the consensus that sleep onset is a slow descent into
sleep [24]. This is why we approach this a bit differently. In this research, we
compute the mean of the two MDs and plot that in a graph. this combined
MD is a value between 0 and 1 so we hope it gives us a gradual line if we
plot it in a graph.

This concludes the algorithm used to determine sleep onset with actig-
raphy. The used code of this algorithm can be found on Gitlab [25].

Although we believe that this algorithm suits our research well, some
things could be improved. First of all, one of our window sizes is different
than proposed in the paper of Kuo et al. This may result in less accurate
results because the algorithm is not adjusted to our window size and the
window size is not adjusted to the subject. As stated in many papers that
Scott et al. [7] reviewed, the algorithm should be adjusted to the subject to
obtain the most accurate data. This means that it might be worth looking
into how to determine the window size for a short experiment just like ours
so that this algorithm can accurately detect sleep onset. On the other hand,
you could use long-term data about a person’s sleep behaviour to personalise
the algorithm. A smartwatch is very helpful in this because many people
already use it to monitor their sleep. This means that a smartwatch already
has a good insight into the general sleeping behaviour of the user. This
information can be used to specialise the algorithm that can detect sleep
onset.

Besides this, the algorithm uses a binary classification of sleep, because
it is originally designed to only differentiate between sleep and wake. As
stated before, this binary classification is not in line with the consensus that
sleep onset is a slow descent into sleep [24]. Because of this, we changed
the last part of the algorithm, but there are still parts that use binary
classification, for example, the calculation of the Activity in an epoch. The
algorithm could be changed so that the classification of Activity PPi and
Activity Maxi is a value between 0 and 1, instead of either 0 or 1. This
could improve the accuracy of the MDs. So it might be worth looking into
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a way to translate the computations of Activity PPi and Activity Maxi to a
non-binary version.

Finally, a disadvantage of this algorithm is that the result is a Movement
Density. Even though this might give a good representation of how much
a subject moves, it does not necessarily say something about sleep. It is
interesting to look into a way of connecting Movement Density to for example
wake probability like Prerau et. al. did in their paper [24].

These suggestions might be interesting to consider in future research to
get a more precise result for experiments like this one.

4.1.2 Heart Rate

To measure the heart rate of the participants, we use the Sleep-Onset Period
Detection algorithm designed by Jung [26]. We chose this algorithm because
it focuses specifically on sleep onset, unlike the algorithm from for example
Kuriwara and Watanabe [27]. Besides this, it has an extensive explanation
of how the algorithm works. Another advantage is that it does not require
a long calibration time to set up the algorithm. The research is aimed at
detecting Obstructive Sleep Apnea (OSA), but the algorithm performs well
in the ‘non-OSA’ control group too.

The algorithm itself consists of two parts: it first needs two minutes to
calibrate and after that, it determines what epoch is the first to be defined
as a ’sleep-onset epoch’.

The calibration phase of the algorithm is used to compute a threshold
value. This value is computed over the first 4 epochs (2 minutes) because
then the participant is still awake most of the time. This is important
because the heart rate during rest is considerably lower than when you are
awake. This way we can easily see the difference in heart rate between
wakefulness and sleep. This threshold value is used in the second part of
the algorithm to determine a sleep-onset epoch. It is calculated as follows:

TH = HR2avg − 1.96×HR2SD (4.9)

Where TH is the threshold value, HR2avg is the mean heart rate in the first
4 epochs and HR2SD is the standard deviation of the heart rate in the first
4 epochs.

In the paper, Jung obtained the heart rates through R-R intervals. An
R-R interval is the time between two consecutive heartbeats. In our research,
however, we get the values for heart rate from the device, we do not compute
these values manually. The algorithms Fitbit uses are proprietary, so we
cannot say exactly how the values are computed.

This concludes the first phase of the algorithm. The second phase of the
algorithm starts in the fifth epoch. From this point on, the algorithm listens
for a sleep-onset epoch to determine the sleep onset period. It does this
by examining each heart rate sample and comparing that to the threshold
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Figure 4.1: Flow diagram of the Sleep-Onset Period Detection algorithm as
described by Jung [26]. Explanation of variables: i = the number of the
current epoch, j = the number of the current sample, m = current amount
of samples below TH in succession, TH = threshold value.

value computed in phase 1. If more than half of the samples in one epoch
are successively beneath the threshold value, the epoch is scored as a sleep
onset epoch. The sleep onset period is defined as the sleep onset epoch, the
two epochs before that and the two epochs after that. See figure 4.1 for the
flowchart of this algorithm. We do not have to tweak this algorithm to fit
our research. The used code of this algorithm can be found on Gitlab [25].

Even though this algorithm fits our research well, it does have some
disadvantages. Just like the actigraphy algorithm, it calculates sleep onset
with the use of a threshold. This makes the calculation binary, neglecting the
fact that sleep onset is a gradual descent into sleep [24]. For future research,
it might be interesting to find a way to translate this binary identification
to a gradual scale. This might make the results more accurate.

Besides this, our current setup calculates the threshold based on the
first 4 epochs of the recording using a general calculation. Even though this
general calculation computes the threshold relative to the heart rate of the
subject, it does not incorporate the personal sleeping behaviour of the par-
ticipant. Personal sleeping behaviour is, however, important to accurately
determine sleep onset. It could be incorporated into the algorithm if we
have more sleeping data on the subject. As said before, smartwatches are
very useful for collecting general sleeping data because they are often worn
regularly. Because of this, they have a good indication at which heart rate
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values the subject is likely asleep.
The last disadvantage is that this algorithm stops when it identifies the

first sleep onset epoch. It does not consider the fact that a person can wake
up during a measurement and fall asleep again. It could be interesting to
also include sleep onsets that occur after the first sleep onset.

4.1.3 Combining the algorithms

Now that we have elaborated upon how we implement the algorithms specific
to the sensors, we also need to combine the result of both of them. We do
this by plotting the results from the actigraphy algorithm in a graph. When
this is done, we indicate in the same graph which epochs are considered as
the sleep onset period according to the Heart Rate algorithm. We do this
per participant. When combining the results, we hope to find a correlation
between them. For example, the sleep onset period often starts when the
Movement Density is at a certain value. It could also be the case that the
results do not correspond well with each other. In that case, we try to find
out what causes this and how it could be improved. To check whether the
results reflect the participant’s sleep, we use their subjective experiences.
See Section 4.3 for more information.

There is a big drawback of combining the results of these two algorithms
into one result, namely that the types of results are quite different. It might
be hard to find a correlation between these two results since one has a data
point for each epoch and the other one just marks five epochs as the sleep
onset period. We think, however, that it is not impossible to do this, so we
decided to stick with these two algorithms.

4.2 App design/program design

The program we use for this research consists of 4 parts: the smartwatch, the
companion app on a mobile phone, a local server on the same mobile phone
and the storage of that phone. The local server is needed for storing files in
the local storage of the phone because the companion app does not support
that. The companion app is designed by Fitbit to be the communication
between the smartwatch and other APIs of Fitbit as well as an extra runtime
environment. Unfortunately, this does not include writing files to the storage
of the mobile phone. The architecture used for this research is based on an
architecture made by Peter McLennan [28, 29]. We chose this architecture
because it already captures and stores raw actigraphy data. This is exactly
what we need for our research. It means that we only have to extend the
functionality to also include capturing and storing data from the heart rate
sensor. For a schematic representation of the architecture, see figure 4.2.

This flow handles the files with the raw data obtained from the watch,
so no algorithm is applied to it yet. This is done on a computer at a later

20



smartwatch
DataFiles

smartphone

Companion App 

Sensors

Response

Local Server Local storage 

DataFiles

FileCombiner
DataFile

Response

Figure 4.2: Schematic view of the architecture of the program

stage.
Both the smartwatch and the companion app use JavaScript as the pro-

gramming language, combined with some APIs provided by Fitbit [19]. The
local server on the mobile phone is an android app written in Java using
Android Studio. The code for the architecture can be found on Gitlab [25].

4.2.1 Smartwatch app

The smartwatch collects the data from the sensors and puts that in a local
file. Each file contains data for one epoch (30 seconds) of a sensor. The
names of the files are constructed using the sensor name (in our case ’acc’
and ’HR’) and the file number. We do this to make sure files of different
sensors are not mixed and to make sure the proper order is kept.

The accelerometer collects data at a frequency of 10 Hz and does that
with an accuracy of 0.002 m/s2. The heart rate sensor does this at a fre-
quency of 1 Hz and rounds it to the nearest integer. The frequency of the
accelerometer is higher because acceleration typically varies more in a sec-
ond than heart rate. Measuring multiple heart rates per second does not
add to the accuracy of the data. We chose a frequency of 1 Hz because this
is the highest possible frequency for the Fitbit Sense. It might, however, not
be the most ideal frequency because measuring HR at this rate drains the
battery. For this thesis, we decided to stick to this high frequency of HR so
that we have many data points per epoch.

After each epoch, the current file is closed and a new one is opened.
Once a file is closed, it is sent to the companion app using the file transfer
API provided by Fitbit [30]. This happens file by file to make sure every
file is properly received by the companion app. Once a file is received by
the companion app, the smartwatch gets a response message back from the
companion app. If this message indicates that the file has been properly
processed, the smartwatch sends the next file to the companion app. If
the file was not correctly received, the smartwatch tries to resend it. This
happens if the file gets corrupted while sending or when the server is not
running for example. Only after a new recording is started, the files of
the previous recording are deleted. This ensures that no data is lost when
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something goes wrong in the process of transferring.
If the user wants to start a recording, they press the ”start recording”

button on the smartwatch. From this point on, the sensors start collecting
data. After every epoch, the files are sent to the companion app. Each
time, a text field on the smartwatch is updated to indicate which file has
been sent to the companion app most recently. If the user wants to stop
the recording, they press the ”stop recording” button on the device. This
stops the recording and sends the last files with data to the companion app.
From this point, the user can start a new recording or resend all files in case
something went wrong.

4.2.2 Smartphone: Companion app

The companion app serves as a forwarder and communicator between the
smartwatch and the local server. Once it receives a file from the watch,
the companion app forwards it to the local server. When the file has been
sent, the companion app receives a reply from the server about whether the
transfer was successful. The companion app forwards this message to the
watch. The watch replies to these status reports as described above. The
companion app does not store any of the files.

4.2.3 Smartphone: Local server

The local server is used to store the files received from the companion app.
Once it receives a file from the companion app, it checks whether the data
is not corrupted or if the file has the correct length for example. If it
does not pass these tests, it sends a corresponding status message to the
companion app and the file is discarded. If the checks are passed, the server
stores the files temporarily. Once all files are received, the user can press
a button to download the data. There is no check present in the local
server that monitors whether the last file is received. In this setup, the user
is responsible to check whether all files are received. Once this button is
pressed, all files of a sensor are appended in one file. For this part, the
names of the files are important to make sure the sensors do not get mixed
up and to make sure that the files are appended in the right order. The file
with all data of one sensor is then stored in the storage of the mobile phone.
This process is repeated for all the sensors that are used. In our case, this
means that we are left with two files: a file for the accelerometer data and
a file for heart rate data.

4.2.4 Processing of obtained data

To determine sleep onset, we need to convert the obtained data into some-
thing useful. For this, we use the algorithms discussed in section 4.1. We
create a script in which we implement the algorithms in the programming
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language C. The two files we obtain from the server are the inputs for this
script. The result of this script is a file containing the processed data. These
results are plotted in a graph using Libre office, so they can be interpreted
(See Chapter 5 and appendix B for more details).

4.2.5 Evaluation of the setup

With the current setup, we can try different algorithms and versions of
algorithms on the obtained data, which is very useful for research purposes.
We can do this because we only evaluate the data after the experiment and
not during the experiment. The drawback of this setup is, however, that
we cannot say something about someone’s sleep in real-time. If we want to
create an app to improve power naps, for example, we need the data close
to real-time. This is, however, something for future research.

This setup does have some disadvantages. One of them is that this setup
is inconvenient since it consists of four different parts. With the transfer of
data between each component, there is a chance that the data gets lost or
corrupted. Even though basic checks for this are implemented, it does not
guarantee that all data is properly transferred.

Besides this, the current setup is not efficient in terms of battery power,
because it needs to transfer quite a large amount of data. This drains the
battery of the smartwatch and the mobile phone. This should be looked
into if the setup is used in future research.

4.3 Procedure

The experiment is held in a room in a study space at Radboud University.
This room is secluded from the main study space so there is little distraction
from the outside. The room contains a comfortable chair in which the partic-
ipants try to fall asleep, see picture 4.3. It also has an adjacent room for the
experimenter to be close to monitor the participant during the experiment.

To determine whether the Fitbit Sense can accurately measure sleep
onset, we execute the following experiment: Participants are asked to come
to the location described above. They are instructed to wear the Fitbit
Sense on their left wrist and hold an object in their right hand. This object
is either a water bottle or a pencil bag. Both the smartwatch and the object
are given to them at the location. After the participant received the watch
and the object, they try to take a power nap in a comfortable chair. They
are instructed to hold the object in such a way, that it falls on the floor if
their muscle tension decreases. This decrease in muscle tension happens as
the participants descend into deep sleep. Eventually, the muscle tension is
low enough for the object to slip out of their hand and fall on the floor. The
sound of the falling object should wake them. When muscle tension reaches
this point, it is often an indication that the participants are drifting toward
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Figure 4.3: The comfortable chair used in the experiment. It is inside the
separate room in which the participants are instructed to sleep.

deep sleep. We don’t want people to enter deep sleep because that is not
in the scope of our research. Besides, it most likely wakes them up feeling
more tired than before they went to sleep, which is the opposite effect of a
power nap. If participants are not woken up in this way within 30 minutes,
an alarm goes off. The experiment ends when the participant is woken up
or when the alarm goes off. At this point, the participants are instructed to
report whether they thought they were asleep or not. We use this subjective
judgement to determine whether the smartwatch can detect sleep onset. The
specific instructions given to the participants can be found in Appendix A.

A disadvantage of this experiment is that we make use of the subjective
experiences of the subjects. Although this gives a good indication of how
well people slept, we cannot know for example at what exact time they
started to doze off. A comparison with Polysomnography (section 2.2.5) or
medical-grade Electrocardiography (section 2.2.4) would most likely give a
more precise insight into this. We tried to arrange this at the start of this
thesis, but unfortunately, the laboratories of the university did not have
room for our experiments. We also did not have time or expertise to measure
with these methods ourselves. This is something that future research could
look into.
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Chapter 5

Results

This chapter presents the results obtained from our experiments. We first
discuss the sample population of the experiment. After that, we elaborate
on how the algorithms performed and what the subjective experiences of
the participants are. After this, we compare the results of the algorithms
to the subjective judgement of the participants and lastly, we discuss the
implication of the results of the experiments.

5.1 Sample population

In total, we conducted seven experiments. From these, four turned out to
be not useful because of two reasons: in one experiment, the heart rate was
not recorded for about half of the time. In the other three, the data was
not stored properly because of a bug in our program, together with the fact
that the companion app crashed in these experiments. We had to fix this in
between experiments so our program would store the data properly. In the
end, we are left with a sample population of three people. All of them are
male students from the Radboud university, with ages ranging between 21
and 23.

Because of this small population size, we cannot identify trends or out-
liers in the data. Individual differences have a big effect on the average
result, so our main goal is not to evaluate the results we got from the ex-
periments. Instead, we focus on evaluating the experiment itself by looking
at the advantages and disadvantages of our setup and unexpected outcomes
for example.

5.2 Actigraphy

When running the actigraphy algorithm over the obtained data, we quickly
discovered that the threshold used by Kuo et. al. was too low [23]. Their
threshold of 3,35 mg translates to roughly 0.0386 m/s2. With this value, the
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Movement Densities of all subjects would not drop below 1. This is probably
because the accelerometer in our device is less accurate than the medical-
grade device used by Kuo et. al, resulting in bigger variations between data
points. Using this threshold makes the computed data of the accelerometer
useless, so we decided to change the threshold value. We can do this be-
cause Movement Densities are relative values. As long as we use the same
threshold for every data set, we can compare our results and say something
about them. When we tested the algorithm with different thresholds, we
quickly saw that it is difficult to determine the right value for the threshold.
As mentioned before, everyone has different sleeping behaviour, so a single
threshold value does not work for everyone. In the end, we decided to test
the three data sets with two thresholds. This way we can see what effect
the difference in threshold has on the results. The two thresholds we chose
are 0.1 m/s2 and 0.15 m/s2. We chose these values because they roughly
are the borders of what thresholds are usable with our results.

As discussed in section 4.1.1, we used 2 window sizes. In general, these
window sizes show a similar graph as can be seen in appendix B. The main
difference we notice is that using a bigger window size reduces the variation
of the graphs. Incidental peaks and drops are flattened, so we see a more
gradual line in general. It is difficult to say which window size is the better
one, because of the limited amount of data we have.

Both problems mentioned above might be solved when the smartwatch is
worn for a longer time than just during the experiment. If the device is worn
for multiple successive days and nights, it can for example monitor sleeping
behaviour. This way you know when a person moves a lot in their sleep or
not. With this information, you should be able to adjust the threshold value
and window size to fit the user. This most likely increases the accuracy of
the algorithm.

In section 5.5, we compare the results of the actigraphy algorithm to
that of the HR algorithm and the subjective experiences. The visual rep-
resentations of the results of both thresholds can be found per subject in
appendix B, as well as a more detailed analysis of the data per subject.

5.3 Heart Rate

When applying the HR algorithm to the obtained data, we noticed that in
subjects 2 and 3 the first epoch after the calibration period was immediately
identified as the sleep onset epoch. We do not expect this, because it nor-
mally takes more than two minutes for people to fall asleep, especially when
they are in an unfamiliar environment. This unexpected behaviour is caused
by the fact that the mean heart rate of the first four epochs is quite a lot
higher than the mean heart rate in epoch 5. For example, in subject 2 this is
around 108 bpm and 98 bpm respectively. The threshold is determined to be
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99 bpm because of the high heart rate of the first 4 epochs. This means that
the algorithm is not necessarily wrong, but it seems like it is not designed for
drops in heart rate as we see in subjects 2 and 3. Because of this, we tried
to compute the threshold differently to see what kind of effect this has on
the results. We increased the multiplier in the computation of the threshold
from 1.96 to 2.5 (see section 4.1.2). In both cases, this change did not have a
big effect, indicating that the threshold might still be too high. We decided,
however, not to change the computation of the threshold more than this,
because it is hard to say what threshold would give the proper results. If
we had HR data from multiple days, we could have adjusted the algorithm
to the subjects. With the little data we have, we can only change the HR
data so that it fits the actigraphy data without argumentation, which does
not give credible results. Besides changing the threshold value to account
for this large drop in heart rate, we could also have changed the calibration
window. If we would extend this from the first 4 epochs to the first 6 for
example, the threshold would change and it might have a positive effect on
the results. We decided not to change the algorithm in this way, because of
the same reason mentioned above.

We decided to also include the average HR per epoch in the graph to
get more insight into the results of the experiments. In all three subjects,
this shows a line that gradually descends during the experiment. In none of
the graphs there is a sudden drop in HR, which makes selecting 5 epochs as
sleep onset period look arbitrary.

Just like with the actigraphy algorithm, the situation might be different
when the smartwatch is worn for a longer period of time, instead of just
during the experiment. In such a case, the threshold could be calculated
based on the heart rate of several days, not on the first 2 minutes of a single
measurement. With this, the threshold can be adjusted based on the sleeping
behaviour of the user. This could for example handle a big drop in HR better
than our current algorithm. Using the HR data of several days would most
likely make the algorithm more accurate because it is personalised.

Because of the unexpected results of subjects 2 and 3, we cannot say
much about the performance of the algorithm itself. We can say, however,
that using a personalised computation of the threshold most likely benefits
the accuracy of the algorithm. If the threshold is personalised, the algorithm
should be able to handle personal differences better.

In section 5.5, we compare the results of the HR algorithm to that of the
actigraphy algorithm and the subjective experiences. The visual representa-
tions of the results of both thresholds can be found per subject in appendix
B, as well as a more detailed analysis of the data per subject.
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5.4 Subjective judgements

When the experiment was finished, the participants were asked about their
experience. All three subjects reported not having slept, or at least not very
deeply. All of them did, however, experience one or more moments where
they nearly fell asleep. They think this happened because they were aroused
by the alarm or because of another reason that they could not pinpoint. We
expect these moments of nearly falling asleep to be marked as sleep onset
in the data. None of the experiments stopped because the subjects were
woken up by the falling object, they all ended because of the alarm. Even
the experiments from which the data was not useful, did not end because
of the falling object. This might be an indication that the object did not
slip out of the subject’s hand easily enough. This means that even when
the subjects were drifting towards deep sleep, the object did not fall to the
ground. It could also mean that a timer of 30 minutes is too short since the
participants need some time to get comfortable, especially in an unknown
room during an experiment. A lack of comfort might also be the reason why
some participants did not fall asleep during the experiment.

Furthermore, a participant indicated that they weren’t able to fall asleep
because they heard noises from other rooms. The chair used in the experi-
ment also was not optimal for taking a power nap because you have to sit
up relatively straight. This can also influence one’s ability to sleep.

5.5 Comparison

If we take the results together, we barely see any connection between the
results of the actigraphy algorithm, the HR algorithm, the average HR per
epoch and the subjective experiences of the subjects. Some of the results
seem to point to the same conclusion in some cases, but once the threshold
is changed, the connection often disappears. Because of this, it is not clear
whether the occasional agreement between results is a coincidence or not.

In some cases, however, the actigraphy algorithm seems to be able to
detect moments where the subjects were aroused. This can be explained
by the sudden movement that could go paired with this, combined with the
movements of getting comfortable to fall asleep again. The results of the HR
algorithm are hard to interpret because of the results we got with subjects
2 and 3.

5.6 Discussion

We hoped that a combination of parameters would give us an indication
of when the participants were in sleep onset, just like PSG does this with
multiple parameters. But the algorithms that we used are not in line with

28



the subjective experiences of our subjects. This can have several causes
like inaccurate measurements or subjective experiences not being represen-
tative of what happened. We believe that the most important cause of the
disagreement between our results is the lack of personalisation of the algo-
rithms. The short amount of time that the subjects wore the watch does
not incorporate personal sleeping behaviour. This is evident if we compare
the results from the different subjects with each other. In both algorithms,
we see that a threshold is too low for one subject, while it is too high for
another subject. Because we do not have information about the personal
sleeping behaviour of our subjects, it is hard to determine the right threshold
for each participant. Besides this, the limited amount of data also makes it
hard to determine whether resemblances in results are coincidences or not.

The results we obtained from this experiment seem to indicate that the
algorithms are not personalised enough. Because of this, we think that the
setup used in this thesis does not suffice. Some aspects need to be critically
reviewed and improved so that this setup is usable. These aspects could for
example be the personalisation of the algorithms, how the data is obtained or
how the experiment is executed. It is, however, not in the scope of this thesis
to improve this setup because of a limitation in time. Future research could
look into improving the used methods so that the results of the experiments
are more accurate and more usable.
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Chapter 6

Conclusions

6.1 Conclusion

Sleep onset is the first stage of a sleep cycle and it is a gradual descent into
deeper sleep. Sleep onset is an interesting stage for research because it can
be used to optimise power naps, perform Targeted Dream Incubation and
detect sleeping disorders for example. Sleep onset can be detected because
of physiological changes in the body. Some of these changes can be measured
with sensors present in most smartwatches.

In this thesis, we first explored which smartwatch is most useful for de-
tecting sleep onset. We chose the Fitbit Sense and we used its accelerometer
and heart rate sensor. We created a setup with which the smartwatch could
send the data of these sensors to a phone, so it could be analysed later.
We found the algorithm of Kuo to interpret the data of the accelerometer
and we used the algorithm of Jung to interpret the data of the heart rate
sensor [23,26].

We executed experiments in which subjects were asked to take a power
nap. They wore the Fitbit Sense during this so we could measure the heart
rate and movement of the wrist. The subjects also reported whether they
fell asleep or not. In the end, only 3 experiments resulted in usable data.
Because of this, we did not try to find trends or outliers and draw conclusions
from them. Instead, we evaluated the experiment as a whole and identified
which things went well and which things can be improved upon.

With the setup we used in this research, we were able to collect data
about the heart rate and movement of the subjects during a power nap.
We were able to apply the algorithms to the obtained data, however, the
results of the algorithms differ a lot per subject. This is likely because both
algorithms are too general. Everyone has a different sleeping behaviour so it
is difficult to tell which thresholds fit the subjects. We believe, however, that
this setup could be a useful starting point for future work if some elements
are reviewed and improved.
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6.2 Future work

This thesis is about an exploratory experiment on detecting sleep onset with
a smartwatch. Throughout this thesis, we already discussed which aspects
could be improved upon per section. This section elaborates more upon
general points of interest for future research.

In the current research, we only used two sensors to determine sleep on-
set. When using two sensors, the general results quickly become inaccurate
when one sensor is inaccurate. If we would remove the inaccurate sensor,
the results will be influenced a lot and we only have one parameter left. This
is not desirable. Adding other parameters like spO2 reduces the influence
of a single sensor. This can be looked into in future work.

Besides this, the experiments conducted in this thesis require the subjects
to wear a smartwatch that they normally do not wear. This cannot incorpo-
rate personal sleeping behaviour. Personal sleeping behaviour is, however,
important in sleep research, because you have a better view of which phys-
iological changes indicate sleep. Many people already use a smartwatch to
monitor their sleep, so it should have a good insight into their sleeping be-
haviour. With this data, you can personalise the algorithms that detect
sleep onset, which should make them more accurate. This is why future re-
search could look into the possibility of using long-term sleeping information
obtained with smartwatches to improve the accuracy of the algorithms.

Detecting sleep onset in real-time is crucial for an app that improves the
efficiency of a powernap or an app that can perform a version of TDI or
basic sleep disorder detection. Because of this, future research could also
look into using the smartwatch and algorithms to accurately detect sleep
onset in real-time.

Lastly, future research could look into incorporating objective measure-
ments, instead of subjective judgements from the subjects to validate the
results from the algorithms.

This concludes our thesis about detecting sleep onset with a smartwatch.
We created a starting point on which future research can build. As dis-
cussed above and throughout the thesis, there is still quite some room for
improvement. Even though we did not find evidence that with our setup, a
smartwatch can detect sleep onset, we believe our research is still useful for
future research.
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Appendix A

Instructions experiment

Thank you for participating in this experiment! In a minute you will be
trying to take a power nap using the technique from Thomas Edison him-
self! To make this experiment run smoothly, please adhere to the following
instructions.

• Wear the smartwatch on your left wrist. Make sure it is comfortable,
but not too loose since that could influence the data collection process

• While attempting to take a power nap, hold the object that is given
to you in your right hand. You should hold it in a way so that it
falls on the ground when your muscle tension decreases. This happens
slowly when you descend into sleep. The falling object should ensure
that you are woken up before you enter deep sleep (meaning you don’t
wake up even more tired than before you went to sleep).

• Take place in the chair and make yourself comfortable. Please keep in
mind that you hold the object in the way described above.

• Set a timer of 30 minutes on the smartwatch. This ensures that you
do not sleep for too long if you fall asleep. It also makes sure that you
don’t spend too long trying to fall asleep if it turns out to be hard.

• Once you are comfortable, launch the ’sleep onset’ app on the smart-
watch and press the start button. Once you do, you are free to fall
asleep.

• If you are woken up by the falling object make sure to hit the ’stop
recording’ button on the side of the watch as soon as possible to end
the data collection. Notify the experimenter that you were woken up.

• You have a maximum of 30 minutes to take a power nap, so when
you exceed this time, the alarm will ring. Please also press the ’stop
recording’ button in this case.
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• Once you wake up after 30 minutes or because of the falling object,
the experiment is over. Don’t try to fall asleep again.

• When the experiment is over, reflect on whether you think you fell
asleep. It does not matter whether you succeeded in falling asleep or
not, in both cases the data can be interesting for us.

• Report your experience to the experimenter and hand over the watch
and the object.

• Finally: Try to relax; Don’t try too hard to fall asleep. Data of some-
one who does not fall asleep is as valuable as data of someone who did
fall asleep.
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Appendix B

Results of experiments

This appendix contains a detailed description of the results of each par-
ticipant as well as graphical representations of them. It explains how to
interpret the graphs and then discusses each subject’s results separately.

Each subject has 4 graphs because we used two versions of both the
actigraphy algorithm and the HR algorithm.

The x-axis of each graph represents the number of the epoch and the
left y-axis is the Movement Density. The blue line indicates the Movement
Density where the window only considers epochs before the current epoch
and the current epoch itself. The red line indicates the Movement Density
where the window also considers epochs after the current epoch, which is
the original algorithm. The right y-axis represents the heart rate in beats
per minute of the subjects. This is illustrated with the yellow line. The
orange bars represent the five epochs that are classified as the sleep onset
period by the HR algorithm.

The title of each graph indicates which subject it belongs to and which
version of the algorithm has been applied to the data. The following abbre-
viations have been used:

• acc TH: 0.1 : The threshold of the actigraphy algorithm is set to 0.1
m/s2.

• acc TH: 0.15 : The threshold of the actigraphy algorithm is set to
0.15m/s2.

• HR mult. 1.96 : The threshold of the HR algorithm is calculated using
the original multiplier of 1.96.

• HR mult. 2.5 : The threshold of the HR algorithm is calculated using
the adjusted multiplier of 2.5.
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B.1 Subject 1

The graphs of subject 1 can be seen on the next page. They seem to indicate
that the threshold of the actigraphy algorithm is quite high because in both
cases the Movement Density barely exceeds 0.2. The threshold of the HR
algorithm seems to be correct because the sleep onset period is somewhere
in the middle of the experiment.

This subject indicated that he was aroused somewhere in the middle of
the experiment. We can see an increase in Movement Density in the middle
at the threshold of 0.15, with both window sizes. The results of the HR
algorithm with the original threshold indicate the sleep onset epoch to be
just before the increase in movement density in the graph of the original
window size (blue line). This could indicate that this is the moment just
before the subject was aroused. When we take the result of the HR algorithm
with the altered threshold, this connection is gone.

When we take the actigraphy threshold to be 0.1, we do not see an
indication of when the subject might have woken up.

The yellow line for HR shows a downward trend during the experiment.
It does not show a sudden drop in heart rate at the period classified as
sleep onset period by the HR algorithm. This makes the result of the HR
algorithm look arbitrary. Besides, there does not seem to be a connection
to the results of the actigraphy algorithm, because the heart rate does not
increase with an increase in Movement Density.
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B.2 Subject 2

The graphs of subject 2 can be found on the next page. In contrast to the
graphs of subject 1, the Movement Density of this subject is very high for the
first half of the experiment. This might indicate that the threshold for this
subject might be too low. Besides this, the results from the HR algorithm
are not helpful because they indicate that the sleep onset period begins at
the fifth epoch for the original algorithm or at the seventh epoch for the
adjusted algorithm. This is most likely too early because the subjects need
some time to get comfortable, especially in our experiment. Because of this,
we do not consider the results of the HR algorithm.

Subject 2 says that he felt like the last 5 to 10 minutes went by quickly.
This corresponds to the last 10 to 20 epochs. In both graphs of the actig-
raphy algorithm, we see a quick decline in Movement Density somewhere
in the second half of the experiment. This could indicate that the subject
fell asleep around that time. This is also supported by the raw Heart Rate
data because that shows a decline towards the middle of the experiment.
The drop in Movement Densities might also indicate that the smartwatch
was first in a position where it detects relatively many movements and later
it was moved to a position where it detects them less. Besides this, there
are no similarities between the subjective experiences and the results of the
actigraphy algorithm.
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B.3 Subject 3

The graphs of subject 3 can be found on the next page. The threshold for
the actigraphy algorithm fits this subject well. The values of the Movement
Density are mostly between 0.2 and 0.8 in all graphs. We do not look at the
results of the HR algorithm for the same reasons as in subject 2.

This subject indicated that he almost fell asleep twice. In the graph with
the adjusted window size (blue) we see two peaks in Movement Density,
which could indicate the movement that goes paired with arousal. For the
red line (original threshold) this connection seems to be still there, but the
peaks are not as high as with the blue line. When we look at the Heart Rate
in each epoch, we do not see these peaks. The heart rate slowly decreases
during the experiment, without peaks in Heart Rate when there are peaks
in Movement Densities. This means that there is no connection between the
Heart Rate and the result of the actigraphy algorithm.
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