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Abstract

Lung cancer is the leading cause of cancer-related deaths worldwide because
it is often diagnosed when the disease has already progressed to later stages,
with poor treatment outcomes. Methods for detecting lung cancer in its
early stages involve finding malignant nodules in lung CT scans, either in
screenings or as incidental findings in other clinical procedures. Both of
these methods rely on the work of radiologists, who have an increasingly
high workload. Because of this, recent research has focused on using AI
systems to help detect these lung nodules. This research has shown that it
can be an effective tool but is not yet at the radiologists’ level when it comes
to detecting primary lung cancers.

In this thesis, we investigate whether we can improve the performance of
an existing system at detecting malignant lung nodules. The specific method
we will investigate is the application of oversampling on malignant nodules
in the training process. We compared different methods for determining
which nodules to oversample and validated our results on two screening and
three clinical datasets. Our research indicates that oversampling is effective
at improving the system’s performance on malignant nodules in one of our
screening datasets but is inconclusive about a similar effect in the other
screening datasets or in clinical datasets.
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Chapter 1

Introduction

Lung cancer is one of the leading causes of preventable mortality worldwide
and the leading cause of cancer-related deaths[1]. One of the biggest reasons
for this is that it is often detected in a late stage, where cancer has already
progressed and five-year survival rates are low. Because of this, early detec-
tion of lung cancer is crucial to improve survival rates. In the first stage of
lung cancer, when treatment outcomes are most optimistic[2, 3], it is present
in the form of a malignant pulmonary (lung) nodule and does not usually
cause symptoms and is thus often overlooked until the disease progresses to
become symptomatic. These nodules can be found as incidental findings on
CT scans in different clinical routines or in targeted lung cancer screening
programs of at-risk populations. Because of the implementation of more
of these screenings in several countries and the increasing use of CT scans
in other clinical routines, the demand for and workload of radiologists has
been increasing over time. This fact, combined with the fact that pulmonary
nodules can be very small and thus hard to detect on CT scans, makes for
a challenging problem.

In recent years, the rise of deep learning has been a promising new ap-
proach to helping address this problem. Several studies have demonstrated
the effectiveness of computer-aided detection (CAD) systems that can help
radiologists find pulmonary nodules in both screenings and clinical settings.
One of these systems is the nodule detection system described in Hendrix
et al.[4]. This system has been validated to perform as well or better than
radiologists at detecting benign nodules and metastases but underperforms
compared to radiologists in the detection of primary cancers. A possible
reason behind this is the fact that a large majority of nodules that the sys-
tem is trained on are benign, while malignant nodules are underrepresented
in the training data. We propose to oversample malignant nodules dur-
ing training to balance the training data to solve this underrepresentation.
We hypothesize that this will improve the system’s performance on primary
cancers.
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Our research thus aims to answer the question, ”Can oversampling malig-
nant nodules be a useful tool for improving the performance of a pulmonary
nodule detection system on primary cancers in clinical datasets?”. To answer
this question, we will first retrain the system and evaluate its performance
on several datasets, including the clinical datasets from the original paper,
as well as new screening datasets that contain far more nodules. Next, we
will perform three experiments where we oversample nodules in the training
data, using different metrics for which nodules to oversample. We will eval-
uate the performance of our system after these experiments and compare
this with the performance of the retrained system without oversampling to
find out if oversampling affected our system’s performance as a whole and
on (primary) cancers specifically.

Previous work already exists that evaluates the effectiveness of oversam-
pling minority classes in classification tasks on pulmonary nodules, as well as
research that evaluates oversampling nodules compared to non-nodules for
detection tasks on pulmonary nodules[5]. To the best of our knowledge, this
research is the first to evaluate the effectiveness of oversampling a specific
type of nodule for detection tasks on pulmonary nodules.
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Chapter 2

Preliminaries

2.1 Computer Vision

2.1.1 Neural Networks

Artificial Neural Networks[6] (from now on referred to as Neural Networks or
NNs) are algorithms that mimic the way the human brain processes informa-
tion. Where the human brain consists of many neurons feeding information
into each other through axons to perform complex decision-making, NNs
consist of artificial neurons feeding into each other to perform complex com-
putations. Each neuron takes multiple inputs, multiplies each input xi with
a respective weight wi, takes the sum of these and a bias b, and performs
an activation function f over this result to produce output y. A neuron can
thus be described with the function in figure 2.1.
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Figure 2.1: A single neuron computation.

These neurons are grouped into layers to form a network, where the outputs
of the neurons in layer n are the inputs of the neurons in layer n + 1. A
complete NN consists of an input layer that can represent the input data,
hidden layers that perform most of the complex computations, and an output
layer that can represent the output data.
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Figure 2.2: A Neural Network with three hidden layers.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of Neural Network that is
particularly suitable for Computer Vision tasks, as demonstrated by AlexNet
in 2012[7]. They generally consist of three kinds of layers: convolutional
layers, pooling layers, and fully-connected layers.

Convolutional layers

CNNs use so-called convolutions to efficiently detect features (e.g., edges,
curves, textures) in images. A 2D convolution is an operation where we
apply a filter (or kernel) representing a specific feature to an input image
to produce a feature map. Each pixel in this feature map represents how
much that area in the input image resembles the feature of the filter. This
concept can be translated to apply to data with different dimensionality.

+

Figure 2.3: A 3x3 convolution.

A 2D convolutional layer contains multiple filters of the same size, each
detecting a different feature. The layer outputs a feature map with a channel
for each filter. For the first layers, they usually look for simple, abstract
features like edges, patterns, or colors. For higher convolutional layers, the
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features they look for usually become more complex and concrete.
For example, the first convolutional layer might recognize specific edges,

curves, or colors. Deeper convolutional layers could then recognize that
these features make up an ear, eye, or nose.

Pooling layers

A pooling layer divides the input to the layer up into small patches and
produces a single value for each patch, usually taking either the highest
value in the patch or the average of all values in the patch. For example, a
three-by-three max-pooling layer divides the input into patches of three by
three pixels and outputs the highest value for each patch.

The primary purpose of pooling layers is to reduce the model’s computa-
tional complexity while preserving spatial hierarchy. It also helps to prevent
overfitting, where the model focuses too much on specific properties found
in training data instead of generalizing to broader features.

Fully connected layers

Fully connected layers are the layers described in 2.1.1. They are usually
the last layers in a CNN, where they use the features extracted in previous
layers to make complex decisions.

2.1.3 Training Neural Networks

Besides defining the network architecture, the training process is an essential
part of creating neural networks. Training a neural network means finding
the optimal configuration of trainable parameters for the network to perform
its task as well as possible. In the case of fully connected layers, these
trainable parameters are the weights and biases for all the neurons. For
convolutional layers, these trainable parameters are the filters the layer uses.

To train a model, we use a training dataset. A set of inputs with an
expected output for each input. We then perform the following steps for
each input:

1. We perform what is called a ”forward pass”, feeding the input into the
model to get a prediction from the model.

2. We use a loss function to measure the difference between the expected
output and the model’s prediction. This difference is called the loss.
The goal of training is to minimize this loss.

3. Using this loss in a process called backpropagation, we calculate the
gradient for each parameter in the network. This gradient tells us
in which direction and how much we should change this parameter

7



to reduce the loss. If we change all parameters according to their
gradient, the model’s output should be closer to the expected output.

4. Using the calculated gradients, an algorithm called the optimizer cal-
culates new values for all the parameters and updates them. This op-
timizer ensures that each parameter gradually moves towards a value,
such that the whole model generalizes to make accurate predictions on
all training data instead of just performing well on the input example
presented in this iteration. The speed at which the optimizer updates
the parameters based on the gradients is called the learning rate.

Performing these steps for all the values in the training dataset is referred to
as one epoch. During training, as we perform more epochs, the algorithm’s
performance converges over time. If this process continues for too many
epochs, there is a risk that the model will overfit on the training data,
where it starts to learn specific features of samples in the training data and
starts to perform worse on new samples that do not exist in the training
dataset.

The performance of the trained model generally depends on the model’s
architecture, the quality of the training set, the loss function, and the opti-
mizer used, as well as so-called hyperparameters like the learning rate and
the number of epochs used.

2.1.4 Residual Networks

In theory, adding more layers to a convolutional neural network should im-
prove the model’s performance because the model can perform more compli-
cated calculations. In practice, however, we find that as the number of layers
increases past a certain point, the model’s performance actually decreases.
This is counterintuitive because we would expect a model with more layers
to perform at least as well as a model with fewer layers, as the additional
layers could theoretically learn the identity function, leaving the outputs of
the previous layers unchanged. Because of this performance decrease be-
yond a certain number of layers, there is a limit to how many layers we can
add, which limits how complex a model’s calculations and decision-making
can be.

Residual Blocks

Residual networks, first introduced in[8], solve this issue by introducing
the concept of residual blocks. In a regular neural network, each layer is
responsible for learning a mapping H(x) from the inputs of that layer to the
desired outputs of that layer. In a residual network, each residual block is
responsible for learning a residual mapping F(x) = H(x)− x, meaning the
difference between the inputs and desired outputs of the block. This task
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is much easier, and mappings like the identity function become very easy to
learn since H(x) simply needs to be 0. The full output of a residual block
is the residual mapping over the input added to the input, or F(x) + x.
Adding the input of the block to the output like this is also called a skip
connection or residual connection.

Figure 2.4: A residual block. From [8]

A Residual Network consists of multiple of these residual blocks chained
together.

2.1.5 Object Detection using YOLO

”You Only Look Once” (YOLO) is a CNN architecture for real-time object
detection created by Redmond et al. in 2016[9]. The model takes in an
image and produces a set of bounding boxes for detected objects, with class
probabilities for each bounding box. Where previously existing architectures
usually consist of separate steps for predicting regions containing objects,
classifying those objects, and refining the predictions, YOLO uses a single
CNN that simultaneously predicts bounding boxes for objects and calculates
probabilities for the classes of the objects detected in these bounding boxes.
Because of this single-network approach, YOLO is much faster at detecting
objects, even fast enough to work on real-time video footage.

The network used in YOLO consists of multiple blocks of convolutional
and max-pooling layers for a total of 24 convolutional layers, followed by two
fully connected layers. To detect objects, the input image is first stretched
into a square of a fixed size and then broken up into a grid of S×S patches.
For each patch, the model predicts C class probabilities for the contents
of the patch and B bounding boxes for the objects that the patch covers.
Each bounding box has a center position relative to the patch it belongs to,
a width and height relative to the size of the whole image, and a confidence
score. The final output of the model is a class probability map that shows
the class probabilities for each patch and a set of bounding boxes with, for
each bounding box, a confidence score that the box covers an object.
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Figure 2.5: YOLO detects objects and predicts their class. From the website
of the author[10]
.

During a post-processing stage, overlapping bounding boxes are removed
using a process called Non-Max Surpression, bounding boxes with a confi-
dence score below a given threshold are removed, and center positions are
recalculated to be relative to the original image instead of to the grid cell.
Using the class probability map, we determine the most likely object for
each bounding box. The final output is a list of bounding boxes, with for
each bounding box: the position and size, scaled and adjusted to the original
image; the class label; a confidence score that combines the confidence score
in the previous step with the class probability.

In the original paper, YOLO was trained for detection on the Pascal
VOC 2007 dataset, containing 20 classes for people, animals, vehicles, and a
variety of indoor items. The model can be retrained for your own detection
tasks, containing different numbers and types of classes.

2.2 Lung Cancer

The term ’cancer’ refers to a group of diseases in which genetic mutations
cause cells to multiply uncontrollably, taking over the surrounding tissue
and spreading to other parts of the body. The specific type of cancer, and
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Figure 2.6: YOLO predicts bounding boxes and class probabilities for each
patch to determine final detections. From Redmon et al.[9]

with that, the most appropriate treatment, is determined by the location
of the cancer and the mutations and type of cells that make up the cancer.
Another critical factor in determining the treatment and outcome of the
cancer is the stage it is in. The stage ranges from stage 0, where cancerous
cells are present but have not spread into the surrounding tissue, to stage
4, where the cancer has widely spread (metastasized) to other body parts.

Lung cancer is cancer that originates in the lungs. Compared to other
cancers, it has a very low five-year survival rate[11], largely because the dis-
ease causes very few distinct or noticeable symptoms in the early stages[12]
and is therefore often detected after it has already progressed to the later
stages where treatment outcomes are significantly poorer. It is, therefore,
crucial to increase the likelihood of finding the disease early on while it is in
a pre-symptomatic stage.

2.2.1 Pulmonary Nodules

One way lung cancer can be detected in a pre-symptomatic stage is in the
form of pulmonary (lung) nodules on a CT scan. Pulmonary Nodules are
round or semi-round structures commonly found in the lungs on medical
images like CT scans. They are usually defined as being between 3 and 30
millimeters [13, 14]. Structures smaller than 3 millimeters are usually called
micronodules, while structures bigger than 30 millimeters are usually called
masses. Pulmonary nodules can be solid (fully opaque) or sub-solid (at least
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partly transparent). Sub-solid nodules can be further classified into part-
solid nodules (having an opaque and a transparent component) or non-solid
nodules (fully transparent), also called pure ground glass nodules. Addi-
tional categories for pulmonary nodules are calcified (containing calcium
deposits) and perifissural (located near or attached to a division between
lung lobes). Most pulmonary nodules found are benign and do not require

Figure 2.7: Classifying nodules into solid and sub-solid types.

treatment, but occasionally, they can be cases of lung cancer or a different
metastasized cancer. To assess the malignancy of a nodule, radiologists look
at properties like size, shape, texture, solidness, and spiculation (spikiness
around the edges of the nodule). Based on this assessment, further research
can be done, e.g., follow-up CT scans to track the nodule’s growth, PET CT
scans to determine the metabolic activity of the nodule, or more invasive
tests like a biopsy of the nodule.

2.2.2 Detecting Pulminary Nodules

To detect these pulmonary nodules, without the existence of specific symp-
toms, we primarily rely on finding pulmonary nodules as incidental findings
or in lung cancer screenings.

Incidental findings

Currently, many of these cases are detected as incidental findings on routine
clinical examinations, where pulmonary nodules are found on CT scans made
for other clinical purposes[15]. These CT scans vary in resolution, radiation
doses, and if contrast is used, based on the protocol in which they were
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(a) Benign nodules. (b) Malignant nodules.

Figure 2.8: Examples of benign and malignant nodules.

made. The patients in these scans also tend to be less healthy than patients
in screening scans.

Screenings

Another approach to detecting early-stage lung cancer without relying on
symptoms is the use of screening programmes. In these screening pro-
grammes, members of a high-risk target population undergo low-dose CT
scans at regular intervals.

Different screening trials like the National Lung Screening Trial (NLST)
in the U.S. and the Nederlands–Leuvens Longkanker Screenings Onderzoek
(NELSON) trial in the Netherlands and Belgium have shown effective in
detecting lung cancer in earlier stages and improving treatment outcomes
for lung cancer patients[16, 17, 18].

These trials call for the implementation of national lung cancer screen-
ings of at-risk populations (usually long-term smokers between 50 and 75
years of age). Several countries, like Croatia, Poland, Italy, and Romania,
have already implemented lung cancer screenings[19]. However, it is still
not widely adopted across Europe, partly because of the lack of trained
radiologists in many European countries[20].
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Chapter 3

Related Work

3.1 Automated pulmonary nodule detection

Quite some research has already been done on the detection of pulmonary
nodules using deep learning. In 2019, Pehrson et al.[21] published a sys-
temic review evaluating various feature-based and deep learning-based al-
gorithms from 41 different papers. Additionally, Traoré et al. in 2020[22]
evaluated various state-of-the-art object detection models for the purpose
of pulmonary nodule detection. Both of these papers used the Lung Im-
age Database Consortium and Image Database Resource Initiative (LIDC-
IDRI)[23, 24] dataset for evaluation. LIDC-IDRI is the largest publicly
available database of annotated lung CT scans containing both clinical and
screening sets. Four radiologists made the annotations in this dataset using a
consensus-based approach. The annotations include subjective malignancy
ratings made by the radiologists.

3.2 Public challenges

3.2.1 LUNA16

To encourage the engagement of the (scientific) community, the LUng Nod-
ule Analysis challenge in 2016 (LUNA16)[25] challenged participants around
the world to come up with algorithms to detect pulmonary nodules. The
challenge consisted of a candidate detection track, where a model had to
find candidate nodules, and a false positive reduction track, where a model
had to eliminate false positives from the candidate nodules found by the
first model. Submissions were evaluated using a subset of the LIDC-IDRI
dataset, and the most successful submissions were discussed by the organiz-
ers in [26].
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3.2.2 DSB2017

In 2017, the topic of Kaggle’s yearly Data Science Bowl (DSB2017)[27] was
automatic lung cancer detection. The goal for participants was to build an
algorithm that could, given the CT scans for a given patient, accurately
predict whether the patient would be diagnosed with lung cancer within one
year. Entries in this competition were evaluated using datasets from three
different screening trials. An observer study in 2021 by Jacobs et al.[28]
demonstrated that the performance of two of the top three entries in this
competition was comparable to that of radiologists.

3.3 Automated nodule detection in non-screening
CT scans

The work done within our group by Hendrix et al.[4], which my work contin-
ues on, presents a deep learning-based system to detect pulmonary nodules
automatically. Where previous work primarily focused on detecting nodules
in a screening setting, this system aims to detect nodules in CT scans from
clinical routines.

Additionally, where most work thus far has been validated on publicly
available datasets like LIDC-IDRI, this work validated the system’s perfor-
mance in a multi-center retrospective study with a reliable reference stan-
dard by multiple radiologists.

The system consists of three stages, as shown in Fig. 3.1.

Lung detection (YOLOv5) The first stage uses YOLOv5 (the 5th ver-
sion of the YOLO framework) to detect the lungs in each layer of the CT
scan. These lung detections are combined into a 3D search area for the next
stages.

Nodule candidate detection (YOLOv5) The second stage takes five
layers of the CT scan (within the search area) at a time and combines them
into a single five-channel image. It then uses YOLOv5 to detect possible
nodules (candidates) in these images.

False positive reduction (ResNet50) The last step uses a False Posi-
tive Reduction (FPR) model based on work from [29] to reduce the number
of false positives from step two while maintaining high sensitivity. Where
the candidate detection step takes a global look at the whole scan, this step
takes a detailed look at individual candidate nodules.

To do this, it takes nine slices at different angles of the 3D patch con-
taining the nodule candidate. It then processes each slice using a ResNet50
model (a residual network with 50 layers) and combines the results using
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a convolutional layer to produce a single confidence score for each nodule
candidate. These confidence scores are averaged with those produced by
YOLO in step 2 to give a final confidence score for each nodule candidate.
All nodules with a confidence score below a given threshold are excluded.

Figure 3.1: The three different stages of the nodule pipeline as presented in
Hendriks et al.[4].

The lung detection part of the system was trained on 500 thorax and
thorax-abdomen CT scans (500 patients) from Radboudumc. The rest of
the system was trained on 602 clinical CT scans (602 patients) from Rad-
boudumc and 888 scans (887 patients) from the LUNA16 dataset.

The system was evaluated on an internal test set containing 100 CT
scans (100 patients) from Radboudumc and an external test set containing
100 scans (100 patients) from Jeroen Bosch Ziekenhuis (JBZ). Comparing
the performance of the system to the performance of the individual radiolo-
gists shows that the system outperformed the radiologists in the detection of
benign actionable1 nodules and metastases, but underperformed compared
to radiologists in the detection of primary cancers2.

My work will build on this research by evaluating the existing system’s
performance on several screening datasets. Additionally, we will attempt
to improve the system’s performance at detecting primary cancers. While
benign nodules pose a lesser threat and metastasized cancers from other
body parts often present complex treatment challenges, catching more pri-
mary lung cancers in early stages is a crucial step in improving treatment
outcomes for lung cancer. To do this, we will oversample malignant nodules,
which are currently underrepresented in the training data. Previous research
has shown oversampling to be effective in classification models trained on
unbalanced datasets[30]. Previous work also exists that demonstrates the ef-
fectiveness of oversampling in pulmonary nodule detection tasks[5, 31]. How-
ever, this work focuses on oversampling nodules compared to non-nodules

1Benign actionable nodules are nodules that, according to protocol, needed follow-up
but turned out to be benign.

2Primary cancers are cancers that originated in the lungs and did not metastasize from
cancers elsewhere.
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and focuses on the false positive reduction part of the system, whereas ours
focuses on oversampling an underrepresented type of malignant nodules and
retraining the system as a whole.
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Chapter 4

Methods

4.1 Retraining

To acquire our baseline measurements and for our oversampling experiments,
we will retrain the nodule detection model and the false positive reduction
model from the system described in Hendrix et al.[4] using the same training
data as was used in the paper, which consists of 602 clinical CT scans from
Radboudumc and 888 CT scans from the LUNA16 dataset.

4.1.1 YOLOv5 Candidate Detection

Instead of pre-processing the training data for the YOLOv5 candidate detec-
tion ourselves, we use existing, pre-processed training data available within
our group that can directly be used to retrain the YOLOv5 model. This is
the same data as used in the original paper and consists of CT scan slices
of 5 layers each and corresponding labels of the annotated nodule positions
and sizes. The training data contains a balanced division of positive slices,
which do contain a nodule annotation, and negative slices, which do not con-
tain any nodule annotations. Using this balanced, pre-processed dataset, we
train the model for 50 epochs.

4.1.2 ResNet50 False Positive Reduction

To train the false positive reduction part of the network, we first detect
all candidate nodules in the training data using the retrained model from
the previous step. Multiple pre-processing steps are then taken to extract
3D patches of all these candidate nodules and annotation labels for each
patch. These patches and labels are then used to train the model. During
training, a balanced dataloader is used to ensure that the model is trained
on an approximately equal number of positive patches, which contain a
nodule annotation, and negative patches, which do not contain any nodule
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annotations. This pre-processed training data is used to train the model for
30 epochs using the balanced dataloader.

4.2 Oversampling

In our oversampling experiments, we will oversample annotated nodules in
the training data for both the candidate detection and false positive reduc-
tion models. To do this, we make copies of the preprocessed input for each
model. This means that for the candidate detection model, we make copies
of all slices containing oversampled nodule annotations and corresponding
labels. We will also copy a random negative slice for each positive slice we
copy. This way, our training data remains balanced, as it is in the original
study.

For the training input to the false positive reduction model, we simply
make copies of the patches containing oversampled candidate nodules, along
with the corresponding annotation label. Since the training process for this
model uses a balanced dataloader, we do not need to copy negative patches.

4.2.1 Determining malignancy

To determine which annotated nodules from the training data to oversample,
we need to determine their malignancy. We do not have accurate malignancy
labels for all annotated nodules in the training data, but we do have some
information we can use to decide which ones are worth oversampling.

For the nodule annotations in the Radboudumc data, we have a list of
annotated nodules that were found to be cancer. This list was made by
Ward Hendrix from our group by cross-referencing nodule annotations with
biopsy data and later CT scans from the Integraal Kankercentrum Neder-
land (IKNL) and should thus serve as a reliable ground truth for nodule
malignancy. This list is partially complete, so we will not be able to over-
sample all malignant Radboudumc nodules. We also do not know which
annotated nodules marked as cancer are primary cancers and which are
metastases.

The LUNA16 data is based on the LIDC-IDRI dataset and does not
contain objective malignancy ratings. Instead, it contains subjective suspi-
ciousness ratings from 1 (Highly Unlikely for Cancer) to 5 (Highly Suspicious
for Cancer) from the radiologists who annotated the data. Because these
suspiciousness ratings were not validated by later biopsies or other further
testing and the interpretation of CT scan findings is subject to a high inter-
rater disagreement[32, 33], they do not serve as an objective ground-truth.
Still, they do serve as an indication of malignancy. These subjective malig-
nancy ratings are complete for the whole LUNA16 dataset. For our research,
we will consider annotated nodules with the highest suspiciousness rating as
malignant.
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We will compare these methods for determining malignancy by running
multiple experiments.

4.3 Experiments

Using all the methods described above, we will run the following experi-
ments:

Baseline Retraining the system on the original data without oversam-
pling.

A Retraining with all nodules marked as cancer in the Radboudumc data
oversampled by a factor of 5.

B Retraining with all nodules in the LUNA16 with a malignancy rating of
5 (Highly Suspicious for Cancer) given by any radiologist oversampled by a
factor of 5.

C (A+B) Retraining with all nodules marked as cancer in the Rad-
boudumc data and all nodules in the LUNA16 data with a malignancy
rating of 5 given by any radiologist oversampled by a factor of 5.

The distribution of nodule characteristics in the training data for each
experiment can be seen in table 4.1. More detailed information about the
exact training inputs for each experiment can be found in appendix A.

4.4 Validation

4.4.1 Datasets

To validate our experiments, we will test the systems on the same clinical
datasets as the original paper. We will also run the systems on multiple
screening datasets. Statistics about the distribution of nodule characteristics
in the datasets used for testing can be seen in table 4.2.

Clinical datasets (Radboudumc and JBZ)

These test sets contain 100 clinical CT scans (100 patients) from Rad-
boudumc and 100 clinical CT scans (100 patients) from Jeroen Bosch Zieken-
huis (JBZ). Both test sets were balanced to contain 25 scans with no findings,
25 scans with benign actionable nodules, 25 scans with metastases, and 25
scans containing primary cancers.
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Table 4.1: Characteristics of nodules in the training sets for the different
experiments. (A: Oversampling on cancers in Radboudumc. B: Oversampling on suspicious
nodules in LUNA16. C: Oversampling on both.)

Dataset Radboudumc LUNA16 Baseline A B C (A+B)

Nodules (n) 2489 2281 4770 53221 53981 59501

Scans (n) 602 888 1490 1490 1490 1490

Patients (n) 602 887 1489 1489 1489 1489

Nodules per diameter thresh-
old (n, % of total)

≥ 4 mm 1622 (65.2) 1896 (83.1) 3518 (73.8) 4030 (75.7) 4141 (76.7) 4660 (78.3)

≥ 5 mm 1076 (43.2) 1326 (58.1) 2402 (50.4) 2883 (54.2) 3025 (56.0) 3508 (59.0)

Diameter (mm)

Mean 6.1 7.0 6.5 7.2 7.7 8.3

Median 4.7 5.4 5.0 5.3 5.4 5.7

IQR 3.7-6.5 4.3-7.6 4.0-7.0 4.1-8.2 4.1-9.2 4.2-10.3

Volume (mm3)

Mean 374.1 510.0 439.1 620.9 785.9 952.2

Median 55.0 82.8 67.6 76.7 82.4 95.8

IQR 26.4-147.2 43.1-235.4 33.2-185.9 35.5-285.8 36.7-407.8 39.0-581.4

Nodules per scan (n)

Median 3 2 2

IQR 1-6 1-3 1-4

Nodules per type (n, % of to-
tal)

Solid 1339 (53.8) 1400 (61.4) 2739 (57.4) 3248 (61.0) 3249 (60.2) 3738 (62.8)

Part-solid 95 (3.8) 354 (15.5) 449 (9.4) 469 (8.8) 542 (10.0) 577 (9.7)

Non-solid 160 (6.4) 309 (13.5) 469 (9.8) 487 (9.2) 488 (9.0) 503 (8.5)

Perifissural 684 (27.5) 0 (0.0) 684 (14.3) 689 (12.9) 684 (12.7) 695 (11.7)

Calcified 211 (8.5) 218 (9.6) 429 (9.0) 429 (8.1) 435 (8.1) 437 (7.3)

Benign versus malignant
nodules2(n, % of total)

Benign 2351 (94.5) 2124 (93.1) 4475 (93.8) 4475 (84.1) 4475 (82.9) 4475 (75.2)

Malignant 138 (5.5) 157 (6.9) 295 (6.2) 847 (15.9) 923 (17.1) 1475 (24.8)

1 No new nodules were added, only duplicates of existing nodules.
2 Malignancy is estimated, as explained in 4.2.1.

Screening datasets (NLST, DLCST, and MILD)

In addition to the clinical datasets, we also use datasets from the National
Lung Screening Trial (NLST)[34], the Danish Lung Cancer Screening Trial
(DLCST)[35] and the Multicentric Italian Lung Detection (MILD) trial[36].
Since these datasets contain many more nodule annotations than the clinical
datasets, we can more accurately assess if any possible performance increases
are statistically significant. We have made cancer-enriched subsets from
these datasets to test our systems.

These subsets were composed by first selecting the earliest scan for each
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participant. Of these scans, we included all scans with annotated malignant
nodules and added scans without cancer for a total of at most 1000 per
subset.
The annotations of nodules for the NLST and DLCST datasets came from
existing data within our group, used in research by Vendkadesh et al.[37].
The annotations for the MILD dataset were collected by the MILD trial
researchers in collaboration with Radboudumc researchers, where nodules
found in later scans were retroactively added to earlier scans. We have
excluded annotations of nodules with a diameter under 3 mm or over 30
mm from all datasets.

4.4.2 Evaluation

To evaluate the performance of our systems on the dataset, we use the same
evaluation method as the LUNA16 challenge1. In this method, we take the
system’s predictions, a list of nodule annotations by radiologists it should
find, and a list of excluded nodule annotations that should not count as true
or false positives. These excluded annotations can be annotations that were
made by a minority of radiologists or nodules with a diameter of less than
3 mm or over 30 mm. Using this, we calculate the sensitivity of the system
for different numbers of false positives per scan to create a Free-response
Receiver Operator Characteristics (FROC) curve.

For these FROC curves, we also calculate 95% confidence intervals using
bootstrapping. In this process, we take 1000 random samples (bootstraps)
of the data to estimate the distribution of our data and calculate a range
for which we can be 95% confident that it contains our true result. Doing
this gives us an indication of how much variability we can expect if we were
to repeat our experiment under similar conditions.

We also compare our systems’s performance after each experiment with
the performance of our baseline system. To do this, we calibrate our system
in each experiment to 1 false positive per scan for each dataset and compare
the sensitivities. We evaluate the statistical significance of any changes
in sensitivity between experiments using a two-sided paired permutation
test. In this test, we randomly swap individual results of the two systems
1000 times, recalculating the difference in sensitivity each time. We then
calculate a p-value by measuring how many of these random swaps resulted
in a difference in sensitivity greater than the one measured without any
swaps. A p-value of less than 0.05 is considered statistically significant.

1https://luna16.grand-challenge.org/Evaluation/

22

https://luna16.grand-challenge.org/Evaluation/


Table 4.2: Characteristics of nodules in the test sets.

Dataset Radboudumc JBZ MILD DLCST NLST

Nodules (n) 319 303 2788 1283 1182

Scans (n) 100 100 1000 806 1000

Patients (n) 100 100 1000 806 1000

Nodules per diameter thresh-
old (n, % of total)

≥ 4 mm 250 (78.4) 262 (86.4) 1441 (51.7) 1094 (85.3) 1173 (99.2)

≥ 5 mm 188 (58.9) 215 (71.0) 859 (30.8) 703 (54.8) 1009 (85.4)

Diameter (mm)

Mean 7.2 9.0 5.0 6.2 11.9

Median 5.5 6.6 4.1 5.2 9.2

IQR 4.1-8.6 4.7-11.9 3.3-5.5 4.4-6.5 5.9-14.5

Volume (mm3)

Mean 573.6 1049.9 283.9 520.6 N/A

Median 87.7 160.6 36.6 73.6 N/A

IQR 36-332 55-889 18.3-87.3 44.3-145.1 N/A

Nodules per scan (n)

Median 1 2 1 2 1

IQR 1-4 1-4 1-2 1-3 1-1

Nodules per type (n, % of to-
tal)

Solid 269 (84.3) 247 (81.5) 1069 (83.3) 1959 (70.3) 797 (67.4)

Part-solid 12 (3.8) 19 (6.3) 163 (12.7) 386 (13.8) 141 (11.9)

Non-solid 8 (2.5) 10 (3.3) 51 (4.0) 199 (7.1) 222 (18.8)

Perifissural 24 (7.5) 17 (5.6) 187 (6.7) 22 (1.9)

Calcified 6 (1.9) 10 (3.3) 57 (2.0)

Benign versus malignant nod-
ules (n, % of total)

Benign 127 (39.8) 158 (52.1) 2682 (96.2) 1220 (95.1) 468 (39.6)

Actionable 63 (19.7) 87 (28.7)

Malignant 192 (60.2) 145 (47.9) 106 (3.8) 63 (4.9) 714 (60.4)

Primary cancer 27 (8.5) 32 (10.6)

Metastasis 165 (51.7) 113 (37.3)
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Chapter 5

Results

5.1 Retraining without oversampling

We first retrained the system on the original dataset and hyperparameters
used in Hendrix et al. Fig. 5.1a shows the performance of our retrained
candidate detection model (without false positive reduction) compared with
the original model. Our retrained model seems to perform similarly to the
original model, as expected. Fig. 5.1b shows the performance of our com-
plete retrained system (including false positive reduction). Our retrained
system performs similarly to the original system overall but, interestingly,
performs worse in detecting primary cancers in the Radboudumc dataset.
It even performs worse on these nodules than the retrained model with-
out false positive reduction. To make sure our training process is correct,
we retrained the system again in the exact same way. The results of both
retraining compared to the baseline can be found in Appendix B.1 and in-
dicate that our training process is correct but subject to variation on the
relatively small clinical test sets.

(a) Without false positive reduction. (b) With false positive reduction

Figure 5.1: FROC curves of the retrained system (without oversampling)
and the original system on the clinical datasets.
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We also evaluated our retrained system on subsets of three screening datasets
from the MILD trial, NLST, and DLCST. Fig. 5.2 shows the free response
operator characteristic (FROC) curves of the system on each clinical and
screening dataset. It also shows the 95% confidence interval for each nodule
category.

We found that the system performs much worse on screening than clini-
cal datasets, reaching substantially lower sensitivities at the same number of
false positives per scan. Part of this is because of the way we count true and
false positives. For the clinical datasets, nodules are only counted if they
were found by three or more out of five radiologists and ignored otherwise.
This means that the nodules that are hardest to detect (and were thus de-
tected by a minority of radiologists) are excluded from the clinical datasets.
This is not the case for the screening datasets, which were annotated by
just one or two radiologists. Appendix B.2 shows the FROC curves on the
clinical datasets if we take the annotations of a single rater as the ground
truth.

We also see that the system performs worse on malignant nodules in
MILD. This can be partly attributed to the fact that we included the earliest
scan of each patient, and annotations of nodules found in later scans were
added to these earliest scans when these malignant nodules were very hard
to detect. This effect is demonstrated in Appendix B.3.

5.2 Retraining with oversampling

The FROC curves of the systems after retraining without oversampling and
after our different oversampling experiments, as described in section 4.2, can
be seen in Fig. 5.3. These graphs all seem to indicate that oversampling
on seemingly malignant nodules improves the performance of the system on
malignant nodules without sacrificing a lot of performance on all nodules.

We also measured the sensitivity of each system on the different datasets
at an operating point of 1 false positive per scan. The results of this can
be seen in Table 5.1. We found no statistically significant difference in
performance on the clinical datasets from Radboudumc and JBZ, but we did
find that our system reached a significantly higher sensitivity on malignant
nodules in our NLST subset after oversampling on cancers in Radboudumc
(65.0% vs. 59.6%, p = 0.04) and after oversampling on both cancers in
Radboudumc and suspicious nodules in LUNA16 (68.4% vs. 59.6%, p <
0.01). Oversampling on both cancers in Radboudumc and suspicious nodules
in LUNA16 also gave a significantly higher sensitivity on all nodules in our
NLST subset (59.2% vs. 53.2%, p = 0.01). This is likely because our
NLST subset consists primarily of malignant nodules (60.4%). There is no
significant difference between oversampling on nodules labeled malignant in
the Radboudumc dataset and oversampling on nodules marked suspicious
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(a) Performance on clinical datasets.

(b) Performance on screening datasets.

Figure 5.2: FROC curves of the retrained system (without oversampling).
The shaded bands represent the 95% confidence intervals per nodule cate-
gory.
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in LUNA16. The most effective oversampling method seems to combine the
two and oversample as many likely malignant nodules as possible.

Interestingly, we also found that oversampling on cancers in Radboudumc
made the system significantly less sensitive on all nodules in our MILD sub-
set (61.9% vs. 64.9%, p = 0.03). This was not the case when oversampling
on suspicious nodules in LUNA16 or when oversampling on both cancers in
Radboudumc and suspicious nodules in LUNA16.

When looking at the performance of just the YOLOv5 candidate detection
model, we found that the model performs significantly worse at detecting all
nodules in experiments A, B, and C for both JBZ and our MILD subset (p <
0.01), in experiments B and C for Radboudumc (p = 0.01) and experiment B
for our DLCST subset (p < 0.01). The YOLOv5 candidate detection model
did not perform significantly better on cancers in any dataset after any
experiment. These results indicate that while retraining with oversampling
has a positive effect on the ResNet50 false positive reduction model, it has
a negative effect on the YOLOv5 candidate detection model.

5.3 Characteristics of missed nodules

We evaluated the characteristics of missed nodules in our NLST subset. We
focused on this dataset because it contains the most malignant nodules and
showed the most significant results in our experiments. Table. 5.2 shows the
number of missed nodules in our NLST subset for each experiment and in-
formation about the diameter distribution of missed nodules. We calibrated
the system for each experiment to an average of 1 false positive per scan. We
see that the diameter of our missed nodules decreases for our oversampling
experiments. For our baseline experiment, the mean and median diameter
of missed nodules are 10.2 and 8.2, respectively, with an IQR of (5.3-13.4).
For experiment C, the mean and median diameter of missed nodules are
9.5 and 7.2, with an IQR of (5.1-12.1). This is in line with what we would
expect. In Table. 4.1, we see that for our oversampling experiments, the
mean and median diameter of our nodules increases compared to the base-
line experiment. Because we train on more large nodules, our system also
learns to detect more large nodules.

We have also inspected visual examples of nodules missed by the base-
line retrained system but found after retraining with oversampling on both
Radboudumc and LUNA16. Six examples can be found in Fig. 5.4. Fig. 5.5
shows six nodules that were still missed after retraining with oversampling
on Radboudumc and LUNA16. All visual examples are nodules from our
NLST subset.
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(a) Performance on clinical datasets.

(b) Performance on screening datasets.

Figure 5.3: Performance of the system after our oversampling experiments,
compared to baseline. (A: Oversampling on cancers in Radboudumc. B: Oversampling on
suspicious nodules in LUNA16. C: Oversampling on both.)
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Table 5.1: Comparison of our systems, retrained with oversampling, with our
baseline system. All systems were calibrated on each dataset to 1 FP/scan.
(A: Oversampling on cancers in Radboudumc. B: Oversampling on suspicious nodules in LUNA16.
C: Oversampling on both.)

(a) Comparison of models without FPR.

All nodules (Primary) cancers

Sensitivity (%) p Sensitivity (%) p

Radboudumc

Baseline 76.8 (70.7, 83.4) 91.5 (76.7, 100.0)

A 76.2 (67.8, 85.5) 0.92 90.2 (75.0, 100.0) >0.99

B 69.7 (58.4, 79.6) 0.01 99.6 (95.2, 100.0) 0.23

C (A+B) 66.6 (56.9, 76.4) 0.01 96.1 (87.1, 100.0) 0.60

JBZ

Baseline 81.8 (75.5, 87.3) 92.7 (80.0, 100.0)

A 69.2 (59.0, 79.6) <0.01 90.5 (80.0, 100.0) >0.99

B 62.0 (52.7, 71.2) <0.01 93.4 (81.1, 100.0) >0.99

C (A+B) 56.6 (47.8, 65.6) <0.01 91.2 (78.8, 100.0) >0.99

MILD

Baseline 51.9 (48.3, 55.7) 50.4 (40.8, 60.2)

A 32.2 (29.2, 35.1) <0.01 41.5 (31.7, 51.3) 0.28

B 41.8 (39.0, 44.8) <0.01 56.8 (46.7, 67.3) 0.48

C (A+B) 39.2 (36.2, 41.8) <0.01 56.2 (46.8, 65.6) 0.58

NLST

Baseline 56.4 (52.8, 59.7) 64.8 (60.9, 68.4)

A 53.0 (49.8, 56.4) 0.14 64.6 (60.7, 68.4) 0.94

B 54.3 (51.0, 57.7) 0.34 66.0 (62.0, 69.9) 0.76

C (A+B) 54.3 (51.2, 57.6) 0.36 67.0 (63.5, 70.5) 0.44

DLCST

Baseline 55.7 (51.4, 60.9) 56.9 (43.6, 70.5)

A 55.3 (50.9, 59.7) 0.86 62.9 (50.0, 74.5) 0.59

B 48.5 (43.6, 52.9) <0.01 55.5 (41.7, 69.0) >0.99

C (A+B) 53.0 (48.1, 58.2) 0.22 60.1 (47.8, 72.2) 0.70

(b) Comparison of systems with FPR.

All nodules (Primary) cancers

Sensitivity (%) p Sensitivity (%) p

Radboudumc

Baseline 90.1 (85.8, 93.9) 88.8 (74.3, 100.0)

A 89.0 (84.1, 93.6) 0.73 93.0 (82.6, 100.0) >0.99

B 90.1 (84.7, 94.4) 0.89 92.1 (79.3, 100.0) >0.99

C (A+B) 87.8 (82.7, 92.8) 0.62 92.6 (82.1, 100.0) >0.99

JBZ

Baseline 89.4 (86.3, 92.5) 94.0 (85.7, 100.0)

A 87.0 (84.1, 90.0) 0.47 94.0 (86.5, 100.0) >0.99

B 89.6 (86.8, 92.2) >0.99 97.2 (91.9, 100.0) >0.99

C (A+B) 88.4 (84.8, 91.9) 0.78 94.0 (86.1, 100.0) >0.99

MILD

Baseline 64.9 (61.6, 68.1) 50.5 (41.0, 59.8)

A 61.9 (58.7, 64.9) 0.03 52.1 (42.1, 61.5) 0.87

B 65.5 (62.1, 68.4) 0.59 55.6 (46.2, 64.4) 0.58

C (A+B) 64.7 (61.6, 67.8) 0.92 55.8 (46.5, 65.6) 0.47

NLST

Baseline 53.2 (49.5, 56.8) 59.6 (55.5, 63.8)

A 56.2 (52.5, 60.0) 0.14 65.0 (60.9, 68.9) 0.04

B 56.7 (53.2, 60.4) 0.07 64.2 (60.2, 67.8) 0.08

C (A+B) 59.2 (55.7, 62.4) 0.01 68.4 (64.9, 71.9) <0.01

DLCST

Baseline 61.5 (57.6, 65.5) 58.9 (45.3, 72.1)

A 60.3 (55.6, 64.3) 0.51 62.3 (51.1, 73.8) 0.86

B 63.7 (58.3, 68.7) 0.40 60.7 (48.8, 73.7) >0.99

C (A+B) 62.7 (58.1, 67.4) 0.69 60.4 (48.4, 73.5) >0.99
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Table 5.2: Characteristics of missed nodules in our NLST subset, at an op-
erating point of 1 false positive per scan, for each experiment. (A: Oversampling
on cancers in Radboudumc. B: Oversampling on suspicious nodules in LUNA16. C: Oversampling
on both.)

(a) Characteristics for all missed nodules.

Experiment Baseline A B C (A+B)

Missed nodules (n, % of total) 555 (47.0) 519 (43.9) 507 (42.9) 480 (40.6)

Missed nodules per diameter
threshold (n, % of missed)

≥ 4 mm 549 (98.9) 513 (98.8) 501 (98.8) 475 (99.0)

≥ 5 mm 445 (80.2) 408 (78.6) 398 (78.5) 362 (75.4)

Diameter of missed nodules
(mm)

Mean 10.2 9.8 9.9 9.5

Median 8.2 7.7 7.7 7.2

IQR 5.3-13.4 5.2-12.8 5.2-12.8 5.1-12.1

Types of missed nodules (n, %
of missed)

Solid 312 (56.2) 285 (54.9) 282 (55.6) 264 (55.0)

Part-solid 70 (12.6) 59 (11.4) 59 (11.6) 51 (10.6)

Non-solid 164 (29.5) 168 (32.4) 158 (31.2) 155 (32.3)

Perifissural 9 (1.6) 7 (1.3) 8 (1.6) 10 (2.1)

(b) Characteristics for cancers.

Experiment Baseline A B C (A+B)

Missed nodules (n, % of total) 289 (40.5) 253 (35.4) 256 (35.9) 228 (31.9)

Missed nodules per diameter
threshold (n, % of missed)

≥ 4 mm 288 (99.7) 252 (99.6) 255 (99.6) 227 (99.6)

≥ 5 mm 253 (87.5) 216 (85.4) 221 (86.3) 192 (84.2)

Diameter of missed nodules
(mm)

Mean 12.1 11.7 11.8 11.4

Median 10.7 10.3 10.3 9.7

IQR 6.6-16.7 6.4-15.7 6.4-15.8 6.1-15.2

Types of missed nodules (n, %
of missed)

Solid 197 (68.2) 169 (66.8) 171 (66.8) 155 (68.0)

Part-solid 44 (15.2) 37 (14.6) 40 (15.6) 31 (13.6)

Non-solid 48 (16.6) 47 (18.6) 45 (17.6) 42 (18.4)

Perifissural 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
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Figure 5.4: Malignant nodules missed by the baseline retrained system but
found by the system after retraining with oversampling on Radboudumc and
LUNA16.

Figure 5.5: Malignant nodules missed by the system after retraining with
oversampling on Radboudumc and LUNA16.
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Chapter 6

Discussion

In this thesis, our primary focus was to answer the question of whether over-
sampling can be used to improve the performance of a deep learning-based
pulmonary nodule detection system on primary cancers in clinical datasets.
To do this, we first retrained the system and evaluated it on clinical test sets
from Radboudumc and JBZ, as was done in the original paper by Hendrix
et al. Additionally, we evaluated the system on three additional datasets
from the lung cancer screening trials: MILD, NLST, and DLCST. These
additional test sets contain many more scans (1000, 1000, and 806 scans,
respectively, compared with 100 scans per clinical test set), thus making it
easier to find statistically significant differences in performance.

In this initial evaluation, we found that our system performed better
on the clinical test sets we tested than on the screening test sets. This is
in part because of the evaluation method used, where the clinical datasets
are evaluated on using a ground truth based on consensus between five
radiologists, while the screening datasets are evaluated on using annotations
by one or two radiologists. When adjusted for this, the difference is reduced
but is still present.

After this initial retraining and evaluation, we retrained the system on
training sets where we oversampled on malignant nodules. We ran multiple
experiments because we did not have a complete list of malignant nodules
for the training data, only a partially complete list for the Radoudumc
training data, and a list of subjective ratings for the LUNA16 training
data. We retrained our system with oversampling only on all nodules in
Radboudumc marked as cancer (experiment A), oversampling only on all
nodules in LUNA16 rated highly suspicious of cancer (experiment B), and
with both groups of nodules oversampled (experiment C). All oversampled
nodules were included five times in the training data. After evaluating all
experiments, we found that oversampling can positively affect the system’s
performance on malignant nodules, although a statistically significant im-
provement was only seen in one dataset The results of experiment B seem
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slightly better than those of experiment A on our subsets of MILD and
NLST, although this is not a statistically significant difference. The biggest
performance increase was seen in experiment C on our NLST subset, reach-
ing a significantly higher (p < 0.01) sensitivity at 1 false positive per scan
of 68.4 (64.9, 71.9), compared to the baseline sensitivity of 59.6 (55.5, 63.8).
These results indicate that oversampling was effective, with the number of
nodules oversampled having a bigger effect than the accuracy of malignancy
labels.

We also found that while oversampling as a whole was effective, it sig-
nificantly decreased the performance of the YOLOv5 candidate detection
model in almost all experiments on all datasets when looking for all nod-
ules, without having a significant effect when looking for only cancers. This
indicates that oversampling is best used only on the ResNet50-based false
positive reduction model.

Even though we have shown that oversampling can be a valuable tool in
improving the performance of our nodule detection system, we have only
seen statistically significant improvements in the performance on cancers in
screening datasets. The question remains whether this improvement also
holds for the detection of primary cancers in clinical data. For one, we have
seen that our system performs quite differently on screening data than on
clinical data, meaning that conclusions we can draw about the performance
of our system on screening data can not be directly translated to clini-
cal data. Secondly, the screening datasets only contain general malignancy
information for nodules and do not make a distinction between primary
cancers and metastases. We can likely assume that most of the malignant
nodules in screening data are primary cancers since participants in these
screening trials are otherwise healthy and thus unlikely to have pre-existing
cancer that has progressed enough to have metastasized, but we do not have
concrete statistics to support this assumption.

6.1 Future work

Even though our research serves as a good proof-of-concept for oversampling
on a specific class of nodules in the training of a nodule detection system, a
lot of research can still be done to expand on this.

In the area of validation, a lot of work can still be done in the collection
and accurate annotation of clinical datasets to be used for testing. The
work by Hendrix et al. provided us with two high-quality datasets, but with
the small size of these datasets (100 CT scans each), it is difficult to find
if small changes in improvement are statistically significant. Alternatively,
more research could be done on the difference in performance of detection
algorithms on clinical versus screening datasets to find whether conclusions
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about one can be translated to the other.
On oversampling, many further experiments can be run that we did not

have time for during this thesis. One obvious example would be to only re-
train the ResNet50 false positive reduction model with oversampling, as our
research seems to indicate that this would lead to better results. Addition-
ally, one could experiment with the oversampling parameters we used. It
would be interesting to see what the effect is at different oversampling rates
and at what rates the improvements would start to diminish. One could also
be more specific in which nodules to oversample, only oversampling nodules
that fall within diameter/volume ranges or other characteristics that are
currently hard for the system to recognize.

Lastly, it would be interesting to find ways to add augmented or new data
for the system to train on. One could apply data augmentation techniques
to the data added in oversampling, like rotating or translating the slices, or
more modern techniques like Generative Adversarial Networks[38], Varia-
tional Auto-Encoders[39], or deepSMOTE[40]. Alternatively, one could add
malignant samples from other datasets to the training data. This way, the
system is presented with new data during training, whereas our oversam-
pling method merely duplicates existing data.

6.2 Conclusions

We can draw two main conclusions from our research.
First, we can conclude that our system performs better on the clinical

test sets we tested (Radboudumc and JBZ) than on our subsets the screening
test sets (MILD, NLST, DLCST), both before and after oversampling. This
holds even after adjusting for the differences in establishing ground truths
from annotations.

Secondly, we have found indications that oversampling on a specific type
of pulmonary nodule improves the performance of our system on that type
of nodule. This improvement is visible for the system as a whole but not
for the YOLOv5 candidate detection model, which performed significantly
worse on all nodules. We found that this holds for malignant nodules in our
subset of NLST, but we could not determine if this holds for clinical datasets
as well. We also found that the number of nodules we oversample on seems
to have a bigger effect than the metric we use to determine which nodules
to oversample, with a combination of objective cancer ratings and subjec-
tive suspiciousness ratings being the most effective. In most experiments,
oversampling did not have a significant adverse effect on the performance of
all nodules. We only saw a significant adverse effect when we oversampled
on nodules marked as cancer from the Radboudumc data when evaluated
on all nodules in our subset of MILD.
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Appendix A

Training data distributions

Table. A.1 shows the number of positive1 and negative slices that we to train
the YOLOv5 candidate detection model in each experiment. Note that the
number of slices does not necessarily scale with the number of annotated
nodules in each experiment. This is because larger nodules fall into more
slices than smaller nodules.

Table. A.2 shows the number of positive1 and negative patches we used
to train the ResNet50 false positive reduction model in each experiment.
The number of patches depends on the number of nodule candidates found
by the YOLOv5 candidate detection model.

Table A.1: Input data into the YOLOv5 nodule candidate detection in each
experiment.

Dataset Original A B C (A+B)

Total slices 60416 76976 104660 121220

Train 48007 61543 81823 95359

Val 12409 15433 22837 25861

Positive slices (%) 30221 (50.0) 38501 (50.0) 52297 (50.0) 60577 (50.0)

Train 23791 (49.6) 30559 (49.7) 40699 (49.7) 47467 (49.8)

Val 6430 (51.8) 7942 (51.5) 11598 (50.8) 13110 (50.7)

1”Positive” in this context does not refer to malignancy but means that the patch/slice
contains a nodule.
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Table A.2: Input data into the ResNet50 false positive reduction model in
each experiment.

Dataset Original A B C (A+B)

Total patches 57623 44990 48244 53569

Train 46359 36430 39207 43629

Val 11264 8560 9037 9940

Positive patches (%) 4811 (8.35) 5055 (11.24) 6446 (13.36) 6908 (12.90)

Train 3784 (8.16) 4084 (11.21) 5453 (13.91) 5909 (13.54)

Val 1027 (9.12) 971 (11.34) 993 (10.99) 999 (10.05)
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Appendix B

Detailed baseline results

B.1 Second retraining

Fig. B.1 shows FROC curves of the original and two retrained systems
(without oversampling). We do not see major differences, suggesting that
our training process is correct. The most notable difference we see is when
only looking at primary cancers in Radboudumc, where our first retrained
system performs notably worse.

B.2 Individual raters

In Fig. B.2, we see the FROC curves of our retrained system when evaluated
against a consensus-based ground truth that only counts nodules annotated
by a majority of five radiologists and excludes the rest, compared to the
same system when evaluated using the annotations of a single radiologist as
ground truth.

The system scores better when evaluated using the consensus-based
ground truth.

B.3 MILD: earliest vs latest scan

Fig. B.3 shows the performance of our retrained model without oversampling
on two different subsets of MILD. The first subset selects the earliest scan
of each participant in the trial, while the second subset selects the latest
scan of each participant. For both subsets, we then included all scans where
cancer was found and included scans without cancer for a total of 1000 scans
per subset.

We can see that the system performs better at detecting cancer if we
take the latest scan per participant than when we take the first scan.
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(a) Performance on clinical datasets.

(b) Performance on screening datasets.

Figure B.1: Performance of original system and two retrained systems (with-
out oversampling).
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Figure B.2: Performance of retrained models (without oversampling) on
clinical datasets, when taking the annotations of a single rater as the ground
truth.
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Figure B.3: Performance of retrained models (without oversampling) on our
MILD subset when we take the earliest scan per patient, compared to when
we take the latest scan per patient.
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