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Abstract

Web developers benefit from minimizing the effort required to create user
interfaces, enabling greater focus on design. The task-oriented language
iTasks simplifies this process by abstracting complex implementation details
and automatically generating user interfaces. However, its user interface
behavior relies on server-side processing, which introduces communication
overhead and creates strong server dependencies. We propose a function to
mitigate these challenges. The function can run a part of iTasks, a task, in
the browser, completing in a single evaluation step. It provides a foundation
to further reduce the communication overhead and server dependencies.
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Chapter 1

Introduction

Software plays a critical role in modern society, driving efficiency, conve-
nience, and innovation across the globe. It enables the management and
analysis of vast datasets and fosters global interaction and collaboration.
However, the increasing demand for software brings significant implemen-
tation complexities, often frustrating developers as they struggle to ensure
their software functions correctly.

Task-Oriented Programming (TOP) simplifies development by abstract-
ing units of work into tasks and automatically managing their dependencies
and interactions. These tasks represent computer operations, primarily fo-
cusing on user interactions, such as functions, methods, remote procedures,
or web services. By abstracting units of work into tasks, developers can
focus on integrating predefined tasks into interactive multi-user systems
without concerning themselves with implementation details. The iTasks
programming language implements the TOP paradigm, enabling tasks to
automatically generate user interfaces (UIs), reducing the need for man-
ual UI development [29]. In iTasks, UIs run in the browser while the task
management is handled on the server.

Yet, managing multiple UIs from the server introduces communication
overhead and creates strong server dependency. When the server is unavail-
able, tasks cannot function [25, p. 5]. These issues were addressed by running
tasks in the browser. Around a decade ago, L. Domoszlai and R. Plasmei-
jer introduced the runOnClient function to execute tasks in the browser.
This function relied on tasklets, a type of task designed to generate user
interfaces [10]. Tasklets were eventually replaced by improved alternatives,
leading to the deprecation of both tasklets and the runOnClient function
that depended on them [9][34, p. 5–6].

We developed a function named runSimpleTaskInBrowser, which uses
the current interactive tasks referred to as editors. Like runOnClient, our
function addresses the communication overhead and strong server depen-
dency of tasks by running them in the browser. The full implementation of
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our function is provided in Appendix A and achieves the following research
contributions:

1. Evaluate and execute a task in the browser

2. Show any resulting UI changes from the executed task in the browser

3. Inspect exceptions of the executed task in the browser and send them
to the server

4. Return a resulting task from the executed task

In the next two chapters, we explain editors and the implementation of
key TOP concepts in iTasks. We then discuss two programming concepts
frequently used in iTasks but not part of TOP: uniqueness and strictness.
These concepts are crucial for understanding how iTasks works, which we
cover in Chapter 4, and the decisions made in our research, presented in
Chapter 5. Finally, we review the related work and conclude our study.
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Chapter 2

TOP

We begin by explaining TOP, the programming paradigm briefly mentioned
in the introduction, and how some of its key concepts are implemented in
iTasks. These concepts are integral to our solution: a function that runs a
task in the browser and returns its resulting task, called
runSimpleTaskInBrowser. To understand our solution, it is essential to
grasp the concept of a task and other TOP concepts, such as editors, which
form its foundation.

2.1 What is TOP?

TOP is a programming paradigm that primarily structures programs around
tasks, which are defined as units of work. A task can represent any activity,
like sending an email or writing text. By defining tasks at a high level with
clear and descriptive names, such as sendMail or writeText, developers can
easily select and use tasks without needing to understand their underlying
technical details. TOP, as stated earlier, including its concept of tasks, is
implemented in the programming language iTasks [29].

2.2 TOP in iTasks

iTasks is a domain-specific language (DSL), embedded in the functional
programming language Clean. It leverages Clean’s syntax and semantics to
develop task-oriented workflows [32]. As an implementation of TOP, iTasks
incorporates the following core concepts [25]:

basic tasks fundamental units of work

task combinators functions that link multiple tasks together enabling dif-
ferent workflows

editors interactive tasks with a UI
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shared data sources information sources for storing shared data

We explain how each of these concepts are implemented in the following
subsections.

2.2.1 Basic tasks

Tasks are units of work with a specific goal, such as writing text. In iTasks,
each basic task is of the type Task a. For instance, the task writeText

would be defined as writeText :: Task String. Here, the String in
Task String, or any type a in Task a, represents the task value that can
be observed by other tasks while it updates, to make decisions upon. If
String in writeText represents the text being written, other tasks can
observe the text as it changes and possibly adjust their course of action
accordingly. [34, p. 4–5].

You can define functions that produce basic tasks. For example, the
function return creates a basic task with its argument as the task value.
Even though the task value created with return is stable, meaning it does
not change, other tasks can observe it for decision making [29, p. 199]. Sim-
ilarly, in Haskell, return wraps its argument in a monad, while in iTasks,
return wraps its argument as the task value of a task [16]. This concept
of wrapping and working with values is foundational in iTasks, particularly
when transforming or combining tasks, which is the focus of the next sub-
sections.

Transform Combinators

Tasks can be transformed or combined. A simple example of a transfor-
mation combinator is @ :: !(Task a) !(a -> b) -> Task b, which is
similar to Haskells fmap: fmap :: Functor => (a -> b) -> f a -> f

b, as it applies a function to the value inside the task (or functor in Haskell)
and returns a new task with the transformed value [15]. Another example
of a transform combinator is our function runSimpleTaskInBrowser. It
takes a task as an argument and modifies it to return its resulting task from
execution in the browser along with potential exceptions.

2.2.2 Task Combinators

Assume you have written text and wish to share it with your friend. In
addition to the writeText you created, you could define a function
shareWithFriend :: String -> Task String, which shares its argument
with your friend after you click a proceed button and holds the argument
in its resulting task for other purposes, such as logging. Now, to share the
written text, you can use the task combinator >>? and the lambda syntax,
which looks like \... -> ... [32, Section 3.1.4], to define:

6



writeText >>? \text -> shareWithFriend text

>>? waits for the task value of writeText (i.e. the written text) to exist,
then waits for the user to click the proceed button. Once the proceed button
is pressed, >>? passes the written text via the lambda function as text to
shareWithFriend to share the content.

The condition for >>? is to wait until there exists a task value and the
user presses a proceed button or until the task value is stable. Each task
combinator, like >>?, has a specific condition related to one or more task
values. These conditions enable various decision making possibilities. For
example, in the scenario above, you could use >>- instead of >>?. Unlike >>?,
>>- waits for the task value to be a stable, finalized value before executing
the next task. Consequently, it does not display a proceed button for sharing
text.

Step and Parallel Combinators

Both >>- and >>? are examples of step combinators. Step combinators are
one of two kinds of task combinators used to structure tasks in iTasks. The
two types of task combinators are [25, p. 1–2]:

• Step combinators, which allows sequential execution where a new
task begins after the previous one has progressed and the task value
of the previous task satisfies a specified condition.

• Parallel combinators, which allows tasks to run concurrently by
interleaving them: switching between tasks to create the idea of par-
allelism. How they are switched depends on the observed task values
and the specified condition [29, p. 204].

An example of a parallel combinator browser is -&&-, which groups two
tasks in parallel and completes both. Resuming with the example from the
top of this subsection (Section 2.2.2): If you want not only to share your
text with a friend when you are done writing it but also with your mom,
you can define a function shareWithMom and use -&&- to define:

writeText >>− \text � (shareWithFriend text −&&− shareWithMom text)

which shares the text with your friend and mom.

2.2.3 Shared Data Sources

Step combinators enable communication by passing task values to subse-
quent tasks. In contrast, parallel combinators and interactive tasks commu-
nicate using shared data sources (SDS). While tasks can operate on isolated
values, SDSs allow multiple tasks to work with the same values. These
sources are assignable references that instantly propagate changes to all
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dependent tasks, including interactive ones. This mechanism enables the
creation of networks of interactive tasks that collaboratively act on a SDS
[29].

Interaction Primitives

Imagine you want to write some message on a website your friend created
with iTasks. While tasks can access each other’s values, such as writeText
in Section 2.2.1, a user like you cannot enter or view text on another user’s
website without one or more user interaction functions. enterInformation
is such a user interaction function, or better called: an interaction primitive.
Your friend could write a task similar to the following to allow users to write
messages:

enterText : : Task String
enterText = enterInformation [ ]

enterInformation keeps the value entered by a user as a task value. Other
interaction primitives serve other interaction goals, such as updating or view-
ing information. Despite their different interaction goals, they all use an
interact function to interact with the browser and a SDS containing the
task value being entered/updated/viewed to notify tasks dependent on it [9,
p. 3]:

Figure 2.1: Interaction primitive.

The browser displays the value of Figure 2.1. The UI of the value is built
using interactive tasks called editors.

2.2.4 Editors

In the last section, enterInformation of enterText takes an empty list
as an argument. This list does not have to be empty as it may contain an
editor. We explain editors by resuming the example of last section:

Your friend may have created a text field on their website for you to
indicate where to type your message. A text field is a UI component. In
iTasks, UI components on the browser, like a text field, are created and
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interacted with through special tasks called editors. The editor for a text
field is called textField. The version of enterText which also shows the
text field is:

enterText : : Task String
enterText = enterInformation [EnterUsing (\x�x) textField ]

The textField or any other editor is a task that directly interacts with
its end-users [25, p. 1]. iTasks has basic editors, like textField, and more
advanced editors, such as pikadayDateField, which allows users to pick
and display a date from a calender.

Editor’s key components

Every editor is of the type Editor r w in which:

• r stands for the type of the data the editor reads (when displaying or
updating the data).

• w stands for the type of the data the editor writes back after an event
(when entering or updating the data).

In many editors, the types r and w are identical. Editors in interaction prim-
itives for updating and entering values require the write type EditorReport
a. This write type differentiates between empty, invalid, and valid editor
states, supporting the communication between the possibly inconsistent or
unparsable value of the editor state and the task value of the SDS. For the
editor textField :: Editor String (EditorReport String), the edi-
tor state is always a valid string.

Every editor implements four functions, of which the following three are
important for our research [21]:

• onReset initializes the editor’s UI and the task value from the SDS
of the interaction primitive. The task value is stored in the state of
the editor on the server, the editor state. The JavaScript implementa-
tions for generating the UI components are sent to the browser before
the iTasks program executes. onReset uses these implementations to
initialize the UI [33, p. 7].

• onEdit handles edit events, determining if and how to update the
editor state and UI accordingly. An edit event is, for example, a user
typing into a text field or selecting a date.

• writeValue computes the write value from the value kept in the editor
state. While the user is editing in the UI, the value in the editor state
may be inconsistent or unparsable. Once the value becomes consistent
and parsable, writeValue updates the SDS, changing the task value
to the computed write value. [29, p. 201–202].
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The editor functions above are called by the interact function of an inter-
action primitive to manage the editor.

To visualize the interactions between the interaction primitive and an
editor, we show you a high level overview of these interactions in the figure
below:

Figure 2.2: Interaction primitive & editor

The interaction primitive in enterInformation, used in enterText,
includes the identity function \x -> x. This function ensures that the
String value entered in the editor is directly used as the task value. It
is passed as the vw -> a argument in the EnterUsing constructor within
enterInformation, which you can see in their abstracted definitions:

enterInformation : : [EnterOption m] � Task m
: : EnterOption a = EnterUsing (vw � a) (Editor vr (EditorReport vw))

Here, vw represents the editor’s write type, while a represents the task value
stored in the SDS. By using \x -> x in enterText, we explicitly state
that the editor’s value is the same as the task value. For other interac-
tion primitives, such as updateInformation, other ways for value reading
and writing must be specified. Below are the abstracted definitions related
to updateInformation to compare with enterInformation:

updateInformation : : [UpdateOption m] m � Task m
: : UpdateOption a = UpdateUsing (a � vr) (a � vw � a)

(Editor vr (EditorReport vw))

Unlike enterInformation, where specifying a function vw -> a is enough,
updateInformation needs functions of type a -> vr to update the editor’s
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r type from the task value in the server and a -> vw -> a to update the
task value from the interaction in the browser.

doEditEvent

Task values and the editor’s UI can both be updated. The latter is achieved
using doEditEvent. The JavaScript function doEditEvent sends edit events
from the browser to the server, triggering the onEdit function, to possibly
change the UI. Without these edit events from the UI to the server, repre-
sented by the arrow from UI to interact in Figure 2.2, the UI would be
static; typing or other editing events in the browser would not modify it.
Calling doEditEvent is currently the only way to send any data from the
browser and potentially update the editor’s state on the server. When an
iTasks program runs in the browser, the implementation of doEditEvent is
included with the UI components [33, p. 7].

Additionaly, the UI attributes allow the reverse of doEditEvent by send-
ing data from the server to the browser during execution. They further define
the behavior and looks of the chosen UI components [21].

11



Chapter 3

Strictness & Uniqueness

Strictness and uniqueness are features in Clean and, by extension, iTasks.
While this research emphasizes TOP and iTasks, these features surface
throughout the study, particularly in Sections 5.3.3, 5.4.1 and 5.4.2 of Chap-
ter 5, where they are crucial for decision making in our solution–a function,
or more specifically, a transform combinator, that runs a task in the browser.
Therefore, we dedicate this chapter to explain them.

3.1 Strictness

Strictness is an evaluation strategy that defines when expressions, such as
arguments, are evaluated. In strict evaluation, arguments are evaluated be-
fore being passed to a function and are called strict arguments. In contrast,
lazy expressions are only evaluated when needed after being passed to a
function. Strictness enforces immediate evaluation before an expression is
passed to a function, while laziness delays it [6, p. 9]. In the functional pro-
gramming language Clean, lazy evaluation is the default strategy [28, p. 23].
However, lazy evaluation can increase space usage due to many unevaluated
expressions of small data structures. Strictness reduces this space usage by
evaluating such expressions before applying the function [35], [32, Section
10.1.1].

3.1.1 Strictness implementation

Even though Clean is a lazy language, strictness can be enforced for specific
arguments or fields in a data type by placing an exclamation mark before the
type definitions of these arguments and fields, such as !String [1, p. 244].
The strict expressions in Clean are not fully evaluated; instead, they are
evaluated to a form known as weak root or head normal form.
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3.1.2 Weak Head/Root normal form

A Clean program can be represented as an execution graph. The nodes of
the graph represent the expressions in the program, such as functions and
arguments. When you, for example, run two imaginary binary functions f
and g of f 1 (g (2+3) 4) strictly in Clean, the one node execution graph
f 1 (g (2+3) 4) becomes a three-node graph:

Figure 3.1: weak head normal form graph.

Strict evaluation in Clean rewrites the strict arguments to a form called
weak head normal form, also known as weak root normal form. The rewriting
to weak head normal form causes the root node of the strict arguments to
be fully evaluated. Apart from the root, the other nodes do not have to be
fully evaluated. To illustrate, Figure 3.1, the root node f and 1 are fully
evaluated, but g (2+3) 4 is not [32, Section 3.7.5].

3.1.3 Hyperstrict

Strictness does not fully evaluate expressions, as non-root nodes might not
be evaluated. Full evaluation, nevertheless, can be useful, as it detects faults,
such as stack overflows and illegal instructions, deeper in the evaluation
graphs of expressions before execution. Additionally, it reduces the amount
of data to be serialized and transmitted, as fully evaluated expressions avoid
carrying unevaluated subexpressions. The hyperstrict function achieves
this by fully evaluating expressions before passing them to other functions.
It is particularly useful when passing arguments to the browser, as it ensures
that faults in deeper parts of the evaluation graph are detected server-side,
preventing them from occurring in the browser. Detecting faults early with
hyperstrictness on the server-side eliminates the need to detect them in the
browser and communicate them back to the server [33, p. 5].

3.2 Uniqueness

Functional languages have different ways of dealing with the side effects of
I/O operations to keep themselves pure. In Haskell, the I/O monad takes
care of the I/O operations. The actions are encapsulated in the I/O monad
as explicitly sequenced immutable values, such that any side effects can
be managed explicitly [12]. Clean’s way of keeping I/O operations pure is

13



uniqueness. It can be applied to arguments and data types by prepending
them with an asterisk (*). An example of a unique argument is the argument
of type *File in fwrites, which is a function that writes to the given unique
file. While the I/O function fwrites writes a string to the unique file, no
other operation can access the file. The file only has one reference to it. If
that reference is taken by an operation, like fwrites, there is no reference
left for other operations to use. Any side effect of fwrites is localized and
does not leak to the rest of the program [2].
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Chapter 4

iTasks program & Browser
tools

In earlier chapters, we covered the essential concepts of TOP and iTasks.
This chapter explains how an iTasks browser tools and its program work,
laying the groundwork for understanding the execution our solution: a trans-
form combinator that runs a task in the browser.

4.1 iTasks browser interpreter: the ABC inter-
preter

Running parts of an iTasks program in the browser requires several steps.
When an iTasks program executes on the server, it is first compiled to an
intermediate language called ABC. This language represents the program as
a graph of expressions. The ABC code is then translated into machine code
and ABC bytecode. To run the program in the browser, the ABC bytecode
is sent to the browser. There, an ABC interpreter interprets the bytecode,
allowing the program to run in a web environment [20][33].

4.1.1 JavaScript Foreign Function Interface

The UI components in Clean provide much of the desired functionality but
lack certain features, such as dragging a file into a message or selecting a
date from a calendar. To enhance interactivity, JavaScript functions can
be directly invoked from the iTasks program using the JavaScript For-
eign Function Interface (JavaScript FFI). The functions provided by the
JavaScript FFI form a DSL, designed for performing JavaScript operations
within Clean. The ABC interpreter facilitates this process by allowing direct
calls to JavaScript functions and passing the results back to the interpreter.
This integration ensures that the iTasks program can continue execution in
the browser using the returned data [33, p. 7–9].
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4.2 Overview

The following figure provides a high-level overview of the execution pro-
cess of an iTasks program that partially runs in the browser and includes
JavaScript FFI functions:

Figure 4.1: iTasks program.

4.3 iTasks program

As in Clean, every iTasks program contains a Start function with the type
*World -> *World [1, p. 195]. The * enforces uniqueness. Consequently,
that means there is only one World value available in an iTasks program (see
Section 3.2). The World type, used as both argument and result, represents
the state of the external environment. It is essential for managing side
effects, such as reading input or writing output, in a purely functional way
[28, p. 27]. The file system, as an external environment, requires an value
of World, called w in the example program below, whenever a task reads
from or writes to a file. By using and returning the World value, tasks make
changes to the environment explicit, keeping the language pure and reliable
[2, p. 87–91].

An iTasks program typically has the following structure:

implementation module <name>

// Here usually reside the imported modules containing
// functions you wish to use

// <task> i s a placeholder for an ( in i t ia l ) task ,
// such as enterInformation [ ]

Start : : ∗World � ∗World
Start w = doTasks <task> w
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doTasks executes the specified tasks in the iTasks engine [27, p. 145]. It
uses a value of the World type to manage any side effects.

4.3.1 How to use the JavaScript FFI

We explain some of the functionality provided by the JavaScript FFI and
how to use it to enhance browser interactivity.

JSWorld

In addition to the World type, the JavaScript FFI provides the type JSWorld.
The World type maintains a pure interface and represents the server-side,
non-web environment in iTasks. A value of JSWorld handles impure inter-
actions with JavaScript, such as the doEditEvent or console.log(), rep-
resenting the client-side JavaScript environment. They are separate: World
manages non-web side effects, while JSWorld handles web-specific side ef-
fects [33, p. 9][9, p. 5].

Example Editor using the JavaScript FFI

The JavaScript FFI provides functions to use JavaScript within Clean and
iTasks by extension. You can add these functions to an editor. By adding
the functions to an editor, they are executed together with the editor’s UI
in the browser.

Before we give an example of the implementation of an editor executing
a JavaScript function, we have to explain some functions and syntax first:

• @>> (or <<@, its mirrored counterpart) is the function to tune task
UIs, by changing or adding functionality. You can, for example, add
some text to show with a task resulting from entering information by
defining:

enterInformation [ ] <<@ Label ”enter here”

Here, <<@ fine tunes the task returned by enterInformation by com-
bining it with a Label, a string. Apart from a Label, tasks can be
fine tuned with JavaScript functionality.

• # ... = ... is the let-before syntax of Clean. An expression with this
syntax will be executed before any textually subsequent expressions in
the same function [32, Section 3.5.4].

We also have to explain functions from the JavaScript FFI:

• jsGlobal is a function which represents the global address space in
JavaScript.
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• .# represents a dot in JavaScript to access properties of objects, such
as the dot in console.log().

• .$! calls a JavaScript function defined before it [9, p. 7].

With the previously provided lists of functions and syntax, we show you the
implementation of the textField editor that directly calls the JavaScript
function console.log("first") and console.log("second") afterwards
in the browser when used with interaction primitives for entering or updating
(see Section 2.2.4 on why):

textFieldAndLogEditor : : Editor String (EditorReport String)
textFieldAndLogEditor = JavaScriptInit initUI @>> textField
where

initUI : : !FrontendEngineOptions !JSVal !∗JSWorld −> ∗JSWorld
initUI me jsworld

# jsworld = (jsGlobal ”console” .# ”log” .$ ! ” f i r s t ”) jsworld
# jsworld = (jsGlobal ”console” .# ”log” .$ ! ”second”) jsworld
= jsworld

The JavaScriptInit function initializes client-side functionality, setting
up the additional JavaScript functions in initUI, which in this case logs
first and second to the console. The let-before bindings and passing of
jsworld define the order of execution: first is logged to the console before
second.
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Chapter 5

Running tasks in the browser

In this chapter, we propose and explain our solution for running iTasks
in the browser. Currently, when running a part of the iTasks program
in the browser, most is handled by the server (see Figures 2.1 and 4.1).
The parts of an iTasks program running in the browser, such as the UI
and JavaScript functions, are managed by the server and depend on the
communication between browser and server. To reduce the communication
and server dependency, we created the function runSimpleTaskInBrowser.
This transform combinator runs a task in the browser and transforms it into
a new task, the resulting task.

The task provided to runSimpleTaskInBrowser must be simple. A sim-
ple task is self-contained and cannot access values from the server environ-
ment (represented by World) or interact with UI elements it did not generate.
The task is evaluated and executed once in the browser. For example, the
task:

get currentDate >>− \date � return date

is invalid because get currentDate requires access to the server envi-
ronment. This is unavailable in the browser due to single-step evaluation
and the lack of SDS handling (see Section 2.2.3). These limitations could
be addressed in the future by introducing SDS handling in the browser and
enabling multiple rewrites with current techniques.

runSimpleTaskInBrowser’s implementation can be found in Appendix
A.

5.1 runSimpleTaskInBrowser components

The function operates across three layers, shown in Figure 5.1: the server,
the browser engine, and the communication between them. We start by
clarifying the server functionality, then address the communication layer,
and conclude with the browser engine.
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Figure 5.1: runSimpleTaskInBrowser overview.

5.2 Server

The server receives the resulting task value from the communication layer
after the browser engine executes the task. Since the communication layer
checks for errors and includes them in the resulting task value, the server
receives the value wrapped in other types: TaskValue (MaybeError

TaskException (TaskValue a)). To extract the actual result, TaskValue
a, we use the transform combinator transformError (see Section 2.2.1).

5.2.1 transformError

The transformError combinator functions similarly to Haskell’s join, which
has the type Monad m => m (m a) -> m a and ”flattens” nested monadic
structures. In addition to flattening, transformError checks for errors
and, if any are present, injects exceptions to notify other tasks or the
user. transformError retrieves the inner TaskValue from the result of type
TaskValue (MaybeError TaskException (TaskValue a)), injects excep-
tions when MaybeError is of type Error, and transforms the result into a
resulting task of type Task with the inner task value, the value of type a.

5.3 Communication

The communication layer is constructed from the interaction primitive
enterInformation and a custom editor we developed, called ribEditor,
which we elaborate on in this section. The initUI is added to the ribEditor
(see Section 4.3.1). It combines JavaScript and Clean functionality for com-
municating the given task and the resulting task value.

5.3.1 enterInformation

We need an interaction primitive to communicate the given task with the
browser. We did not wish to reinvent the wheel, implementing our own SDS
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with proper sharing of task values, and therefore chose to use enterInformation.
Another valid option was updateInformation. However, updateInformation
uses UpdateUsing instead of EnterUsing, which requires specifying more
arguments than necessary (see Section 2.2.4).

5.3.2 ribEditor

Below is part of a simplified implementation of the ribEditor passed to
enterInformation:

: : ReadWriteType a :== MaybeError TaskException (TaskValue a)
: : EditType a :== MaybeError TaskException (TaskValue a)
: : StateType a :== MaybeError TaskException (TaskValue a)

ribEditor =
JavaScriptInit initUI @>> baseEditor

where
baseEditor : : Editor (EditType a) (StateType a)
(ReadWriteType a) (ReadWriteType a)
baseEditor =

{ Editor
| onReset = onReset
, onEdit = onEdit
, writeValue = writeValue
}

The ribEditor is localized in runSimpleTaskInBrowser and receives the
given task to run in the browser as a lifted argument. It runs the task and
returns its possibly modified task value, the result. This process relies on
the implementation of the onReset function, initalizing the UI of an editor,
and of the initUI function added to the editor to integrate JavaScript for
retrieving the given task, executing it and inspecting the result for exceptions
or UI changes that should be done. The onReset function transfers the task
to the browser and initializes a loading icon with UILoader to inform users
that the task is being executed. It adds the task as an attribute to the
initialized UI, allowing initUI to retrieve the task from the attribute (see
Sections 2.2.4 and 4.3.1). We explore the onReset and initUI functions in
greater detail in the next sections.

5.3.3 onReset

Transferring a task involves sending its ABC bytecode and execution graph.
The ABC bytecode represents the machine code of parts of the ABC pro-
gram compiled from the iTasks program (see Figure 4.1). The ABC byte-
code is sent to the browser before parts of it are executed with execution
graphs managed by the interpreter. The execution graphs specify which
ABC bytecode to evaluate in the browser (see Section 3.1.2). The func-
tion jsSerializeGraph retrieves the task’s execution graph and serializes

21



it into a String [33]. The serialized execution graph of the given task is
then converted into a JSONString, a JavaScript data type, and put into a
UI attribute to be retrieved by initUI. The UI attribute ensures that the
graph is sent from the server to the browser before it is retrieved to execute
the given task.

Keeping laziness

We do not call jsSerializeGraph on the given task directly, but wrap the
task in a type we call Box:

: : Box t = Box t

This wrapper type makes sure the task is not evaluated on the server (see
Appendix C). The weak head normal form evaluation ensures that only the
root, Box, is evaluated on the server, not the given task.

5.3.4 initUI: Communicating the result

After the task is executed, its result is inspected in initUI in the browser
for exceptions and changes of the UI. The UI changes are done in the
browser with the JavaScript FFI functions. The exceptions check results in
enterInformation returning a task value of type TaskValue (MaybeError

TaskException (TaskValue a)). This task value is sent to the server us-
ing doEditEvent, which triggers an edit event, notifying the server that the
given task has been executed (see Section 2.2.4). The server further handles
the nested task value in transformError (see Section 5.2).

5.3.5 Overview ribEditor

We summarize the ribEditor in the following figure:

Figure 5.2: ribEditor key components.
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5.4 Engine

The browser engine uses the function apTask. The task is executed, and its
result inspected, using the calculate function within initUI, ensuring it
runs in the browser.

To allow UI components from other parts of a program to initialize before
executing the task, calculate is wrapped using the JavaScript FFI function
jsWrapFun. This wrapped function is then passed to the JavaScript func-
tion setTimeout, which schedules calculate to run in the browser after UI
components from the main program are initialized.

5.4.1 Core engine: apTask

The iTasks function used in calculate to execute a task is apTask. apTask
runs the task but requires a value of IWorld, which depends on the World

value.
In the browser, the IWorld fields, including a value of World, are not

actively used but may become necessary for evaluating multiple browser
tasks after each other in the future. Therefore, most fields in the IWorld

record are filled with empty values. Still, in an iTasks program, the World

value is unique and cannot be an empty value.

5.4.2 Another value of World

The World value is unique. Assigning it to a field in the IWorld record of
runSimpleTaskInBrowser and running it would cause uniqueness errors, as
this would create multiple references to the unique World value (see Section
3.2). To avoid this, we create and assign a new World value to the World

field in the IWorld value. This new World value should not be outside of
the browser to keep iTasks a deterministic and pure language. We avoid
creating multiple IWorld and, by extension, World values by checking if
they have already been initialized and stored in the browser. If an IWorld

value exists, runSimpleTaskInBrowser reuses it.

5.4.3 Retrieving the task for execution

apTask needs the IWorld value, which is initialized in the browser, and the
execution graph of the task to run it in the browser. The execution graph of
the given task is taken from the UI attribute, unboxed, and deserialized in
calculate with jsDeserializeJSVal. jsDeserializeJSVal deserializes
the encoded string to the execution graph, such that apTask can run the
corresponding task in the browser.
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5.4.4 Pseudocode of initUI and calculate

Below is a figure showing the pseudocode of the key functionality in initUI

and calculate explained in this chapter:

Figure 5.3: Pseudocode of initUI and calculate.

5.4.5 Avoiding recalculating

The functions calculate and apTask are used within initUI, which is called
each time the UI is replaced or initialized. To avoid recalculating the task
during UI replacements, we delete the execution graph from the UI attribute
after initialization and check for its existence before using it.

5.4.6 IWorld and Future work

The IWorld value is essential for evaluating tasks independently in the
browser while allowing task values to be shared for collaboration. Cur-
rently, runSimpleTaskInBrowser does not support sharing task values be-
tween tasks of the same program evaluated in the browser at different times.
Although the server uses SDSs and a value of the IWorld to share task val-
ues and notify other tasks of changes, these SDSs can not share data in
the browser. To enable independent task evaluation and value sharing, the
IWorld value must persist in the browser, and a mechanism for sharing task
values in the browser must be developed.

We store the IWorld value in the browser’s sessionStorage. Alter-
natively, we could store the IWorld value as an attribute of the root UI
component to retain it across multiple task evaluations. Both approaches
are tab-specific and valid. However, because the iTasks framework is cen-
tral to this research, and its functionality or structure may evolve, the root
UI component could undergo significant changes over time. By contrast,
sessionStorage provides a stable and framework-independent option, mak-
ing it the more reliable choice for now.
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Chapter 6

Related Work

Our solution runs a task—a concept from TOP implemented in iTasks—in
the browser using an editor. This chapter introduces related work, including
the implementations of TOP, the evolution of editors, and a programming
paradigm similar to TOP.

Our solution also depends on iTasks’ construction, which uses uniqueness
to manage I/O and browser tools like the ABC interpreter. We describe
how iTasks adopted the ABC interpreter and present alternative solutions
used by functional programming languages for running code in the browser.
Finally, since iTasks combines an interpreter and a compiler, we provide two
examples of similar approaches.

6.1 Task-Oriented

TOP is known for being beneficial in developing multi-user workflow systems
[34]. This it is not surprising, as there are task-oriented solutions, such as
TOP, used for workflows [14][17][4] and collaboration [13][30].

6.2 FRP

Functional Reactive Programming (FRP) is a programming paradigm with
some similarities to TOP. FRP models dynamic value changes declaratively
by defining networks of interdependent values, known as behaviors, which
evolve over time in response to events. When a behavior updates, all depen-
dent behaviors automatically adjust. Implementations of FRP often connect
input devices, such as a mouse or keyboard, to event streams and map be-
haviors to output UI elements like text fields. This approach allows for
declaratively programming UIs, which is also the case when using editors of
TOP. However, the two paradigms achieve this in different ways.

TOP automatically derives UI components by sending their implemen-
tations to the browser, whereas FRP requires manually creating the UI
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components. A key distinction lies in their goals and how they handle up-
dates: FRP focuses on automatically updating data dependencies, while
TOP expresses collaboration patterns. Additionally, an event in TOP only
causes updates up to the next step of the task, whereas an event in FRP
propagates through the entire network.

Despite these differences, there are notable similarities. Both paradigms
enable declaratively programming UIs. Furthermore, the ”stepper” behavior
in FRP, which processes events and retains the most recent event’s value,
is conceptually similar to TOP editors. Editors in TOP hold a value in
the editor state and process edit events. These shared traits highlight their
overlapping capabilities, even as they pursue distinct goals [34, p. 12].

FRP stems from the paper Functional Reactive Animation [11] and has
many variants and implementations, such as Elm [7], Flapjax [24] and Lively
RaTT [5].

6.3 TOP

So far, we found two implementations of TOP defining tasks, task combina-
tors and SDSs: iTasks and mTasks.

6.3.1 mTasks

mTasks is similar to iTasks, a TOP implementation embedded in Clean.
Unlike iTasks, it focuses on microcontroller units (MCUs). MCUs have
resource-constraints causing issues with rich OS features and threading.
mTasks deals with these issues and integrates with iTasks for the use of
web-interfaces for remote control and monitoring [23, p. 1587, 1591].

6.3.2 iTasks

Our investigation focused on running iTasks in the browser while preserving
and transferring the TOP concepts for lazy execution, rather than optimiz-
ing the performance of iTasks in the browser. As part of this work, we
developed an editor. The editor’s structure evolved over time, starting with
tasklets, then editlets, and finally editors to build the UI.

Tasklets

Tasklets are client-side components designed to handle specific, discrete
parts of a task from iTask. They allow for partial evaluation and execu-
tion of tasks in the browser, reducing the server’s workload and improving
interactivity [10]. Editlets succeeded tasklets, as tasklets have the following
limitations [9, p. 4]:
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1. Tasklets exchange all the underlying data (UI state, task state and
additional data) between the client and server during edits, resulting
in significant communication costs.

2. Tasklets cannot work with shared data. When you want an interactive
map in which multiple users making concurrent modifications, this is
not possible with tasklets.

3. Tasklets do not integrate with the generic, type-driven UI generation
of iTasks, meaning:

• UIs are generated automatically based on the structure of types.

• UIs can adapt to changes in types.

• Developers need to write custom UIs for every variation or com-
bination of types.

This contrasts with tasklets, which are tightly coupled to specific tasks
and do not support automatic, compositional UI generation.

Editlets

The editlets are components that encapsulate the client-side state, user in-
teractions, and incremental communication with the server (only commu-
nicating changes). They overcome the three limitations of tasklets (listed
above) by [9]:

1. exchanging the updates instead of the whole shared value, which re-
duces possible communication overhead

2. working with shared data by handling the conflicting updates

3. integrating with the generic, type-driven UI generation of iTasks, mak-
ing it easier to customize, extend, reuse and compose UIs.

Editors

The editors are based on the editlets, but do not use the intermediate lan-
guage SAPL (Simple Application Programming Language) nor a SAPL-to-
JavaScript compiler to run parts of the program in the browser. SAPL and
the SAPL-to-JavaScript compiler were replaced by the ABC interpreter as
it tackled the following problems: First, due to the way Clean was compiled
to SAPL, not all Clean values could be sent to the browser, as they had to
be evaluated to a normal form first. Second, because SAPL branched off
early in the compiler toolchain, it was time-consuming to maintain. Third,
the compiled JavaScript had a bad worst-case performance [33].

The ABC interpreter is a solution to these three problems. With the
ABC interpreter, there is no need to evaluate values to normal form to send
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to the browser, as the values can be directly copied from server to client.
The ABC language operates on a lower level (ABC bytecode) than SAPL,
simplifying the compiler toolchain. The ABC interpreter also improves the
performance predictability and removes the need for developers to write
separate optimized versions of functions. Due to the advantages of the ABC
interpreter in comparison to SAPL, the editors improved by replacing the
need for SAPL with the ABC interpreter.

6.4 Functional Programming in the browser

This section explores how functional programming languages compile to
JavaScript, handle I/O, and use compilers and interpreters. These ap-
proaches provide context for understanding iTasks’ current position.

6.4.1 Compilation to JavaScript

Before the ABC interpreter, the Clean compiler could generate code in
SAPL, a pure and lazy language. SAPL contains the essential minimum
of a Clean program, while preserving Clean’s semantics. Parts of the SAPL
code would be compiled to JavaScript with the SAPL-to-JavaScript compiler
during runtime to run the JavaScript in the browser [18][8].

ClojureScript is a language from the functional language Clojure to bring
Clojures expressiveness, performance and host interoperatibily to the front-
end. ClosureScript does not use an intermediate language like SAPL, but
translates the ClosureScript semantics into JavaScript constructs before run-
time. Standard web communication, such as HTTP APIs and WebSocket
protocols can then be used for the communication between server and client
[31].

Elm is a functional language implementing FRP, a programming para-
digm with similarities to TOP (see Section 6.2). The Elm-to-JavaScript
compiler translates Elm programs to HTML for layout, CSS for styling,
and JavaScript for reactive behavior, managing events, signals, and state
updates [7].

Racket, a functional language typically used for eduction, has apart from
the JavaScript compiler Whalesong, a JavaScript FFI for adding new reac-
tive features and a framework called the World programming model. Unlike
iTasks where the world value represent the external environment, Racket’s
framework keeps track of a world value that handles events. [36].

6.4.2 Handling I/O

Handling I/O in functional programming involves several approaches. In
iTasks, the unique world manages side effects and ensures the correct execu-
tion order of I/O operations. In Haskell, the I/O Monad encapsulates I/O
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operations to manage side effects and execution sequencing [19]. Elm uses
commands and subscriptions to separate side effects. Commands specify
operations for the Elm runtime to execute, while subscriptions define ex-
ternal events the program listens to. These abstractions isolate side effects
from the program’s logic and prevent direct execution. The Elm runtime
manages execution in a strict order, maintaining the language’s functional
purity [22].

6.5 Interpreters & Compilers

Compilers execute code before runtime, while interpreters evaluate code
during runtime. Interpreters are in general easier to implement and more
flexible, but slower because they may repeatedly process certain code, such
as loops [3]. The choice between using a compiler, an interpreter, or both
depends on the language’s design and purpose.

In iTasks, both a compiler and an interpreter are used to execute pro-
grams. Similarly, the functional language Erlang supports both compiled
and interpreted code, which share the same heap and stack. This setup en-
ables just-in-time (JIT) compilation, reducing context-switching overhead
and improving execution speed [26].

The functional language weScheme also uses a compiler and a (JavaScript)
interpreter. However, unlike iTasks and Erlang, compiled and interpreted
code in weScheme do not share the same heap or stack, maintaining separate
execution contexts [37].
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Chapter 7

Conclusions

We addressed the server dependency and communication overhead in iTasks
by developing the function runSimpleTaskInBrowser. This function evalu-
ates and executes a task in the browser, updates the UI with any resulting
changes, inspects exceptions during execution and sends them to the server,
and returns the resulting task.

During the implementation, we introduced the wrapper type Box to en-
sure laziness and created a new World value to execute tasks in the browser,
as the existing World value is unique.

The task provided to runSimpleTaskInBrowser is evaluated in a single
step within the browser and cannot depend on server-side values or interact
with UI elements it did not generate.

In the future, introducing a SDS mechanism in the browser could al-
low multiple independently evaluated tasks to share values and coordinate
execution. Combined with a value of IWorld for task coordination, this
would enable more complex, interdependent tasks to run simultaneously in
the browser.
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Appendix A

runSimpleTaskInBrowser implementation

module RunInBrowser

import iTasks
import iTasks.UI.JavaScript
import StdEnv
import Data.Error.GenJSON
import qualified Data.Map as DM
import iTasks.Internal.TaskEval
import iTasks.Internal.IWorld
from AsyncIO import : : AIOState{ . . } ,

: : OutputData, : : AsyncIOFD, : : Client , : : Listener
import ABC.Interpreter
import System. Finalized
import Math.Random
import ABC.Interpreter.JavaScript
import StdGeneric
import iTasks.UI.Editor.Common

// This wrapper type makes sure lazyness happens (HNF evaluation apparantly)
: : Box t = Box t

: : ReadWriteType a :== MaybeError TaskException (TaskValue a)
: : EditType a :== MaybeError TaskException (TaskValue a)
: : StateType a :== MaybeError TaskException (TaskValue a)
: : UnexpectedDestroyedResultException = UnexpectedDestroyedResultException

/∗∗
∗ Run a simple task (one that finishes with one evaluation step) in the
∗ browser.
∗
∗ @param Task to execute in the browser
∗ @result Transformed task
∗ @throws UnexpectedDestroyedResultException when the task evaluates to a

DestroyedResult
∗/

runSimpleTaskInBrowser : : (Task a) � Task a | iTask a
runSimpleTaskInBrowser task

= get applicationOptions
>>− \options� transformError transformFun
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(enterInformation [EnterUsing id (ribEditor id options) ] )
where

transformFun : : (TaskValue (ReadWriteType a)) � MaybeError TaskException
(TaskValue a)

// Task not done yet
transformFun NoValue = Ok NoValue
// Ignore stability
transformFun (Value v ) = case v of

Ok tv = Ok tv
Error e = Error e

// Added an identity function as an argument so that later
// the deserialised value can be cast
ribEditor : : ((Task a) � Task a) EngineOptions � Editor (ReadWriteType
a) (EditorReport (ReadWriteType a)) | iTask a
ribEditor thisid engineOptions = mapEditorWrite ValidEditor (

JavaScriptInit (initUI (thisid )) @>> leafEditorToEditor leafRibEditor
)
where

leafRibEditor : : LeafEditor (EditType a) (StateType a) (ReadWriteType
a) (ReadWriteType a)

leafRibEditor =
{ LeafEditor
| onReset = onReset
, onEdit = onEdit
, onRefresh = onRefresh
, writeValue = writeValue
}

initUI : : ((Task a) � Task a) !FrontendEngineOptions !JSVal !
∗JSWorld � ∗JSWorld | JSONEncode{|∗ |} a

initUI thisid opts me world
# (timeMs, world) = (jsGlobal ”Date” .# ”now” .$? ()) (0, world)
// Generate a fresh l i s t of random integers
# randoms = genRandInt timeMs
//get the iworld from sessionStorage
# (iworld , world) = (jsGlobal ”sessionStorage” .# ”getItem”

.$ ”iworld”) world
// Using undefs/aborts in f ie lds of iworld
// results in an abc−interpreter error? Probably has to do
// with hyperstrictness of the initUI function · · ·
// I f the IWorld does not exists in the sessionStorage
// (need to check bc of initUI cal ls when UI is replaced)
// in i t ia l i ze iworld for browser and set i t in sessionStorage
| jsIsUndefined iworld = world

#! (serIworld , world) = jsSerializeOnClient { IWorld
| options = engineOptions
, clock =

{ Timespec
| tv sec = timeMs / 1000
, tv nsec = (timeMs rem 1000) ∗ 1000000
}

, clockDependencies = [ | ]
, current =
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{ TaskEvalState
| nextTaskNo = 0
}

, currentInstance = 1
, random = randoms
, symbols = {#}
, sdsNotifyRequests = 'DM'.newMap
, sdsNotifyReqsByTask = 'DM'.newMap
, memoryShares = 'DM'.newMap
, readCache = 'DM'.newMap
, writeCache = 'DM'.newMap
, readSdsSourceVals = 'DM'.newMap
, abcInterpreterEnv =

{ PrelinkedInterpretationEnvironment
| pie code start =

{ Finalizer
| f inal izer implementation = DummyFinalizer 0 0 0
}

, pie symbols = {#}
, pie symbols 64 = {#}
, pie sorted symbols = {#}
, pie host symbols = {#}
, pie symbol offset = 0
}

, ioStates = 'DM'.newMap
, ioHandleMap = 'DM'.newMap
, nextIOHandle = 0
, lastOnDataCId = ?None
, webServiceInstances = [ ]
, signalHandlers = [ ]
, world = newWorld
, aioState =

{ AIOState
| l isteners = 'DM'.newMap
, clients = 'DM'.newMap
, aioFd = { f inal izer implementation =

DummyFinalizer 0 0 0 }
, writeQueues = 'DM'.newMap
}

, resources = [ ]
, onClient = True
, shutdown = ?None
} world

# world = (jsGlobal ”sessionStorage” .# ”setItem”
.$ ! (”iworld” , serIworld)) world

// Get the iworld from sessionStorage
// (needed in possible future work
// for multiple evaluation steps in the browser)
# (iworld , world) = jsGlobal ”sessionStorage” .# ”iworld”

.? world
// Get the graph from attributes
# (graph, world) = me .# ”attributes” .# ”graph” .? world
// initUI runs each time a replace UI is done,
// so we need to make sure we don' t deserialize graph twice.
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| jsIsUndefined graph = world
// Remove the graph string (you can only use it once!) .
# world = jsDelete (me .# ”attributes” .# ”graph”) world
// Make a callback out of the calculation function
# (cb, world) = jsWrapFun (calculate me graph iworld) me world
// Run it asynchronously , this gives other UIs the chance
// to do something but eventually i t will block the client · · ·
# world = (jsGlobal ”setTimeout” .$ ! (cb, 0)) world
= world

where
calculate : : !JSVal !JSVal !JSVal !{!JSVal} !∗JSWorld � ∗JSWorld
calculate me graph iworld args world

// Deserialize and immediately unbox
# (Box jsres , world) = jsDeserializeJSVal graph world
// Deserialize iworld
# (desIworld , world) = jsDeserializeJSVal iworld world
// Run the task
// (cast to correct type using identity function)
# (taskResult , ) = apTask (thisid jsres ) ResetEvent

// Invent a TaskEvalOpts record
{ TaskEvalOpts
| noUI = False
// Instance 0 is reserved for system things and sometimes
// treated differently by the engine ,
// so we use instance 1
, taskId = TaskId 1 0
, lastEval = 0
, sessionInstance = ?None
, attachmentChain = [ ]
} desIworld

// Inspect the task result
# (editVal , world) = case taskResult of

ValueResult tv uiChange
# world = (me .# ”onUIChange” .$ !

(toJS (encodeUIChange uiChange))) world
= (Ok tv , world)

ExceptionResult exc
= (Error exc , world)

//Tasks only return DestroyedResults when they are sent a
// DestroyEvent, so this shouldn ' t happen.
DestroyedResult

= (Error
( dynamic UnexpectedDestroyedResultException
, ”Unexpected DestroyedResult when evaluating task”
) , world)

# world = (me .# ”doEditEvent” .$ ! toJSON editVal) world
= world

// World made to use in browser
// Should not be used elsewhere
newWorld : : ∗World
newWorld

= code inline {
f i l l I 65536 0
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}

onReset : : !UIAttributes !(?(ReadWriteType a)) !∗VSt �
∗(!∗MaybeErrorString (!UI , !(StateType a) ,
!?(ReadWriteType a)) , !∗VSt)

// Already calculated
onReset attrs (?Just oldres) vst

= (Ok (doneUI, oldres , ?None) , vst)
onReset attrs ?None vst=:{VSt|abcInterpreterEnv}

// Explicitly ser ial ize to keep lazyness
#! graph = jsSerializeGraph (Box task) abcInterpreterEnv
// Add the serialized graph to the attributes
# attrs = 'DM' .put ”graph” (JSONString graph) attrs
// Using UILoader to show evaluation in browser is happening
= (Ok (uia UILoader attrs , Ok NoValue, ?None) , vst)

onEdit : : !(EditType a) !(StateType a) !∗VSt � ∗(!∗MaybeErrorString
(!UIChange, !(StateType a) , !?(ReadWriteType a)) , !∗VSt)

// An edit event always means the calculation is done
onEdit res vst = (Ok (NoChange, res , ?Just res ) , vst)

doneUI : : UI
doneUI = UI UILabel (textAttr ”done”) [ ]

onRefresh : : !(?(ReadWriteType a)) !(StateType a) !∗VSt �
∗(!∗MaybeErrorString (UIChange, !(StateType a) ,
!?(ReadWriteType a)) , !∗VSt)

// Refresh we can ignore , this concerns SDSs
onRefresh st vst = (Ok (NoChange, st , ?None) , vst)

writeValue : : (StateType a) � MaybeErrorString (ReadWriteType a)
writeValue st = Ok st
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Appendix B

In this appendix we test how runSimpleTaskInBrowser handles when the
result of a given task contains a UI change or an exception.

B.1 UI Change

We test if the UI changes of the result from running a task in
runSimpleTaskInBrowser are done:

import Data.GenHash
import RunInBrowser //or write program in same f i l e

Start w = doTasks task w

//can also use another task that generates UI
task = runSimpleTaskInBrowser (enterInformation

[EnterUsing (\x �x) textField ])

When the above is run, a textfield will be shown in the browser. When you
comment out the line:

# world = (me .# ”onUIChange” .$ ! (toJS (encodeUIChange uiChange))) world

of the runSimpleTaskInBrowser and run the program again, you should
not see a textfield as the line you commented out shows the UI changes in
the browser.

B.2 Exception

We test whether the exception of the result from a task given to
runSimpleTaskInBrowser is injected on the server-side:

import iTasks.WF.Tasks.Core
import RunInBrowser //or write program in same f i l e

Start w = doTasks task w

//can also use another task that throws an exception
exception : : Task Int
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exception = throw ”exception text example”

task = runSimpleTaskInBrowser exception

Start w = doTasks task w

When running the program above, it should result in a RuntimeError ex-
ception shown on the server-side.
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Appendix C

Test if the task given as an argument to runSimpleTaskInBrowser is eval-
uated in the browser:

import RunInBrowser //or write program in same f i l e

Start w = doTasks task w

//can also use another task that uses a a lot of computations
//when evaluated in the browser:
task = get currentTimestamp

>>− \startTs�viewSharedInformation [ ] currentTimestamp
−&&− runSimpleTaskInBrowser (return (last [1 ..100000000 ]) )

>>̃ \(endTs, answer)�
(viewInformation [ ] (toInt endTs − toInt startTs)
<<@ Label ”Answer took (s) : ”)

−&&− (viewInformation [ ] answer <<@ Label ”Answer”)

Running the task above should take a few seconds, indicating the task is
evaluated in the browser (takes longer due to the ABC interpreter). If not,
try adding another 0 to 100000000 in the task. When you go to the lines:

#! graph = jsSerializeGraph (Box task) abcInterpreterEnv

and

# (Box jsres , world) = jsDeserializeJSVal graph world

delete Box in both lines. When you run your program again, it should take
less time than before. This indicates the server is evaluating the task.
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