BACHELOR’S THESIS COMPUTING SCIENCE

RADBOUD UNIVERSITY NIJMEGEN

Trusting Eduroam

Analysing Eduroam’s security

Author: First supervisor/assessor:
Niek van den Kieboom dr. A.A. Westerbaan
s1106321

Second assessor:
dr. ir. X.J.G. de Carné de

Carnavalet

August 21, 2025

Abstract

Eduroam plays an important role in allowing users to access an institute’s
Wi-Fi network, namely the authentication step of the process. Before con-
necting to Eduroam, your operating system may prompt you to check a
server certificate, without any guidance on how to determine if this certifi-
cate is valid. Radboud’s website* states that you should click on " Trust” to
accept this certificate. In this thesis, our aim is to figure out if this poses a
security risk. We will see that when the certificate is not properly checked
an attacker may retrieve user passwords in some scenarios using an ‘evil
twin’ access point. This is due to some security issues that are present in a
protocol called ‘MSCHAPv2’ which is commonly used in Eduroam setups.
We find that there are solutions to these problems such as configuration
tools (CAT and geteduroam) and alternative protocols, but these have not
yet been widely adopted.

*https://www.ru.nl/en/services/campus-facilities-buildings/ict/wi-fi/
setting-up-wi-fi-eduroam/set-up-wi-fi-eduroam-on-campus

https://www.ru.nl/en/services/campus-facilities-buildings/ict/wi-fi/setting-up-wi-fi-eduroam/set-up-wi-fi-eduroam-on-campus
https://www.ru.nl/en/services/campus-facilities-buildings/ict/wi-fi/setting-up-wi-fi-eduroam/set-up-wi-fi-eduroam-on-campus

Contents

3

2_Related Workl 5
3__Preliminaries on Eduroaml 7
3.1 Architecture of Eduroaml. 7
3.2 RADIUS. 8
3.2.1 RADIUS i FEduroam| 9

3.3 Outer authentication| 10
B.4 Tnner authenticationl, 11
BAT PAPI. 12

3.42 MSCHAPv2., 12

[3.4.3 Example of MSCHAPv2 flow| 14

[3.5 Data Encryption Standard (DES). 15
[3.5.1 Encryption and Decryption| 15

3.5.2 DESkeys, . 16

[3.5.3 Security issues| 16

[4 Attacking Eduroam| 18
4.1 Problems with MSCHAPv2[. 18
411 DBESm MSCHAPvV2 . . . o 000 c o000 oo 18

4.1.2 Security of MD4 in MSCHAPv2[. 19

4.2 Staging an attack on Eduroam| 20
4.2.1 Reliably cracking DES keys using consumer hardware| 22

[4.2.2 Feasibility of cracking MSCHAPv2 using consumer |

[hardwarel 23
4.3 CAT, geteduroam and SecureW?2| 24
4.3.1 Connecting to an evil twin with geteduroam|. 25
............................. 25
441 How does EAP-TTS work? 26

|4.4.2 Advantages and disadvantages ot EAP-TLS| 27
b__Conclusions| 29

6 Future Work

A E Tof onl
[A.1 Byte order Mark (BOM)|.
[A.2 Field Programmable Gate Arrays|

(B_Links used|
Index

31

34
34
34

36

37

Chapter 1

Introduction

Eduroam, originally created by SURFnet, plays a critical role in enabling
secure and seamless authentication to wireless networks across educational
institutions. Since its small inception in 2002, releasing only in a few Euro-
pean countries, it has grown into a globally used service that is available in
more than 39,000 locations in 106 countries [7], reaching 8.4 billion authen-
tications in 2024*. With so many locations and active users, it is important
that the network protocols used in Eduroam are secure.

Eduroam stands for “education roaming”, and aims to provide users access
to Wi-Fi, not only at their their own educational institute, but also when
they visit another institute which uses Eduroam, much like data roaming
across country borders in mobile telephony. This is achieved through a
hierachrical network of RADIUS servers, through which the user commu-
nicates with its own institute’s RADIUS server.

In some cases, certificates provided by institutes’ RADIUS servers to set
up a TLS connection have to be manually checked by users to make sure that
they are communicating with their own institute’s RADIUS server. Con-
trary to the web public key infrastructure, this can not be done automati-
cally. This puts the burden of user authentication on the users themselves
by requiring them to check the server certificate, which already assumes that
an average user knows what they have to look for to ensure they are con-
necting to a real Eduroam service point. The reality, however, is that most
users are unwilling to spend time manually checking a server certificate, let
alone know what a certificate is, which could result in them connecting to
a rogue network. Radboud states on their official website that you should
accept this certificate, without any exceptions [16]. How problematic is this
and, if it is, what has and can be done about it?

Whilst the process of accessing an Eduroam network is relatively easy, the
process of authenticating a user in Eduroam behind the screens is extensive
and involves several protocols, where the choice of protocols used partly lies

“https://eduroam.org/eduroam-hits-a-new-record-8-4-billion-authentications-in-2024/

https://eduroam.org/eduroam-hits-a-new-record-8-4-billion-authentications-in-2024/

in the hands of the institution setting up the network. In a commonly used
setup, the authentication consists of three phases: the RADIUS protocol,
outer authentication and inner authentication. Since 2002, protocols
that have been proven to be weak have been available as a choice in the
inner authentication phase, and are still actively used; see table One
of these protocols, which is used by Radboud, is the Microsoft Challenge
Handshake Authentication Protocol version 2, or MSCHAPv2 for short
[22]. This protocol was created in the year 2000 and has some questionable
design choices that were acceptable at that time, but have become a ma-
jor problem over the years when looked at in a vacuum. To alleviate the
problem of the inner authentication protocols being weaker, the outer au-
thentication phase sets up a TLS tunnel between client and RADIUS server.
chapter [2| shortly touches upon previous work that is closely related to this
thesis, and partially inspired it. Then Chapter [3| of this thesis talks about
Eduroam’s underlying protocols, examples of specific protocols used, and
how they work. It also looks at MSCHAPv2 and the security issues that
accompany it. Section [3.1] gives an overview of how Eduroam works without
going into details of the protocols that are used. Section is the first
section where the details of the RADIUS protocol are described and how
it is implemented in Eduroam. Section and Section then continue
with an explanation of the outer and inner authentication protocols used
in Eduroam, which serve the purpose of setting up a secure communication
channel and communicating client credentials securely, respectively. Then
section discusses the security issues of the Microsoft Challenge Hand-
shake Authentication Protocol. Following this, section shows an actual
attack on a fake eduroam network and how credentials can be extracted
from this. Then section talks about configuration tools which are solu-
tions made for the problem of users not willing to check server certificates,
in addition to providing an easy way for users to set up their devices to
run Eduroam on. Lastly, section discusses an alternative protocol which
removes the need for passwords to be sent between a client and a server and
does authentication through mutual authentication.

At the end of this thesis, you will be more aware of the risks to which you are
exposed when connecting to an Eduroam network, but also of what has been
done to mitigate these risks and what steps might still have to be taken.

Chapter 2

Related Work

Eduroam has been in use for over 20 years, and since security is important
it has been analysed before. This thesis can be considered a follow-up of
Matthias Ghering’s bachelor thesis, who was also a student at the Radboud
University who published his work in 2016, named “Evil Twin vulnerabili-
ties in Wi-Fi networks” [9]. This thesis focuses on evil twins in three types of
networks: public networks, private networks and enterprise networks (such
as Eduroam) and also attacks these networks. The attack on the enterprise
network described in Matthias’ thesis is similar to the attack used in this
thesis as it uses the same vulnerabilities in the MSCHAPv2 protocol. At
the time that Matthias’ thesis was written, tools such as geteduroam (which
we will see in section did not yet exist and have not yet been reviewed
for security purposes. Because of this time difference, we hope that we can
come up with a different solution for how security in Eduroam can be han-
dled. One conclusion of [9] was that institutes should switch their inner
authentication protocol from PAP to MSCHAPv2. Although MSCHAPv2
is more secure than PAP, it is currently still not a fully secure option, and
there have been developments over the last 9 years like the implementation
of EAP-TLS into Eduroam (which we will see in section [4.4)), which is a dif-
ferent protocol from what is commonly used now in Eduroam, but is more
secure.

Another paper that is closely related to this thesis is called “Careful with
that Roam, Edu” [19], which was published in 2022. This paper demonstrates
an actual attack on students and professors and shows that an attack using
an evil twin works near a real Eduroam Wi-Fi network. This paper talks
about “recovering credentials” without actually going into detail on how this
actually works, presumably to keep the research more general. This thesis
will focus on actually showing how credentials are recovered after capturing
authentication packets, as we believe that this is not a step that should be
brushed over if you want to show the possible dangers of connecting to an

Eduroam Wi-Fi network.

Chapter 3

Preliminaries on Eduroam

Before we perform an attack on an Eduroam network, it is important to un-
derstand how Eduroam works. Eduroam can be seen as an authentication
protocol that is in charge of authenticating users wanting to access an in-
stitute’s Wi-Fi network. There is a difference in how Eduroam works based
on the preference of an institute, since there is some freedom in the choice
of which protocols are used. Some institutes have wifi-portals to access the
network, whilst others just require the user to fill in their credentials in their
Wi-Fi list on their device. We will see that the freedom of choice, in this
case, may lead to some security issues.

3.1 Architecture of Eduroam

Eduroam can be seen as a huge collection of Wi-Fi networks sharing the
same name (or technically, the SSID). A network that is part of this collec-
tion is set up as a WPA2-Enterprise network. The main differences between
WPA(2)-PSK and Eduroam’s WPA2-Enterprise are that with Enterprise
networks, the users log in using their username and password (usually via
IEEE 802.1X and RADIUS, see section [3.2), while with WPA(2)-PSK users
log in using a pre shared key (the "Wi-Fi password”).

When a user wants to connect to an Eduroam network, the following hap-
pens:

1. The user connects to the network that has the “eduroam” SSID on
their device and the client initializes the connection to the AP using
IEEE 802.1X. At this point the client can send frames to the access
point, but is not yet connected to the internet.

2. The client starts EAP over (wireless) LAN which encapsulates requests
between the client and the AP as described in RFC 3579 [2]. These
requests contain either the identity of the user or the anonymous

identity, which allows users to send initial access requests without
revealing their username and password to the visited network.

3. The AP receives the request and decapsulates it to recover the user’s
identity. This request is then encapsulated using RADIUS and sent
into the RADIUS hierarchy (see section to reach the user’s home
authentication server.

4. When the request reaches the user’s home authentication server through
the RADIUS hierarchy, the outer authentication protocol (see sec-
tion is initialized which has as purpose to establish a TLS tunnel
between client and home authentication server. At this point, either
the client automatically verifies the certificate sent by the authentica-
tion server (if the certificate is already known because, for example, the
user has already connected to the home authentication server before),
or the user may be asked to verify it manually.

5. After the TLS tunnel is established, the inner authentication protocol
(see section [3.4), such as MSCHAPv2 (see section [3.4.2)), is started
which authenticates the user towards the home authentication server.

6. The access point is informed that the user has successfully authenti-
cated via RADIUS/EAP, which means that the user is now allowed to
access the network at the institution they requested access at. Due to
the roaming nature of Eduroam, this can be any institute making use
of Eduroam.

3.2 RADIUS

Remote Authentication Dial-In User Service (RADIUS) is a networking pro-
tocol used in Eduroam which authenticates and authorizes users to access
a network that an institute provides. A basic RADIUS authentication and
authorization setup involves a client, a network access server (NAS) or an
access point (AP) (there is a slight difference in these two, but usually an
AP acts as a NAS) and a RADIUS server which stores user credentials. This
simple setup, with only one access point and RADIUS server that may be
used in a small office, might look like this:

1. The user’s client sends a request to a NAS or an AP. This request might
contain user credentials based on the chosen authentication methods.

2. The NAS or AP forwards this request to the RADIUS server which
checks the validity of the request (if the request contains legitimate
credentials and comes from a valid source).

3. The RADIUS server responds to the request by sending an accept
response, a reject response or a challenge response to the client. This
challenge is usually sent to verify that the user is actually who they
are claiming to be, but is not always sent in non challenge-response
protocols such as PAP (see section .

3.2.1 RADIUS in Eduroam

Eduroam allows a user to access an institute’s Wi-Fi network without that
institute being the user’s home institute. This is possible thanks to the RA-
DIUS protocol being implemented in Eduroam.

The so called trust fabric of Eduroam consists of a hierarchy of RADIUS
servers which are located on organizational, national or global level [20], see
fig. for an example. Requests are routed through a chain of RADIUS
servers with the destination being the user’s home RADIUS server, also
called the Identity Provider (IDP).

For a local request, the flow is as follows (example: $1234567@Qru.nl request-
ing network access on Radboud’s campus):

1. A user’s client sends an EAP access request, containing their creden-
tials, to an AP located somewhere near them.

2. The AP forwards the request to the institute’s AS (which is a RADIUS
server).

3. The AS looks at the realm part of the user’s email (ru.nl) to check if
the user is a local user.

4. Since the user is local, the RADIUS server decapsulates the EAP re-
quest and verifies the credentials.

5. The RADIUS server instructs the AP to either accept or reject the
access request.

For a visiting request, the flow is as follows (example: $1234567@Qru.nl re-
questing network access on University of Amsterdam’s campus):

1. A user’s client sends an EAP access request, containing their creden-
tials to, an AP located somewhere near them.

2. The AP forwards the request to the institute’s AS (which is the RA-
DIUS server).

3. The AS looks at the realm part of the user’s email (ru.nl) to check if
the user is a local user.

4. Since the user is not local (visiting), the request is forwarded to the
.nl RADIUS server.

5. The .nl RADIUS server looks at the realm to see if it is in it’s list of
known realms. Since RU and UVA both use the .nl subdomain, the
request is forwarded to the RU RADIUS server.

6. The RU RADIUS server decapsulates the EAP request, checks the
credentials and backtracks the response to UVA’s RADIUS server to
either accept or reject the access request (which is done through the

AP).
See also fig.

If the top level domain (example: .nl) of the campus and user’s credentials
are not the same, the request is forwarded from the subdomain server to the
root (.) server (the global RADIUS server).

When a request reaches the authentication server of a user through the
trust fabric of RADIUS, the outer authentication protocol is initialized.

3.3 Outer authentication

The outer authentication protocol in Eduroam is used to establish a TLS
tunnel between the client and authentication server. The outer authentica-
tion protocol used in Eduroam is EAP-PEAP or EAP-TTLS [9], both
with the goal of setting up a TLS tunnel. Recent developments have also
starting pushing the implementation of EAP-TLS, see section

When a request reaches an authentication server, that is the home authenti-
cation server of the client, through the RADIUS protocol, the authentication
server verifies the credentials of the user and sends over a certificate dur-
ing the TLS handshake. This certificate has to be accepted by the client,
and sometimes manually by the user. When the certificate gets accepted,
a TLS tunnel is set up between the client and the authentication server,
meaning that any requests sent from this point onward will be encrypted
and can only be decrypted by the client and authentication server. Also, if
the client/user properly checked the certificate, they can be sure that they
are communicating with their home authentication server.

When the TLS tunnel is established, the client can “securely” send over

the user’s credentials for verification by the authentication server. This sec-
ond step is called the inner authentication.

10

T +
| oo + |
| I | |

National | | .nl | I
| I | |
| +——t——+ |
o +

/ \
/ \
+———+ +———t
I I
I |
e +
| +———4+———+ +———+———+ |
(! | I |1

Organisational | | uva.nl | | ru.nl |
(! | I |1
| +———4——-+ +———t———+ |
T +

I

+——t—+

| |

| AP |

| |
t—t————t—+
I I
| Client |
B +

Figure 3.1: RADIUS hierarchy

3.4 Inner authentication

Eduroam supports multiple protocols to be used as the inner authentication
protocol. Table (an updated table of Table 4.4 from [9]. Protocols in
Italics have changed since the original table was created) shows a list of
institutes in the Netherlands and the protocols used for Outer and Inner
authentication. It shows that MSCHAPv2 is the predominant choice for
most institutes.

11

Institute Outer authentication Inner authentication

University of Twente TTLS MSCHAPv2

University of Amsterdam PEAP MSCHAPv2

Erasmus University* PEAP MSCHAPv2

Universiteit Leiden* TTLS PAP

Universiteit Utrecht PEAP MSCHAPv2

Universiteit van Tilburg® PEAP, TTLS MSCHAPv2, EAP-MD5

TU Delft PEAP, TTLS PEAP-MSCHAPv2, TTLS-PAP
Radboud Universiteit PEAP MSCHAPv2

HAN University PEAP MSCHAPv2

Wageningen Universiteit* PEAP MSCHAPv2

Table 3.1: Institute settings

3.4.1 PAP

Password authentication protocol, also known as PAP, is a simple protocol
that can be used as the inner authentication protocol in Eduroam. The
client sends over the username and password in plaintext (over the TLS
tunnel created during outer authentication), and the RADIUS server sends
back an accept or reject response. PAP is considered to be the least secure
option, and is usually only utilized if the other protocols are unavailable.

3.4.2 MSCHAPv2

Radboud’s RADIUS server uses the MSCHAPv2 protocol as its inner au-
thentication protocol. It stands for Microsoft Challenge-Handshake Au-
thentication Protocol version 2 and is an improvement on the CHAP and
MSCHAPv1 protocols. A typical flow of the protocol is as follows (note that
in the explanation below, RFC refers to RFC 2759 [22]), see fig. for a
visual explanation:

1. The authentication server (AS) generates a random 16 byte server
challenge (AuthenticatorChallenge in RFC) and sends this over
to the client.

2. The client generates a random 16 byte challenge (PeerChallenge
in RFC).

*These results were taken from secondary sources which were not official institute websites.

12

3. The client calculates a client challenge hash (Challenge in RFC)
by hashing the concatenation of the PeerChallenge, Authenticator-
Challenge, and ASCII client username (UserName in RFC) using
SHA-1. This hash is then truncated from 20 to the first 8 bytes.

4. The client calculates an NTHash (PasswordHash in RFC) using the
MD4 algorithm on the UTF-16 user password (clientPass in RFC)
in little endian mode without any byte order mark (BOM), see ap-
pendix for explanation why this is important in implementations,
then pads this with zeros on the right to 21 bytes.

5. The client calculates three DES keys (see section by splitting the
PasswordHash into three 7 byte strings, then adding a parity bit to
each 7 bit string to create three 8 byte DES keys (see section [3.5.2)).

6. These DES keys are then used to encrypt the Challenge once per key,
using single DES in ECB mode, see section resulting in a 24 byte
long digest called the challenge response (NT-Response in RFC).

7. The client sends the 24 byte NT-Response, the 8 byte Challenge and
the UserName to the AS.

8. (The server proves to the client that it knows the password of the
user.)

For this thesis, we are not interested in how the protocol continues after
step 7.

13

Client Authentication server

L] =
Hello)
® (AuthenticatorChallenge
PeerChallenge
Challenge =

SHA1(PeerChallenge| |AuthenticatorChallenge| | UserName) [0:8]

PasswordHash =
MD4 (cTientPass)

Ky, Ko s

NT-Response =
DES} (Challenge) | |DES; (Challenge) | | DES 3 (Challenge)

©

h——— NT-Response, Challenge, UserName ﬁ

Figure 3.2: MSCHAPv2 protocol flow

3.4.3 Example of MSCHAPv2 flow

Below is an example of the MSCHAPv2 protocol and the corresponding (ex-
ample) values of the aforementioned variables. In this example, UserName
and clientPass are s1234567 and password1234, respectively.

Step 1: Authenticator generates a challenge
Function: generateChallenge()
Output (AuthenticatorChallenge):
5a:d7:04:57:70:£f:1c:9£:d2:13:49:93:b4:£8:8b:d7

Step 2: Client generates a challenge
Function: generateChallenge()
Output (PeerChallenge):
dd:2a:3f:6e:1d:d2:b4:bl:c9:af:e4:b7:ab:42:ed:7b

Step 3: Client calculates challenge hash and truncates
Function: SHA1() [0:8]

14

Input: PeerChallenge| |AuthenticatorChallenge| |UserName
Output (Challenge):
78:90:6d:34:95:64:23:03

Step 4: Client hashes password and applies padding to generate NTHash
Function: MD4(), pad ()
Input: clientPass (UTF-16le)
Output (PasswordHash):
d4:al:be:17:76:ad:10:df:10:38:12:b1:29:23:cd:e4:00:00:00:00:00

Step 5: Client calculates DES keys
Input: PasswordHash
Output (k1, ko, k3):
d5:51:6e:¢c2:76:b5:b5:20, df:89:0e:02:2a:8c:a4:46, cd:£f2:01:01:01:01:01:01

Step 6: Client calculates challenge response
Function: DES;, (), DESg, (), DES, ()
Input: kl, k?g, k‘g
Output (NT-Reponse):
82:07:£8:96:0d:1e:8f:8a:14:17:f5:2a:14:c7:49:48:f1:25:3e:cc:51:£f7:1e:0b

Step 7: Client sends over NT-Response, Challenge and UserName

3.5 Data Encryption Standard (DES)

As previously discussed, MSCHAPv2 relies on some legacy cryptographic
mechanisms, most notably the Data Encryption Standard (DES). DES is
a symmetric key encryption algorithm developed in 1975 and standardized
in 1977. While at the time is was a staple of cryptographic systems, its 56
bit key size is now insecure due to the feasibility of brute force attacks [14].
Nevertheless, DES remains to be used in protocols like MSCHAPv2 which
in turn is used in Eduroam, largely due to its ease of use and compatibility
with older devices.

3.5.1 Encryption and Decryption

DES is a block cipher that has a Feistel structure containing Feistel func-
tions F (Figure which over the course of 16 repeating operations, called
rounds, turns a plaintext into a ciphertext during encryption (or the other
way around during decryption), see Figure

15

Plaintext (64 bits)

J l

| i |

Half Block (32 bits) Subkey (48 bits)

VAR
U
- AR ARR AR RORRD
Sl S2 93 sS4 SiS) 56 S7 S8
7 LI _ITIT TﬂTlTﬂT TIILTITT_TI
12

q I
112
| I | Figure 3.4: DES Feistel function[2]]

Ciphertext (64 bits)

Figure 3.3: DES Feistel structure [21]

3.5.2 DES keys

DES requires a 64 bit key to operate, but only 56 bits of this key are used.
This is because for each of the eight bytes, the least significant bit is a parity
bit which is stripped off during the actual encryption or decryption phase.
The parity bits are calculated in the following way:

1. Split the input key of 56 bits into eight, 7 bit strings.
2. Take the first 7 bit string and count the number of 1’s in this string.

3. If the number of 1’s in the string is even, add a 1 as the parity bit. If
the number of 1’s in the string is odd, add a 0 as the parity bit.

4. Repeat steps 2 and 3 for the other 7 bit strings.

3.5.3 Security issues

DES has a small key size of 56 bits which is the primary reason for it
becoming out of date. A modern computer can run hashcat’s [12] DES key
recovery mode, which can find a DES key in 15 days on average (measured
in 2016 [I1]) on a single Nvidia GTX 1080Ti (the whole rig uses 8 GPUs, but
this result considers only 1 GPU, which costs around US$1000). A rainbow
table has also been constructed for the plaintext 1122334455667788, which
allows one to recover the DES key in under 25 seconds [4]. In practice,
this rainbow table is not very useful, as the chance of the plaintext being

16

1122334455667788 (assuming that the plaintext is randomly generated and
perfectly random) is 1 in 2°6.

17

Chapter 4

Attacking Eduroam

With the knowledge of how Eduroam works and where it may fail, it is now
possible to carry out actual attacks on a user of Eduroam. We have seen that
MSCHAPv2 may be used as the inner authentication protocol. We will see
in section [4.I]that this is a problem, as MSCHAPv2 has some security issues
which are normally minimal since this protocol is wrapped in a TLS tunnel.
However, when a user accepts a certificate without properly validating it,
this TLS tunnel may be bypassed resulting in MSCHAPv2 being isolated.
We will see this in section In section [4.3] and section we will look at
some possible solutions which are already available but not widely adopted.

4.1 Problems with MSCHAPv2

MSCHAPv2 is a relatively old protocol and its age is showing. We will see
that it is vulnerable to dictionary attacks if an attacker wants to recover
passwords, or the goal of an attacker might be to authenticate as another
user. A way to achieve this is to recover the PasswordHash.

4.1.1 DES in MSCHAPv2

When calculating the NT-Response in MSCHAPv2, DES is used three times,
each time with a different key which are derived from the same hash, namely
from the PasswordHash. Looking at the PasswordHash, we notice that the
last 5 bytes are always zero bytes, due to the padding that was applied to
make sure that PasswordHash was 21 bytes long. This results in k3 always
having the following form:

ks = XX:XX:XX:01:01:01:01:01 (with parity bits, see section [3.5.2)
ks = XX:XX:00:00:00:00:00 (without parity bits)

In other words, k3 is effectively only 16 bits or 2 bytes long, meaning that
breaking DES, and subsequently figuring out the last 7 bytes of the Pass-
wordHash, will only take a maximum of 2'6 key searches.

18

Key k1 and ko are both full length DES keys (56 bits) and will require
(in the worst case) 2°¢ searches to recover per key, resulting in 256 + 256 =
257 searches. The amount of searches are added because the results of both
DES computations are independent of each other (as a dependent example,
one could use the output of the first DES computation as input to the second
DES computation which means the amount of searches have to multiplied).
This brings the total amount of searches needed to recover the Password-
Hash to 257 4+ 216 =~ 257, One might notice however, that all three DES
computations take the same input, namely the Challenge. This results in
the possibility to recover all three keys in one search of the whole keyspace,
namely by computing all three DES results at the same time per key. Since
the keyspace consists of 2°6 keys, the maximum amount of key searches to
recover the PasswordHash will be 2°6. As mentioned before in section m
recovering DES keys in a matter of weeks is feasible using consumer hard-
ware. We will also see this in section 2.1l

At this point, the attacker has the PasswordHash, and looking at the pro-
tocol we can see that this is all that is needed to authenticate as someone
else. This is problematic for institutions as now they can not be sure if only
students and staff are connected to their network. The next step might be
to actually recover the password by breaking the MD4 hash.

4.1.2 Security of MD4 in MSCHAPv2

To recover the password of a user, an attacker must break the MD4 encryp-
tion used in step 4 of MSCHAPv2, see fig. MD4 is a hash function that
has a digest of 16 bytes or 128 bits. MD4 has been broken since 1995[5]
by generating collisions in the hash function. For our research, this is not
useful as we are interested in finding the actual password and not another
value that hashes to the same password.

A big problem in the implementation of MSCHAPv2 is that passwords are
not salted before they are hashed with MD4. This opens up the door for
brute force attacks using rainbow tables since a password will always hash to
the same value. A brute force attack in this context would refer to guessing
the password as opposed to guessing the key as mentioned in section [4.1.1

Rainbow tables require a huge amount of storage and time to compute,
which is the reason as to why there are only rainbow tables for passwords of
8 or 9 characters [I]. Table shows a list of institutes and their required
minimum password length. We can see that most researched institutes re-
quire a password above 8 or 9 characters, except for the HAN University.
This poses a security risk for their students and staff, not only for their in-
stitute accounts, but maybe also for their personal accounts. A 2019 survey

19

by Google [10] shows that about two-thirds of the surveyed users reuse a
password, whether that is for all their accounts or just a few. If users of
Eduroam reuse their personal passwords for their institute accounts, their
personal accounts might be vulnerable as well.

If an institute requires a user to have a password that is longer than 9
characters, then there still might be a way for an attacker to recover pass-
words reliably, just not targeted to a specific user. By attacking users over
a longer period of time, a list containing password hashes can be created.
Using this list, the attacker can now brute force random passwords until
they find a match with a hash that is in the list, meaning that a password
has been found. The time it takes to execute this brute force attack depends
on the amount of hashes recovered, where more hashes mean that the at-
tack speeds up. If the goal of the attacker is to simply recover a nonspecific
password, then this attack is viable if we assume that not all users have very
secure passwords.

Institute Minimum password length
University of Twente 14

University of Amsterdam 12

Universiteit Leiden 15

Universiteit Utrecht 10

Universiteit van Tilburg 8 or 12*

Radboud Universiteit Nijmegen 10

HAN University of Applied Sciences 8**

Wageningen Universiteit 12

Table 4.1: Minimum password lengths. See also appendix

4.2 Staging an attack on Eduroam

In this section we will describe a practical attack using an evil twin[9]
Eduroam network, which uses MSCHAPv2 as the inner authentication pro-
tocol. The objective is to recover an NTHash/PasswordHash or password
of a user, where the latter is more severe. To mimic an access point, we
use hostapd-wpe [I5] to set up a rogue network, also known as an evil

*There are multiple web pages with conflicting information. The page where you change
your password specifies an 8 character minimum. See table

**This result was the most recent result we could find, from a FAQ page: https://www.
han.nl/over-de-han/datalek/

20

https://www.han.nl/over-de-han/datalek/
https://www.han.nl/over-de-han/datalek/

twin. Hostapd-wpe is a tool which can be used to set up fake networks,
whether that is for research or actual attacks. It supports a wide variety of
customization to, for example, the protocols which are used, but also has
the option to send fake server certificates when TLS tunnels are involved.
When hostapd-wpe is ran, it sets up an access point which when connected
to will capture any traffic that goes through the network. In the case of this
thesis, we used a laptop to run hostapd-wpe which will act as our access
point and our authentication server. We adjust the configuration files so
that we generate a certificate that looks similar to an actual certificate used
by Radboud’s eduroam network, see fig.

Details

Country or Region

State[Province

Organisation

Common Name radius-wifi.al

Country or Region
Organisation

Comman Name

Serial Number

Not Valid Before

Not Valid After

Figure 4.1: Fake Eduroam certificate

We connect to the rogue network using an iPhone 13 mini with username
“s1106321Qru.nl” and an easy password “secret123” and accept the certifi-
cate. Since we accept the certificate, a TLS tunnel is set up (outer authen-
tication) and MSCHAPv2 (inner authentication) is initiated. Hostapd-wpe
now captures the NT-Response, Challenge and UserName of the user (see
fig. and the client only disconnects after step [8] of MSCHAPv2 is not
completed by our laptop, as we do not know the password of the user.

21

mschapv2: Tue Jul 8 16:59:53 2025
username: 51106321gru.nl
challenge: 50:b8:b5:f0:35:46:c0:09
response: 96:80:57:63:b0:65:83:7a:c6:8f:e6:2b:62:d8:97:d7:2e:20:dd:59:11:15:0c:5a

jtr NETNTLM: 51106321gru.nl:$NETNTLM$50b8b5f03546c009$96805763b065837ac68fe62b62d897d72e20dd5911150¢5a
hashcat NETNTLM: 51106321aru.nl::::96805763b065837ac68fe62b62d897d72e20dd5911150c5a:50b8b5T03546C009
wlan@: STA a2:bb:dc:85:6a:50 IEEE 802.1X: Identity received from STA: 's1106321gru.nl’

Figure 4.2: Hostapd-wpe response capture

When the NT-Response is recovered, we can start brute-forcing to find
the password. Tools like John the Ripper or Hashcat can be used to brute
force a password using dictionaries (using the jir NETNTLM, also known
as the NTHash, and hashcat NETNTLM given by hostapd-wpe, respec-
tively). For this attack, we will be using John the Ripper and a common
dictionary called “rockyou.txt” which contains the most common passwords.
This dictionary comes preinstalled with certain Linux distributions like Kali
Linux.

We add the recovered jtr NETNTLM hash to a text file, run John the Ripper
and see the following;:

R)-[~/Documents/University/BT]
] i i / u. txt

j t=netntlm-naive hashes4doe.txt

Using default input encod

Loaded 7 password hashes with 7 different salts (netntlm-naive, NTLMv1l C/R [MD4& DES (ESS MD5) DES 256/256 AVX2 naive])
Remaining 3 password hashes with 3 different salts

Will run 16 OpenMP threads

Press 'q' or Ctrl-C to abort, almost any other key for status

1 (s ru.nl)

1g 0:00:00:00 DONE (2025-07-08 17:00) 1.351g/s 19383Kp/s 39298Kc/s 39298KC/s 010015882..%7;Vamos!

Use the "--show --format=netntlm-naive" options to display all of the cracked passwords reliably

Session completed.

Figure 4.3: JTR command and output

Insecure passwords like the one used in this example can be quickly
recovered if dictionaries are used. This is a huge problem as in Radboud’s
case, these credentials are also used by professors to access Brightspace and
Osiris, where they manage courses and course grades. However, if a brute-
force attack using dictionaries fails, there is the option to find the NTHash
using DES crackers. An example of this is|crack.sh| which promises to crack a
(random) key in a couple of days for about 17 euros. At the time of writing,
crack.sh is temporarily unavailable due to proclaimed “maintenance”. As
explained in section[£.1.1] due to some design choices, the maximum number
of key searches needed is 2°6. Crack.sh uses multiple FPGA’s (appendix
which are designed to crack DES keys and can search this 2°¢ keyspace in
about 26 hours, however most people do not have FPGA’s available to them.

4.2.1 Reliably cracking DES keys using consumer hardware

Cracking DES keys is not limited to organizations that have enough money
to buy dedicated hardware. You are able to recover keys and passwords
with consumer-grade GPUs, although much slower than using specialized

22

https://crack.sh

hardware. Hashcat has a specific mode to crack DES keys, however this
would be less efficient than writing your own implementation to crack all
three keys in a single search as you would still have to crack each key in-
dividually. Hashcat also comes with a benchmark feature which allows you
to see how long it would take to crack a certain hash/ encrypted string. A
test on an NVIDIA RTX 3080 GPU which was released in 2020 costing on
average €1000 reveals that hashcat can crack 51000 million DES outputs
per second (5.1 x 1010 hashes/s), see fig. At this rate, checking all 256
keys will take less than 16 days, and 8 days on average (checking 2°° keys).

eForce RTX 3080, 10112/10239 ocatable), 68MCU

Benchmark relevant options:

Figure 4.4: Hashcat DES cracking benchmark

4.2.2 Feasibility of cracking MSCHAPv2 using consumer hard-
ware

Hashcat also has the option to crack MSCHAPv2 as a whole using the Net-
NTLM hashes that it produces. Another benchmark on the same GPU
shows that it can check 55000 million NetNTLMv1 hashes per second. The
cracking is done by brute forcing the passwords. Let’s assume that a pass-
word is 8 characters long, and can contain uppercase and lowercase letters
(52), numbers (10) and special characters (32 counted from Radboud’s web-
page). This results in 94 characters total, meaning that there are 948 possible
passwords. This results in recovering the password in about a day. However,
most institutes do not allow passwords of length 8, see table Following
Radboud’s minimum character count, let us assume that the password is of
length 10, then there are 94'° possible passwords, which results in a pass-
word being found in 11334 days or about 31 years. An estimated cracking
time of 31 years on consumer hardware is sufficiently long to consider the
protocol secure against such brute-force attacks.

We have now seen multiple ways that an attacker might go about attack-
ing an Eduroam Wi-Fi network, more specifically the MSCHAPv2 protocol.
All these possibilities are dependent on the fact that a user may acciden-
tally accept a fake certificate, which could result in them connecting to a
rogue network. Recent developments have eliminated the need for users to

23

manually verify certificates, thereby significantly reducing the risk of them
connecting to rogue access points, such as evil twins.

4.3 CAT, geteduroam and SecureW2

To help with connecting to an eduroam network, tools have been created to
make the process easier and more secure. One of these tools is the Con-
figuration Assistant Tool (CAT) [3], which allows institutes to set up
configurations for their specific networks so that its users would not have to
bother with setting up this configuration themselves. When CAT is down-
loaded, a user is able to download their institute’s Eduroam configuration
which also includes server certificates or intermediate certificates. CAT is
not very popular anymore and has been largely replaced by geteduroam.

To elaborate, geteduroam is a project that has the main goal of making
authentication to Eduroam networks more uniform and secure. They make
a distinction in this goal between client and server software, as described on
their website [§]:

1. Create apps to allow user to correctly set up Eduroam on their device

2. Create server software to issue client certificates to be used by these
apps.

The rationale behind these goals is that the geteduroam project wants
to push users and institutions to use EAP-TLS instead of EAP-TTLS/PAP
or EAP-PEAP. “The idea is to do away with the need for separate eduroam
user accounts, and instead use national federated Id (through eduGAIN
such as SURFconext, Swamid, FEIDE, HAKA, etc) to automatically gen-
erate eduroam login credentials in form of client certificates as needed.” [§]
EAP-TTLS/PAP and EAP-PEAP are both protocols that are based on in-
ner and outer authentication using different protocols, whereas EAP-TLS
does authentication through both a server certificate and a client certificate.
This removes the need for a user to send their credentials over a network
which could open them up to a MITM attack, as described in section |4.2

The geteduroam project has also developed an app with the same name.
The geteduroam app allows users to easily connect to a nearby Eduroam
network. A user must choose their home institute in the app, and is then
prompted to either fill in their credentials which are then stored on their
device, or they are sent to a website where they have to fill in their creden-
tials if their institute has not signed up for geteduroam/CAT (since gete-
duroam uses CAT as a backend), where the authentication is then handled
by eduGAIN [6]. This signing up for geteduroam/CAT can be done by insti-
tutes if they want to give up a specific setting configuration that they want

24

their users to use. After filling in their credentials once, a user does not have
to fill in their credentials again, and your operating system will always try
to connect to a nearby network that has the Eduroam SSID, whether it is a
real or fake network (but will fail the authentication process if the network
is fake).

SecureW2 is similar to the geteduroam app but differs in the fact that
it is a general-purpose (so not limited to eduroam) cloud based network
authentication platform, which is not open source and is commercial.

4.3.1 Connecting to an evil twin with geteduroam

To prove that connecting to Eduroam is more secure using geteduroam, we
will show what happens when your client tries to connect to a fake Eduroam
network with geteduroam set up. Since geteduroam installs a configuration
which contains a certificate, the authentication process will fail at the stage
where the client checks the server certificate (see step [4|in section . This
looks as follows:

: STA 92:3d:5e:7f:b0:d2 IEEE 802.11: authenticated
: STA 92:3d:5e:7f:b0:d2 IEEE 802.11: associated (aid 1)
: CTRL-EVENT-EAP-STARTED 92:3d:5e:7f:b0:d2
: CTRL-EVENT-EAP-PROPOSED-METHOD vendor=0 method=1
: CTRL-EVENT-EAP-PROPOSED-METHOD vendor=0 method=25
: STA 92:3d:5e:7f:b0:d2 IEEE 802.1X: Identity received from STA: 'anonymousgru.nl’
: STA 92:3d:5e:7f:b@:d2 IEEE 802.1X: Identity received from STA: 'anonymousgru.nl’
: STA 92:3d:5e:7f:b@:d2 IEEE 802.1X: Identity received from STA: 'anonymousgru.nl’
SSL: SSL3 alert: read (remote end reported an error):warning:close notify
OpenSSL: openssl_handshake - SSL_connect error:00000000:1ib(@):func(0):reason(@)
¢ CTRL-EVENT-EAP-FAILURE 92:3d:5e:7f:b0:d2
: STA 92:3d:5e:7f:b@:d2 IEEE 882.1X: authentication failed - EAP type: © (unknown)
: STA 92:3d:5e:7f:b0:d2 IEEE 802.1X: Supplicant used different EAP type: 25 (PEAP)
: STA 92:3d:5e:7f:b0:d2 IEEE 802.11: disassociated
: STA 92:3d:5e:7f:b0:d2 TEEE 8@2.11: deauthenticated due to local deauth reguest

Figure 4.5: Hostapd-wpe output after being connected to with geteduroam

Since no actual credentials (username and password) were sent, the only
thing hostapd-wpe captured was the initial request that only contains the
anonymous identity (6th line in fig. [4.5)).

4.4 EAP-TLS

Another way to address the leaking of NTLM hashes of Eduroam users under
MSCHAPv2, is to not use MSCHAPv2 at all. The EAP-TLS authentication
protocol is a substitute for the EAP-PEAP and EAP-TTLS authentication
protocols used in Eduroam. It only consists of one phase in contrast to
the two phases used in EAP-PEAP and EAP-TTLS (the outer and inner

25

authentication protocols). As seen in table Dutch institutes have not
moved to this authentication method yet. This is mostly due to the fact
that EAP-TLS is based on the public key infrastructure which is difficult
to manage at large, however SecureW2 which was mentioned in section [£.3]
manages this. EduVPN, which is a VPN that can be used to access an
institute’s network remotely, does have this mutual authentication through
certificates in place, albeit via openVPN.

4.4.1 How does EAP-TLS work?

EAP-TLS is based on mutual authentication between a client and a server.
This is done through server and client certificates, which are checked by the
opposite party. The client is provided a certificate through an automated
provisioning portal such as CAT or a web portal. The authentication flow
goes as follows: [I§]

1. The client requests the server to start EAP-TLS, leading the server
to respond with its server certificate containing (not exclusively) its
public key.

2. The client validates the server certificate and sends its own client cer-
tificate over to the server, in the case that the server certificate is
valid.

3. If the client certificate is valid, the server will authenticate the client
by sending a RADIUS accept packet to the access point.

See also fig. for an overview of what is described above, including the
continuation of the RADIUS protocol.

26

Validate Server
Certificate

Supplicant

© v

Client-side certificates issued t

o supplicants by PKI

P " Public serverside certificate issued to supplicants out-of-ban.

+#

Authen

2. Establish 802.11 Data Link

P

ticator

B02.1X Uncontrolled port allows

=t = P |only authentication and key
3. EAPoL Start | |management data to pass.
AN i -
! L
: Ab. ldentity {anoncymous) Response :
1 p{ 5. RADIUS Access Request H
H {anonoymous) !
1 |
B e et L --
1 |, 5a. Server Certificate i
! i
I
[, |
1 | Bb. Client Certificate o
' i
H 1
1
' i
g S
|, 6. RADIUS Access {or Reject)
<+
M 7. EAP Success {or Failure)}
ot
|| B Message LEAPOLKey !
1
! | 9. Message 2: EAPOLKey R !
1 - o ___L____.
I | 10. Message 3: EAPOLKey T
I
' 7 11. Message 4: EAPOL-Key N !
] Ll 1
12, Encrypted Channel 802.1X Controlied port allows
| R — i
protected data to pass.
v v v

Figure 4.6: EAP-TLS overview [17]

Authentication server

This section is to let t
- AS know that a supplic
is requesting authentit

_ Mutual
Authentication

Validate Client Certificate

AWay
Handshake

4.4.2 Advantages and disadvantages of EAP-TLS

EAP-TLS comes with security advantages in the fact that it is passwordless

authentication. As described earlier in section [4.4.1

instead of credentials

(the user password) being sent through a tunnel, a certificate is sent instead.
This does not remove the problem of possibly connecting to an evil twin net-
work, but an attacker managing this evil twin will not gain knowledge of
any passwords.

The thing holding institutions back from using EAP-TLS in Eduroam is
the fact that some (older) devices do not support client certificates [17]
which makes it difficult to ensure that everyone can access the network. It

27

is generally also just hard to manage a public key infrastructure and certifi-
cates, which a lot of developers do not care to spend time on if there are
alternatives.

28

Chapter 5

Conclusions

This thesis focused on investigating the security of Eduroam’s authentication
method relating to accepting certificates, more specifically, which protocols
play a role in authentication a user if an institute uses Eduroam and how
these may be exploited if the client or user does not properly check server
certificates. We have also seen that there are tools and alternative proto-
cols which are more secure than currently used methods, but have not been
adopted. At the beginning of this thesis we mentioned that the starting
point of our research was the fact that a user is asked to check a certificate
when trying to connect to an Eduroam network. Users will blindly accept a
certificate because most people are understandably unaware of what a cer-
tificate is, and Radbouds’ website also states that you should just accept
the certificate. The aim of this thesis was therefore to research if these facts
were exploitable in such a way that a malicious actor could recover user
credentials by setting up a fake Eduroam network with fake certificates.

We have seen that Eduroam is a large collection of WPA2-Enterprise Wi-Fi
networks which are all connected using the RADIUS protocol, more specifi-
cally that it is a large web of RADIUS servers which communicate with each
other to authenticate a user. The RADIUS protocol is used to establish a
TLS connection between a client and the user’s home authentication server
(outer authentication) which is then followed by the authentication server
verifying a user’s credentials (inner authentication). An institute has the
freedom to choose which protocols are used for outer and inner authentica-
tion. For this thesis, we mostly focused on how the Radboud University has
its Eduroam network set up, as they use a configuration that is used by most
other institutes as well. Radboud uses MSCHAPvV?2 as its inner authentica-
tion protocol. This protocol is known to be weak in isolation, but continues
to be used in Eduroam even though it is trivial to isolate MSCHAPv2 by
acting as a man-in-the-middle to circumvent outer authentication, if certifi-
cates are not properly checked.

29

The weaknesses in MSCHAPv2 lie in the fact that it still uses single DES
which has a keylength of 56 bits, and also has some questionable design
choices such as having one DES key that consists of 5 zero bytes. Whilst
recovering this subkey does not break the security that much, we still be-
lieve that it is showing cracks which should not be ignored. When pairing
DES with a (TLS) tunnel, such as in Eduroam, this might not be an issue
since an attacker would have to break the encryption of this tunnel first.
However, if a user does not properly check the certificate and accidentally
connects to a rogue network, becoming a man-in-the-middle is not that dif-
ficult and removes the worry about the tunnel entirely, leaving MSCHAPv2
completely isolated.

The attack reviewed in this thesis target MSCHAPv2 in an Eduroam net-
work through the use of a so-called Evil Twin. Using this Evil Twin, the
challenge and response hashes that are sent in MSCHAPv2 are captured,
and with the use of brute-force methods like dictionary attacks, it is quite
cheap to extract passwords from this captured information. This vulnera-
bility stems from the user having to check the server certificate when it is
presented to them. Tools like geteduroam have been specifically designed
to help users connect to their institute’s Eduroam network by configuring
settings, including certificates, for them. This results in a user never having
to worry about accidentally accepting a rogue certificate.

To conclude, can you trust Eduroam? Generally, yes. We have seen that
in order for an attacker to retrieve passwords, there must be a set of pretty
specific circumstances: the user must connect to our fake Eduroam Wi-Fi
network, their password must be short and in a dictionary or insecure, and
finally your institute must use an insecure protocol like MSCHAPv2. We
believe that this scenario is pretty unlikely, but not impossible. We would
argue that Eduroam is not flawless, specifically in terms of how institutes
handle the security of their users. If, for example, the Radboud University
really cared about their students and staff, they should consider the following
recommendations: Institutes should strongly advise their users to connect
to their Eduroam network using geteduroam, or at least list geteduroam
as a security option instead of only helping with setting up a user’s device.
This increases the security of the authentication process and makes it nearly
impossible for users to make a mistake. The security increases because it
removes the potential for a man in the middle to retrieve the Challenge and
Response that are sent over the network with the MSCHAPv2. We also
considered if we would recommend institutes to start thinking about setting
up authentication through EAP-TLS, however since it has problems with
legacy devices, we do not think that this is currently feasible yet.

30

Chapter 6

Future Work

When a user is abroad and wants to connect to an Eduroam network that is
offered at an institute, the access point there uses the RADIUS protocol to
send the request all the way over to the user’s home authentication server.
Because these two servers are not located in the same country, or at least do
not share the same top level domain (for example .nl and .de), the request is
sent through the root RADIUS server. Future research could examine why
the choice was made to actually send the requests through each RADIUS
server instead of recursively doing a lookup similar to how DNS works. After
this it might be an interesting idea to see if a denial of service attack would
be feasible on this root server.

Another interesting thing to research would be to investigate password
habits of students (and possibly staff) of the Radboud University. This
could be done through a survey asking participants to create a password
and then ask them to create a variation of that password based on some
specific rules that Radboud has listed on their website. This could possibly
lead to an insight on what an “average” password looks like on Radboud’s
campus, which could drastically speed up password recovery rates. Based
on this, Artificial Intelligence or decision models could be trained to find an
optimal way of checking passwords which have to adhere to these rules.

31

Bibliography

1]

2]

[3]
[4]
[5]

[6]
[7]
8]
[9]

[10]

[11]

[12]
[13]

A case for modern rainbow table usage. 2019. [Online; accessed April
2025] https://www.rainbowcrackalack. com.

B. Aboba. Radius (remote authentication dial in user service) sup-
port for extensible authentication protocol (eap). RFC 7593, RFC
Editor, September 2003. https://datatracker.ietf.org/doc/html/
rfc3579.

https://cat.eduroam.org/.
https://crack.sh/.

Hans Dobbertin. Cryptanalysis of MD4. Technical re-
port, Ruhr-University Bochum, 1995. https://doi.org/10.1007/
s001459900047.

https://edugain.org/.
https://www.eduroam.nl/.
https://www.geteduroam.app/.

Matthias Ghering. Evil twin vulnerabilities in wi-fi networks,
2016. https://www.cs.ru.nl/bachelors-theses/2016/Matthias_
Ghering___4395727___Evil_Twin_Vulnerabilities_in_Wi-Fi_
Networks.pdf.

Google and Harris Poll. Online security survey. Technical
report, 2019. https://services.google.com/fh/files/blogs/
google_security_infographic.pdf.

Jeremi M. Gosney. 8x1080timd. https://gist.github.com/
epixoip/ace60d09981be09544fdd35005051505), 2016

https://hashcat.net/hashcat/.

P. Hoffman and F. Yergeau. Utf-16, an encoding of iso 10646. RFC 2781,
RFC Editor, February 2000. https://www.ietf.org/rfc/rfc2781.
txt.

32

https://www.rainbowcrackalack.com
https://datatracker.ietf.org/doc/html/rfc3579
https://datatracker.ietf.org/doc/html/rfc3579
https://cat.eduroam.org/
https://crack.sh/
https://doi.org/10.1007/s001459900047
https://doi.org/10.1007/s001459900047
https://edugain.org/
https://www.eduroam.nl/
https://www.geteduroam.app/
https://www.cs.ru.nl/bachelors-theses/2016/Matthias_Ghering___4395727___Evil_Twin_Vulnerabilities_in_Wi-Fi_Networks.pdf
https://www.cs.ru.nl/bachelors-theses/2016/Matthias_Ghering___4395727___Evil_Twin_Vulnerabilities_in_Wi-Fi_Networks.pdf
https://www.cs.ru.nl/bachelors-theses/2016/Matthias_Ghering___4395727___Evil_Twin_Vulnerabilities_in_Wi-Fi_Networks.pdf
https://services.google.com/fh/files/blogs/google_security_infographic.pdf
https://services.google.com/fh/files/blogs/google_security_infographic.pdf
https://gist.github.com/epixoip/ace60d09981be09544fdd35005051505
https://gist.github.com/epixoip/ace60d09981be09544fdd35005051505
https://hashcat.net/hashcat/
https://www.ietf.org/rfc/rfc2781.txt
https://www.ietf.org/rfc/rfc2781.txt

[14]

[15]

[16]

S. Kelly. Security implications of using the data encryption standard
(des). RFC 4772, RFC Editor, December 2006. https://datatracker.
ietf.org/doc/html/rfcd772.

OpenSecurityResearch. hostapd-wpe. https://github.com/
OpenSecurityResearch/hostapd-wpe, 2012.

http://web.archive.org/web/202560814155715/https://www.
ru.nl/services/campusfaciliteiten-gebouwen/ict/wifi/
wifi-eduroam-instellen/wifi-eduroam-instellen.

Vivek Raj. https://www.securew2.com/blog/
eap-tls-vs—-eap-ttls—pap.

D. Simon, B. Aboba, and R. Hurst. The eap-tls authentication protocol.
RFC 5216, RFC Editor, March 2008. https://datatracker.ietf.
org/doc/html/rfc5216.

Sjoerd van der Kamp, Rolf van Wegberg, and Michel van Eeten. “Care-
ful with that Roam, Edu”: Experimental Analysis of Eduroam Cre-
dential Stealing Attacks. In 2022 IEEE FEuropean Symposium on Se-
curity and Privacy (EuroSE€P), pages 400-414. IEEE, 2022. https:
//ieeexplore.ieee.org/document/9764586.

K. Wierenga. The eduroam architecture for network roaming. RFC
7593, RFC Editor, September 2015. https://datatracker.ietf.org/
doc/html/rfc7593.

Wikipedia, the free encyclopedia. Data encryption standard, 2025. [On-
line; accessed April 2025]. https://en.wikipedia.org/wiki/Data_
Encryption_Standard.

G. Zorn. Microsoft PPP CHAP extensions, version 2. RFC 2759, RFC
Editor, January 2000. https://datatracker.ietf.org/doc/html/
rfc2759.

33

https://datatracker.ietf.org/doc/html/rfc4772
https://datatracker.ietf.org/doc/html/rfc4772
https://github.com/OpenSecurityResearch/hostapd-wpe
https://github.com/OpenSecurityResearch/hostapd-wpe
http://web.archive.org/web/20250814155715/https://www.ru.nl/services/campusfaciliteiten-gebouwen/ict/wifi/wifi-eduroam-instellen/wifi-eduroam-instellen
http://web.archive.org/web/20250814155715/https://www.ru.nl/services/campusfaciliteiten-gebouwen/ict/wifi/wifi-eduroam-instellen/wifi-eduroam-instellen
http://web.archive.org/web/20250814155715/https://www.ru.nl/services/campusfaciliteiten-gebouwen/ict/wifi/wifi-eduroam-instellen/wifi-eduroam-instellen
https://www.securew2.com/blog/eap-tls-vs-eap-ttls-pap
https://www.securew2.com/blog/eap-tls-vs-eap-ttls-pap
https://datatracker.ietf.org/doc/html/rfc5216
https://datatracker.ietf.org/doc/html/rfc5216
https://ieeexplore.ieee.org/document/9764586
https://ieeexplore.ieee.org/document/9764586
https://datatracker.ietf.org/doc/html/rfc7593
https://datatracker.ietf.org/doc/html/rfc7593
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://datatracker.ietf.org/doc/html/rfc2759
https://datatracker.ietf.org/doc/html/rfc2759

Appendix A

Extra information

This chapter explains some extra information about topics mentioned in
the thesis. This information is not needed to understand the conclusions of
the thesis but might help with clarifying some specific information that is
mentioned.

A.1 Byte order Mark (BOM)

The Zero width non-breaking space, also known as the Byte order mark
or BOM, is a special Unicode character code (OxFEFF) that has several
different purposes [13]. It is a character code that may be prepended to a
unicode string. The two main important usages of the BOM is to

1. Signal to the receiver of the message that unicode characters are being
used.

2. Signal to the receiver of the message which byte order is being used.
0xFE followed by 0xFF signifies big-endian and 0xFF followed by OxFE
signifies little-endian.

Depending on the programming language and implementation, the BOM
might be automatically prepended to a UTF-16 message. By specifying if
the message is in big endian (UTF-16BE) or little endian (UTF-16LE), the
BOM will not be prepended.

A.2 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are specialized pieces of hard-
ware that are commonly used in research for specific tasks. An FPGA
consists of multiple logic blocks which are interconnected and can be pro-
grammed on the fly (in the field) to do a sub-task of the final task. Because

34

of this specificity, FPGAs are much faster at completing tasks than non-
specific CPUs and GPUs and therefore preferred if you are working with
large amounts of data (such as the amount of possible DES keys). FPGAs
are relatively expensive, as a high end FPGA can start at around US$4000.

35

Appendix B

Links used

University Password Change Link

University of Twente https://www.utwente.nl/en/
service-portal/workplace-support/
accounts-passwords/ut-account-incl.
-activation-password-change#
password-change—-and-reset

University of Amsterdam (UvA) https://student.uva.nl/en/information/
use-a-different-strong-password-for-each-of-your-ac

Leiden University https://www.staff.universiteitleiden.
nl/ict/ulcn-account/
forgotten-your-password

Utrecht University https://manuals.uu.nl/manual/
wachtwoord-veranderen-vergeten/

Tilburg University (Info Page) https://www.tilburguniversity.
edu/nl/over/gedrag-integriteit/
privacy-en-security/
informatiebeveiligingsbeleid/wachtwoord

Tilburg University (Set Password) | https://setpassword.uvt.nl/gatekeeper/
changepassword?language=nl

Radboud Universiteit https://www.ru.nl/en/services/
campus-facilities-buildings/ict/
password/password-safety-guidelines

HAN University https://www.han.nl/over-de-han/datalek/

Wageningen University https://password.wur.nl/Start.aspx

Table B.1: Table containing links used for finding minimum password
lengths

36

https://www.utwente.nl/en/service-portal/workplace-support/accounts-passwords/ut-account-incl.-activation-password-change#password-change-and-reset
https://www.utwente.nl/en/service-portal/workplace-support/accounts-passwords/ut-account-incl.-activation-password-change#password-change-and-reset
https://www.utwente.nl/en/service-portal/workplace-support/accounts-passwords/ut-account-incl.-activation-password-change#password-change-and-reset
https://www.utwente.nl/en/service-portal/workplace-support/accounts-passwords/ut-account-incl.-activation-password-change#password-change-and-reset
https://www.utwente.nl/en/service-portal/workplace-support/accounts-passwords/ut-account-incl.-activation-password-change#password-change-and-reset
https://student.uva.nl/en/information/use-a-different-strong-password-for-each-of-your-accounts
https://student.uva.nl/en/information/use-a-different-strong-password-for-each-of-your-accounts
https://www.staff.universiteitleiden.nl/ict/ulcn-account/forgotten-your-password
https://www.staff.universiteitleiden.nl/ict/ulcn-account/forgotten-your-password
https://www.staff.universiteitleiden.nl/ict/ulcn-account/forgotten-your-password
https://manuals.uu.nl/manual/wachtwoord-veranderen-vergeten/
https://manuals.uu.nl/manual/wachtwoord-veranderen-vergeten/
https://www.tilburguniversity.edu/nl/over/gedrag-integriteit/privacy-en-security/informatiebeveiligingsbeleid/wachtwoord
https://www.tilburguniversity.edu/nl/over/gedrag-integriteit/privacy-en-security/informatiebeveiligingsbeleid/wachtwoord
https://www.tilburguniversity.edu/nl/over/gedrag-integriteit/privacy-en-security/informatiebeveiligingsbeleid/wachtwoord
https://www.tilburguniversity.edu/nl/over/gedrag-integriteit/privacy-en-security/informatiebeveiligingsbeleid/wachtwoord
https://setpassword.uvt.nl/gatekeeper/changepassword?language=nl
https://setpassword.uvt.nl/gatekeeper/changepassword?language=nl
https://www.ru.nl/en/services/campus-facilities-buildings/ict/password/password-safety-guidelines
https://www.ru.nl/en/services/campus-facilities-buildings/ict/password/password-safety-guidelines
https://www.ru.nl/en/services/campus-facilities-buildings/ict/password/password-safety-guidelines
https://www.han.nl/over-de-han/datalek/
https://password.wur.nl/Start.aspx

Index

General Terms Tools
anonymous identity, CAT, 24
AuthenticatorChallenge, geteduroam,
certificate, Hashcat,
Challenge, John the Ripper,
challenge, SecureW2,

challenge response

textbf,
client challenge hash,
client username,
clientPass,
Eduroam, 3] [7]
evil twin,
inner authentication, [4] [T1]
NETNTLM, [22]
NT-Response,
NTHash,
outer authentication,
PasswordHash,
PeerChallenge,
server challenge,
trust fabric, [9]
user password,
UserName, [13]

Other
DES, 13,15
DES keys,

Protocols
EAP-PEAP,
EAP-TLS,
EAP-TTLS,
MSCHAPv2,
PAP,
RADIUS,

37

	Introduction
	Related Work
	Preliminaries on Eduroam
	Architecture of Eduroam
	RADIUS
	RADIUS in Eduroam

	Outer authentication
	Inner authentication
	PAP
	MSCHAPv2
	Example of MSCHAPv2 flow

	Data Encryption Standard (DES)
	Encryption and Decryption
	DES keys
	Security issues

	Attacking Eduroam
	Problems with MSCHAPv2
	DES in MSCHAPv2
	Security of MD4 in MSCHAPv2

	Staging an attack on Eduroam
	Reliably cracking DES keys using consumer hardware
	Feasibility of cracking MSCHAPv2 using consumer hardware

	CAT, geteduroam and SecureW2
	Connecting to an evil twin with geteduroam

	EAP-TLS
	How does EAP-TLS work?
	Advantages and disadvantages of EAP-TLS

	Conclusions
	Future Work
	Extra information
	Byte order Mark (BOM)
	Field Programmable Gate Arrays

	Links used
	Index

