BACHELOR’S THESIS COMPUTING SCIENCE

Discovering the jump

FExtending automated Kubernetes security assessment

WILLEM MEDENDORP
s1040947

March 28, 2023

First supervisor/assessor:
dr. ir. E. Poll

Second assessor:
prof. dr. F.W. Vaandrager

Internship supervisor:
G. Smelt

Radboud University :

AN,
‘crTe™

o

S
MiNe <Y

Abstract

Kubernetes is the de facto standard when in comes to container orchestration
in the cloud. Large services are build upon it and many users rely on it
for their everyday activities. In the current infrastructure landscape every
scalable application is split into containers. A container for the database, a
container for the router, a container for the application etc. These containers
are spread out over many servers, these servers combined are called a cluster.
We can manage and remove complexity from complicated clusters by making
use of Kubernetes.

Due to its prevalence scrutinizing the security is all the more important.
Can we assess whether a Kubernetes is secure? Creating a cluster becomes
easier with Kubernetes, however it remains a challenging task where se-
curity oversights may happen. Having the wrong permission in the right
place could allow and adversary to escalate its privileges. This fact makes
it important to assess all permissions that are being granted assuring that
permission are minimized. Manually doing this requires in-dept security
knowledge and a lot of time, so automated assessment tools were developed.
In this research we looked into one such tool Kubescape and try to answer the
question: ”Can we extended Kubescape to discover trampoline pods?”. Tram-
poline pods are a new privilege escalation path within a cluster. We achieve
this by extracting trampoline pod specific rules from an existing tool namely
RBAC Police and implementing these in a new Kubescape framework. We
implemented this successfully for 1 new rule and adapted 6 existing rules.
Furthermore, we tested our new rule against a vulnerable cluster where it
was able to detect the trampoline pod. Concluding, we were able to extend
Kubescape with a new rule and adapt 6 existing rules with the possibility to
add more rules in the future.

Contents

4.1 Origin

1 Introduction
2 Kubernetes background
2.1 Containers. e
2.1.1 Docker.
2.2 Kubernetes
2.2.1 Controlplane L.
2.2.2 Data plane components
2.23 Objects
2.2.4 Role Based Access Control
2.3 Related technologies
3 Security background
3.1 Stepsin a typical attack,
3.2 Initial accesstopodso
3.3 Accesstothenode
3.3.1 Container escapes
3.3.2 Privileged container
3.3.3 Kubelet API
3.4 Becoming cluster admin 0oL,
4 Trampoline pods

4.2 Principles of a trampolinepod
4.3 Powerful permissions and classes of trampoline pods

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6

Rule abbreviations
Manipulate Authentication/Authorization
Acquire Tokens,
Remote Code Execution
Steal Pods
Meddler-in-the-Middle

19
19
20
20
21
22
22
22

5 Automated assessment of Kubernetes permissions
5.1 Assessing Kubernetes.
5.2 Kubescape.
5.2.1 What is Kubescape?,
5.2.2 Kubescape architecture
5.2.3 Structure of the regolibrary
5.2.4 Running Kubescape
53 RBACPolice
5.3.1 What is RBAC Police?
5.3.2 Running RBAC Police
5.3.3 Structure of RBAC Police
6 Kubescape extension: discovering trampoline pods
6.1 Approach
6.2 Finding equivalent rules 000
6.3 Creating a new Kubescape framework
7 Testing the extension
7.1 Testing of new rule with test runner
7.2 Testing it with Kubernetes
7.2.1 Setting up a vulnerable cluster
7.2.2 Testing with RBAC Police.
7.2.3 Testing trampoline pod framework
8 Future Work
8.1 Finding more powerful permissions
8.2 Other Kubernetes security assessment tools
8.3 Extension for all uncovered RBAC police rules
8.4 Highlight the affected pod in the results
9 Conclusions
Appendix

A1 Kubescapeoutput,
A.2 Example of Kubescape Rego
A.3 Example of RBAC police REGO
A4 RBACPoliceeval
A5 RBAC Policeexpand
A.6 Comparison of rules that are equivalent
A.7 Comparison of rules that are partially equivalent
A8 Tokenrequestrule
A.9 Token request metadata
A.10 Create pod control,
A .11 Token request control

30
30
31
31
32
33
33
34
35
35
36

37
37
38
40

43
43
44
44
46
46

48
48
48
49
49

50

A.12 Trampoline pod framework 68

A.13 Test runner for roleBinding 68
A.14 Test runner for roleBinding 70
A.15 RBAC Police evaluate token request 74
A.16 Kubescape trampoline pod framework 75

Chapter 1

Introduction

Kubernetes! originally developed by google and open sourced in 2014 and
adopted by the Cloud Native Computing Foundation (CNCF)? which is part
of the Linux Foundation. With cloud becoming popular Kubernetes quickly
became the preferred container orchestration platform. Kubernetes is re-
sponsible for 59% of the global production servers according to a survey by
CNCEF [6]. The survey also concluded that for the respondents not using
Kubernetes in production yet, almost all were evaluating or considering to
use Kubernetes in the future. Kubernetes clearly is an influential and im-
portant technology making it very interesting for cybersecurity research. If
a critical exploit were to be found thousands of servers would be effected. It
would then not result in one application being compromised, but the entire
production environment of many servers.

Luckily there are many bright minds securing Kubernetes by developing
good security practices in work by Shamim [9], Shamim, Bhuiyan [4] and
Alawneh, Abbadi [10]. However, it is still up to the admin to set up and
deploy Kubernetes correctly. Kubernetes is complex and has many con-
figurations. Misconfigurations can have catastrophic effects by providing
full access to a malicious user. Errors are inevitable, but they should be
discovered by automated assessments.

Kubernetes uses many terms for all its objects. To clarify the terms
we use mono font for Kubernetes objects, for example ServiceAccount.
The terms: cluster, node, pod and trampoline pod will be omitted from the
mono fonts as they are used frequently and thus hamper readability. For all
objects relating to the tools we use italic font, for example Kubescape. With
these notation conventions we can now discuss Kubernetes in more detail.

Kubescape? is one such tool that can discover these errors. Kubescape
is open-source tool assessing security compliance based on different frame-

"https://kubernetes.io/
*https://www.cncf.io/
3https://github.com/kubescape/kubescape

works. And provides vulnerability scanning of known weaknesses. For
our research we will only look into the vulnerability scanning aspects of
Kubescape. Tt assesses all configuration files detecting misconfigurations
according to three recognized frameworks: NSA-CISA [12], CIS BENCH-
MARK [13] and MITRE ATT&CK [17]. Kubescape can be run during se-
curity assessment from the command line. But could also be integrated
into the continuous integration/continuous development pipeline. For this
research we will only look at the former.

Not all misconfigurations are however equal, some result in an extra ex-
posed port on a server whilst others result in complete compromise. A new
class of misconfigurations have been identified that could lead to the entire
Kubernetes cluster being compromised. This class of misconfigurations cre-
ate so-called trampoline pods. In chapter 4 we will go in-dept on trampoline
pods. At the time of writing Kubescape is not able to detect this class of
misconfigurations and also does not have plans to add this is the near future.

We research a possible extension of Kubescape to be able to detect tram-
poline pods. We do this by first discussing the relevant background on con-
tainers and Kubernetes in chapter 2. This chapter will also include details
about Role-Based Access Control (RBAC) the main type of misconfigura-
tions we will be looking for. With those topics introduced we discuss the
relevant services vulnerable to attack in chapter 3. In which we also discuss
some basic attack strategies. With this basic Kubernetes security under-
standing we can dive deeper in certain RBAC permission and the resulting
trampoline pods in chapter 4. With some basic Kubernetes security under-
standing in chapter 5 we look into two tools that aid in security assessments:
Kubescape and RBAC Police.

After we have the background on Kubernetes (ch. 2) and its security
(ch. 3), trampoline pods (ch. 4) and automated assessment (ch. 5) we can
design an extension for Kubescape framework in chapter 6. This extension
is a new Kubescape framework that consist out of rules that assess RBAC
permissions of all Kubernetes objects in a cluster. These rules will fail when
a pod has trampoline pod permissions assigned to it. The specification of
these trampoline pod rules are extracted from RBAC police. We extend
Kubescape instead of just using RBAC Police because Kubescape is a much
more capable tool with a broader audience and better usability. To extend
Kubescape we bring possibility to discover trampoline pods to even more
users.

To verify our implementation we, in chapter 7, test this extension against
a Kubernetes clusters with various pods to verify if the extension is able to
detect trampoline pods. In chapter 8 we discuss future work and chapter 9
we conclude our research and discuss the results.

Chapter 2

Kubernetes background

In this chapter we will discuss the relevant background information to under-
stand the workings of Kubernetes. Not everything mentioned here is needed
to understand the principles of this research. To follow this research a grasp
of containerization is needed, see section 2.1. To provide context we will
highlight some objects inside Kubernetes. However, these are not crucial to
understand the later extension in chapter 6. The core of the research relies
on understanding of RBAC with Kubernetes, for this see 2.2.4.

This chapter will start by the fundamental building block: the container.
We will then discuss Kubernetes as from an architecture point of view, such
that we can discuss the different Kubernetes components more in-dept af-
terwards. Then we will highlight different Kubernetes objects which are
relevant for exploitation. To finally conclude with Role Based Access Con-
trol which is relevant for discovering trampoline pods. For even more in-dept
information the online documentation! can be viewed.

2.1 Containers

What are containers and why do we use and need them? A common problem
in development environments is that code works on the machine of Alice,
but fails on the machine of Bob due to dependency problems. Bob must
patch his system costing him time and effort. There is an easier way to
do this, Alice just sends her entire system, then Bob can run it without
any configuration. This is the basic essence of containerization. Package
everything that an application needs to run: OS environment; libraries;
packages; binaries and code in to a container and ship that.

This might look familiar to shipping virtual machines (VM). However,
one would soon discover the immense performance cost of running multiple
VM'’s. Containers do not rely on a guest operating system and hypervisor,
they operate on a container runtime and use cgroups and namespaces, which

"https://kubernetes.io/docs/concepts/overview/

are not further relevant. The container runtime creates an environment such
that from the application view it looks like a full system whilst in reality it
is just a small subset. In Figure 2.1 the difference between containers and
VM is showcased with Docker as the container runtime.

App App App App
Environment Environment Environment Environment
Libs & Deps Libs & Deps
Guest OS Guest OS 0S image 0S image
Container Container
VM VM
Hypervisor Docker (container runtime)
Host OS Host OS

Figure 2.1: Containers compared to VMs

2.1.1 Docker

For this research the internal workings of containers are not relevant. How-
ever, we will look at how containers are constructed. For this we will use
Docker? as an example. The contents of a docker container are defined in a
Dockerfile. This file contains instructions on how to build and run the con-
tainer. We can take a look at the Dockerfile for a simple Apache server
in figure 2.2. The Dockerfile starts with the FROM instruction this defines

FROM ubuntu

RUN apt update

RUN apt install {y apache2

RUN apt install {y apache2-utils

RUN apt clean

EXPOSE 80

CMD [\apache2ctl", \-D", \FOREGROUND"]

Figure 2.2: Example of Dockerfile

which image is used as a basis or scratch for no basis. Images are read-only
instruction to build a container, or can be seen as predefined Dockerfiles.

*https://www.docker.com/

Images are stored in a registry, these can be public or private. Most com-
mon applications and OS’s have images available. With RUN an arbitrary
command inside the container is ran. EXPOSE defines what port to open and
finally CMD sets the default command when the container is being started.
The Dockerfile can be used to build a container once build they can be
run. Such a Dockerfile can also be build into an image such that it can be
added to a registry. Everyone with access to that registry can easily build
and deploy the container.

Apart from use in development many production environments also use
containers by splitting up one application into many services. This is the
so-called microservice architecture [8]. The switch from monolith applica-
tions to microservices improved deployment speed and made scaling easier.
If for example more front-ends capacity is needed more containers can be
deployed quickly. Without also needing to deploy more back-end containers.
Managing this all by hand on great scale would be infeasible so container
orchestration was born.

2.2 Kubernetes

As mentioned before Kubernetes is an open-source container orchestration
system for automating the deployment, scaling and management of contain-
ers. It has its origins at Google but is now maintained by the Cloud Native
Computing Foundation (CNCF)3. Kubernetes is not the only container or-
chestrations system alternative include: Docker Swarm, Apache Mesos, and
HashiCorp Nomand. However, Kubernetes remains the de facto enterprise
standard. Kubernetes can be run on-premise, in the cloud or in a combina-
tion also known as 'cloud agnostic’. For organizations that do not have the
knowledge to set up a cluster, cloud providers such as Microsoft, Google and
Amazon also provide Kubernetes as a service, referred to as PaaS (Platform
as a service). These services are called Microsoft AKS, Google GKE and
Amazon AWS EKS. Here providers manage the control plane to take away
complexity. The control plane is the brains of a cluster and manages all
other components.

We will now have a look at the architecture of a Kubernetes cluster
for this Figure 2.3 provides a practical overview. The largest unit is the
cluster itself which is comprised out of nodes. There are two types of nodes:
master and worker. Master nodes are part of the control plane in a small
cluster this is just one node. In a large cluster this can be many nodes for
redundancy and speed. The components of the control plane will be covered
in section 2.2.1. Worker nodes are part of the data plane there usually many
of these in a cluster. More about the worker node components in section
2.2.2. Going one step down we get pods they run inside nodes see Figure

3https://www.cncf.io/

Kubernetes cluster
Master Node (Controle Plane) Worker Node 1
©) &) '
® O .. ' O O
Cloud Controller kublet Container Runtime
eted Manager
4 ® @ @ p-4 o
K8s objects kube-prox;
kubectl @] B | 00
L — aa
Worker Node 2 @ Users
API Server
0 O O
Admin
kublet Container Runtime
Contraller ® @ @ -
Scheduler Manager K8s objects kube-proxy

Figure 2.3: Kubernetes Architecture

Node

Pod Pod Pod
Container Container Container

Figure 2.4: Node, Pods, Container build up

2.4. Pods usually contain one container and thus one service/application.
It is however possible to have multiple containers in one pod, although
this is not recommended. In Figure 2.3 we can see an overview of all the
components and objects in a cluster. In section 2.2.3 we will discuss the
relevant objects in more detail.

2.2.1 Control plane

First all components inside the control plane

e kube-apiserver
The front-end of the Kubernetes control plane. It provides access to
the Kubernetes API to the outside and communicates internally with
all the nodes. Kube-apiserver can only be access via correct client

certificates or JWTs (JSON Web Tokens)

e etcd

A key value store for all cluster related data. This includes the con-
figuration of the cluster and permissions inside the cluster. Typically
this is located on master nodes but sometimes also hosted externally
for redundancy. Configuration files are written in YAML which is a
human-readable data-serialization language.

e kube-controller-manager
Runs the control loop processes which is a non-terminating loop that
regulates the state of the cluster. It tries to match the desired state
by making changes to the current one. A part of the kube-controller-
manager is the node controller which is responsible for noticing and
responding when nodes go down.

e kube-scheduler
Watches for newly created pods with no assigned node and selects a
node for them to run on. The scheduler can take many factors into
account for example: resource requirements, hardware/software/pol-
icy constraints, affinity, data locality and inter-workload interference.
Such that a pod can run optimally and that the cluster runs as effi-
ciently as possible.

e cloud-controller-manager
Embeds cloud-specific control logic by linking it to the cloud provider’s
API for control and load balancers. For on-premise clusters these are
not needed.

2.2.2 Data plane components

Every worker node also contains some fixed components.

e Container Runtime
Responsible for running the containers. This is done via application
that implement the Kubernetes Container Runtime Interface (CRI)
for example: Docker, containerd and CRI-0

e kubelet
Agent that facilitates communication from outside the node. It does
this by receiving instructions from API server after being selected by
the Scheduler. It interacts with the Container Runtime and ensures
that the desired containers are running on that node.

e kube-proxy
Network proxy that takes care of (virtual) routing. The routing is
based on iptable rules. It is also responsible for enforcing NetworkPol-
icy, later more about this.

10

e CoreDNS
Serves DNS records to other components. This is needed when Ku-
bernetes is provided via PaaS (Platform as a Service). It can kook up
domains such as: wordpress.app.svc.cluster.local.

e Pods
As mentioned before the smallest unit in which containers run. A
pod is a group of one or more containers and volumes. A volume is
a specified and assigned storage object.

2.2.3 Objects

Now that we have all components highlighted we can cover different objects
within Kubernetes. These objects are passed between components and
facilitate the workings and structure of a Kubernetes cluster

¢ ReplicaSet
A collection of identical pods these are created based on the template.
They are often managed by deployments and are commonly used for
stateless data such as nginx web root. An example of a ReplicaSet
would look like this:

apiVersion: apps/vl
kind: ReplicaSet
metdadata:
name: frontend
labels:
app: guestbook
tier: frontends
spec:
replicas:3
selector:
matchlabels:
tier: frontend
template:
metadata:
labels:
tier: frontend
spec:
container:
- name: nginx
image: gcr.o/google_samples/nginx-frontend:v3

¢ Deployment
Is a template for pods to be deployed by the scheduler. It also contains

11

a ReplicaSet that scales the pods. Deployment’s can be seen as
the actual applications in the cluster. A deployment would have the
following structure.

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
labels: nginx
spec:
replicas: 3
selector:
matchlLabels:
app: nginx
template:
metadata:
lables:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

e Service
Is an abstract way to expose a set of pods. It creates a DNS name, IP
and port for the pods that are behind it. The pods behind a service can
be dynamically be created and removed without external applications
having to rediscover the IP addresses etc. There are four types of
Services:

— ClusterIP: It exposes the Service on the cluster-internal IP, such
that it is only reachable from within the cluster

NodePort: Exposes the Service op the Node IP at a static port

LoadBalancer Exposed the services externally using the load bal-
ancer of the cloud provider.

— EaxternalName Maps a Service to contents of a name field such
as foo.bar.example.com

e Namespace
Is a logical grouping of resources a cluster it however does not pro-
vide separation. Separation must be achieved by NetworkPolicy to

12

restrict network traffic to resources within a cluster. Namespace pri-
mary usage is to make managing resources easier, for example the
same app one in production and one in development can be referenced
by app.prod.svc.cluster.local and app.dev.svc.cluster.local
respectively.

e DaemonSet
Similar to a ReplicaSet, however this set runs at least one pod on
every node in the cluster. To can be used for ingress controllers and
log aggregator services you want to run on every node.

e Secret
Kubernetes uses secrets to authenticate, these are base64 encoded
key-value pairs. Secrets are read-only objects and can be considered
as static content. They are mounted within pods as files or set as
environment variables. A ServiceAccount token looks like this:

apiVersion: vl
data:

ca.crt: LSOtLS1CRUAJTiBDRVJUSU.......
namespace: ZGVmYXVsdA==

token: ZX1KaGJHY21PaUpTVXpJMUSpSXNJb1I1lY.......
kind: Secret
metadata:

annotations:

kubernetes.io/service-account.name: default

kubernetes.io/service-account.uid: df441c69-f4ba-11e6-8157-52540022F

creationTimestamp: 2017-02-17T02:43:337
name: default-token-2mfqv

namespace: default

resourceVersion: "37"

selflink: /api/vl/namespaces/default/secrets/default-token-2mfqv

type: kubernetes.io/service-account-token

2.2.4 Role Based Access Control

In this section we will look into RBAC. By first covering some general liter-
ature about RBAC. Then we look at what RBAC applies to in Kubernetes:
resources and verbs. Then how these permissions are assigned with the
Role and RoleBindings.

13

General literature about RBAC

RBAC dates at least back to the 1970’s where it was implemented in limited
forms of access constrains based on the user’s role. There was not any stan-
dard model nor standard implementation. A general-purpose Role Based
Access Control model was proposed in 1992 [1]. Here it was created out of
necessity to grant more fine-grained access to resources than the at the time
used access control models developed by the Department of Defense.

objectl

trans d

memher of

Userl

memher of
trans b

Object2

User?2

Figure 2.5: Role relationships

From [1] we can give a simple formal description, in terms of sets and

relation, of RBAC.

For each subject the set of roles they are actively using:
AR(s : subject) = {active roles for s}
Each subject may be authorized to use multiple roles
RA(s : subject) = {authorized roles for s}
Each role may be authorized for multiple transaction:
T A(r : role) = {authorized transactions for r}

Subjects may execute transactions. The predicate exec(s,t) is true if and
only if subject s can execute transaction ¢ at the current time.

exec(s : subject,t : transaction) = true iff s can execute ¢

With these basic sets we can define three rules:

14

1. Role assignment: A subject s can execute a transaction iff s has a role

Vs : subject,t : transaction, (exec(s,t) = AR(s) # ()
2. Role authorization: A subject s active role must be authorized for s

Vs : subject, (AR(s) C RA(s))

3. Transaction authorization: A subject s can execute transaction t iff t
is authorized by s’s active role

Vs : subject,t : transaction, (exec(s,t) =t € TA(AR(s)))

Rule (1) states that all subject must have a role to execute a transaction.
Rule (2) states that a subject can use roles it that they are authorized for.
Rule (3) states that a subject can only execute transactions that are autho-
rized by their active role.

RBAC in Kubernetes

Within Kubernetes the same structure and rules apply as in the general
literature. However, there are some differences. Within Kubernetes trans-
actions are split into the action: verb and the object: resource. The verb
is the action that is performed on the resource. For example, the verb
create is used to create a resource. The resource is the object that is
acted upon. For example, the resource of ServiceAccount can be created.
In Kubernetes RBAC is handled by the rbac.autorization.k8s.io API
group. This makes it possible to dynamically configure policies through the
Kubernetes API. We will cover 7 objects that are used to configure RBAC
with in Kubernetes: ServiceAccounts, Users, Groups, Resources, Verbs,
Roles, RoleBindings.

Subjects

Within Kubernetes there are three types of subjects: ServiceAccounts,
Users and Groups. ServiceAccounts are used to grand permissions to
pods and deployments, users are used to represent a person and groups
are used to represent a group of people. These are used to grant permissions
to multiple people at once. In this thesis we will only use ServiceAccounts.

Resources and verbs

The definition of a resource from the official documentation: ”A resource is
an endpoint in the Kubernetes API that stores a collection of API objects of

15

a certain kind; for example, the built-in pods resource contains a collection of
Pod objects.”. This description is still relatively vague and encompasses a
lot of objects. Resources can be seen as everything that can be interacted
with. Via the API these interactions can be to create, remove, update,
read an object. These interactions are also codified in verbs these are:
create, get, list, watch, update, patch, delete and delete collection.
A RBAC rule on the resource "pods" would look as following:

rules:
- apiGroups: [""]
resources: ["pods"]
verbs: ["get", "list", "watch"]

The resources and verbs can also be defined by wildcards. Instead of
listing them all out we can specify verbs: [*]. With "" we specify the core
API group.

Role

A Role or CulsterRole contains a set of rules that defines that roles
permissions. All permissions are purely additive, so there are no deny rules
only allow rules. This means by default a new role can not do anything. A
Role is bound to a certain namespace, this must be specified upon creation.
In contrast a ClusterRole is not namespaced. This is useful to define
permissions over multiple namespaces or to define permissions on cluster-
scoped resources. Here is an example of a role in the "default" namespace
that can be used to grant read access to pods.

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
namespace: default
name: pod-reader
rules:
- apiGroups: [""] # "" indicates the core API group
resources: ["pods"]
verbs: ["get", "watch", "list"]

A ClusterRole would be similar only the namespace would be omitted.

RoleBinding

To bind roles to users, groups or ServicesAccounts we need RoleBindings.
A RoleBinding grants the permissions of a Role the subject it is bound to.

“https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension /custom-
resources/

16

A RoleBinding contains a list of subjects for which the Role applies. They
are specific to a namespace whereas a ClusterRoleBinding grants that ac-
cess cluster-wide. A RoleBinding can reference any Role in its namespace.
However, it can also be bound to a ClusterRole which then gets bound to
the namespace of the RoleBinding.

With Roles and RoleBindings we only need subjects to bind them to. For
user’s we have UserAccounts these authenticate to the Kubernetes API via
a valid token. In most cases the identity of the user is managed externally
for example by Azure AD. For pods to authenticate to the Kubernetes API
we don’t want to use UserAccounts, for this we have ServicesAccounts.
The default ServiceAccount is assigned to a pod when no other is speci-
fied. The default ServiceAccount has no permissions. If we want to grant
certain rights to a pod we create a special ServiceAccount for it. We then
bind a Role to that account via a RoleBinding. This ServiceAccount
can now be specified in the PodSpec, upon creation of the pod Kuber-
netes mounts the ServiceAccount configuration inside the pod. When
this pod communicates to the Kubernetes API it uses the token in the
ServiceAccount to authenticate. This token is readable for every program
running in that pod. The node on which the pod is running also has ac-
cess to the ServiceAccounts of the pods inside it. Grating someone one
with access to the node access to all ServiceAccounts contained in it. This
creates security problems when adversary has gained access to a node, in
chapter 4 on trampoline pods we will delve more into this.

2.3 Related technologies

There a few technologies that are not directly part of Kubernetes itself but
are commonly used. These technologies are mentioned to provide a better
understanding of the context in which Kubernetes is used.

kubectl

Is the command line interface to deploy application, inspect and manage
cluster resource and view logs. Kubectl check the environment variables for
to correct cluster and certificate to use. It uses the locally stored Kubeconfig
to connect and authenticate to a cluster. kubectl is the primary way to
interact with a cluster via the command line.

Cloud native landscape

Kubernetes is not a stand-alone technology, it is part of a bigger cloud
native landscape. The CNCF also provides a formal definition on their

17

map®. For the size of the landscape a copy can be seen in 2.6, for details

visit the source. The landscape consist out of many projects spread over
different categories. These categories include: Scheduling & Orchestration,
Databases, Cloud native storage, Logging, CI&CD and many more. Some
of the projects that part of the cloud native landscape are:Helm is a package
manager for Kubernetes; Prometheus is a monitoring system; Argo is a
CI&CD system. These other project are commonly included in Kubernetes
as add-ons. However, relying on external projects and not doing proper
security assessment on those projects can pose risk to a cluster. An external
project might gather too strong permission which could be used for privilege
escalation, this forms the basis for trampoline pods, more about this is
chapter 4.

Database Streaming & Messaging Application Definition & Image Build Continuous Integration & Delivery

Bdite cmech

App Definition and Development

Coordination & Service Remote Procedure
Discovery Call

| e
m_ oo el

3.
S8
€5
£3
3

88
£8
3
(<]

Runtime

Provisioning

Figure 2.6: Cloud native landscape Source: https://landscape.cncf.io/

*https://landscape.cncf.io/

18

Chapter 3

Security background

Now that we have established a basic understanding of Kubernetes we can
look at its security aspects. This chapter will cover a general privilege esca-
lation path whilst showing the relevant security concepts. Not all security
concepts are needed to understand this research, they however provide con-
text for the uninitiated. The steps in a typical attack are highlight in section
3.1.

The remaining of the chapter follows a bottom up approach starting at
the initial access and ending at the cluster admin. For this path we will use
the MITRE attack framework [17] to provide a generalized naming conven-
tion. The level from the framework that we will include are: Initial Access,
Privilege Escalation to host and Privilege Escalation to admin. These levels
translated to Kubernetes terms, initial access starts at the pod see section
3.2. One up we go to escape into the node see section 3.3 and finally elevate
to cluster admin see section 3.4 and chapter 4.

3.1 Steps in a typical attack

1) An adversary can gain access to a container by compromising the ap-
plication it is containing. 2) It can then use a container escape to leave the
container and pod and get access to the node. 3) With access to the node
it also has access to the files of all other pods on that node. 4) As such it
has access to the ServiceAccounts of the other pods which it could use to
escalate its privileges. Pods that have such powerful permissions that they
allow for privilege escalation we call trampoline pods. In figure 3.1 these
steps are numbered and visualized. We will use these numbers to indicate
the step in the attack path.

19

Cluster Admin

Container

(o V91

Figure 3.1: Escalation path

3.2 Initial access to pods

Step 1 of most attacks is getting accessing to a pod. This is commonly
achieved by compromising the application running inside it. Applications
can differ a lot so exploitation of it also differs. An application could be
vulnerable allowing an adversary to exploit it to gain RCE. This is Ezploit
Public-Facing Application from the MITRE framework [17].

A more advanced way to get access to a pod is by using a compromised
image. Here an adversary has deployed a malicious pod via compromising
an image in a registry. This can be either in a Kubernetes registry and
Docker registry. Such images can also be introduced during the CI/CD
pipeline[14]. The compromised image would include a backdoor or exfiltrate
secrets. When a new pod is deployed it pulls this compromised images
and uses it as a base. With this the adversary has directly access to that
pod. This would be a type of supply chain attack. This can either be
done by infiltrating a private registry or by mimic a popular image in a
public registry [3]. In the MITRE framework [17] this would be the External
Remote Services technique. The resulting state is visualized in figure 3.2.

3.3 Access to the node

Step 2 is expanding the position because for most adversary one pod isn’t
that interesting. So the goal is to escape the pod to get access to Node. Such
that has access to all pods inside it and possibly has a path to escalate to
cluster admin. The containers that are inside pods run on the Container
Runtime of the node. So if we escape the container by exploiting the
runtime we also escape the pod. So a container escape is also a pod escape
we will cover this in section 3.3.1. Container escapes are part of the Escape

20

Node

Pod Pod Trampoline pod

gl i

Container Container Container

Figure 3.2: Initial access

to Host technique in the MITRE framework [17]. Apart from privilege
escalation it is also possible to directly access a node via exposed services
like the kubelet API, see 3.3.3. In the MITRE framework this covered in
the External Remote Services technique.

The final way to access a node is via valid credentials. In the MITRE
framework this is technique is called Valid accounts. We will not cover this
since its impact is trivial and execution mostly happens outside the domain
of Kubernetes.

3.3.1 Container escapes

Although for this research we do not need to go in dept to container security
it is good to have a basic understanding to be able to form the bigger picture.
Container escapes are as the name suggests escapes out of a container to
get access to the host. Container escapes are more easily realized then VM
escapes. Because containers don’t actually have their own OS but just use
a namespaced and partitioned part of the hosts. Containers make heavy
use of Linux kernel features, thus making hosts vulnerable to kernel exploits.
An example of this is CVE-2021-22555 [7] which exploits a bug in the net-
work interface. However, for most exploits the container must be granted
some capabilities. Capabilities are privileges that a container has on the
host. For example CVE-2021-22555 needs the capability CAP_NET_ADMIN to
function. This capability provides a container rights to manage the net-
work of the host, which might be needed for an application that provides
routing. An different type of container escapes rely on misconfigurations
and overzealous privileges. For example the case that a container is set
up as a privileged container then it has all capabilities. From which an
attacker could easily mount the hosts file system or spawn new malicious
containers. For more examples and specifics Carlo Polop provides a great
online resource [16]. Figure 3.3 visualizes the state after a container escape.

21

Node

Pod Pod Trampoline pod

v Fﬁ!

Container Container Container

Figure 3.3: Access to node

3.3.2 Privileged container

Having code execution in a container does not directly mean that an ad-
versary can escape the container. However if the adversary is in a privi-
leged container escaping it becomes trivial. Privileged containers have
all capabilities assigned to it increasing the attack surface drastically. In
deployment privileged containers should never exist.

3.3.3 Kubelet API

Step 2 can also be achieved without step 1 as a prerequisite. A different way
to get access to a node is via the Kubelet API. This can be done directly if
for example Kubelet is exposed to the internet. Or indirectly if an adver-
sary is able to use Cross Site Request Forgery to access the Kubelet API.
The Kubelet API uses by default no authentication. Because no authenti-
cation is required a simple exposed port can lead to easy code execution.
Kubelet takes instruction from the Kubernetes API. These instructions in-
clude which pods to deploy or delete. Kubelet also keeps track of the
health of the pods and does logging. This can all be accessed by an ad-
versary if it has access to the Kubelet API. It could thus spawn its own
rouge Deployment with a RCE or execute command directly in a pod. With
the tool Kubeletctl' penetration testers can attach to a container to extract
configs, list pods, read logs or gain a shell. See figure 3.4 for a visual repre-
sentation of this path.

3.4 Becoming cluster admin

Finally at the top of the hierarchy is cluster admin, step 4 in the core
concepts. Just like access to pods and nodes there are various ways to

"https://github. com/cyberark/kubeletctl

22

Nod
oe4
Pod

- O N m?]ﬂ(ﬁﬁﬂ

kubelet

Container Container

Figure 3.4: Access to node via kubelet

achieve this. Just like accessing nodes Fxternal Remote Services technique
can pose an issue to cluster security. For example via an exposed dashboard.
The dashboard allows for visual interaction with the Kubernetes cluster. It
could be setup unauthenticated or be used with stolen credentials. The Valid
accounts technique also applies for cluster admin, if an adversary for example
hijacks the computer of a developer with cluster admin config installed. All
these attacks rely on aspects outside the scope of Kubernetes.

Within Kubernetes there are also ways to becomes cluster admin. Within
Kubernetes the aim is to get an admin token. In the MITRE attack frame-
work this is the Steal Application Access Token technique. To achieve this an
adversary must be able to misuse strong permissions that are being granted
in its environment. Examples of this include: ability to list all secrets or to
create a pod with the admin secret. A summary of the 10 most prevalent
attacks can be found online [5]. All these attack come down to finding and
misusing certain RBAC permissions. However, the chance of this is quite
unlikely since most admins understand not the give powerful permissions to
externally facing pods. When an adversary has escaped to pod to the node
it does get more probable that an adversary has access to strong permis-
sions. Because then the adversary does not only have the permissions of it
original pod but the permissions of all pods on the node. Thus, these pods
allow an adversary to jump to cluster admin and for that reason are coined
trampoline pods. Since programmatically discovering trampoline pods is
the main focus of this thesis we will go more in depth in chapter 4.

23

Chapter 4

Trampoline pods

In this chapter we go more in dept into attack paths that use trampoline
pods. Trampoline pods are a new relatively unknown Kubernetes security
concept. As discussed in section 3.4 Trampoline pods describe pods that
have a collection of powerful permissions such that the pod can be exploited
to escalate privileges. This makes these pods interesting because if an ad-
versary has control over a node it could use them to gain cluster admin
rights. In this chapter we will first go in to their origin in section 4.1. Then
describe what the basic principles are in section 4.2 to finally go into the
classes of trampoline pods that exist in section 4.3.

4.1 Origin

The term trampoline pod was first coined by Avrahami and Ben Hai at
Palo Alto networks in their whitepaper on how many DaemonSets contain
trampoline pods [11]. In this section we will go over their findings.

Their hypothesis was ”Does container escape equal Cluster admin?”.
Container escapes are very probable because containers providing imperfect
security. It is then the question if the rest of cluster is secure enough to
contain the adversary. Their research found that when an adversary had
code execution in a node it was possible to exploit other pods to gain cluster
admin. These other pods where thus coined trampoline pods, because they
allowed and adversary to jump to cluster admin. These pods had such
powerful permissions that an adversary could misuse them.

Most admins have a good grip on what permissions pods have and makes
it thus unlikely that pods have excessively strong permissions. However, the
permissions that external add-ons take with them usually are not reviewed,
since these are installed using package managers. These add-ons provide a
large permission’s oversight. It might be unlikely that an adversary is on
the same node as such a highly privileged add-on pod. However, when these
are part of the DaemonSet it is no longer a game of chance.

24

With their research they identified five classes of trampoline pods which
can be used in different attack paths, more detail in section 4.3. These
classes exist out of a set of powerful permissions that single pod could have.
With all these permissions defined they looked at popular add-ons to see
how many included trampoline pods. In the beginning of the research pe-
riod 75% of Daemonsets included trampoline pods. After their research and
disclosure 25% still had powerful trampoline pods. With their research they
achieved 2/3 reduction of trampoline pods in popular add-on DeamonSets.
This was achieved by contacting all developers over their overzealous per-
mission allocations. They also released a tool called RBAC Police, which
is able to assess whether trampoline pods exists in a cluster in section 5.3
more about RBAC Police.

4.2 Principles of a trampoline pod

Trampoline pods as described in section 4.1 are pods with powerful per-
missions. These permissions are granted to the ServiceAccount mounted
in the pod. The ServiceAccounts are bound to certain roles that have
permission defined in RBAC rules. In essence these ServiceAccounts form
keys that a pod can use to communication with Kubernetes API. However
not all keys are created equal, some keys are cluster scoped or have admin
like permissions. If an adversary where to get access to a node it would be
able to read all mounted ServiceAccounts in that node. So to generalize,
access to the node means access to all keys inside it. This becomes prob-
lematic if pods in the node have powerful permissions. Because these could
be misused by an adversary on the node to gain higher privileges. Such a
pod allows jumping to cluster admin and are thus called trampoline pods.
An adversary on a node can use all ServiceAccounts, so in practice an

Cluster Admin

Container

Figure 4.1: Escalation path with trampoline pod

adversary has all the permission of the pods combined. If we want to detect
such powerful pods we must define what permissions are powerful. For this
we will follow the classes in the work of Avrahami and Ben Hai [11]

25

4.3 Powerful permissions and classes of trampo-
line pods

In their whitepaper [11] Avrahami and Ben Hai have created classes that
contain powerful permissions. In this section we will look into these classes.
Every class forms a type of attack that could result in cluster admin. The
classes we have are: Manipulate Authentication and Authorization, Acquire
Tokens, Remote Code Execution, Steal Pods and Meddler in the Middle. For
all these classes we define sets C; to C),.

It is important to understand that all permissions in these classes are consid-
ered only admin equivalent if they are scoped on the cluster or a privileged
namespace such as kube-system. If they are on an ordinary namespace
they might still provide option for privilege elevation. We however won’t
consider this since this would broaden the scope too much. The permissions
in these classes are defined by RBAC rules. This means that it is always a
verb on a resource. For example the permission to list secrets is in RBAC
described with the verb:"1list" on the resource:"secrets". In addition,
a RBAC rule can also be scoped to a apiGroup. For this research we will
only consider the verb and resource part of the RBAC rule. Because the
apiGroup is usually not specified and thus defaults to "" which is the core
apiGroup.

4.3.1 Rule abbreviations

To prevent the lists of permissions from becoming too verbose we will use
some abbreviations. The verbs: control and modify do not exist in Kuber-
netes but are introduced to make the lists below less verbose. The verbs:
update and patch are combined in modify. Where modify and create
are combined in control. Also some resources are combined: DaemonSets,
Deployments, CronJobs and other pod controllers are combined into pod
controllers. Saving 21 additional permission definitions.

Resources such as node/status do not imply node or status. But status
as the sub-resource of node. This is the same notation as used for the
Kubernetes API.

The verbs: impersonate, escalate and bind are all on users, serviceaccount,
groups or uid

4.3.2 Manipulate Authentication/Authorization

The permissions in this class are powerful by design. They are meant to
escalate privileges in certain scenarios. A pod that creates new roles might

26

to need impersonate that cluster admin for certain roles. But should not
execute everything as cluster admin. Cluster operators should be really
careful when granting these permissions. This class is defined as:

C; = {impersonate,
escalate,
bind,
control mutating webhooks,
{approve signers A

update certificatesigning-requests/approval}}

With the conjunction A meaning that both permissions are required.
Attack Example

An adversary that can bind ClusterRoleBinding can bind an admin role
itself. This way it can grant the pre-installed cluster-admin (ClusterRole)
to its compromised identity.

4.3.3 Acquire Tokens

In this class an attacker is able to acquire or create powerful tokens. This
can be achieved directly or indirectly. The impact of the permissions in
the class rely on the scope of the tokens, whether they are scoped over a
privileged namespace or not.

This class is defined as:

Ci; = {list secrets,
create secrets,
create serviceaccount/token,
create pods,
control pod controllers,
control validating webhooks,

control mutating webhooks}

Attack Example

An adversary with create serviceaccounts/token permissions in kube-system
namespace, can issue new powerful tokens for a ServiceAccounts it has con-

trol of. It could for example generate a new admin token for itself and get
direct cluster admin privileges.

27

4.3.4 Remote Code Execution

Permissions in this class allow for code execution on pods and possible also
nodes. If it can execute on a pod in the control plane it could trivially
extract admin tokens. In other cases it does not directly provide privilege
escalation, however it does allow for privilege elevation by moving lateral
through the cluster. Other pods might then have the ability to privilege
escalation.

This class is defined as:

Ciii = {create pods/exec,
update pods/ephemeralcontainers,
create nodes/proxy,
control pods,
control pod controllers,

control mutating webhooks}

Attack Example
An adversary has code execution on a different node with a powerful pod.
It could then use that pod to list all secrets.

4.3.5 Steal Pods

A combination of permissions in this class can be used to steal pods. Stealing
pods is done to get access to stronger ServiceAccounts from different nodes.
This works by ensuring that a new pod lands inside the compromised node.
This is achieved by evicting a pod and limiting the capacity of other nodes.
This class is defined as:

Ciy = {control pods,
{control pod controllers A
control mutating webhooks A
{control nodes V control nodes/status}A
create pods/eviction A
delete pods A
delete nodes A
{modify pods/status Vmodify pods}}}

With the injunction V meaning that either of the permissions are required.
Attack Example

Node B contains a pod that can list admin secrets, by for example having
list secrets on kube-system. We want to steal it onto our node A. We

28

taint all other nodes with NoExecute such that it is evicted and rescheduled
on our node.

4.3.6 Meddler-in-the-Middle

Permissions in this class allows an adversary to mount a Meddle-in-the-
middle attack. These attacks are however generally low impact because they
require an adversary to already have access to different parts of a cluster.
Securing communication with TLS can also defeat most MitM attacks.

Cy = {control endpointslices,
modify endpoints,
modify services status,
modify pods,
create services,

control mutating webhooks}

29

Chapter 5

Automated assessment of
Kubernetes permissions

Due to the complexity of Kubernetes and the many configurations it is prone
to user error. Assessing Kubernetes manually is a tedious task and prone
to human error. Therefore, automated assessment tools are needed to help
administrators and security auditors assess Kubernetes clusters. Automated
assessment tools are also important to establish trust in the security of a
Kubernetes cluster see the work of Ullah, Ahmed and Ylitalo on this [2]. In
the chapter we will first discuss how a Kubernetes cluster can be assessed,
what resources are interesting and how to gather this data in section 5.1. We
will then discuss two out of many automated assessment solutions that exist
for Kubernetes. By first discussing Kubescape in section 5.2 and secondly
discuss RBAC-police in section 5.3. There do exist other tools for security
assessment, we will highlight them in section 8.2.

5.1 Assessing Kubernetes

In this section we will discuss techniques to assess a Kubernetes cluster.
First we discuss how to collect information about the cluster then how to
access the collected information. Kubernetes consists out of: containers,
configuration and a database. The containers contain the various appli-
cations. For a Kubernetes assessment they are out of scope, because from
the cluster perspective it is just a black box. The configuration are cre-
ated by a developer or cloud engineer and are prone to error. Thus, the
most meaningful assessment of a cluster must be done on the configura-
tions. Configuration of a cluster exist out of many YAML files each describing
a resource. Configuration assessment can be either done before or after
deployment.

e Before deployment

30

Since Kubernetes is build up from configuration we can preemptively
look for vulnerabilities. This can be integrated into CI/CD pipelines
where the automated assessment would fail the pipeline if a vulnera-
bility was introduced. This way new builds are always assessed before
deployment.

e After deployment

Assessing after deployment has two perspectives. An external ap-
proach where the tool only has access to publicly exposed end-points.
As if it were an adversary. Or an internal approach where the tool
can either be deployed in a pod with cluster wide access or collect
full cluster information via the Kubernetes API. With access to the
cluster it can list resources via the Kubernetes API and iterate over
them. A deployed pod is best used to continuously monitor a cluster.
Assessment via the Kubernetes API are well suited for security audit
on an existing cluster by a third party. Since this thesis is written at
Secura which does the latter, we will only consider this option.

To access whether a resource is vulnerable can be done in multiple ways.
One approach is to have a collection of known vulnerabilities which then
can be assessed against the resources if they still apply. This can be done
by looking at the version or more aggressively testing if the accompanying
exploit still works. Another approach to access the security is by checking
whether the software adheres to set policies, these policies are seen as secure
standards. To limit the scope of the thesis we will only look into security
assessment based on policies. Because this is the approach that Kubescape
takes and the approach we want to extend.

5.2 Kubescape

In this section we will discuss what Kubescape is and how it works. In section
5.2.1 we will have a general overview. After that in section 5.2.2 we will look
at how Kubescape is designed and structured. In section 5.2.3 we look at
the structure of rules library. In this chapter we will not go in into rules it
is lacking to discover trampoline pods. This will be covered in chapter 6.

5.2.1 What is Kubescape?

Kubescape is an open-source Kubernetes tool developed by ARMO that does
risk analysis and assesses security compliance. Kubescape scans Kubernetes
clusters by collecting YAML files and HELM charts, on which it tries to detect
misconfigurations based on multiple security frameworks. The formally rec-
ognized security frameworks are: NSA-CISA [12], MITRE ATTACK [17],
CIS [13]. It also includes two of its on security frameworks: ARMOBest

31

and DevOpsBest, the specifics of these are not clearly defined. Kubescape is
during assessment used to quickly check for security framework compliance
and to highlight glaring issues. Security framework compliance is an easy
management pleaser because of its appeal to authority. Thus essential for
reports and customer satisfaction. For this thesis we look in to Kubescape
mainly because it is one of the tools Secura uses and the tool for which I
wrote a parser as an internship project.

Kubescape can be used in two ways, as a command line tool or as a
deployed container. CLI tool generates a table with the discoveries, which
include controls that failed on certain resources. The CLI tool can also
output to other formats such as JSON for further processing. Kubescape
deployed as container can be used for continuous assessment. Kubescape is
accompanied by the ARMO Kubescape Cloud interface which shows detailed
results of scans and contains a RBAC visualizer. For continuous assessment
this provides a clear monitor for the security status of the cluster. The CLI
tool can also make use of the AMRO Kubescape cloud interface, for this data
needs to be uploaded to their servers. In most cases this is not allowed for
companies that provide security assessments, such as at Secura. Because this
thesis is written accompanying an internship at Secura we will only look into
functionalities of Kubescape that can be used during a security assessment.
These functionalities are the CLI application and the JSON output.

5.2.2 Kubescape architecture

The team behind Kubescape has translated a set of security frameworks
into their own Kubescape frameworks. Here a framework is just a hierarchi-
cal structure which contains controls. A control is collection of rules all
assessing a single vulnerability. For example the control ” Ensure no priv-
ileged containers” assesses all deployed containers and pod controllers
for privileged containers. This assessment is done by the Open Policy
Agent! (OPA) engine which gets its policies from Kubernetes regolibrary?.
For a visual representation of this we can look at figure 5.1.

OPA is the de facto standard for assessing policies inside a Kubernetes.
OPA uses its own language to define these policies this language is called
Rego®. Rego is an extension of the decades old query language Datalog?.
The extensions add support for structured document models such as JSON
and YAML. How OPA works internally is not relevant for this thesis. It
is only relevant to know that it can collect all resources and provides an
interface to test against them with rules.

"https://www.openpolicyagent.org/
“https://github.com/kubescape/regolibrary
3https://www.openpolicyagent .org/docs/latest/policy-language/
‘https://en.wikipedia.org/wiki/Datalog

32

Inputs Output

K85 APL

_,—)- Endpoint
YAML/HELM Kubescape CLI ——» I1SON
':::IP‘J"'.-_-";H'_-::' e JUnit
GIT ——

A

Kubescape
Regolibrary

Figure 5.1: Architecture of the Kubescape
[15]

5.2.3 Structure of the regolibrary

How Kubescape must assess resources is not defined in its own source code.
This information gets pulled from on different repository: the regolibrary.
The regolibrary contains all Kubescape frameworks, controls, and rules. All
frameworks are contained in the folder frameworks. A framework is just
a single JSON definition containing the name, description and an array of
all controls for an example look at appendix A.12. Controls are also only
a single JSON definition in the folder controls. They contain metadata
and most importantly a list of all used rules, for an example look at ap-
pendix A.11. Rules are stored in the folder rules, here every rule is in
its own folder with the name of the rule. Inside a rule folder we have the
rule.metadata. json and raw.rego. The metadata contains data such as
its name and the resources it applies to. The raw.rego contains the actual
policy-logic, for an example look at appendix A.2. To make our extension
we must add our own framework and possibly also new controls and rules.

5.2.4 Running Kubescape

Kubescape can be easily setup locally by running the install script from its
repository [15]. This installs the latest version into the path. If we however
want to make modifications to Kubescape we must build it locally. For this
we will clone the repository:

git clone https://github.com/kubescape/kubescape.git &&
cd kubescape

We can then build its dependencies:

make libgit2

33

And finally build Kubescape itself:
make build

We should now have a working Kubescape instance. We can test this by
running:

make test

With that being successful we can try to run it against a cluster. For this
you need a cluster and a correct setup kubeconfig file. The cluster we will
be using in this thesis was provided by Secura. To connect to this cluster
we need to sign in to the web portal and collect our Azure CLI commands.
We can then run:

az account set —--subscription XXXXXXXX-XXXX~XXXX~XXXX~XXXXXXX
az aks get-credentials --resource-group kubernetes-internship
--name Willems_sandbox

With this Azure CLI has set up our kubeconfig and we are able to in-
teract with our cluster via kubectl. We can try for example collecting all
deployments with:

kubectl get deployments

Now that we have everything setup we can try and run Kubescape. In this
example we want to assess the cluster according to the NSA framework[12].
We want to keep the collected data local and not have it upload the results
to the cloud. For this we use the —-keep-local flag. To run Kubescape we
use:

./kubescape scan framework nsa --keep-local

This will give us the results in the terminal. For an example see appendix
A.1. If we however want to further process the output of Kubescape we
can use the arguments --format json --format-version v2 --output
results.json. This will give us a large JSON file of more than 10000
lines which include all resources and controls. This output on its own isn’t
very useful yet. So for the accompanying internship I created parser which
can extract the failed resources and shows fix paths. This parser may not
be shared publicly but can be provided upon request at Secura.

5.3 RBAC Police

In this section we will look into the tool RBAC Police® to understand its
origin and look at its functionalities. As for Kubescape we will show how to
set up and run the tool. We will also look at the structure of the RBAC
Police rules.

*https://github.com/PaloAltoNetworks/rbac-police

34

5.3.1 What is RBAC Police?

RBAC Police is a tool developed by Avrahami and Ben Hai accompany-
ing their whitepaper about trampoline pods [11]. This is the same research
as mentioned in chapter 4. The tool was designed to discover trampoline
pods in a cluster by evaluating the RBAC permissions of all pods, nodes,
serviceaccounts, users and groups. It does this in a similar manner to
Kubescape by using the OPA engine and rules written in rego. These rules
are however differently structured, so these can not be used interchangeably.
As an example see appendix A.2 and appendix A.3 where both rules check
for "create" permissions. We can see that they use a different structure
and also have their own auxiliary functions, but in the core they both it-
erate over resources and assess whether they contain the verb "create"
on the resources "serviceaccounts/token". Compared to Kubescape is
RBAC Police a relatively simple tool, RBAC Police is only able to scan
the 20 included rules and provides the output in JSON format. The JSON
format is unfortunately very verbose making it hard to see at a glance what
is vulnerable.

5.3.2 Running RBAC Police

Running RBAC Police is very similar to Kubescape. We first clone the repos-
itory:

git clone https://github.com/PaloAltoNetworks/rbac-police
cd rbac-police

Then we build RBAC Police:
go build

As with Kubescape we must make sure that we have our kubeconfig prop-
erly configured. For these steps look at section 5.2.4. We can now run RBAC
Police against our cluster with:

./rbac-police eval lib/

This will give us all failed rules. If we want to inspect a Role and ClusterRoles
further we can expand with them with:

./rbac-police expand
-z sa=kube-system:addon-http-application-routing-nginx-ingress-serviceaccount

This will give us a document with all Roles and permissions. For the output
of these two command look at appendix A.4 and appendix A.5

35

5.3.3 Structure of RBAC Police

The structure of RBAC Police is relatively very straight forward. It has a
normal Go package layout and in addition has the 1ib folder that contains

all the rego files.

36

Chapter 6

Kubescape extension:
discovering trampoline pods

Our goal is to extend Kubescape such that it has the ability to discover
trampoline pods. We achieve this by incorporating the rules of RBAC Police
into the regolibrary. Since RBAC Police is a tool that is specifically designed
to find trampoline pods, it is a good basis for our extension. In section 6.1 we
will discuss what our extension needs to contain and how we will approach
it. We will then put our approach to work and identify the rules that are
already covered by regolibrary in section 6.2. In section 6.3 we will discuss
the creation of a new Kubescape framework and how it can be used.

6.1 Approach

In chapter 5 we went into the structure of Kubescape and RBAC Police, here
we looked into their capabilities and structure. By looking at the structure
we also identified the location of the rules and the possible location for our
extension. Our extension won’t be in the actual Kubescape code but will
be in the regolibrary that it uses, since this is the place where are rules are
located.

We can make our extension by creating a new framework with the sole
purpose of discovering trampoline pods. By creating a new framework we
get a clearly contained extension which we are able to test on its own. It
also won’t interfere we with structure of existing frameworks, making it more
likely to be added to the regolibrary repository in the future.

To work with the RBAC Police rules we must have a clear definition
of what they are and how we will reference them. As mentioned before in
section 5.3 all rules are stored in the 1ib folder. We will use these filenames
as the basis of the rule definitions. We will include the description of a rule
to make clear for what the rule serves. For an overview see table 6.1

37

Severity

Name

Description

Critical approve_csrs Create and approve certificatesigningrequests

Critical assign_sa Create pods or create, update or patch pod controllers

Critical bind_roles Bind clusterrolebindings or bind rolebindings in privileged namespaces
Critical cluster_admin Roles with cluster admin privileges

High control_webhooks Create, update or patch webhooks

Critical eks_modify_aws_auth | Modify configmaps in the kube-system

Critical escalate_roles Escalate clusterrole or roles in privileged namespaces

Critical impersonate Impersonate users, groups or other serviceaccounts

Critical issue_token_secrets create or modify secrets in privileged namespaces

Medium | list_secrets list secrets cluster-wide excl. privileged namespace

Low modify_node_status modify nodes’ status influence nodeAffinity or nodeSelectors

Low modify_pod_status modify pods’ status

High modify_pods update or patch pods in privileged namespaces with RCE

Medium | modify_service_status | Exploit CVE-2020-8554

High node_proxy access to the nodes/proxy subresource for RCE

Low obtain_token_weak ns | retrieve or issue SA tokens in unprivileged namespaces

High pods_ephemeral _ctrs update or patch pods/ephemeralcontainers for RCE

High pods_exec create pods/exec permission in privileged namespaces

Low prodiverTAM Possbile abuse of ServiceAccounts assigned cloud provider IAM
Medium rce_weak_ns update or patch pods or create pods/exec in unprivileged namespaces
Critical retrieve_token_secrets | retrieve secrets in privileged namespaces

High steal_pods delete or evict pods in privileged namespaces

Critical token_request create TokenRequests (serviceaccounts/token) in privileged namespaces

Table 6.1: Rules in RBAC Police

6.2 Finding equivalent rules

Before we create our framework it is wise see which rules are already con-

tained in the regolibrary, such that we don’t introduce a rule twice.

To

do this we iterate over all rules in RBAC Police and search for equivalent
rules in the regolibrary. Finding an equivalent rules can be done by identi-
fying a combination of resources, verbs, namespaces and apiGroups and
searching for the same combination in the regolibrary. Only rules that cover
same combination or a superset of it are considered equivalent. Supersets
are equivalents since the terms in the rules are in general disjunctive. Only
in a few instances are terms conjunctive, in that case will we mention it the
comparison. The wildcard ("*") is not considered a superset of all terms in
the consideration if rules are equivalent, this would make all rules equivalent
to each other. With some rules it might be the case that a rule from RBAC

38

Police is partially covered because it does not include all the verbs or is
only on the general namespace. We will highlight those rules as partially
covered. The results of this equivalence comparison can be seen in table 6.2.
In appendix A.6 all the comparisons for these rules are shown. In appendix
A.7 the comparisons of the partially equivalent rules are shown.

RBAC Police rule

regolibrary rule

Covered

assign_sa

rule-can-create-pod-kube-system-v1

cluster_admin

cluster-admin-role

list_secrets

rule-can-list-get-secrets-v1

modify_pods

rule-can-create-modify-pod-v1

obtain_token_weak_ns

rule-can-list-get-secrets-v1

rule-can-create-pod

rce_weak_ns

exec-into-container-v1l

Partially covered

bind_roles

rule-can-bind-escalate

escalate_roles

rule-can-bind-escalate

impersonate

rule-can-impersonate-users-groups-v1

retrieve_token_secrets

rule-can-list-get-secrets-v1

Not Covered

approve_csrs

control_webhooks

eks_modify_aws_auth

issue_token_secrets

modify_node_status

modify_pod_status

modify_service_status

node_proxy

pods_ephemeral _ctrs

pods_exec

prodiverTAM

steal_pods

token_request

Table 6.2: Comparison between RBAC Police and Kubescape regolibrary

We can see that quite some rules are already covered in the regolibrary.
For our framework we do not need to create a new rule for these but can
reference the existing rules. All other rules do have to be created. However,

39

due to time constrains we will only implement one new rule to show that it
is possible and leave the rest of the rules for future work.

6.3 Creating a new Kubescape framework

For the creation of a new framework we can follow the instructions provided
in the README of the regolibrary'. The instruction contain examples of
how the JSON documents need to be formatted we can adapt these to make
our own framework. We will be starting at the smallest entities of the
framework and build up from there. At the bottom are the rules.

Trampoline pod rules

In table 6.2 we have already collected seven rules that discover trampoline
pods, we will use these rules in our framework. Ideally we would implement
allrules from RBAC Police that are not covered in the regolibrary. This
is however due to time constrains not possible. For this reason we will
implement one rule to show it is possible to implement more. The one rule
we will implement is token_request. This rule was chosen because it has a
critical severity status and thus is impactful to add. It is also easy to test
making the verification in the next chapter simpler to achieve.

To create the rule we will add the directory
rule-can-create-sa-token-kube-system to the rules directory. This
name is chosen to have the same structure as other rules. In there we
will create raw.rego and rule.metadata. json such as the instruction pre-
scribe. To write the new rule we must extract the combination of terms
from the RBAC Police, just as we did for equivalence comparisons.

Rule: | token_request
verbs: | "create","x"
resources: | "serviceaccounts/token","x"
namespace: | "kube-system"
apiGroup: | ""

Table 6.3: Terms of token_request

We must now write a rule in the format of the regolibrary to assess
these terms. We can find a reference of the rule format in the README.
It is however more efficient to find a similar rule and adapt it to our terms.
The perfect rule for us to adapt is rule-can-create-pod-kube-system-v1.
This rule assess whether a role can access the kube-system namespace and
has the create verb on pods resource. All we need to change is resource from

"https://github. com/kubescape/regolibrary/blob/master/README .md

40

"pods","*" to "serviceaccounts/token","*". The result of this can be
found in appendix A.8. For the rule.metadata. json we can do the same,
here we have to set the name to rule-can-create-sa-token-kube-system
and provide a suitable description, for rule.metadata.json see appendix
A9

Trampoline pod controls

Now that we have rules we need controls. For all existing rules we can
reference the control they are a part of, their parent control. We can easily
find these by filtering on all files that contain the rule’s name. If there
are multiple we can choose the control that is the most specific. The most
specific would be the control with the least RBAC rules. The list of parent
controls can be found in table 6.4.

Rule Parent control

rule-can-create-pod-kube-system-v1 | No parent

cluster-admin-role Ensure that the cluster-admin

role is only used where required

rule-can-list-get-secrets-v1 Minimize access to secrets
rule-can-create-modify-pod-v1 New container
rule-can-create-pod Minimize access to create pods
exec-into-container-vl Exec into container

Table 6.4: Parent controls

We however have discovered that one control has been placed on inactive
and that one rule is orphaned. The New container control can be moved
back to the controls directory to be used again. For the orphaned rule
have to create a control, we can do that together with our new rule. Controls
consist out of mostly metadata en information for the end user. To create
the control we followed the structure provided in the README and look
at the wording of other controls. The control for the orphaned rule can be
found in appendix A.10 and for our new rule in appendix A.11. We can now
make a list of all controls including our two new ones:

e Minimize access to create serviceaccounts tokens

Minimize access to create pods in kube-system

Ensure that the cluster-role is only used where required
e Minimize access to secrets

e Exec into container

41

Trampoline pod framework

With a list of controls we can now create our framework. As with all other
steps we get the structure from the README. A framework isn’t much more
than a name, a description and a list of the control names. Our framework
can be found in appendix A.12. With that we have now created our own
framework. However, creating a framework is worth noting if we do not test
and verify it. We will do this in chapter 7.

As a final step to be able to use and test our framework we should
generate a release. This way we can reference it in Kubescape. We do
this by calling python scripts/export.py inside the regolibrary directory.
This will create the folder release. This folder will contain all frameworks
and control. To use our framework with Kubescape we run it with the
argument ——use-from. So in our case that would result in kubescape scan
--use-from <release/trampoline-pods.json>

42

Chapter 7

Testing the extension

Now that we have created our framework we must test it and verify that it
works. First we have the test whether our rules function properly. This can
be done with the build-in test runner we will do this in section 7.1. If our
rule work properly on its own we must test whether Kubescape is able to
detect trampoline pods in a cluster. For this we must set up a vulnerable
cluster that violates our rule. To then run Kubescape with our framework
against it to try discover the trampoline pod.

7.1 Testing of new rule with test runner

To test if our new rule has valid syntax and gives us the expected output
we can use the test runner . This is included in the regolibrary. We can
run the test runner with go test -v -tags=static rego_test.go -run
TestSingleRule. The tool is very basic and only uses hard coded values.
We must set which rule we want to test on line 40 in rego_test.go. We
also need to specify the test data and expected output. For the test data
we must create a folder with the rule name in the rules-tests directory.
As we did for the rule we can again adapt the tests from
rule-can-create-pod-kube-system-v1 to match for creation of
serviceAccounts/tokens. This includes two tests, one for clusterRole
with roleBinding and one for clusterRole with ClusterRoleBinding.
These test can be found in appendix A.13 and appendix A.14 accordingly.
We choose for these two role and binding combinations since they could ac-
tually lead to trampoline pods. A role with roleBinding would not create
a trampoline pod because it would then only be scoped to the kube-system
namespace thus never functioning as a trampoline pod. The last configura-
tion of role in combination with clusterRoleBinding would also not be
able to result in a trampoline pod because a role can only be bound to
its namespace. This would thus never be available outside kube-system.
When we run the test runner both cases test successfully, so we can now

43

test the framework as a whole.

7.2 Testing it with Kubernetes

For this we have to set up the cluster with a trampoline pod. We create
an admin equivalent Role bound to a ServiceAccount this will be done in
section 7.2.1. We will then use RBAC Police to see if it is able to discover
the introduced vulnerability in section 7.2.2. With RBAC Police being able
to discover it we will test whether our new framework is also able to discover
the trampoline pod in section 7.2.3.

7.2.1 Setting up a vulnerable cluster

In this section we will go into the steps to deploy a trampoline pod. We
will create a trampoline pod with the create serviceaccounts/token
permissions because this is the one rule we added to the framework. To
deploy this trampoline pod we need a cluster and have a working con-
nection with kubectl for this see the azure steps in section 5.2.4. To
create a trampoline pod we need four configurations: clusterrole.yaml,
serviceaccount.yaml, clusterrolebinding.yaml and deployment.yaml.
The clusterRole contains the actual permissions, for token creation we
need the verb: "create" on resource: "serviceaccounts/token". The
role configuration will then look as following:

apiVersion: rbac.authorization.k8s.io/vl
kind: ClusterRole

3 metadata:

name: create-serviceaccount -token
rules:
- apiGroups: [""]
resources: ["serviceaccounts/token"]
verbs: ["create", "list"]

Listing 7.1: clusterrole.yaml

The verb:"1list" was added to verify that the detection is disjunctive and
does not require exact matches. To use our role we have to bind it to a
ServiceAccount that a pod in the default namespace could use.
apiVersion: vil

kind: ServiceAccount

metadata:

name: create-tokens
namespace: default

Listing 7.2: serviceaccount.yaml

The role and ServiceAccount have to be bound together for this we define
the ClusterRoleBinding:

44

apiVersion: rbac.authorization.k8s.io/vl
kind: ClusterRoleBinding

; metadata:

name: create-serviceaccount -token
subjects:
- kind: ServiceAccount
name: create-tokens
namespace: default
roleRef:
kind: ClusterRole
name: create-serviceaccount -token
apiGroup: rbac.authorization.k8s.io

Listing 7.3: clusterrolebinding.yaml

The last configuration we need is the deployment. With the deployment
we can specify which container needs which ServiceAccount. For our
example we create a mock web server that has the ServiceAccount:
create-tokens bound to it.

apiVersion: apps/vl
kind: Deployment

; metadata:

name: nginx-deployment
labels:
app: nginx
spec:
replicas: 2
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
serviceAccountName: create-tokens
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

Listing 7.4: deployment.yaml

With all these configuration files create we can apply them to the cluster.
This is done using kubectl:

kubectl apply -f <filename>

We do this for all files in the same order as they were mentioned. With
all configurations applied we verify if our deployment rolled out successfully
with:

kubectl rollout status deployment nginx-deployment

45

7.2.2 Testing with RBAC Police
As mentioned in section 5.3.2 we can run RBAC' Police by executing:
./rbac-police eval ./1ib/

Since we only introduced a trampoline pod with "create serviceaccounts/token
permissions we will only evaluate the ”token-request.rego” which assess this.

./rbac-police eval lib/token_request.rego

The output can be seen in appendix A.15. Here we see that it detected the
ServiceAccount and shows pods it is bound. In this case
nginx-deployment-6544fdf46f-1mjtj and nginx-deployment-6544fdf46f-8vc2n

7.2.3 Testing trampoline pod framework

In the previous section we have shown that a vulnerability was introduced
into the cluster. Now we need to test whether our new framework is also
able to detect this vulnerability. As mentioned in section 6.3 we gener-
ate a new release of our Kubescape framework inside the regolibrary di-
rectory with python scripts/export.py. In ./release we now have our
trampoline-pods. json. To assess the cluster we can run:

kubescape scan --use-from ./release/trampoline-pods.json

This will provide the table as mentioned in section 5.2.4 which can be seen in
appendix . This table only globally provides which controls failed and how
many resources did. To determine whether our new framework detects
the introduced vulnerability we have to add the verbose flag —v. This will
provide us with a more in dept result of all the resources that failed.
Running it again with the verbose flag:

kubescape scan --use-from ./release/trampoline-pods.json -v

ApiVersion:

Kind: ServiceAccount
Name: create-tokens
Namespace: default

Controls: 5 (Failed: 1, Excluded: 0)

| SEVERITY | CONTROL NAME | Dbocs | ASSISTANT REMEDIATION |

Medium	Minimize access to create
	serviceaccounts tokens

https://hub.armosec.io/docs/tp-0002 | relatedObjects[1].rules[0].resources[0] |
relatedObjects[1].rules[0].verbs[0] |
relatedObjects[1] .rules[0].apiGroups[0] |
relatedObjects[0] .subjects[0] |
relatedObjects[0] .roleRef.name |

The full output can be seen in appendix A.16. With the verbose flag ev-
ery failed resource gets highlighted. The resource we introduced ’create-
token’ failed our control. So our framework was able to detect this type

46

of trampoline pod. It however does not mark the pod as vulnerable. This

is because the pod is not seen as vulnerable. It is only vulnerable if the
ServiceAccount is bound to the pod that has the create serviceaccount/token
permission. For future work we could add a check to see if the ServiceAccount
that has the trampoline pod permissions is bound to a pod. This could then

mark the pod as vulnerable.

47

Chapter 8

Future Work

In this thesis we covered many subjects and ideas. There were however ideas
we could not cover or go in to more dept. Because these subjects are still
interesting for further discovery we will highlight them here.

8.1 Finding more powerful permissions

Avrahami and Ben Hai[11] already provided many permissions that could
lead to privilege elevation, see table 6.1. It is however possible that there are
more permission combinations that could lead to privilege escalation. For
this we would need to do more research into the Kubernetes API and the
RBAC system. This would require much diligence and in-dept knowledge
of the Kubernetes API. This is however remains an interesting subject for
further research.

8.2 Other Kubernetes security assessment tools

In this thesis we have only looked at Kubescape and RBAC police. They are
however two only two tools that provide Kubernetes security assessment.
Due to time constrains other tools where only shortly inspected. Here we
found that neither Kube Hunter!', kube-bench?® nor MKIT?3 was able to do
trampoline pod discovery. These tools were found by a quick google search,
there are however many more tools available. For a more wholistic approach
all popular tools needs to be evaluated to determine which tools have to
capabilities to do RBAC evaluation. Future research should evaluate which
tools are also capable of doing RBAC evaluation and which tools are able
to represent this in a clear manner.

"https://github.com/aquasecurity/kube-hunter
Zhttps://github.com/aquasecurity/kube-bench
Shttps://github.com/darkbitio/mkit

48

8.3 Extension for all uncovered RBAC police rules

In this thesis we only created an extension for permission combination of
create tokens. To make the framework practical and useful it needs to be
extended to cover all rules which noted as not covered in table 6.2. This
would require similar implementations as the one we did for the create
token permissions. This would take considerable time and effort which was
not possible in the scope of this thesis. A completed Kubescape trampoline
pod framework would be a useful tool for Kubernetes security auditors and
the Kubernetes community. Making this an interesting subject for future
research.

8.4 Highlight the affected pod in the results

Our framework now discovers trampoline pods on the basis of
ServiceAccounts in use. In the results Kubescape now only shows the
ServiceAccounts. Ideally it would be better to show the pod that is af-
fected by the ServiceAccounts. To achieve this we would have to change
functionalities stretching being discovering trampoline pods. Instead of ex-
tending the regolibrary this would require change in the Kubescape source
code itself. Since this would change the functionality of Kubescape it would
require quite an effort to get this change implemented and ideally merged
into the repository. This however would still remain an interesting subject
for future research.

49

Chapter 9

Conclusions

Configuring Kubernetes securely is difficult. This problem stems from the
complexity of Kubernetes itself, creating a cluster requires knowledge of
the many objects inside Kubernetes. KEach object and resource has a
configuration defining what it: is, can and must do. This makes in essence
that Kubernetes uses just one large collection of configurations. To assess
whether these configurations are secure by hand is a labor-intensive task.
So for this automated assessments tools have been developed which are
highlighted in chapter 5.

Kubescape is popular and by the CNFC recognized automated assess-
ment tool that assesses whether a cluster adheres to different security frame-
works. It does this by collecting all resource and comparing these to specified
policies in its rule library. Every rule that fails gets collected and is shown
to the user. A second tool that does automated assessments is RBAC Po-
lice, this tool however contains only a very specific set of rules that detects
trampoline pods. Trampoline pods are a class of pods that when exploited
allow for privilege escalation. Since RBAC' Police was released in tandem
with the research on trampoline pods we can assume that it is able to detect
all trampoline pods. We wanted to extend Kubescape with the rules from
RBAC Police to make it able to detect trampoline pods as well and thus
providing this capability to more security researchers. This would make
Kubescape an even more complete tool for Kubernetes security assessments.

Our goal for this thesis was to create a Kubescape extension to detect
trampoline pods. We achieved this by creating a new Kubescape framework
inside the regolibrary. In our new framework we added rules to detect per-
mission that enable pods to become trampoline pods. For the specification
of our rules we looked at RBAC' Police since it is the authority on tram-
poline pods. From RBAC Police we extracted the verbs, resources and
subjects that form a rule for a specific type of trampoline pod. Such that
we could implement them in a manner that Kubescape understands. We
successfully created a new Kubescape rule for 1 of the 17 uncovered RBAC

50

police rules. The implementation method for this one rule can also be ap-
plied to the 16 remaining rules without much effort. Apart from new rules
we were able to add 4 existing Kubescape rules to our own framework that
aided in trampoline pod discovery.

We were able to test our new rule by writing units tests for the test run-
ner in the regolibrary. And we were able to use our extension on a vulnerable
cluster with trampoline pods. Here our extensions provided equivalent re-
sults to RBAC Police by highlighting the trampoline pod permission. From
that we can conclude that our framework is able to detect this type of tram-
poline pod.

Another conclusion we can make after this research is that Kubernetes
is a very complex and broad system. This makes it too broad for a bachelor
thesis to cover every aspect equally. We were able to cover a small part of the
Kubernetes security landscape, but there is still a lot more to be researched.
With the absence of containerization in the bachelor curriculum we would
not recommend a bachelor student to do a thesis on Kubernetes security
without a lot of prior knowledge and the willingness to write a very broad
background. It is unlikely that containerization will disappear in the near
feature making it an interesting subject to be added to the curriculum such
that research on Kubernetes security can be done by bachelor students.

o1

Bibliography

David Ferraiolo and Richard Kuhn. “Role-Based Access Controls”. In:
Proceedings of the 15th National Computer Security Conference. Na-
tional Institute of Standards and Technology. 1992, pp. 554-563. URL:
https://csrc.nist.gov/CSRC/media/Publications/conference-
paper/1992/10/13/role-based-access-controls/documents/
ferraiolo-kuhn-92.pdf.

Kazi Wali Ullah, Abu Shohel Ahmed, and Jukka Ylitalo. “Towards
Building an Automated Security Compliance Tool for the Cloud”. In:
2013 12th IEEFE International Conference on Trust, Security and Pri-
vacy in Computing and Communications. 2013, pp. 1587-1593. DOTI:
10.1109/TrustCom.2013.195.

Augusto Remillano II. Malicious Docker Hub Container Images Used

for Cryptocurrency Mining. News arcticle from Trend Micro. Aug.
2020. URL: https://www.trendmicro. com/vinfo/us/security/
news/virtualization-and-cloud/malicious-docker-hub-container-
images-cryptocurrency-mining.

Md. Shazibul Islam Shamim, Farzana Ahamed Bhuiyan, and Akond
Rahman. “XI Commandments of Kubernetes Security: A Systemati-
zation of Knowledge Related to Kubernetes Security Practices”. In:
2020 IEEFE Secure Development (SecDev). 2020, pp. 58-64. DOI: 10.
1109/SecDev45635.2020.00025.

Or Azarzar. 10 ways to Fscalate Privileges in Kubernetes. Lightspin.
2021. URL: https://blog.lightspin.io/kubernetes-pod-privilege-
escalation.

Cloud Native Computing Foundation. CNCF Annual Survey 2021.
2021. URL: https://www.cncf.io/reports/cncf-annual-survey-
2021/.

Andy Nguyen. CVE-2021-22555: Turning x00x00 into 100008. July
2021. URL: https://google.github.io/security-research/pocs/
linux/cve-2021-22555/writeup.html.

Chris Richardson. What are microservices? 2021. URL: https://
microservices.io.

92

[10]

[11]

[12]

Shazibul Islam Shamim. “Mitigating Security Attacks in Kubernetes
Manifests for Security Best Practices Violation”. In: Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering.
ESEC/FSE 2021. Athens, Greece: Association for Computing Machin-
ery, 2021, pp. 1689-1690. DOI: 10.1145/3468264 . 3473495.

Muntaha Alawneh and Imad Abbadi. “Expanding DevSecOps Prac-
tices and Clarifying the Concepts within Kubernetes Ecosystem”. In:
2022 Ninth International Conference on Software Defined Systems
(SDS). 2022, pp. 1-7. DOI: 10.1109/SDS57574.2022. 10062874,

Yuval Avrahami and Shaul Ben Hai. Kubernetes Privilege Escalation:
Ezcessive Permissions in Popular Platforms. Tech. rep. MSU-CSE-06-
2. Paloalto Networks, 2022. URL: https://www.paloaltonetworks.
com/ apps/pan/public/downloadResource ? pagePath=/content /
pan/en%5C_US/resources/whitepapers/kubernetes-privilege-
escalation-excessive-permissions—-in-popular-platforms.

National Security Agency Cybersecurity and Infrastructure Security
Agency. NSA Kubernetes Hardening Guide. 2022. URL: https://
media . defense . gov/2022/Aug/29/2003066362/-1/-1/0/CTR_
KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF.

Center for Internet Security. CIS Kubernetes Benchmark. 2022. URL:
https://workbench.cisecurity.org/benchmarks/8973.

Nicholas Pecka Lotfi Ben Othmane and Altaz Valani. “Privilege Es-
calation Attack Scenarios on the DevOps Pipeline Within a Kuber-
netes Environment”. In: Proceedings of the International Conference
on Software and System Processes and International Conference on
Global Software Engineering. ICSSP’22. Pittsburgh, PA, USA: Associ-
ation for Computing Machinery, 2022, pp. 45—49. ISBN: 9781450396745.
DOI: 10.1145/3529320.3529325.

ARMO. Kubescape. webpage. 2023. URL: https ://github . com/
kubescape/kubescape.

Carlos Polop. Docker Breakout / Privilege Escalation. 2023. URL: https:
//book.hacktricks.xyz/linux-hardening/privilege-escalation/
docker-breakout/docker-breakout-privilege-escalation.

MITRE ATTECK Matrixz for containers. URL: https://attack.
mitre.org/matrices/enterprise/containers/.

93

Appendix

54

In this appendix we have outputs from Kubescape and RBAC Police that
were too large to include in the text.The appendix also includes an overview
of the rule comparisons. Aswell as the rule and metadata for the Kubescape
extension.

A.1 Kubescape output

Output table of Kubescape whill running in the terminal. Used in section
5.2.4

-> kubescape git:(master) ./kubescape scan framework nsa --keep-local

[info] Kubescape scanner starting

[warning] unknown build number, this might affect your scan results. Please make sure you are updated to latest version

[warning] Kubernetes cluster nodes scanning is disabled. This is required to collect valuable data for certain controls.
You can enable it using the --enable-host-scan flag

[info] Downloading/Loading policy definitions

[success] Downloaded/Loaded policy

[info] Accessing Kubernetes objects

[success] Accessed to Kubernetes objects

[info] Requesting Host scanner data

[info] Scanning. Cluster: Willems_sandbox

[success] Done scanning. Cluster: Willems_sandbox

Controls: 19 (Failed: 14, Excluded: O, Skipped: 2)
Failed Resources by Severity: Critical | O, High | 14, Medium | 54, Low | 8

| SEVERITY | CONTROL NAME | FAILED RESOURCES | EXCLUDED RESOURCES | ALL RESOURCES | % RISK-SCORE

Critical	Disable anonymous access to Kubelet service	(]	0	(]	skipped*
Critical	Enforce Kubelet client TLS authentication	0	0	0	skipped*
High	Applications credentials in configuration files	2	4	40	4%
High	HostNetwork access	3	4	19	137
High	Privileged container	1	3	19	4%
High	Resource limits	8	7	19	397
Medium	Allow privilege escalation	8	10	23	33%
Medium	Automatic mapping of service account	17	54	72	247,
Medium	Cluster internal networking	2	3	6	33%
Medium	Cluster-admin binding	1	2	85	1%
Medium	Container hostPort	1	2	19	4%
Medium	Exec into container	2	2	85	2%
Medium	Ingress and Egress blocked	8	11	20	37%
Medium	Linux hardening	7	10	19	347,
Medium	Non-root containers	8	11	19	397
Low	Immutable container filesystem	8	10	19	39%
	RESOURCE SUMMARY	21	60	189	14.05%

FRAMEWORK NSA

* enable-host-scan flag not used. For more information: https://hub.armosec.io/docs/host-sensor

Run with ’--verbose’/’-v’ flag for detailed resources view

A.2 Example of Kubescape Rego

Example of Rego used by Kubescape for in section 5.2.3.

1 package armo_builtins

2

3 import future.keywords.in
|

95

5 # fails if user has create access to pods within kube-system

16

namespace

deny [msgal {

subjectVector := input[_]
role := subjectVector.relatedObjects[i]
rolebinding := subjectVector.relatedObjects[j]

endswith(role.kind, "Role")
endswith(rolebinding.kind, "Binding")

can_create_to_pod_namespace (rolebinding)
rule := role.rules[p]

subject := rolebinding.subjects [k]
is_same_subjects (subjectVector, subject)

is_same_subjects (subjectVector, subject)

rule_path := sprintf("relatedObjects[)d].rules([%d]l", [i, pl)
verbs := ["create", "x"]
verb_path := [sprintf (")s.verbs[%d]", [rule_path, 1])
| verb = rule.verbs[l]; verb in verbs]
count (verb_path) > 0
api_groups := ["", "x"]
api_groups_path := [sprintf (")s.apiGroups[%d]l", [rule_path,
D
| apiGroup = rule.apiGroups[al; apiGroup in api_groups]
count (api_groups_path) > 0
resources := ["serviceaccounts/token", "x"]
resources_path := [sprintf ("%s.resources[}d]", [rule_path, 1
D
| resource = rule.resources[l]; resource in resources]

count (resources_path) > 0

path := array.concat(resources_path, verb_path)
path2 := array.concat(path, api_groups_path)
finalpath := array.concat(path2, [

sprintf ("relatedObjects [/%d].subjects [%d]l", [j, k]),

sprintf ("relatedObjects [}d].roleRef.name", [jl),
D

msga := {

"alertMessage": sprintf ("Subject: %s-%s can create

serviceaccounts/tokens

in kube-system", [subjectVector.kind, subjectVector.

name]) ,
"alertScore": 3,
"failedPaths": fimnalpath,
"fixPaths": [],
"packagename": "armo_builtins",
"alertObject": {
"k8sApilObjects": [],
"externalObjects": subjectVector,

o6

a

N

1. rolebinding in kubesystem ns + role in kubesystem ns

2. rolebinding in kubesystem ns + clusterrole

can_create_to_pod_namespace (rolebinding) {
rolebinding.metadata.namespace == "kube-system"

}

3. clusterrolebinding + clusterrole
can_create_to_pod_namespace (rolebinding) {
rolebinding.kind == "ClusterRoleBinding"

7}

for service accounts
is_same_subjects (subjectVector, subject) {

subjectVector .kind == subject.kind
subjectVector.name == subject.name
subjectVector .namespace == subject.namespace

for users/ groups

7 is_same_subjects (subjectVector, subject) {

subjectVector.kind == subject.kind
subjectVector .name == subject.name
subjectVector.apiGroup == subject.apiGroup

A.3 Example of RBAC police REGO

Example of Rego used by RBAC Police for in section 5.2.3.

package policy
import data.police_builtins as pb
import future.keywords.in

describe [{"desc": desc, "severity": severityl}] {
desc := sprintf ("Identities that can create TokenRequests (
serviceaccounts/token) in privileged namespaces (%v) can
issue tokens for admin-equivalent SAs", [concat(", ", pb.
privileged_namespaces)])
severity := "Critical"
}
targets := {"serviceAccounts", "nodes", "users", "groups"}

evaluateRoles (roles, owner) {
not pb.nodeRestrictionEnabledAndIsNode (owner)
some role in roles
pb.affectsPrivNS(role)
some rule in role.rules
pb.subresourceOrWildcard (rule.resources, "serviceaccounts/
token")

o7

17 pb.valueOrWildcard (rule.verbs, "create")
18 pb.valueOrWildcard(rule.apiGroups, "")
19 }

A.4 RBAC Police eval

Example of the output RBAC Police eval command for section 5.3.2.

1 -> rbac-police git:(main) ./rbac-police eval ./1lib/
retrieve_token_secrets.rego

2 {

3 "policyResults": [{

4 "policy": "./lib/retrieve_token_secrets.rego",

5 "severity": "Critical",

6 "description": "Identities that can retrieve secrets in
privileged namespaces (kube-system) can obtain tokens of
admin-equivalent SAs",

"violations": {

8 "serviceAccounts": [{

9 "name": "addon-http-application-routing-nginx-ingress
-serviceaccount",

10 "namespace": "kube-system",

11 "nodes": [{

12 "aks-agentpool -24176822-vmss00000h": [

13 "addon-http-application-routing-nginx-ingress-
controller-c647714"

14]

15 H

16 1,

17 {

18 "name": "csi-azurefile-node-sa",

19 "namespace": "kube-system",

20 "nodes": [{

21 "aks-agentpool -24176822-vmss00000g": [

22 "csi-azurefile-node-7jrph"

23]

24 },

25 {

26 "aks-agentpool -24176822-vmss00000h": [

27 "csi-azurefile-node-d9jxn"

28 1

29 }

30 1

31 1,

32 {

33 "name": "tigera-operator",

34 "namespace": "tigera-operator",

35 "nodes": [{

36 "aks-agentpool -24176822-vmss00000h": [

37 "tigera-operator -74fc475fbb-bggst"

38]

39 }H

o8

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

}
P

"nodes": [

"aks-agentpool -24176822-vmss00000g",

"aks-agentpool -24176822-vmss00000h"

}

1,

"summary": {
"failed": 1,
"passed": O,
"errors": O,
"evaluated": 1

A.5 RBAC Police expand

Example of the output RBAC Police expand command for section 5.3.2.

-> rbac-police git:(main) ./rbac-police expand -z sa=kube-
system:addon-http-application-routing-nginx-ingress-

w

O N O Ut

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

serviceaccount

{
"name": "addon-http-application-routing-nginx-ingress-
serviceaccount",
"namespace": "kube-system",
"nodes": [{
"name": "aks-agentpool-24176822-vmss00000h",
"pods": [
"addon-http-application-routing-nginx-ingress-controller -
c64771d"
]
11,
"roles": [{
"name": "addon-http-application-routing-nginx-ingress-
role",
"effectiveNamespace": "kube-system",
"rules": [{
"verbs": [
n get "
1,
"apiGroups": [
nn
1,
"resources": [
"configmaps",
"pods",
"secrets",

"namespaces"

99

28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
7
78
79

"verbs": [
n get " ,
"update"
i
"apiGroups": [
nn
i
"resources": [
"configmaps"
i

"resourceNames":

"ingress-controller -leader -~addon-http-application-

routing",

"ingress-controller-leader"

]
IE
{
"verbs": [
"create"
1
"apiGroups": [
1
"resources": [
"configmaps"
]
e
{
"verbs": [
llgetll
1
"apiGroups": [
1
"resources": [
"endpoints"

]
}s
{

"name": "addon-http-application-routing-nginx-ingress-

clusterrole",
"rules": [{
"verbs": [
"list",
"watch"
1
"apiGroups": [
nn
1,
"resources": [
"configmaps",

60

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

}
{

}
{

}
}
]

}

"endpoints",

"nodes",
"pods",
"secrets"

1

"verbs": [

n get n

1y

"apiGroups": [
nn

1y

"resources": [
"nodes"

]

"verbs": [
"get",
"list",
"watch"

1

"apiGroups": [
nn

1

"resources": [
"services"

1

A.6 Comparison of rules that are equivalent

The following tables show the rules that are equivalent between RBAC police
and Kubescape for section 6.2 .

RBAC police Kubescape
Rule: | modify_pods rule-can-create-modify-pod-v1
verbs: | "patch", "update", "*" | "create", "patch", "update", "x"
resources: | "pods" "pods", "deployments", "daemonsets"

"replicasets", "statefulsets",

Iljobsll s "Cronj obsll s Il*ll

61

RBAC police | Kubescape
p P
Rule: | cluster_admin | cluster-admin-role
VerbSZ Il*ll II*II
resources: | "x" e
RBAC police Kubescape
Rule: | list_secrets rule-can-list-get-secrets-v1
VeI‘bSZ IIlistll,Il*ll lllistll s llgetll ,"WatCh", ll*ll
resources: | "secrets","x" | "secrets","x"
RBAC police Kubescape
Rule: | assign_sa rule-can-create-pod-kube-system-v1
p y
verbs: | "create","x" "create", "x"
resources: | "pods","x*" "pods","*"
namespace: | "kube-system" | "kube-system","x*"
RBAC police Kubescape
Rule: | obtain_token_weak_ns rule-can-list-get-secrets-v1
VerbS: ||1istll’llgetll’n*ll llgetu’lllistll’llwatchﬂ’ll*ll
resources: | "secrets","serviceaccounts/token","*" | "secrets","x"
OR
Rule: | obtain_token_weak ns rule-can-create-pod
verbs: | "create","x" "create", "x"
resources: | "pods","x" "pods","*"
Table 1: Contains two cases covered in two rules:
RBAC police Kubescape
Rule: | bind_roles rule-can-bind-escalate
VeI‘bSI Ilbindll s ll*ll Ilbindll s Il*ll
resources: | "clusterrolebindings","rolebindings","*" | "clusterrolebindings",'"rolebindings",
"clusterroles", "roles",6"x"
namespace: | "kube-system"
apiGroups: | "rbac.authorization.k8s.io","*" "rbac.authorization.k8s.io","*"

Table 2: rule-can-bind-escalate is not specific to privilege namespaces
however reports on all. We however consider this equivalent since the priv-

ileged namespace is a subset of it.

62

RBAC police Kubescape
Rule: | escalate_roles rule-can-bind-escalate
verbs: "escalate","x" "escalate", "x"
resources: | "clusterrolebindings","rolebindings","*" | "clusterrolebindings","rolebindings"
"clusterroles", "roles","x"
namespace: | "kube-system"
apiGroups: | "rbac.authorization.k8s.io","x*" "rbac.authorization.k8s.io","*"
RBAC police Kubescape
Rule: | rce_weak_ns exec-into-container-v1
verbs: "create","x*" "create", "x"
resources: | "pods/exec","*" "pods/exec", "pods/*","*x"
OR
verbs: | "update","patch","x" | -
resources: | "pods","x" -

Table 3: Update and patch are not covered

A.7 Comparison of rules that are partially equiv-
alent

The following tables show the rules that are partially equivalent between
RBAC police and Kubescape for section 6.2 .

RBAC police Kubescape
Rule: | impersonate rule-can-impersonate-users-groups-v1

verbs: | "impersonate","x" "impersonate", "x"

resources: "users","groups",'"serviceaccounts","x*" "users", "serviceaccounts",
"groups", "uids", "x*"
OR

verbs: | "impersonate","*" -
resources: "userextras","*" -
apiGroups: | "rbac.authorization.k8s.io","x*" -

Table 4: Impersonate on userextras is not covered

63

2

RBAC police Kubescape

Rule: | retrieve_token_secrets | rule-can-list-get-secrets-v1

VerbS: 7list"’llget"’"*ll Illist"’ |Igetll, Il*ll
resources: | "secrets","x" "secrets","*"
namespace: | "kube-system" "

Table 5: The regolibrary only assess the wildcard not privileged namespaces

A.8 Token request rule

The new rego rule that is used to assess the token request inside the privi-
leged namespace for section 6.3
rules/rule-can-create-sa-token-kube-system/raw.rego

package armo_builtins
import future.keywords.in
fails if user has create access to pods within kube-system

namespace
deny [msgal {

subjectVector := input[_]
role := subjectVector.relatedObjects[i]
rolebinding := subjectVector.relatedObjects[j]

endswith(role.kind, "Role")
endswith(rolebinding.kind, "Binding")

can_create_to_pod_namespace (rolebinding)
rule := role.rules[p]

subject := rolebinding.subjects [k]
is_same_subjects (subjectVector, subject)

is_same_subjects (subjectVector , subject)

rule_path := sprintf("relatedObjects[/%d].rules[%d]l", [i, pl)
verbs := ["create", "x"]
verb_path := [sprintf ("}s.verbs[%d]", [rule_path, 1]) | verb

= rule.verbs[l]; verb in verbs]
count (verb_path) > 0

api_groups .= [uu, ll*ll]
api_groups_path := [sprintf ("Y%s.apiGroups[/%d]l", [rule_path, a
1) | apiGroup = rule.apiGroupsl[al; apiGroup in api_groups]

count (api_groups_path) > 0

resources := ["serviceaccounts/token", "x"]
resources_path := [sprintf (")s.resources[%d]", [rule_path, 1
1) | resource = rule.resources[l]; resource in resources]

count (resources_path) > 0

64

path := array.concat(resources_path, verb_path)
path2 := array.concat(path, api_groups_path)
finalpath := array.concat(path2, [
sprintf ("relatedObjects [%d].subjects[%dl", [j, k1),
sprintf ("relatedObjects [/d].roleRef .name", [jl),
D

msga := {
"alertMessage": sprintf ("Subject: %s-%s can create
serviceaccounts/tokens in kube-system", [subjectVector.kind
, subjectVector.name]),
"alertScore": 3,

"failedPaths": finalpath,
"fixPaths": [],
"packagename": "armo_builtins",
"alertObject": {
"k8sApilObjects": [],
"externalObjects": subjectVector,

},

1. rolebinding in kubesystem ns + role in kubesystem ns

5 # 2. rolebinding in kubesystem ns + clusterrole

can_create_to_pod_namespace (rolebinding) {
rolebinding.metadata.namespace == "kube-system"

}

3. clusterrolebinding + clusterrole
can_create_to_pod_namespace (rolebinding) {

rolebinding.kind == "ClusterRoleBinding"
I

5 # for service accounts

is_same_subjects (subjectVector, subject) {

subjectVector.kind == subject.kind
subjectVector .name == subject.name
subjectVector .namespace == subject.namespace

}

for users/ groups
is_same_subjects (subjectVector, subject) {

subjectVector .kind == subject.kind
subjectVector .name == subject.name
subjectVector.apiGroup == subject.apiGroup

}

A.9 Token request metadata

The metadata of the new rego rule that is used to assess the token request
inside the privileged namespace for section 6.3

65

B W N =

© 00 g o G

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30

rules/rule-can-create-sa-token-kube-system/rule.metadata. json

"name": "rule-can-create-sa-token-kube-system",
"attributes": {
"microsoftK8sThreatMatrix": "Privilege Escalation::
Cluster -admin binding",
"armoBuiltin": false,
"resourcesAggregator": "subject-role-rolebinding",
"useFromKubescapeVersion": "v1.0.133"
}s
"ruleLanguage": "Rego",
"match": [
{
"apiGroups": [
Il*ll
15
"apiVersions": [
Il*ll
15
"resources": [
"Role",
"ClusterRole",
"ClusterRoleBinding",
"RoleBinding"

}
1,
"ruleDependencies": [],
"description": "determines which users can create
serviceaccount/tokens in kube-system namespace',
"remediation": "",
"ruleQuery": "armo_builtins"

66

T W N

10
11
12
13
14
15
16
17

18

T W N

A.10 Create pod control

The new control that uses an existing rego rule for section 6.3
controls/Minimize access to create pods in kube-system.json

{

"name": "Minimize access to create pods in kube-system",
"id":"tp-0001",

"controlID":"tp-0001",

"description": "The ability to create pods in a privileged
namespace provides a number of opportunities for privilege
escalation. As such, access to create new pods should be
restricted to the smallest possible group of users.",
"long_description": "The ability to create pods in a
cluster opens up possibilities for privilege escalation and
should be restricted, where possible.",

"remediation": "Where possible, remove ‘create‘ access to ¢
pod ¢ objects in the cluster.",

"manual_test": "Review the users who have create access to
pod objects in the Kubernetes API.",

"test": "Check which subjects have RBAC permissions to

create pods.",
"attributes": {

"armoBuiltin": false
}s

"rulesNames": [

"rule-can-create-pod-kube-system-v1"
1,
"baseScore": 6,
"impact_statement": "Care should be taken not to remove
access to pods to system components which require this for
their operation"

A.11 Token request control

The new control that uses the new rego rule for section 6.3
controls/Minimize access to create serviceaccounts tokens.json

{

"name": "Minimize access to create serviceaccounts tokens",
"id": "tp-0002",

"controlID":"tp-0002",

"description": "The Kubernetes API stores secrets, which may

be service account tokens for the Kubernetes API or
credentials used by workloads in the cluster. Access to
these secrets should be restricted to the smallest possible
group of users to reduce the risk of privilege escalation

n
g >

"remediation": "Where possible, remove ‘create‘ access to ¢
serviceaccounts/token‘ objects in the cluster.",

67

10

11
12
13
14
15
16
17
18
19

20

w N

© 00 O Utk

11
12
13
14

"manual_test": "Review the users who have ‘create‘ access to

‘serviceaccounts/token‘ objects in the Kubernetes API.",
"test": "Check which subjects have RBAC permissions to
create Kubernetes tokens.",

"references": [
"https://www.paloaltonetworks.com/apps/pan/public/
downloadResource?pagePath=/content/pan/en_US/resources/
whitepapers/kubernetes-privilege-escalation-excessive-
permissions -in-popular-platforms"
15
"attributes": {
"armoBuiltin": false
}s
"rulesNames": [
"rule-can-create-sa-token-kube-system"
15
"baseScore": 6,
"impact_statement": "Care should be taken not to remove

access to token creation of system components which require

this for their operation"

A.12 Trampoline pod framework

Our new Kubescape framework for section 6.3
frameworks/trampoline_pods.json

{

"name": "Trampoline-pods",
"description": "This framework highlights overzealous pod
permisions which could lead to privilege escalation",
"attributes": {

"armoBuiltin": false

I
"controlsNames": [
"Minimize access to create serviceaccounts tokens",
"Minimize access to create pods in kube-system",
"Ensure that the cluster-admin role is only used where
required",
"Minimize access to secrets",
"Exec into container"

A.13 Test runner for roleBinding

This section includes the Testrunner test for rolebinding. Description of

the test running can be found in 7.1
input/clusterrole.yaml

68

S

W N =

© 00 = O Utk

11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26

apiVersion:

rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:
name: test

rules:

- apiGroups: [""]
resources: ["serviceaccounts/token"]
verbs: ["create", "list"]

input/rolebinding.yaml

apiVersion: rbac.authorization.k8s.io/vl
kind: RoleBinding
metadata:

name: serviceaccounts/token

namespace: kube-system
subjects:
- kind: ServiceAccount

name: tokener

apiGroup: rbac.authorization.k8s.io
roleRef:

kind: ClusterRole

name: test

apiGroup: rbac.authorization.k8s.io
expected. json
[

{
"alertMessage": "Subject: ServiceAccount-tokener can

create serviceaccounts/tokens in kube-system",

"failedPaths": [
"relatedObjects [1]
"relatedObjects [1]
"relatedObjects [1]
"relatedObjects [0]
"relatedObjects [0]

] bl

"fixPaths": [],
"ruleStatus": "",
"packagename":
"alertScore": 3,

"alertObject": {
"externalObjects":
"apiGroup":

"kind":

"name" :

.rules[0] .resources[0]",
.rules[0] .verbs[0]",
.rules [0].apiGroups [0]",
.subjects [0]",

.roleRef .name"

"armo_builtins",

{

"rbac.authorization.k8s.io",
"ServiceAccount",
"tokener",

"relatedObjects": [

{

"apiVersion":

io/v1i",
"kind":

"RoleBinding",

"metadata": {

"name" :
"namespace":

"kube-system"

69

"rbac.authorization.k8s.

"serviceaccounts/token",

27
28
29

30
31
32
33
34
35

36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

1

2

"roleRef": {
"apiGroup": "rbac.authorization.k8s
.io",
"kind": "ClusterRole",
"name": "test"
"subjects": [
"apiGroup": "rbac.authorization
.k8s.io",
"kind": "ServiceAccount",
"name": "tokener"

"apiVersion": "rbac.authorization.k8s.
io/v1i",
"kind": "ClusterRole",
"metadata": {
"name": "test"
}s

"rules": [

{
"apiGroups": [
nn
Uy
"resources": [
"serviceaccounts/token"
Uy
"verbs": [
"create",
"list"

A.14 Test runner for roleBinding

This section includes the Testrunner test for clusterrolebinding. Description
of the testrunner can be found in 7.1
input/clusterrole.yaml

apiVersion: rbac.authorization.k8s.io/v1l
kind: ClusterRole

70

W N =

© 00 = O Utk

11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26

metadata:

name: test

rules:

- apiGroups: [""]
resources: ["serviceaccounts/token"]
verbs: ["create", "list"]

apiVersion:

input/clusterrolebinding.yaml

rbac.authorization.k8s.io/vil

kind: ClusterRoleBinding
metadata:
create-tokens-global
subjects:
- kind: Group
name: manager
apiGroup:
- kind: Group
name: dev
apiGroup:
roleRef:
kind: ClusterRole
name: test
apiGroup:

name:

expected. json

rbac.authorization.k8s.

rbac.authorization.k8s.

rbac.authorization. k8s.

io

io

io

{

"alertMessage":

"Subject:

Group-dev can create

serviceaccounts/tokens in kube-system",

"failedPaths": [
"relatedObjects [1]
"relatedObjects [1]
"relatedObjects [1]
"relatedObjects [0]
"relatedObjects [0]

.rules[0] .resources[0]",
.rules[0] .verbs[0]",
.rules [0].apiGroups [0]",
.subjects[1]",

.roleRef .name"

1

"fixPaths": [],

"ruleStatus": "",
"packagename": "armo_builtins",
"alertScore": 3,

"alertObject": {
"externalObjects":

{

"apiGroup": "rbac.authorization.k8s.io",
"kind": "Group",
llnamell . Ildevll

o B

"relatedObjects": [

{

"apiVersion":

io/v1i",

"kind":

"ClusterRoleBinding",

"metadata": {

"name" :

|

71

"rbac.authorization.

"create-tokens-global"

k8s .

27
28

29
30
31
32
33
34

35
36
37
38
39

40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75

.io",

.k8s.io",

.k8s.io",

io/vi",

}
{

"alertMessage":

"roleRef": {

"apiGroup": "rbac.authorization.k8s
"kind": "ClusterRole",
"name": "test"

’

"subjects": [

{

"apiGroup": "rbac.authorization
"kind": "Group",
"name": "manager"
}’
"apiGroup": "rbac.authorization
"kind": "Group",
"name": "dev"
]
"apiVersion": "rbac.authorization.k8s.
"kind": "ClusterRole",
"metadata": {
"name": "test"

Je
"rules": [

{
"apiGroups": [
nn
1
"resources": [
"serviceaccounts/token"
1
"verbs": [
"create",
"list"

"Subject: Group-manager can create

serviceaccounts/tokens in kube-system",
"failedPaths":

[

"relatedObjects[1] .rules[0] .resources[0]",
"relatedObjects[1].rules[0].verbs[0]",
"relatedObjects[1] .rules[0].apiGroups [0]",

72

76 "relatedObjects [0].subjects[0]",

77 "relatedObjects [0] .roleRef .name"

78 1

79 "fixPaths": [],

80 "ruleStatus": "",

81 "packagename": "armo_builtins",

82 "alertScore": 3,

83 "alertObject": {

84 "externalObjects": {

85 "apiGroup": "rbac.authorization.k8s.io",

86 "kind": "Group",

87 "name": "manager",

88 "relatedObjects": [

89 {

90 "apiVersion": "rbac.authorization.k8s.
io/vi",

91 "kind": "ClusterRoleBinding",

92 "metadata": {

93 "name": "create-tokens-global"

94 },

95 "roleRef": {

96 "apiGroup": "rbac.authorization.k8s
.io",

97 "kind": "ClusterRole",

98 "name": "test"

99 },

100 "subjects": [

101 {

102 "apiGroup": "rbac.authorization
.k8s.io",

103 "kind": "Group",

104 "name": "manager"

105 },

106 {

107 "apiGroup": "rbac.authorization
.k8s.io",

108 "kind": "Group",

109 "name": "dev"

110 }

111]

112 },

113 {

114 "apiVersion": "rbac.authorization.k8s.
io/v1",

115 "kind": "ClusterRole",

116 "metadata": {

117 "name": "test"

118 s

119 "rules": [

120 {

121 "apiGroups": [

122 "

123 1,

124 "resources": [

73

125
126
127
128
129
130
131
132
133
134
135
136
137
138]

"serviceaccounts/token"

])

"verbs": [
"create",
Illist n

]

A.15 RBAC Police evaluate token request

Output provided by RBAC Police when discovering the introduced vulner-
ability. This output is part of section 7.2.2.

-> ./rbac-police eval lib/token_request.rego

{
"policyResults": [
"policy": "lib/token_request.rego",
"severity": "Critical",
"description": "Identities that can create TokenRequests (serviceaccounts/token)
in privileged namespaces (kube-system) can issue tokens for admin-equivalent SAs",
"violations": {
"serviceAccounts": [
{
"name": "create-tokens",
"namespace": "default",
"nodes": [
{
"aks-agentpool -38837069-vmss000000": [
"nginx-deployment -6544fdf46f-1mjtj"
]
},
{
"aks-agentpool -38837069-vmss000001": [
"nginx-deployment -6544fdf46f -8vc2n"
]
}
]
}
1,
"nodes": [
"aks-agentpool -38837069-vmss000000",
"aks-agentpool -38837069-vmss000001"
]
}
}
1,
"summary": {
"failed": 1,
"passed": O,
"errors": O,
"evaluated": 1
}
}

74

A.16 Kubescape trampoline pod framework

The output provided by Kubescape when using the new framework. This
output is part of section 7.2.3.

./kubescape scan --use-from
[info] Kubescape scanner starting

../regolibrary/release/trampoline-pods.json -v

[warning] unknown build number, this might affect your scan results. Please make sure you are updated to latest version
[warning] Kubernetes cluster nodes scanning is disabled. This is required to collect valuable data for certain controls.
You can enable it using the --enable-host-scan flag
[info] Downloading/Loading policy definitions

[success] Downloaded/Loaded policy
[info] Accessing Kubernetes objects

[success] Accessed to Kubernetes objects

[info] Scanning. Cluster: do-ams3-k8s-test-cluster
[success] Done scanning. Cluster: do-ams3-k8s-test-cluster

ApiVersion:

Kind: ServiceAccount
Name: create-tokens
Namespace: default

Controls: 5 (Failed: 1, Excluded: 0)

SEVERITY	CONTROL NAME	Docs	ASSISTANT REMEDIATION
Medium	Minimize access to create	https://hub.armosec.io/docs/tp-0002	relatedObjects[1].rules[0].resources[0]
	serviceaccounts tokens		relatedObjects[1].rules[0].verbs[0]
			relatedObjects[1].rules[0].apiGroups[0]
			relatedObjects[0].subjects[0]
			relatedObjects[0].roleRef.name
ApiVersion:

Kind: ServiceAccount
Name: dosecret-operator
Namespace: kube-system

Controls: 5 (Failed: 1, Excluded: 0)

| SEVERITY | CONTROL NAME

DOCs |

ASSISTANT REMEDIATION |

Minimize access to secrets

https://hub.armosec.io/docs/cis-5-1-2

relatedObjects[1]
relatedObjects[1]
relatedObjects[1]
relatedObjects[1]
relatedObjects[1]
relatedObjects[0]
relatedObjects[0]

.rules[0]
.rules[0]
.rules[0]
.rules[0]
.rules[0]
.subjects[0]

.roleRef.name

.resources[1] |
.verbs[2] |
.verbs[3] |
.verbs[6] |
.apiGroups[0] |

|

|

ApiVersion: rbac.authorization.k8s.io
Kind: Group
Name: k8saas:authenticated

Controls: 5 (Failed: 5, Excluded: 0)

| SEVERITY | CONTROL NAME | DOCS | ASSISTANT REMEDIATION |
| High | Ensure that the cluster-admin | https://hub.armosec.io/docs/cis-5-1-1 | relatedObjects[1].rules[0].resources[0]
| | role is only used where | | relatedObjects[1].rules[0].verbs O]
| | required | | relatedObjects[1].rules[0].apiGroups[0]
| | | | relatedObjects[0].subjects[0]
| | | | relatedObjects[0].roleRef.name
Medium Exec into container https://hub.armosec.io/docs/c-0002

in kube-system

Minimize access to create pods |

https://hub.armosec.io/docs/tp-0001

75

|
|
|
|
|
+
|
|
|
|
|
+
|
|
|

| |

| |

+ +

| | Minimize access to create | https://hub.armosec.io/docs/tp-0002 | |

| | serviceaccounts tokens | |

| | | | |

| | | | |

| | | | |

+ +

| | Minimize access to secrets | https://hub.armosec.io/docs/cis-5-1-2 | |

| | | | |

| | | | |

| | | | |

| | | | |

Controls: 5 (Failed: 5, Excluded: O, Skipped: 0)

Failed Resources by Severity: Critical - 0, High - 1, Medium - 6, Low - O

| SEVERITY | CONTROL NAME | FAILED RESOURCES | EXCLUDED RESOURCES | ALL RESOURCES | % RISK-SCORE

High	Ensure that the cluster-admin role is only used where required	1	1	66	2,
Medium	Exec into container	1	1	80	1%
Medium	Minimize access to create pods in kube-system	1	7	80	1%
Medium	Minimize access to create serviceaccounts tokens	2	2	80	3%
Medium	Minimize access to secrets	2	10	80	3%
	RESOURCE SUMMARY	3	15	80	1.82%

FRAMEWORK Trampoline-pods

76

