
Bachelor’s Thesis Computing Science

Automated Formal Proofs, Verification
and Analysis of Security Protocols

Wouter Doeland
s1034816

June 1, 2023

Supervisor:
Security Engineer, Security Company

First assessor:
Dr. Bart Mennink, iCIS

Second assessor:
Dr. Simona Samardjiska, iCIS

Abstract

Computer-aided cryptography is a field that applies automated tools to the
design and implementation of security protocols. Automated tools for the
analysis of protocol designs have improved a lot over the years and have
proven to be very valuable in the design and analysis of large protocols
such as TLS 1.3 [19] and Signal [15]. In this thesis we discuss the available
methods and tools for analyzing protocol design. We explain the notation
of the tool Tamarin and we provide a method for formalizing, modeling and
analysing protocols in this tool. Finally we apply this method to a certain
proprietary protocol and find and fix a vulnerability in the protocol design.

This thesis was written at and supported by a company specializing in
secure communication products. The research in this thesis was also applied
to an in-development secure communication product from the company. Due
to Non-Disclosure Agreements we further refer to them as Security Company
and Secure Communication Product.

1

Contents

1 Introduction 4

2 Methods and Tools 6
2.1 Symbolic Security Analysis 6

2.1.1 Tamarin . 7
2.1.2 ProVerif . 8
2.1.3 DEEPSEC . 8
2.1.4 SAPIC+ . 9

2.2 Computational Security Analysis 9
2.2.1 CryptoVerif . 10

2.3 Tool Selection . 10

3 Notation 11
3.1 Functions and Equational Theories 11
3.2 Rules . 13

3.2.1 Local Macros . 14
3.2.2 Facts and Messages 14

3.3 Trace Properties . 15
3.3.1 Lemmas . 15
3.3.2 Restrictions . 16
3.3.3 Predicates . 17

4 Formalizing and Modeling 18
4.1 Protocol Diagram . 18

4.1.1 Equational Theory . 18
4.1.2 Parties . 19
4.1.3 Sub Protocols . 20
4.1.4 Protocol Steps . 20
4.1.5 Communication . 20
4.1.6 Work . 20

4.2 Formalizing a Protocol Diagram 20
4.2.1 Initialization Steps . 21
4.2.2 Protocol Steps . 21

2

4.2.3 Public Key Infrastructure 22
4.2.4 Next Steps . 23

5 Proving 24
5.1 Protocol Run . 24
5.2 Secrecy Properties . 25

5.2.1 Key Secrecy . 25
5.2.2 Forward Secrecy . 26

5.3 Authentication Properties . 26
5.3.1 Establishing Same Session Keys 26
5.3.2 Uniqueness of Session Keys 27
5.3.3 Peer Authentication and Key Compromise Imperson-

ation Resistance . 27

6 Analysis of Secure Communication Product 29
6.1 Diagram . 29
6.2 Model . 29
6.3 Validity of the Model . 31
6.4 Security Properties . 31

6.4.1 Traffic Key Encryption Key Secrecy 31
6.4.2 Session Key Secrecy 32
6.4.3 Forward Secrecy . 32

6.5 Problems and Solutions . 33
6.5.1 Session Key Secrecy 33
6.5.2 Forward Secrecy . 33

6.6 Results Summary . 33

7 Conclusions and Future Work 35

3

Chapter 1

Introduction

Security Company produces devices for secure communications. These com-
munications are secured by protocols using cryptography. It is well known
that developing secure products is hard. There can be faults in many ar-
eas such as protocol design, software implementation and hardware design.
There are many cases of supposedly secure products being broken and usu-
ally these faults are only found after a thorough manual analysis. Security
Company wants to know if it is possible to analyse the security of protocol
designs through a more formal and automated analysis. A lot of the proto-
cols running on the company’s devices are developed in-house and are not
an open standard. This is because the protocols have special use cases that
are not covered by standard protocols. These protocols have to be secure,
and to analyse the security of the protocol design an investigation into the
design is conducted. Automated tools for the formal analysis of protocols
are not yet used. These tools can help in finding vulnerabilities in protocol
designs and make the designs even more secure. Formal analysis of protocols
is also a requirement for high levels of security certification, for example for
higher levels of Common Criteria certification [16]. It is therefore interesting
to look at the possibilities of these automated security analysis tools.

The goal of this thesis is to provide a method for analysing security
protocols through existing automated tools and to show that this method
is useful by applying it to a protocol designed by Security Company. The
protocol we analyse is the session key exchange of Secure Communication
Product. We specifically analyse the secrecy of the keys that are exchanged.

We first start in Chapter 2 by investigating existing analysis methods
and available tools. There we conclude that Tamarin [25] is the most suited
tool for the analysis of the Secure Communication Product protocol as it is
a mature tool that provides high levels of automation and allows us to model
the protocol due to its extensive modeling capabilities and its support for the
exclusive-or operator. In Chapter 3 we explain the notation of the Tamarin
tool and we continue by developing a method for formalizing a protocol in

4

Chapter 4. This method explains how to draw a protocol diagram from a
protocol design document and it explains how to transform this protocol
diagram into a Tamarin model. After we explain how to create a Tamarin
model, we go into how to analyse such a model in Chapter 5. We provide
examples of properties to prove. In Chapter 6 we apply these methods to
the Secure Communication Product protocol to develop a protocol diagram,
Tamarin model and lemma’s to prove. We analyse the protocol. The anal-
ysis found a vulnerability in the protocol. We apply a fix to the protocol
and verify that this fix removes the vulnerability. We end by stating our
conclusions and providing topics for future work in Chapter 7.

5

Chapter 2

Methods and Tools

There are several methods to analyse the security of communication protocol
designs. Two methods are analysis of symbolic security and analysis of
computational security [4]. In this Chapter we give an explanation of these
methods and discuss some of the available tools. We explain why we select
Tamarin [25] as the tool that we use in this thesis.

In this Chapter we only look at automated tools. We believe that auto-
mated tools instead of manual tools are the way forward because they allow
modelling much larger protocols and enable rapid testing of redesigns. This
is useful when an attack on a protocol is found and designers want to test
a solution. This is also useful if protocol requirements have changed and
a protocol redesign is necessary. It is then possible to analyse the security
of the design again without having to redo the entire security proof. This
allows a cycle of ‘breaking, fixing and verifying’ protocols [5, 6, 19, 23].

2.1 Symbolic Security Analysis
When applying symbolic security analysis, security protocols are analysed
in an abstract way. Instead of defining messages as bit strings, they are
defined as atomic terms. Since these terms are atomic they cannot be split
into smaller parts. This means that an adversary cannot partially decrypt or
guess some message, they can only know the whole message or not know the
message at all. In the symbolic model, functions work on these atomic terms
as black-box functions. This also means that, unlike the real world, crypto-
graphic primitives are perfect. This makes reasoning about the security of
a protocol design easier and enables (faster) automation of verification and
proofs [4], allowing us to model large and complete protocols.

Functions are modelled using equational theory. An example of the def-
inition of a function would be: Dec(Enc(m, k), k) = m. This definition
states that to retrieve the message m from an encrypted message Enc(m, k)
the function Dec(Enc(m, k), k) with key k must be applied. This is a very

6

simple method of defining (cryptographic) functions and is implied to be
perfectly secure. This is the case because there is no function that recovers
the message m from the encrypted message Enc(m, k) without the use of
the key k [21]. Adversaries are restricted to using this knowledge of equa-
tional theories. It is important that all equations are modelled properly, as
otherwise the adversary is significantly less capable than in the real world.
The adversary in the symbolic model is already less capable than in the real
world, because an adversary needs to know the full term (and not a partial
term) before it can be used in a function. Again: only if the adversary knows
the full key k, are they able to decrypt an encrypted message. These sim-
plifications enable the use of symbolic logic to verify and analyse protocol
designs in an automated way. The adversary in the symbolic model has full
network capabilities and can read, halt, modify and insert messages on the
network. This is also known as the Dolev-Yao adversary model [21].

There are two main types of security properties that we analyse: trace
properties and equivalence properties. Analysing trace properties means
analysing that an unwanted event never occurs. For example: we want there
to be no occurrence of the adversary knowing the session key. Analysing
equivalence properties means making sure that the adversary is unable to
distinguish between two protocols. One of these protocols is the actual
protocol design using ‘real’ values and equations and the other is the same
protocol sending random data. This can be especially useful in proving
privacy properties such as in e-voting systems [20].

Common tools that are used in symbolic security analysis are Tamarin
[25] and ProVerif [10]. We explain how these tools work and we discuss their
advantages, disadvantages and real-world usage. We also briefly discuss
DEEPSEC and SAPIC+.

2.1.1 Tamarin

Tamarin [25] is a symbolic security analysis tool that allows modelling a
wide range of security protocols [7]. It has been used to analyse (parts
of) protocols such as TLS 1.3 [19], WireGuard [22], 5G-AKA [6, 18] and
EMV [5]. A major advantage of Tamarin is that it is able to model and
automatically analyse and verify large and complete protocols. This is due
to its wide range of capabilities and the fact that it uses the symbolic model.
An example of such a large and complete protocol is the EMV standard: the
analysis of the EMV standard includes backwards compatibility, support for
contactless payments, online and offline payments and difference in Visa and
MasterCard schemes [5]. When analysing these protocols, researchers also
tried to find and apply fixes to make the protocol more secure. This was
done in the design phase of TLS 1.3 and it contributed to the security of
the protocol [19].

Tamarin works using multiset rewriting rules. These rewriting rules work

7

on the protocol participants’ states, messages on the network, fresh terms
and adversary knowledge [7]. For security properties (either as trace prop-
erties or as observational equivalence properties with the SAPIC extension)
Tamarin can find a counter-example or construct a proof, but only if it
terminates.

Tamarin also provides a web interface for interactive proofs and we con-
sider the multi-set rewriting language fairly easy to use. A disadvantage of
Tamarin is that it can sometimes take more effort to automatically prove
certain properties and that solving proofs can be slower than alternatives
such as ProVerif [13].

2.1.2 ProVerif

ProVerif is a symbolic security analysis tool that allows modelling protocols
in an applied process-calculus. A process-calculus is a tool for algebraically
describing systems, which is useful for studying distributed systems with
algebra [3]. ProVerif uses the existing applied pi-calculus [1] which supports
function symbols that can model cryptographic primitives [9]. Just like
Tamarin, it uses equational theory to define cryptographic primitives. In
this tool, protocols are modelled as processes. It can be used to analyse
secrecy and authentication properties and process equivalences. ProVerif
supports equational theory for symmetric and asymmetric encryption, but
due to its design it cannot support exclusive-or operations or Diffie-Hellman
groups without taking some shortcuts [10]. It also does not have a global
mutual state. It has been used to analyse a large number of protocols. For
example the Signal protocol [23], WireGuard [24] and privacy properties in
e-voting systems [20] have been analysed with ProVerif.

2.1.3 DEEPSEC

Tamarin (through the SAPIC extension [2]) and ProVerif already allow prov-
ing diff-equivalence properties, however they do not allow proving trace-
equivalence properties. For many protocols, diff-equivalence is too strong
and it finds many false attacks [12], as the adversary can see the internal state
of honest protocol runs [11]. DEEPSEC allows proving trace-equivalence
properties, which can be applied to more protocols. Trace-equivalence states
that an adversary cannot distinguish between two systems based on the
messages sent after interacting with it [14]. This is useful for proving the in-
distinguishability of certain properties, for example in e-voting. It has been
used to analyse a number of protocols including the Helios e-voting protocol
[12]. It uses a process-calculus similar to that of ProVerif.

8

2.1.4 SAPIC+

SAPIC+ is a tool that translates models and lemmas written in its process-
calculus to Tamarin, ProVerif and DEEPSEC [13]. It combines the strengths
of these tools to automatically construct proofs. It can use Tamarin’s ex-
tensive modeling capabilities to prove most trace properties and it can use
ProVerif for fast and more automated analysis. ProVerif and DEEPSEC can
be used to prove equivalence properties. Not all equational theory can be
modeled in all languages, for example the exclusive-or operator and Diffie-
Hellman groups cannot be modeled in ProVerif and then abstractions are
used to approach the results of this equational theory. SAPIC+ uses a
process-calculus language similar to that of DEEPSEC and ProVerif.

Since the translations of SAPIC+ are provably correct, lemmas that are
proven correct in one tool can be used as axioms in another tool. It is also
possible to run tools in parallel, terminating when one of the tools finds a
proof or attack.

2.2 Computational Security Analysis
In computational security analysis we analyse security protocols in a more
concrete way. We define messages as bit strings and cryptographic prim-
itives as probabilistic algorithms on these messages [4]. Adversaries are
probabilistic Turing machines (which can generate perfectly random values
and execute many algorithms), and security goals are defined in terms of the
adversaries’ probability of successfully reaching some goal. This can be de-
fined in a concrete or asymptotic way. Concrete goals describe a maximum
attack probability after attacking the protocol for some time. Asymptotic
security goals take the attack probability and time as a function of secu-
rity parameters such as the key length and set requirements based on these
values.

The two common methods of analysing protocols in the computational
security model are game-based and simulation-based experiments. Game-
based experiments state that an adversary must achieve some goal condi-
tion against a challenger and will try to guide the adversary to that goal.
Simulation-based properties run two versions of a scheme, one with the sim-
ulated cryptographic primitives and one with the ideal functionality. A
protocol is considered secure if for every attack on the real version an attack
on the ideal function is also found [4].

A downside of the computational security model is that it is hard to
model complete protocols. It is possible if the protocol is modelled and
analysed in smaller portions and then ‘glued together’ using composition
techniques, however these composition techniques do not guarantee all se-
curity properties [4].

9

There are few automated tools available that focus on analysing security
protocol designs. We briefly go into CryptoVerif.

2.2.1 CryptoVerif

CryptoVerif is a computational security analysis tool that works on con-
structing game-based proofs of concrete security properties [8]. It has been
used to analyse properties of the Signal protocol [23] and WireGuard [24].
It uses a language similar to that of ProVerif.

2.3 Tool Selection
Tamarin and ProVerif are the most mature and widely used modern tools for
protocol design analysis. We decide to use Tamarin because of its extensive
modelling abilities, interactive theorem-prover, high level of automation and
general user-friendliness. Tamarin allows us to model the protocol from
Chapter 6 because it has support for exclusive-or operations, which many
tools do not have.

10

Chapter 3

Notation

This chapter describes the notation of Tamarin. Tamarin uses a term rewrit-
ing system in the symbolic model and its notation reflects that [25]. We de-
fine functions, equational theories, rules and lemmas to model our protocol
and security properties. Tamarin reads these from a text file and applies
its constraint solving algorithm to provide an analysis of the security prop-
erties. In this chapter we describe how all these parts are defined and how
they work. We do not go into the SAPIC [2] extension of Tamarin. Most of
this chapter is based on the Tamarin manual [27].

3.1 Functions and Equational Theories
Functions define the cryptographic primitives of Tamarin. They are defined
at the start of the theorem file, in the functions definition. The definition of
a function states the symbol, its arity and whether it is private or not. The
symbol is the name of the function, and the arity of a function is the amount
of arguments that it takes. If a function defines no arity it is a constant.
Adversaries can access all functions except those marked with [private].
Because of the modelling freedom of these functions, it is simple to model
schemes for (a)symmetric encryption, signing and hashing. We also have
the possibility to model the exclusive-or operator, Diffie-Hellman groups
and more. Below we define a few functions to show the different capabilities
of the equational theory in Tamarin. We define a hash function, a symmetric
encryption and decryption function, a private function and functions for a
signature scheme.

1 functions: hash/1, senc/2, sdec/2, someprivatefunction/1 [private], sign/2,
verify/3, pk/1, true

Because the hash/1 function has an arity of one we can call it with
one argument, like: hash(`my string'). The symmetric encryption func-
tion senc/2 has an arity of two so we call it with two arguments, like:
senc(`my secret message', ~k). The ~ (fresh) prefix describes a fresh

11

(random) value which can be generated with the built-in Fr(~somevariable)
function. Other fact prefixes are discussed in Section 3.2.2.

The equational theory for these functions is then defined in the equations
section, describing the relations between parameters. An equation states
that we can swap the left side with the right side, if the parameters ‘fit’. An
equation could for example be used to replace the application of the decrypt
function on an encrypted value with the original unencrypted value. If there
is no equational theory there is no possibility to replace the function appli-
cation with something else. This is useful for a hash function for example,
which should provide no way of revealing the original value. Thus, in our
example there is only an equation for symmetric decryption and signature
verification. The hash function does not have any associated equations as
it is a one-way function and there is no way to reverse it. The symmet-
ric encryption function can be reversed through the symmetric decryption
function, which we define below. We also define an equation for verifying a
signed message, which uses the true constant. Because adversaries can only
use the equations that are defined, it is important to provide all the relevant
equational theory as otherwise attacks might be missed.

1 equations: sdec(senc(m, k), k) = m, verify(sign(m,sk),m,pk(sk)) = true

Note that only convergent equational theories with the finite variant
property [17] are supported by the Tamarin prover. A theory falling under
these assumptions means that it can be written in a normal form (meaning
that it cannot be rewritten any further) in a fixed number of steps. This
includes Abelian groups (for example the exclusive-or operator) and Diffie-
Hellman groups, and these groups can therefore be modelled in Tamarin.

Tamarin comes with some built-in message theories that can be included
with builtins. These are listed below.

hashing provides a one-way hashing function.

symmetric-encryption provides functions for symmetric encryption and
decryption.

assymetric-encryption models a public key encryption scheme.

signing models a signature scheme.

reveal-signing models a message-revealing signature scheme.

diffie-hellman models Diffie-Hellman groups.

xor provides functionality for the exclusive-or operator.

bilinear-pairing models bilinear groups, extending the Diffie-Hellman the-
ory.

12

multiset provides the + operator to model multisets.

reliable-channel models reliable channels for the SAPIC extension.

Full descriptions can be found in the Tamarin manual [27]. Tamarin by
default includes the pair/2 function, and the fst/1 and snd/1 functions to
extract values from pairs. < x, y > can also be used instead of pair(x, y)
and < v1, v2, ..., vn− 1, vn > is equivalent to < v1, < v2, ..., < vn− 1, vn >
... >.

If we include the hashing, symmetric-encryption and signing built-ins,
there is no need to define our own function definitions and equational theory
anymore. We include these built-ins as follows:

1 builtins: hashing, symmetric-encryption, signing

3.2 Rules
After defining the primitives, we can work on modelling the protocol using
rules. Tamarin works by using a term rewrite system. Such a system is well-
suited for modelling parallel systems. We define rules that take some set of
facts from the state and output another set of facts to the state. The state is
a multiset of facts which we call the “bag of facts”. To execute a rule, all facts
that the rule takes must be present in the bag of facts. The rule removes
these facts from the bag of facts and puts new facts back in the bag of facts.
A rule can also specify action facts which are used to model trace proper-
ties. An example rule ClientRule1 (listing 3.1) takes nothing from the bag,
states the action fact ExecuteClientRule1('a') and adds A('1', 'a')
and B('2', 'b') to the bag of facts. Another rule ClientRule2 takes
A(n, c) from the bag, states the action fact ExecuteClientRule2(n, c)
and adds C(n) and D('4', hash(c)) to the bag of facts. Because the
second rule takes the fact A(n, c) from the bag of facts, it can only be
executed when that fact is in the bag. In this example that fact can
be added by the first rule. Execution of ClientRule1 leads to a bag
[A('1', 'a'), B('2', 'b')] and if we execute ClientRule2 we end up
with a bag [C('1'), D('4', hash('a'))].

1 rule ClientRule1:
2 []
3 --[ExecuteClientRule1('a')]->
4 [A('1', 'a'), B('2', 'b')]
5

6 rule ClientRule2:
7 [A(n, c)]
8 --[ExecuteClientRule2(n, c)]->
9 [C(n), D('4', hash(c)), Out(hash(c))]

Listing 3.1: ClientRule1 and ClientRule2 in Tamarin

13

3.2.1 Local Macros

To make protocol rules more readable we use local macros with the let .. in
block. The values defined in this block will be substituted in the protocol
rule. This is useful when reusing terms. Global macros that are available
outside of rules are not supported by default, but support can be added by
using a preprocessor such as m4. The analysis of TLS 1.3 makes extensive
use of this preprocessor. Listing 3.2 shows the definition of the ClientSetup
rule, which uses four macros a, dec_a, session_setup_answer and new_key.

1 rule ClientSetup:
2 let
3 a = senc(enc_v, k)
4 dec_a = sdec(enc_v, ~mykey)
5 session_setup_answer = <'0x01', 'SESSION_SETUP_ANSWER', a>
6 new_key = ~mykey XOR a
7 in
8 [CState(~ID_C, 'SENT_SETUP', ~mykey)
9 , In(session_setup_answer)]

10 --[
11 C_Rcv_Setup(~ID_C, ~mykey, a, ~new_key)
12]->
13 [CState(~ID_C, 'READY', ~new_key)]

Listing 3.2: Usage of macros in Tamarin

3.2.2 Facts and Messages

Tamarin uses facts to carry messages. In the previous example we saw the
facts A to D containing messages such as '1' and hash('a'). Facts need
to keep the same arity.

Special Facts

There are three special facts that are used to model the network and to
model the generation of fresh (random) values.

In(m) models receiving a message from the network.

Out(m) models sending a message on the network.

Fr(x) models generating a fresh (random) value. For example, a new pri-
vate key can be modelled with Fr(~PrK).

When we exchange a message from one party to another one, the In and
Out rules are used. The sending party uses the Out rule, which then lets
the other party use the In rule. Because adversaries can intercept, halt and
modify the network traffic, the messages that are received via these rules
can be intercepted, halted and modified by them.

14

A fact can be made persistent by adding the ! prefix. When we make a
fact persistent it will stay in the bag of facts after it is used. This can for
example be useful when we want to model a long-term key: !Ltk(~pubkey).

Variable Types

Tamarin provides four message types which are described below. Fresh and
public types are always of type ‘message’ and a variable cannot be both of a
fresh and public type. A string 'hello' is automatically defined as a public
constant.

~k denotes that the variable is fresh. This can be used when generating
fresh keys for example.

$A denotes that the variable is public and constant. For example a user-
name.

#t is used to denote a timestamp. This is used in lemmas, see Section
3.3.1.

3.3 Trace Properties
In Tamarin we verify properties for a protocol by writing lemmas with trace
properties. We write these trace properties using first-order logic (often
called predicate logic) on the action facts that are recorded when rules are
executed at specific time points. Formulas are constructed using the quan-
tifiers All (for all) and Ex (exists), logical connectives ==> (implication),
& (conjunction), | (disjunction), not (negation), action constraint a @ t
(where action a occurs at time t), temporal ordering i < j and temporal
equality #i = \#j, message equality x = y and predicates.

3.3.1 Lemmas

To write a lemma, we use the lemma construct. These are the properties we
want to prove. We can reason about the adversary’s knowledge using the
K(x) function. Everything an adversary knows, can be queried using this
rule. Listing 3.3 shows two lemma definitions.

1 lemma Rule2Executed:
2 exists-trace
3 "Ex a b #i.
4 ExecuteClientRule2(a, b) @ i"
5

6 lemma CIsSecret:
7 all-traces // stating all-traces is optional
8 "All n c #i #j.
9 ExecuteClientRule2(n, c) @ i

15

10 ==> not K(c) @ j"

Listing 3.3: Lemmas in Tamarin

Lemma Annotations

To help the Tamarin prover automatically verify lemmas, we can annotate
lemmas with the following options:

sources forces the lemma to be verified using induction, to use the raw
sources (see Chapter 5) and to generate refined sources, which will be
used by all non-sources lemmas.

use_induction forces the prover to use induction as the first step on this
lemma instead of having to choose between simplification and induc-
tion.

reuse makes the verification of the lemmas following this lemma use this
lemma.

hide_lemma=somelemma blocks some lemma from being used to verify
this lemma.

Annotations are added to square brackets after the lemma name:
1 lemma reusable_induction_lemma [reuse, use_induction]:
2 "..."

3.3.2 Restrictions

Often modelling a protocol requires certain restrictions. For example: rules
may only run once, or two values must be equal. We can model this using the
restriction construct. These restrictions are modelled as trace properties
and are applied as an action fact in a rule, such as in the Equality restriction
in Listing 3.4.

1 rule CSetup:
2 [CState(~ID_C, 'INIT', ~mykey)
3 , In(h(s_key))]
4 --[
5 Eq(~mykey, s_key) // make sure the keys match!
6 , C_Rcv_Setup(~ID_S, ~mykey, s_key)
7]->
8 [CState(~ID_S, 'READY', ~mykey)]
9

10

11 // Add Eq(x, y) statement
12 restriction Equality:
13 "All x y #i. Eq(x,y) @ i ==> x = y"

Listing 3.4: Restrictions in Tamarin

16

Embedded Restrictions

It is also possible to embed a restriction into a rule itself. The restriction
in Listing 3.5 is the same as the restriction in Listing 3.4, as embedded
restrictions are just syntactic sugar.

1 rule CSetup:
2 [CState(~ID_C, 'INIT', ~mykey)
3 , In(h(s_key))]
4 --[
5 _restrict(~mykey = s_key) // make sure the keys match!
6 , C_Rcv_Setup(~ID_S, ~mykey, s_key)
7]->
8 [CState(~ID_S, 'READY', ~mykey)]

Listing 3.5: Embedded restrictions in Tamarin

3.3.3 Predicates

Predicates are defined with predicates. They are substituted when used in
trace properties. This can make trace properties easier to read. In Listing 3.6
we use a predicate for the exclusive-or operator to make the either_a_or_b
lemma more readable.

1 predicates: ExlusiveOr(p, q) <=> (p | q) & Not (p & q)
2

3 ...
4

5 lemma either_a_or_b:
6 "All x y #i. A(x, y)@i ==> ExclusiveOr(K(x), K(y))"

Listing 3.6: Predicates in Tamarin

17

Chapter 4

Formalizing and Modeling

Now that we have an idea of what a model in Tamarin looks like, we can
start formalizing and modeling protocols. To do so we developed a method
which follows two steps:

1. Draw a diagram for an overview of the protocol.

2. Formalize this diagram into concrete steps in the Tamarin language.

In this Chapter we go into these steps, why we perform them and how
we perform them properly. It is important that we closely follow the speci-
fication and only model things that are in the specification. If the protocol
lacks details, we ask the protocol designers for a clarification and try to up-
stream these clarifications into the protocol specification so our model stays
true to the specification. If the protocol designers cannot be contacted, as-
sumptions have to be made, preferably based on existing implementations
of the protocol.

4.1 Protocol Diagram
We assume that there is at least some description of the protocol in a natural
language such as an RFC document. To get a better overview of the protocol,
we first create a diagram (see figure 4.1) of it. Such a diagram contains the
following: two or more communicating parties (e.g. Alice and Bob), private-
and public pre-shared variables for each party and joint communication and
computation steps of the protocol. We go into our recommended notation
for each part.

4.1.1 Equational Theory

Before drawing the actual protocol, the equational theory that is used in
the protocol is written down. This consists of three parts: function symbols,

18

Diffie-Hellman Key Exchange | Continue From Init. Key Gen.
Functions:
Equations:
Tamarin Built-ins: diffie-hellman

. Start Protocol .

Alice Bob
Public: p, g, A(= ga mod p) p, g,B(= gb mod p)

Private: a b

Send Init. Req.

‘Alice’, A Resp. To Init. Req.

KB,A ← Ab mod p

Complete Setup ‘Bob’, B

KA,B ← Ba mod p

Figure 4.1: Diffie Hellman Key Exchange Protocol Diagram

function equations and built-ins imported from Tamarin. For functions their
symbol and parameters are written such as wrap(m, k) and equations are
defined as applications of the function and results separated by an equality
sign like: sdec(senc(m, k), k) = m.

4.1.2 Parties

Now that we have defined the equational theory we start drawing the proto-
col. All communicating parties in the protocol are modelled. Most protocols
have two communicating parties, but it can also be the case that there are
more. For example in 5G Authenticated Key Exchange there is a scenario
with three communicating parties (mobile device, home network and serving
network) [6]. These parties get short and descriptive names which should be
similar to the ones found in the original documentation. If the specification
already uses names, then they are reused. The names of the parties are
written at the top of the diagram with some horizontal space in between to
allow for communication lines.

19

4.1.3 Sub Protocols

Sometimes there are sub protocols for steps such as initial key exchange,
session key exchange and key renegotiation. Since Tamarin allows modelling
large and complete protocols, we recommend including them in our model.
If one protocol continues from another protocol, then that is specified at the
top. To specify what values have already been exchanged we write down
the public and private pre-exchanged variables below the party names.

4.1.4 Protocol Steps

We note a new step in the protocol every time data is sent or received. These
steps receive a short descriptive name. If the protocol specification already
gives names to steps, they are reused. In Tamarin we use these names for
the rules of the model.

4.1.5 Communication

To note some communication between two parties, we draw an arrow and
write the messages that are sent on top. The arrow points away from the
sending party, to the receiving party. In Tamarin this is modeled with Out
in the sending rule and In in the receiving rule. This communication is thus
split over two protocol steps.

4.1.6 Work

Work is denoted as an assignment with a variable name, a left-pointing arrow
and some work on the right side of the arrow. All variables that are used on
the right hand side must be known to the specific party. All variables that
have been calculated in some step can be reused in a later step.

Only functions that are defined at the start of the diagram, or that are
imported as a Tamarin built-in can be used to execute work. A special type
of work is initializing a fresh (random) value. In our diagram this is written
as v ← Fr, which translates to Fr(~v) in Tamarin.

4.2 Formalizing a Protocol Diagram
Now that we have an overview of the protocol, it can be transformed into a
model in Tamarin. Protocols in Tamarin are modelled in a file containing
functions, equational theory, imports from the standard library, rules and
lemmas.

We start writing our theory file with naming the theory: theory <name>
and stating that we want to begin. After those two lines we note all the
functions, equational theory and imports from the standard library accord-
ing to the description in Chapter 3.

20

4.2.1 Initialization Steps

We continue by transforming the diagram steps to rules. The first rules
we write are the initialization rules (see Listing 4.1). These rules initialize
public, private and pre-shared variables. First, the private variables are
initialized with the Fr(~var) function in the input part of the rule. Each
party also initializes an identifier using the same Fr function. We use these
identifiers to keep the state attached to a specific protocol run. In the output
part of the rule we create an initial state for each party in which we include
the identifier and their private, pre-shared and public (denoted as $var)
variables. In the trace part we include a message containing the identifier
and possibly some public values.

1 theory dhexchange
2 begin
3

4 builtins: diffie-hellman
5

6 rule Init_A:
7 let
8 pkA = 'g'^~ltkA
9 in

10 [Fr(~idA), Fr(~ltkA)]
11 --[Create($A, ~idA)]->
12 [A_Init(~idA, ~ltkA), !Ltk($A, pkA, ~ltkA)]
13

14 rule Init_B:
15 let
16 pkB = 'g'^~ltkB
17 in
18 [Fr(~idB), Fr(~ltkB)]
19 --[Create($B, ~idB)]->
20 [B_Init(~idB, ~ltkB), !Ltk($B, pkB, ~ltkB)]

Listing 4.1: Start of the Tamarin Model

4.2.2 Protocol Steps

Having initialized the protocol, we work on modelling the protocol steps.
These are implemented in order of appearance and start by creating a rule
and retrieving the previous state in the input part of the rule. Any received
message is retrieved through the In function. In the output we state the
message(s) that we want to send through the Out function and we save a new
state with the variables that are required in later steps. This new state is
named after the name of its rule. In the trace a message is added containing
the identifier and any messages that we want to prove trace properties over.
This rule gets a name that corresponds to the description of the step in the
diagram. Listing 4.2 contains some example rules. We recommend using

21

macros to keep rules simple. Messages and (computed) variables that are
used in multiple places of a rule can be ‘stored’ in a macro

22 rule SendInitialRequest:
23 [A_Init(~idA, ltkA), !Ltk(A, pkA, ltkA)]
24 --[SendInitialRequest(A)]->
25 [Out(<'Alice', pkA>)
26 , A_SentInitialRequest(~idA, ltkA)]
27

28 rule RespondToInitialRequest:
29 let
30 K_BA = pkA^ltkB
31 in
32 [B_Init(~idB, ltkB), !Ltk(B, pkB, ltkB)
33 , In(<'Alice', pkA>)]
34 --[RespondToInitialRequest(B, K_BA)]->
35 [Out(<'Bob', pkB>)
36 , B_RespondedToInitialRequest(~idB, ltkB, K_BA)]
37

38 rule CompleteSetup:
39 let
40 K_AB = pkB^ltkA
41 in
42 [A_SentInitialRequest(~idA, ltkA), !Ltk(A, pkA, ltkA)
43 , In(<'Bob', pkB>)]
44 --[CompleteSetup(A, K_AB)]->
45 [A_CompletedSetup(~idA, ltkA, K_AB)]

Listing 4.2: Protocol Rules in Tamarin

4.2.3 Public Key Infrastructure

We can model public key infrastructure by adding a rule (see Listing 4.3) for
key generation. The private key and public key are modelled as persistent
facts and can be retrieved by client and server rules. Retrieving the private
key (see Listing 4.4) should only be done in the server rules and not in any
client rules. The public key is sent over the network so that it is available to
the adversary. To prove forward secrecy properties we also add a long-term
key reveal rule (see Listing 4.5) that allows an adversary to retrieve a private
key for an agent X. This will be explained further in Chapter 5.

1 rule GenerateKeyPair:
2 [Fr(~ltk)]
3 -->
4 [!Pk($S, pk(~ltk))
5 , Out(pk(~ltk))
6 , !Ltk($S, ~ltk)]

Listing 4.3: Key generation rule

1 rule SendEncryptedData:
2 [Fr(~data)

22

3 , !Pk($S, pubkeyS)]
4 --[SendEncryptedData(~data, pubkeyS)]->
5 [Out(aenc(~data, pubkeyS))]

Listing 4.4: Retrieving the public key

1 rule LtkReveal:
2 [!Ltk(X, ltk)]
3 --[LtkReveal(X)]->
4 [Out(ltk)]

Listing 4.5: Long-term key reveal

4.2.4 Next Steps

After modelling our protocol we write restriction, helper and security prop-
erty lemmas. We go into how to write lemmas for the properties we want to
prove in Chapter 5. The theorem file ends with end. In Chapter 5 we also
describe how to make sure the model works properly.

23

Chapter 5

Proving

Having formalized our model in Tamarin, we can work on analysing it.
To do so we formulate the properties we want to prove as lemmas and
analyse them. As described in Chapter 3, lemmas are written using first-
order logic. We provide examples for many types of security properties,
however, it is not an inclusive list and care should be taken to think up
all required security properties. It is also important to write these lemmas
properly, as an incorrect lemma will ‘prove’ an incorrect property, thus not
actually proving anything of value at all.

The basis for many of these properties comes from the analysis of TLS 1.3
[19] as this is a protocol that has the same security goals as many other secure
communication protocols. We look into the same properties and explain the
lemmas used by this analysis. For some properties we also provide examples
for the Diffie-Hellman Key Exchange protocol from Chapter 4.

Tamarin analyses these properties automatically by solving a constraint
system based on the protocol model and the property in ‘negation normal
form’ [26]. An algorithm is applied to automatically and soundly transform
the property to this special form and solve the constraint system. Because
the property is in a negated form, we consider a property proven correct if
for every system the algorithm finds a counter-example. If a solved system
is found, a property is proven false. In such a case, Tamarin illustrates the
counter-example (in the non-negated form) to the property.

5.1 Protocol Run
The first lemma (see Listing 5.1) we write is the lemma confirming that
a successful interaction is possible. This will often take the form of an
exists-trace lemma with an exists statement stating that there is indeed
a trace where two or more clients have successfully exchanged keys. Without
knowing for sure that the model allows for a normal trace, many security
properties will not yield any useful result. For example: a property stating

24

that a session key is never known by the adversary is not of much use if a
session key is never exchanged in a normal protocol run either: the property
might hold, even though there is no session key secrecy.

1 lemma executable: exists-trace
2 "Ex A B k #i #j.
3 RespondToInitialRequest(B, k)@i
4 & CompleteSetup(A, k)@j
5 & not (Ex X #r. RevealLtk(X)@r)"

Listing 5.1: Successful protocol run lemma in Tamarin

5.2 Secrecy Properties
We analyse secrecy properties because we want to know if certain secret
variables stay secret. We can study ‘normal’ secrecy and forward secrecy
properties. For proving forward secrecy properties we add a long-term key
reveal rule (see Listing 5.2) to our model. This rule allows an adversary to
retrieve the long-term key, which is important to analyse forward secrecy
properties. Without any constraints an adversary will always be able to
retrieve the key through the long-term key reveal rule and break protocol
security, thus usage of this rule needs to be limited. To limit the usage of
this rule we add conditions that the key reveal rule has not been used at
all in all ‘normal’ lemmas except for forward secrecy properties where we
allow executing the rule after some actions have been executed. Of course,
forward secrecy implies secrecy and thus if a forward secrecy property can
be proven, then a secrecy property also holds.

1 rule RevealLtk:
2 [!Ltk(X, pk, ltk)]--[RevealLtk(X)]->[Out(ltk), Out(pk)]

Listing 5.2: Long-term key reveal in Tamarin

5.2.1 Key Secrecy

Key secrecy is one of the most important properties we analyse. Lemmas
to prove the secrecy of keys often take the following form: “for all variables
it holds that: if we have successfully exchanged keys and the key reveal
rules are not used, then the adversary does not know the secret key”. A
simple example is given in Listing 5.3 and a more extensive example from
the analysis of TLS 1.3 is given in Listing 5.4.

1 lemma key_secrecy:
2 "All A B k #i #j.
3 RespondToInitialRequest(B, k)@i &
4 CompleteSetup(A, k)@j &
5 not (Ex X #r. RevealLtk(X)@r)

25

6 ==> not Ex #g. K(k)@g"

Listing 5.3: Key secrecy lemma in Tamarin

1 lemma secret_session_keys [hide_lemma=sig_origin,hide_lemma=posths_rms]:
2 "All tid actor peer kw kr pas #i.
3 SessionKey(tid, actor, peer, <pas, 'auth'>, <kw, kr>)@i &
4 not (Ex #r. RevLtk(peer)@r & #r < #i) &
5 not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r < #i) &
6 not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r < #i) &
7 not (Ex rms #r. RevealPSK(actor, rms)@r) &
8 not (Ex rms #r. RevealPSK(peer, rms)@r)
9 ==> not Ex #j. K(kr)@j"

Listing 5.4: TLS 1.3 key secrecy lemma

5.2.2 Forward Secrecy

The forward secrecy lemma is similar to that of the normal key secrecy,
but we allow leaking a long-term key after the session key was generated.
This leakage is limited by using the temporal ordering operators < and =.
The lemma in Listing 5.5 is similar to the normal key secrecy in Listing 5.3
except that it now only restricts the long-term key reveal to not be used
before the session is completed.

1 lemma forward_key_secrecy:
2 "All A B k #i #j.
3 RespondToInitialRequest(B, k)@i &
4 CompleteSetup(A, k)@j &
5 not (Ex X #r. RevealLtk(X)@r & #r < #j)
6 ==> not Ex #g. K(k)@g"

Listing 5.5: Forward secrecy lemma in Tamarin

5.3 Authentication Properties
Authentication properties often follow the following reasoning: “if a client
believes they agreed on some property, then the server also agrees on this
property”. Thus we analyse if the client and server exchange the same values.

5.3.1 Establishing Same Session Keys

In a session key agreement lemma we write that the client and server always
agree on the same session keys if they both believe that a successful key
exchange has been completed. This can be seen in the example from the
TLS 1.3 lemma in Listing 5.6.

1 lemma session_key_agreement [hide_lemma=sig_origin]:
2 "All tid tid2 actor peer actor2 peer2 nonces keys keys2 cas as2 #i #j #k #

l.

26

3 SessionKey(tid, actor, peer2, <cas, 'auth'>, keys)@i &
4 running(Nonces, actor, 'client', nonces)@j &
5 SessionKey(tid2, peer, actor2, as2, keys2)@k &
6 running2(Nonces, peer, 'server', nonces)@l &
7 not (Ex #r. RevLtk(peer)@r & #r < #i & #r < #k) &
8 not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r < #i & #r < #k) &
9 not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r < #i & #r < #k) &

10 not (Ex rms #r. RevealPSK(actor, rms)@r & #r < #i & #r < #k) &
11 not (Ex rms #r. RevealPSK(peer, rms)@r & #r < #i & #r < #k)
12 ==>
13 keys = keys2"

Listing 5.6: TLS 1.3 session key agreement lemma

5.3.2 Uniqueness of Session Keys

The property of the session keys always being unique can be rewritten to the
definition that if two session keys are the same, they must be from the same
session. This is shown in the example from the TLS 1.3 lemma in Listing
5.7.

1 lemma unique_session_keys:
2 "All tid tid2 actor peer peer2 kr kw as as2 #i #j.
3 SessionKey(tid, actor, peer, as, <kr, kw>)@i &
4 SessionKey(tid2, actor, peer2, as2, <kr, kw>)@j
5 ==>
6 #i = #j"

Listing 5.7: TLS 1.3 uniqueness of session keys lemma

5.3.3 Peer Authentication and Key Compromise Imperson-
ation Resistance

TLS 1.3 provides unilateral and mutual authentication. Unilateral authenti-
cation (in Listing 5.8) states that if the client believes that it has completed a
handshake with a server, that server has previously run the handshake with
the client. Mutual authentication (in Listing 5.9) means that this property
also holds both ways if both the client and server believe that they com-
pleted a handshake with each other. These two properties are also used to
prove key compromise impersonation resistance.

1 lemma entity_authentication [reuse, use_induction]:
2 "All tid actor peer nonces cas #i.
3 commit(Nonces, actor, 'client', nonces)@i & commit(Identity, actor, '

client', peer, <cas, 'auth'>)@i &
4 not (Ex #r. RevLtk(peer)@r & #r < #i) &
5 not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r < #i) &
6 not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r < #i) &
7 not (Ex rms #r. RevealPSK(actor, rms)@r) &
8 not (Ex rms #r. RevealPSK(peer, rms)@r)

27

9 ==> (Ex tid2 #j. running2(Nonces, peer, 'server', nonces)@j & #j <
#i)"

Listing 5.8: TLS 1.3 unilateral entity authentication lemma

1 lemma mutual_entity_authentication [reuse, use_induction]:
2 "All tid actor peer nonces sas #i.
3 commit(Nonces, actor, 'server', nonces)@i & commit(Identity, actor, '

server', peer, <sas, 'auth'>)@i &
4 not (Ex #r. RevLtk(peer)@r & #r < #i) &
5 not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r < #i) &
6 not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r < #i) &
7 not (Ex rms #r. RevealPSK(actor, rms)@r) &
8 not (Ex rms #r. RevealPSK(peer, rms)@r)
9 ==> (Ex tid2 #j. running2(Nonces, peer, 'client', nonces)@j & #j <

#i)"

Listing 5.9: TLS 1.3 mutual entity authentication lemma

28

Chapter 6

Analysis of Secure
Communication Product

To test and confirm the methods described in Chapter 4 and 5, we apply
them to the Secure Communication Product protocol. The Secure Commu-
nication Product protocol uses symmetric key cryptography to establish a
secure connection between a Client and a Server. Modelling the protocol
and analysing security properties yielded some interesting results. We only
analyse the session key exchange and not the full protocol. Recall that this
is only a part of the protocol and that details such as names and parameters
have been changed due to the non-disclosure agreement.

6.1 Diagram
We transform the existing documentation for the session key exchange into a
protocol diagram (see figure 6.1). To explain what happens in the protocol:
the Secure Communication Product protocol uses a pre-shared symmetric
traffic key encryption key (TrKEK) to exchange four fresh values (two from
the Client and two from the Server). The first pair (one value from the
Client and one value from the Server) is used to create a session key by
applying a bitwise XOR on the two fresh values. The second pair is used to
ratchet the TrKEK by applying a bitwise XOR on the old TrKEK and the
two values. Exchanging these session keys allows for sending encrypted data
over an insecure network. Ratcheting the TrKEK makes sure that forward
secrecy is kept.

6.2 Model
We model the protocol after the diagram we drew. All the cryptographic
primitives and functions we use in the protocol diagram are also available
in Tamarin. We used the built-in exclusive-or theory and wrote our own

29

Secure Communication Product Protocol | Continue From Enrolment
Functions: wrap(m, k),unwrap(w, k), keyid(k)
Equations: unwrap(wrap(m, k), k) = m
Tamarin Built-ins: xor

. .Start Protocol .

Client Server
Private: TrKEK TrKEK
Client Init. Req.
cr3← Fr
cr4← Fr

′0x01′,
′SESS_STP′,

keyid(TrKEK),
wrap(< cr3, cr4 >,TrKEK)

Server Cmplt. Stp.

sr3← Fr
sr4← Fr
TrKEK← TrKEK⊕ cr4⊕ sr4
sess_key← cr3⊕ sr3

Client Cmplt. Stp.

′0x01′,
′SESS_STP_ANS′,

wrap(< sr3, sr4 >,TrKEK)

TrKEK← TrKEK⊕ cr4⊕ sr4
sess_key← cr3⊕ sr3

Figure 6.1: Secure Communication Product protocol diagram

wrapping and key id functions. These functions are the same as the standard
symmetric cryptography and hashing functions, but use a different name to
keep the documentation, protocol diagram and Tamarin model similar. In
both the Client and Server we keep a state containing a thread id, a keyword
for the ‘state’ they are in and the traffic key encryption key, possible session
key, possible fresh values and possible packet counter. Macros are used to
maintain readability of rules and keep calculations out of the input, output

30

and trace sets of rules. This can for example be seen in the Client setup rule
(Listing 6.1).

1 rule C_Setup:
2 let
3 session_setup_answer = <'0x01', 'SESSION_SETUP_ANSWER', wrap(<sr3, sr4>,

msg_key)>
4 wrapped_msg = unwrap(wrap(<sr3, sr4>, msg_key), ~TrKEK)
5 sr3 = fst(wrapped_msg)
6 sr4 = snd(wrapped_msg)
7 sess_keys = ~cr3 XOR sr3
8 new_TrKEK = ~TrKEK XOR ~cr4 XOR sr4
9 in

10 [CState(~ID_C, 'SENT_SETUP', <~TrKEK, ~cr3, ~cr4>)
11 , In(session_setup_answer)]
12 --[
13 C_Rcv_Setup(~ID_C, ~cr3, ~cr4, sr3, sr4, ~TrKEK, sess_keys, new_TrKEK)
14]->
15 [CState(~ID_C, 'READY', <new_TrKEK, sess_keys, '0'>)]

Listing 6.1: Client setup rule

6.3 Validity of the Model
To check the validity of the model we want to know if its possible for the
Client and Server to exchange the same session key and traffic key encryption
key. To do so we add a lemma (see Listing 6.2) stating that there exists such
a trace. Analysing this lemma results in Tamarin terminating and finding a
solution, thus proving that it is possible to have a successful protocol run.

1 lemma successful_run: exists-trace
2 "Ex ID_C ID_S TrKEK cr3 cr4 sr3 sr4 sess_keys new_TrKEK #i #j.
3 C_Rcv_Setup(ID_C, cr3, cr4, sr3, sr4, TrKEK, sess_keys, new_TrKEK)@i &
4 S_Rcv_Setup(ID_S, cr3, cr4, sr3, sr4, TrKEK, sess_keys, new_TrKEK)@j &
5 not (Ex x #r. RevealLtk(x)@r)"

Listing 6.2: Successful run lemma

6.4 Security Properties
For this protocol we analyse the (forward) secrecy of the traffic key encryp-
tion key and session key. Problems that were found and solutions that were
tested are discussed in Section 6.5.

6.4.1 Traffic Key Encryption Key Secrecy

To analyse the secrecy of the traffic key encryption key we want to prove that
whenever the Client believes that they have executed a proper session setup,
the adversary does not know their current or new traffic key encryption key.

31

The adversary is not allowed to execute a long-term key reveal in this case.
Analysing this lemma (see Listing 6.3) results in Tamarin terminating and
finding no counter-example, thus proving the property to be true.

1 lemma trkek_secrecy:
2 "All ID_C cr3 cr4 sr3 sr4 TrKEK sess_keys new_TrKEK #i.
3 C_Rcv_Setup(ID_C, cr3, cr4, sr3, sr4, TrKEK, sess_keys, new_TrKEK)@i &
4 not (Ex x #r. RevealLtk(x)@r)
5 ==> not ((Ex #r. K(TrKEK)@r) | (Ex #r. K(new_TrKEK)@r)) "

Listing 6.3: TrKEK secrecy lemma

6.4.2 Session Key Secrecy

To analyse the secrecy of the session key we want to prove that whenever the
Client believes that they have executed a proper session setup, the adversary
does not know the session key. Again, the adversary is not allowed to execute
a long-term key reveal in this case. Analysing this lemma (see Listing 6.4)
results in Tamarin terminating and finding a counter-example.

1 lemma sess_key_secrecy:
2 "All ID_C cr3 cr4 sr3 sr4 TrKEK sess_keys new_TrKEK #i.
3 C_Rcv_Setup(ID_C, cr3, cr4, sr3, sr4, TrKEK, sess_keys, new_TrKEK)@i &
4 not (Ex x #r. RevealLtk(x)@r)
5 ==> not Ex #r. K(sess_keys)@r"

Listing 6.4: Session key secrecy lemma

6.4.3 Forward Secrecy

To analyse the secrecy of the session key we want to prove that whenever the
Client believes that they have executed a proper session setup, the adversary
does not know the session key. This property should then hold even if the
traffic key encryption key of a later session setup is leaked. Analysing this
lemma (see Listing 6.5) results in Tamarin not terminating and running out
of memory.

1 lemma sess_key_forward_secrecy:
2 "All ID_C ID_S TrKEK cr3 cr4 sr3 sr4 sess_keys new_TrKEK #i #j.
3 C_Rcv_Setup(ID_C, cr3, cr4, sr3, sr4, TrKEK, sess_keys, new_TrKEK)@i &
4 S_Rcv_Setup(ID_S, cr3, cr4, sr3, sr4, TrKEK, sess_keys, new_TrKEK)@j &
5 not (Ex x #r. RevealLtk(x)@r & #r < #i & #r < #j)
6 ==> not Ex #r. K(sess_keys)@r"

Listing 6.5: Session key forward secrecy lemma

32

6.5 Problems and Solutions

6.5.1 Session Key Secrecy

Analysis of the secrecy of session keys resulted in Tamarin finding a counter-
example. This means that there is an attack where an adversary knows the
session key of the Client. Looking at the attack trace, we find that it is
possible for the adversary to execute a replay attack: if the two fresh values
that are sent by the Client in the Client init step are sent back to the Client
in the Client setup step, the session key will be calculated as cr3⊕ cr3. This
evaluates to zero, and zero is known by the adversary, thus breaking the
secrecy of the session key.

To solve the vulnerability we apply domain separation so that it is no
longer possible to replay the data sent by the Client to the Client itself.
We do this by changing the sent message wrap(<cr3, cr4>, trkek) to
wrap(<cr3, cr4, `client'>, trkek). We apply the same solution to the
Server side, adding `server' instead. On the receiving end we also change
these messages. This works because all data in the wrap function is en-
crypted and thus an adversary is unable to change it. Tamarin’s pattern
matching makes sure that the Client accepts only the fresh values sent by
the Server, and the Server accepts only those sent by the Client.

If we analyse the property again we find that Tamarin is now able to
prove the session key secrecy property, showing that our solution works.

6.5.2 Forward Secrecy

Unfortunately we were unable to get a proper result from the forward secrecy
properties, as Tamarin used too much memory for our machine. We think
this is due to some looping because of the traffic key encryption key not
really being a long-term key as it is ratcheted (and thus changed) on every
protocol run. Time could be spent to investigate this property further so
that forward secrecy properties can be properly evaluated.

6.6 Results Summary
In Table 6.2 we provide a summary of the results of the analysis. We state
whether Tamarin found a positive result (X, property is proved), found a
negative result (E, attack found) or timed out (U) and the time it took
to analyse the property. The analysis was performed in a virtual machine
running Fedora Linux with 10 processor threads and 10 gigabytes of RAM.

33

Property Original Model Improved Protocol Model
Successful Run X 0:01.57 X 0:01.67
TrKEK Secrecy X 0:15.54 X 0:16.05
Session Key Secrecy E 0:02.86 X 0:14.14
Forward Secrecy U … U …

Figure 6.2: Results of Protocol Analysis

34

Chapter 7

Conclusions and Future
Work

In this thesis we introduced the topic of automated protocol analysis. Through
a literature study we compared methods and tools for automated protocol
analysis and found that Tamarin was best suited to our needs. We de-
scribed what a Tamarin theorem file looks like by explaining its notation.
We developed a method for the formalization of a protocol specification into
a semi-formal protocol diagram and transformation into a Tamarin model.
We looked at common properties to prove and provided and explained ex-
amples from existing analyses. We also tested this method of formalisation
and proving and applied it to a protocol developed by Security Company.
Through the model and properties that we wrote, Tamarin found an attack
on the protocol. We found a solution to this vulnerability and re-applied
our methodology to prove the security of the improved protocol design.

We believe that analysing protocol designs through automated tools such
as Tamarin is a valuable addition to the security of communication protocols.
It is something that should be included in the toolbox of every protocol
designer and time should be taken to carefully select and write security
properties to analyse. Not only the analysis results are useful for the security
of the protocol, formalizing a protocol is also a useful process in itself.

There is enough room for future work. Below is a list of possible topics
for future work.

• Look at analysing equivalence properties. This could be done using a
tool such as DEEPSEC or ProVerif. These properties are especially
interesting to analyse privacy properties.

• Investigate the SAPIC+ extension of Tamarin, which translates into
Tamarin, ProVerif and DEEPSEC. If this tool works well, it could
provide more complete analysis results as it is capable of leveraging
the analysis strengths of these different tools.

35

• Solve the analysis problems with forward secrecy properties in the
analysis of the Secure Communication Product protocol. This could
provide us with stronger security guarantees over the current secrecy
properties.

• Look into the next layer of computer-aided cryptography: proving
correctness of implementations according to a protocol design. Imple-
mentation correctness is important in guaranteeing that the protocol
implementation keeps to the proven-secure protocol design.

• Expand an analysis tool so that a model of a protocol can be trans-
formed into a protocol specification and diagram. This can then pro-
vide a ‘single source of truth’ for the analysis and implementation of
the protocol.

36

Bibliography

[1] Martı́n Abadi and Cédric Fournet. “Mobile values, new names, and
secure communication”. In: ACM Sigplan Notices 36.3 (2001), pp. 104–
115.

[2] Michael Backes et al. “A novel approach for reasoning about liveness
in cryptographic protocols and its application to fair exchange”. In:
2017 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE. 2017, pp. 76–91.

[3] Jos CM Baeten. “A brief history of process algebra”. In: Theoretical
Computer Science 335.2-3 (2005), pp. 131–146.

[4] Manuel Barbosa et al. “SoK: Computer-aided cryptography”. In: 2021
IEEE Symposium on Security and Privacy (SP). IEEE. 2021, pp. 777–
795.

[5] David Basin, Ralf Sasse, and Jorge Toro-Pozo. “The EMV Standard:
Break, Fix, Verify”. In: 2021 IEEE Symposium on Security and Privacy
(SP). 2021, pp. 1766–1781.

[6] David Basin et al. “A Formal Analysis of 5G Authentication”. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’18. Toronto, Canada: Association for
Computing Machinery, 2018, pp. 1383–1396. isbn: 9781450356930.

[7] David Basin et al. “Tamarin: Verification of Large-Scale, Real-World,
Cryptographic Protocols”. In: IEEE Security & Privacy 20.3 (2022),
pp. 24–32.

[8] Bruno Blanchet. “A computationally sound mechanized prover for se-
curity protocols”. In: IEEE Transactions on Dependable and Secure
Computing 5.4 (2008), pp. 193–207.

[9] Bruno Blanchet, Martı́n Abadi, and Cédric Fournet. “Automated veri-
fication of selected equivalences for security protocols”. In: The Journal
of Logic and Algebraic Programming 75.1 (2008), pp. 3–51.

[10] Bruno Blanchet et al. ProVerif 2.04: automatic cryptographic protocol
verifier, user manual and tutorial. 2021.

37

[11] Vincent Cheval. “Apte: an algorithm for proving trace equivalence”.
In: Tools and Algorithms for the Construction and Analysis of Sys-
tems: 20th International Conference, TACAS 2014, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings 20.
Springer. 2014, pp. 587–592.

[12] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. “DEEPSEC:
deciding equivalence properties in security protocols theory and prac-
tice”. In: 2018 IEEE symposium on security and privacy (SP). IEEE.
2018, pp. 529–546.

[13] Vincent Cheval et al. “SAPIC+: protocol verifiers of the world, unite!”
In: USENIX Security Symposium (USENIX Security), 2022. 2022.

[14] Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. “Decid-
ability of trace equivalence for protocols with nonces”. In: 2015 IEEE
28th Computer Security Foundations Symposium. IEEE. 2015, pp. 170–
184.

[15] Katriel Cohn-Gordon et al. “A formal security analysis of the signal
messaging protocol”. In: Journal of Cryptology 33 (2020), pp. 1914–
1983.

[16] Common Criteria for Information Technology Security Evaluation.
2022.

[17] Hubert Comon-Lundh and Stéphanie Delaune. “The finite variant
property: How to get rid of some algebraic properties”. In: Term Rewrit-
ing and Applications: 16th International Conference, RTA 2005, Nara,
Japan, April 19-21, 2005. Proceedings 16. Springer. 2005, pp. 294–307.

[18] Cas Cremers and Martin Dehnel-Wild. “Component-based formal anal-
ysis of 5G-AKA: Channel assumptions and session confusion”. In: In-
ternet Society (2019).

[19] Cas Cremers et al. “A comprehensive symbolic analysis of TLS 1.3”.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. 2017, pp. 1773–1788.

[20] Stéphanie Delaune, Steve Kremer, and Mark Ryan. “Verifying privacy-
type properties of electronic voting protocols”. In: Journal of Computer
Security 17.4 (2009), pp. 435–487.

[21] Danny Dolev and Andrew Yao. “On the security of public key pro-
tocols”. In: IEEE Transactions on information theory 29.2 (1983),
pp. 198–208.

[22] Jason A Donenfeld and Kevin Milner. Formal verification of the Wire-
Guard protocol. Tech. rep. 2017.

38

[23] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. “Au-
tomated verification for secure messaging protocols and their imple-
mentations: A symbolic and computational approach”. In: 2017 IEEE
European symposium on security and privacy (EuroS&P). IEEE. 2017,
pp. 435–450.

[24] Benjamin Lipp, Bruno Blanchet, and Karthikeyan Bhargavan. “A mech-
anised cryptographic proof of the WireGuard virtual private network
protocol”. In: 2019 IEEE European Symposium on Security and Pri-
vacy (EuroS&P). IEEE. 2019, pp. 231–246.

[25] Simon Meier et al. “The TAMARIN Prover for the Symbolic Anal-
ysis of Security Protocols”. In: Computer Aided Verification. Ed. by
Natasha Sharygina and Helmut Veith. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 696–701. isbn: 978-3-642-39799-8.

[26] Benedikt Schmidt et al. “Automated analysis of Diffie-Hellman proto-
cols and advanced security properties”. In: 2012 IEEE 25th Computer
Security Foundations Symposium. IEEE. 2012, pp. 78–94.

[27] The Tamarin Team. Tamarin Prover Manual. 2023.

39

	Introduction
	Methods and Tools
	Symbolic Security Analysis
	Tamarin
	ProVerif
	DEEPSEC
	SAPIC+

	Computational Security Analysis
	CryptoVerif

	Tool Selection

	Notation
	Functions and Equational Theories
	Rules
	Local Macros
	Facts and Messages

	Trace Properties
	Lemmas
	Restrictions
	Predicates

	Formalizing and Modeling
	Protocol Diagram
	Equational Theory
	Parties
	Sub Protocols
	Protocol Steps
	Communication
	Work

	Formalizing a Protocol Diagram
	Initialization Steps
	Protocol Steps
	Public Key Infrastructure
	Next Steps

	Proving
	Protocol Run
	Secrecy Properties
	Key Secrecy
	Forward Secrecy

	Authentication Properties
	Establishing Same Session Keys
	Uniqueness of Session Keys
	Peer Authentication and Key Compromise Impersonation Resistance

	Analysis of Secure Communication Product
	Diagram
	Model
	Validity of the Model
	Security Properties
	Traffic Key Encryption Key Secrecy
	Session Key Secrecy
	Forward Secrecy

	Problems and Solutions
	Session Key Secrecy
	Forward Secrecy

	Results Summary

	Conclusions and Future Work

