Bachelorscriptie
Database Schema Integratie

Auteur
Julius Miicke

Begleider

Patrick van Bommel

Lente Semester 2007/2008
Radboud Universiteit Nijmegen, Nederland

Inhoudsopgave

8

9

Verklarende woordenlijst

Inleiding

2.1 Verschil data integratie vs. schema integratie
2.2 Het verband met data warehouses L.
2.3 Opbouw scriptie

Voorbeeld model
3.1 Problemen binnen het voorbeeld model
3.2 Schemas van de bestande systeem L

Plan van aanpak

Problemen bij de integratie

5.1 Structurele Problemen oo
5.2 Inhoudelijke Problemen oo
5.3 Problemen rond Security

Schema Integratie

6.1 Schema equivalentie
6.2 Doel 1 (D1) Pre-Integratie
6.3 Doel 2 (D2) Schema goedkeuring,
6.4 Doel 3 (D3) Schema samenvatting,
6.5 Doel 4 (D4) Schema Herstructureering

P

Uitvoering van integratie

7.1 CRM Database
7.2 ERP Database
7.3 Order Management
7.4 Overlap tussen de databases 0.
7.5 Nieuwe Database

Waar staat de gebruiker?

Conclusies

10 Uitbreidingen & Toekomst

U =~ W

NN

10

13
13
14
15

16
18
20
20
21
22

23
23
27
31
34
44

45

47

48

Hoofdstuk 1

Verklarende woordenlijst

Backend Beschrijft het in de achtergrond werkende systeem. De gebruiker merkt hier weinig
van. Vaak wordt in plaats van backend ook server genoemd.

Database Een systeem om data op digitale manier te beheren

Frontend Beschrijft het systeem bij de gebruiker. Meestal wordt hier ook het woord client
gebruikt.

Integratie Beschrijft een proces om minstens twee elementen samen te voegen.

Organisatie Is een doelgerichte samenbundeling van mensen om een gemeenschappelijk
doel te bereiken

Schema Een weergave van de opbouw van meerdere elementen

Structuur Een plan van een database die de samenhang tussen tabellen beschrijft en hun
relaties onder elkaar weer geeft

Relatie Beschrijft de samenhang tussen twee elementen, entiteiten of tabellen

Hoofdstuk 2

Inleiding

Van dag te dag fuseren steeds meer organisaties en bedrijven. Daarbij is een belangrijk
stap dat ze op een gegeven moment moeten beginnen met het delen van data. Meestal
houden organisaties hun data in databases, zoals ze voor ERP! en CRM? systemen worden
gebruikt. Heel veel van dit soort databases zijn relationele databases, die dus alle een gelijk
type database gebruiken. Het enig verschil wat er dan nog zou kunnen zijn is het verschil
van het databasesysteem zelfs. Hierbij heeft men heel veel verschillende systemen, zoals
Oracle, SAP R/3, Microsoft SQL, Microsoft Access, Jet Engine, MySQL, DBase, DB2,
Peoplesoft, FireBird, Informix, Lotus Notes, Sybase, Al deze systemen hebben wel
toch een gemeenschap, namelijk dat ze op dezelfde manier de data bevatten, wat voor een
schema- en ook data-integratie heel veel voordeel oplevert. Zo slaan ze deze data in tabellen
op en de handhaving is bij allen systemen opzich gelijk.

Als nu twee organisaties gaan fuseren, dan moet men dus kijken, dat er een integratie plaats
vindt op basis van de oorspronkelijke schema’s en de data uit oorspronkelijke databases.
Tot nu bestaat er nog geen standaard, die beschrijft hoe men een database opbouwt. Juist
omdat er geen standaard bestaat, is het dus belangrijk een aanpak te vinden om verschillende
databases te versmelten. Elk organisatie heeft zijn eigen organisatieprocessen en als deze
informatie of data gerelateerd zijn, dan is de kans groot dat dit proces door een informatie
systeem ondersteund wordt. Aan dit informatie systeem hangt dan ook meestal een database
met een bepaald schema. Hierbij komt nu het verschil boven tafel te liggen: elk organisatie
heeft zijn eigen processen die steeds net iets anders zijn. Waarom is dat nu zo belangrijk?
De processen binnen organisaties zijn dus in elk organisatie anders opgebouwd, waardoor
de invoer van data in een systeem ook weer verschillen oplevert per organisatie. Waardoor
ontstaat dit verschil?

De cultuur binnen elk organisatie verschilt en aan de cultuur hangen ook de organisatie
processen. De cultuur wordt beinvloed en men is niet in staat om in elk organisatie dezelfde
cultuur op te bouwen. Het verschil van elke organisatie cultuur wordt nog duidelijker, als
men organisaties van Europa met organisaties uit Aszié vergelijkt.

Door deze verschillen tussen organisaties gaat men op verschillende manieren met data om.
Hierbij komt nu weer de schema integratie naar voren, die dus probeert om de verschillen
van de databases wil laten verdwijnen.

Binnen deze scriptie wil ik nu een aanpak offeren om meerdere databases te versmelten.
Daarbij ligt binnen deze scriptie de focus op schema integratie, zodat men dus alleen naar
de schema’s kijkt en niet de data binnen de databases.

!Enterprise Resource Planning
2Customer Relationship Management

2.1 Verschil data integratie vs. schema integratie

Er zijn twee bekende manieren om heterogene data te fuseren:

Schema Integratie waar alleen naar het schema van de data wordt gekeken en een schema
wordt creért wat dan een fuseerde schema van een of meerdere databases is. Het
belangrijke hierbij is, dat de daadwerkelijke data niet wordt aangetast.

Data Integratie waar dus naar de daadwerkelijke data wordt gekeken en deze data worden
dan fuseert.

Beide manieren zijn noodzakelijk voor een volledige fusering. Er bestaan al technieken om een
gemeenschappelijk view op een aantal databases te bieden. Zo wordt vaak data warehousing
beschreven als een soort samenvatting van alle data uit de databases. In tegenstelling tot
data warehouses biedt een volledige integratie een realtime-toegang tot alle data.

2.2 Het verband met data warehouses

Data warehouses zijn in de afgelopen steeds interessanter geworden voor een unieke view op
meerdere databases. Volgens [8] worden databases als een gemeenschappelijk bron gezien
voor data die verkrijgbaar is. Binnen [8] is duidelijk aangegeven dat men abstract naar de
bestaande data moet kijken en echter belangrijk is dat er geen ruis bestaat. Het wordt bin-
nen een data warehouse namelijk als terrorisme gezien als er ruis is, want ruis veroorzaakt
heel veel onnodig communicatie en vertraagd het systeem. Verder is van belang, dat men
data warehouses als kopie van de bestaande databases kan zien. Data warehouses worden
vaak door het management gebruikt om een overzicht van alle data te krijgen die binnen een
organisatie bestaan. Echter wordt hier gefocused op data, die van essentieel belang voor de
organisatie zijn en data die niet van belang is wordt, als ruis gezien.

Het doel van data warehouses is duidelijk: het management wil een iinique, certified data
source” [4]. Aan de andere kant zijn binnen organisaties de afdelingen en leidende medewer-
kers, die toch vrij kritisch zijn wat betreft de invoer van een data warehouse. Zij denken,
dat zij de controle verliezen en daar door ook het competitive advantage verliezen. Deze
omstandigheden zijn helemaal niet het doel van een data warehouse, want het dient meer
ter monitoring en controlling. [4] Doelen van data warehouses zijn duidelijk:

e Integratie van verschillende systemen

e Verhoogde kwaliteit van berichten

Integratie De integratie wordt gerealiseerd door de opbouw van een verbinding tussen
de bijhorende databases. Hierdoor is men in staat om een kijk te krijgen op verschillende
databases. Databases impliceert in dit geval ook systemen. Zoals in figuur 2.1 te zien is wordt
deze integratie door het data warehouse gerealiseerd. De gebruiker kijkt op één systeem en
zou denken hij werkt ook alleen met een systeem. Als hij daarbij gebruikt maakt van een
frontend is dat ook meestal het geval. Anders werkt het in het backend waar dus het data
warehouse staat. Hierbij is belangrijk, dat de gebruiker niet merkt, dat het data warehouse
een filter heeft waarmee de data uit de verbonden databases wordt getrokken. Dit filter
probeert ruis te vermijden en extraheert alleen de data die in het data warehouse gewenst
zijn.

Kwaliteit Met beperking kan men in het geval van data warehouses spreken van verhoogde
kwaliteit wat betreft de berichten die uit een data warehouse komen. Deze situatie hangt
daarmee samen dat een data warehouse als filter voor bestaande databases werkt. Een data
warehouse trekt namelijk alle gekozen data uit de vastgelegde databases. Bij dit proces
wordt er abstraheert van data die er niet bijhoort. Deze data werden eerder genoemd als
ruis. Aan de andere kant wordt dit proces ook niet real-time doorgevoerd, want dit zou te
veel werk opleveren om het data warehouse real-time up to date te houden. Echter wordt
er een extract proces naar bepaald tijdschema doorgevoerd. Dat beperkt dan de kwaliteit
van de data weer, want ze zijn in helemaal actueel. Als de gebruiker dan een query start
weet hij niet hoe oud de data zijn die hij op dat moment te zien krijgt. In het ergste geval
is het resultaat zo oud als het interval waarmee de updates van het data warehouse worden
doorgevoerd.

De databases, die aan een data warehouse zijn verbonden werken gewoon verder. Gebruiker

[~ Gebrudcer

_ O Diata

. warehouse

LAparte
databases

Filter

Figuur 2.1: Structuur van een data warehouse

van de databases merken geen verschil, dat op eens de data uit de database tussendoor wordt
extraheert naar een data warehouse.

2.2.1 Data warehouse vs. integratie

Het verschil van data warehouses bestaat erin dat data warehouses een beperkte en niet
altijd up-to-date view op de data geeft. Men zou ook met data warehouses in staat zijn
om alle data in een view te representeren, maar toch blijft het nadeel dat men dan een
view heeft die niet up-to-date is. Integratie in tegenstelling tot data warehouses bouwt een
nieuw schema, waarin men dus heen gaat en de gerelateerde databases transformeert naar
een gemeenschappelijke database. Daarbij worden de tabellen zodanig gerelateerd, dat men
tussen de aparte databases dan relaties tussen de verschillende databases kan opbouwen.

2.3 Opbouw scriptie

In de volgende sectie zou het model worden geintroduceerd, waarmee in deze scriptie wordt
gewerkt. Het model is gebaseerd op de situatie uit een bedrijf. Er wordt met meer dan
drie databases gewerkt en binnen deze scriptie is ervoor gekozen worden om zich te focussen
op drie databases ter beperking van deze scriptie. Daarna wordt dan de manier beschreven

Originele Transformatie Aangepaste
Schema’s toepassen Schema’s

Originele Schema
Daia Integratie

Data
Integratie

N

Gemeen-
schappelijk
Schema

Integreerd

Data > Samenvoegen van o
data en schema

Nieuwe
gemeen-
schappelijke
Database

Figuur 2.2: Schema integratie in context gezien

waarmee man met schema’s omgaat en hoe men in staat is om deze te vertalen naar één
niveau. De transformatie taal zal een hulpmiddel zijn om een integratie uit te voeren. Hierna
wordt dan een aanpak beschreven om verschillende schema’s te fuseren tot één schema.
Ten slotte wordt dan het resultaat getoond en alle voor- en nadelen genoemd in verband met
de fusie van de tabelstructuren. Uit deze aanpak zouden dan conclusies worden getrokken
en mogelijk uitbreidingen worden getoond. Aan het eind van de scriptie wordt dan nog de
gebruiker en zijn relatie tot schema integratie weer gegeven. In figuur 2.2 is precies te zien,
waarmee zich mijn scriptie bezig houdt. Ik heb ervoor gekozen om hier dus alleen naar de
schema’s van databases te kijken. Zoals ook al eerder aangegeven, hordt bij een volledige
integratie ook nog de integratie van de data.

Hoofdstuk 3
Voorbeeld model

Als voorbeeld model voor deze scriptie wordt gebruik gemaakt van bestaande databases uit
het bedrijf MSC Computer Vertriebs-Gesellschaft mbH uit Nettetal, Duitsland. Het bedrijf
is gefocused op de verkoop van laser- en labelprinters, labels en ribbons. De verkoop is gericht
op alleen industriéle en professionele klanten in de regio Nordrhein-Westfalen en omgeving.
MSC heeft op dit moment drie hoofdapplicaties in gebruik:

Enterprise Resource Planning (ERP) Hier worden offertes, ontvangsbewijzen, factu-
ren en tegoedbonnen gemanaged. Het ERP wordt in de hele organisatie gebruikt.
Hiermee worden offertes gemaakt en facturen geschreven. Alle klanten die ooit iets
hebben gekocht staan ook in deze database. Verder is het management van MSC
met het ERP in staat om bepaalde statistieken uit het ERP te halen, bijvoorbeeld de
verkoop van bepaalde producten over een specifieke periode.

Customer Relationship Management (CRM) Hier wordt de hoeveelheid klantcontact
bijgehouden en ook bijhoorende klantgegevens. Verder heeft men ook hier de mogelijk-
heid om offerte’s te schrijven. Het CRM wordt bijna alleen door één afdeling gebruikt.
Er bestaat namelijk een apart afdeling voor het verkoop van labels en ribbons. De-
ze afdeling werd volgens het strategy alignment perspective [2, blz. 348] opgebouwd.
Eerst had het management het besluit genomen om een nieuwe strategie te volgen.
Deze nieuwe strategie houde in dat men zich concentreert op producten, die de klant
vaker zou nodig hebben en kopen. Hierbij viel de keuze op labels en ribbons, want deze
worden door de printers gebruikt. Zo ontstond dus het nieuwe idee van het verkoop
van labels en ribbons. Deze idee werd omgezet naar een business strategie. Alleen
hiervoor werd een nieuwe afdeling omgebouwd wat dus een organisatorisch infrastruc-
turele aanpassing was. Verder werd alleen voor deze afdeling een CRM opgebouwd om
nieuwe klanten te beheren.

Order Management (OM) Hier worden alle leverancier bijgehouden en men kan aan elke
leverancier een bestelling schrijven. Het Order Management word alleen in de inkoopaf-
deling gebruikt, waar men dus bestellingen schrijft en deze naar een leverancier stuurt.
Bij bestellingen kan men ook nog aangeven voor wie de bestelling is. Dat is erg han-
dig als een groot aantal bestellingen is verwerkt en de gebruiker heeft het overzicht
verloren.

3.1 Problemen binnen het voorbeeld model

Terwijl men bij MSC op dit moment tevreden is met het systeem zijn er toch bepaalde
dingen die toch nog te verbeteren zijn. Het zijn op zich geen problemen, maar meer dingen,

7

waar men de efficintie mist en daarom ook verbetering verwacht.

Zo werd twee jaar teug de functionaliteit aan het CRM toegevoegd, dat men meteen vanuit
het CRM een offerte voor een klant kon schrijven. De reden hiervoor waren duidelijk: Op dat
moment kon men alleen offertes schrijven met behulp van het ERP. Dat kost een hoop tijd,
want eerst moest men de klant overnemen naar het ERP. Er bestond geen functie voor, die
dat automatisch deed en ten tweede moest men de producten, die men wilde aanbieden ook
in het systeem toevoegen. Deze procedure kostte heel veel tijd en hier werd dus het besluit
genomen om de functionaliteit binnen het CRM te implementeren. Na implementatie was
heel duidelijk, dat de nieuwe functie het werk voor de gebruiker vereenvoudigt heeft.

Een soortgelijk probleem bestaat als een klant iets wil bestellen. Hij wordt dan ook overge-
schreven naar het ERP. Als nu een bepaald klant in beide databases staat, dan moet hij ook
in beide databases up-to-date worden gehouden, omdat er geen automatisch update tussen
de databases bestaat. Als de klant bijv. verhuist, moet men in beide databases zijn adres
vernieuwen. Verder bestaat dan nog een ander probleem: Wat is met oude facturen? Als
men die nog een keer wil printen, staan dan nog de oude adresgegevens op de factuur of de
nieuwe. Op dit moment is men alleen in staat om één adres van elke klant in het systeem
bij te houden. Hier is dus de vraag of er behoefte aan verandering is.

Een soortgelijk situatie heeft men met de producten die in de ERP database in een tabel
staan en in de CRM database elke keer opnieuw worden ingetypt, omdat het verschil bij
labels zo hoog is, dat men het daar tot nu toe niet als nodig bevond om hier een producten
tabel te gebruiken. Zou het makkelijker zijn om hier een tabel gebruiken om de producten
beter te kunnen hergebruiken?

Dan moet men de adresgegevens van de leveranciers ook in twee databases bijhouden wat
toch het werk verhoogt in plaats van verlaagt. Dat komt omdat ze aan de ene kant in het
ERP staan en ook aan de andere kant in het OM.

Deze overlappen tussen databases maken duidelijk dat databsaes niet apart moeten worden
beschouwd, maar meer als een eenheid! Verder zou men nu bij een uitvoering van een hele
integratie (schema en data) heen kunnen gaan en noodzakelijk veranderen (zoals boven ge-
noemd) mee kunnen integreren. Hierbij zouden dan interviews met de gebruiker helderheid
geven over noodzakelijk veranderingen.

Daarom is schema integratie en ook data integratie van essentieel belang!

3.2 Schemas van de bestande systeem

Na het voorbeeld van [5, blz. 308] worden hier nu de bestanden structuren van de databases
weer gegeven. In [5, blz. 308| gebruiken ze hier voor symbolen om entiteiten, relaties,
attributen en subsets weer te geven. Entiteiten zijn hier gewoon zo weer gegeven als in
figuur 3.1. Deze aanpak wordt voor deze scriptie overgenomen. In de uitvoering van de

)

Figuur 3.1: Symbool voor entiteiten

integratie worden alle databases nog een keer dieper toegelicht en men krijgt dan ook nog
meer informatie over alle belangrijken tabellen. Nu volgt alleen een klein overzicht over de
databases.

3.2.1 Customer Relationship Management

Binnen het CRM worden nu alleen de belangrijke tabellen of entiteiten bekeken. Alle enti-
teiten worden in figuur 3.2 weergegeven. Hun onderliggende relatie is op dit moment niet
belangrijk, maar kan later wel aan bod komen. Verder worden alleen de entiteiten getoond
waar men later een relatie met één van de andere databases kan opbouwen.

[tblUser) GblAdressesj GleistributiorD (tblOffer j
[tblTitle) [tblPayment) [tblSigners) GblOﬁerPositions)

Figuur 3.2: De belangrijksten entiteiten uit het CRM

3.2.2 Enterprise Resource Planning

Binnen het ERP worden ook hier de belangrijke entiteiten genoemd, waar men een relatie
met andere databases op dit moment ziet. In figuur 3.3 zijn alle hiervoor noodzakelijke

entiteiten weergegeven.
[tbIKD] C{blAngebote] GblPassword]
(tblZMod) (tblAngebot) (tblLief_adr)

Figuur 3.3: Belangrijke entiteiten binnen het ERP

3.2.3 Order Management

Ten slotte worden ook voor het OM de belangrijke entiteiten in figuur 3.4 weer gegeven.

[tblTitle) (tblSignersj (tblUser] [tblSuppIier]

Figuur 3.4: Belangrijke entiteiten binnen het OM

Hoofdstuk 4

Plan van aanpak

Om tot één schema te komen is het noodzakelijk, dat men weet waar de data die men hier
op één schema wil brengen vandaan komt en hoe deze eruit ziet. Hiervoor moet men een
opname maken van de huidige situatie. Nadat men een overzicht heeft over alle schema’s is
men in staat om een globaal aanpak te bieden om alle schema’s naar één schema te vertalen.
Eén belangrijk vraag in dit onderzoek:

Wanneer is men in staat om meerdere schema’s naar één schema te vertalen?

Op deze vraag heeft men meerdere antwoorden: aan de ene zou men schema’s kunnen
samenvoegen die niets met elkaar te maken hebben. Waarom? De reden hiervoor zijn
eigenlijk voor de hand liggend, want het beheren van een systeem is een stuk makkelijker,
als dat men verschillende systemen heeft op die men moet opletten. Aan de andere kant
is het ook een kwestie van optimalisatie, want als men nu meer data op een plek heeft (in
plaats van verdeelt over meerdere plekken), dan kan men relaties die voor de integratie nog
niet bestonden nu leggen en werkt, dus alleen in één schema/systeem.

Men kan alles samen voegen in één schema, er bestaat geen overlap en zo ontstaan ook geen
problemen. Daarom is het samenvoegen van data, die geen relatie onder elkaar hebben,
makkelijk.

Aan de andere kant heeft men de mogelijkheid om schema’s samen te voegen, die wel iets met
elkaar te maken hebben. Hiervoor moet men dan specifieker op de schema’s ingaan en kijken
wat hun onderliggende relatie is. Zo zou men bijvoorbeeld twee klant-tabellen willen fuseren,
maar beide tabellen hebben net een iets andere structuur, zodat men ze niet makkelijk kan
fuseren. Hiervoor biedt deze scriptie nu een handleiding hoe men hier mee omgaat. De idee
voor deze aanpak komt uit Santucci [6, blz. 317] en werd hier aangepast en vereenvoudigd.
In figuur 4.1 wordt een klein soort schema uitgelegd. Hierbij heeft men twee soorten rondjes,

.

) Database
Tabel van database x
— Relatie tussen tabellen

Figuur 4.1: Legende om plan van aanpak uit te leggen

die de databases en tabellen weergeven en als aanvulling daarvan zijn er lijnen die de relaties
tussen de tabellen laten zien. Dit zou in de meeste gevallen wel het geval zijn, dat men aparte

10

databases heeft en binnen de databases bestaan al bepaalde structuren en relaties, wat de
tabellen betreft. In figuur 4.2 ziet men dan twee aparte databases die blijkbaar nog niets
met elkaar te maken hebben. Hun overlap wordt pas in figuur 4.3 duidelijk gemaakt aan de

Figuur 4.2: Huidige situatie van de databases

hand van de tabellen, die soortgelijke data bevatten. Hier moet men naar alle tabellen van

Figuur 4.3: Overlap tussen de databases

de databases kijken en dus controleren, waar overlap is. Hoe kijkt men naar tabellen? Dat
is een vraag waar op dit moment nog geen antwoord op wordt gegeven, maar om een uitkijk
te geven: de structuur is belangrijk, maar ook de inhoud!

Nadat men nu overlap heeft gevonden gaat men verder en introduceert de relaties tussen
de databases, zoals in figuur 4.4 te zien is. Als de relaties dan bij elkaar passen, gaat men

Figuur 4.4: Relaties van de databases introduceren

verder in integreert de tabellen en databases 4.5 en bouwt nu een groot data schema op.
Het resultaat zou dan uiteindelijk alle tabellen en relaties bevatten die al eerder bestonden,
maar dan bevat het schema ook nog de nieuwe relaties die door de integratie zijn onstaan.
Het resultaat is dan te zien in 4.6.

11

Figuur 4.5: databases nu samen integreert

Figuur 4.6: Het resultaat van schema integratie

12

Hoofdstuk 5

Problemen bij de integratie

In het begin blijkt de integratie makkelijk te zijn, maar met deze uitspraak moet men voor-
zichtig zijn. Er zijn heel veel valkuilen, in die men kan vallen.

In deze sectie wordt op mogelijke problemen ingegaan die men bij de schema integratie
zou weer vinden. Om de problemen beter te kunnen overzien wordt er een onderscheid ge-
maakt tussen structurele problemen (syntactische) problemen en inhoudelijke (semantische)
problemen.

5.1 Structurele Problemen

Structurele problemen, of syntactische problemen zijn problemen die men bij de structuren
en de opbouw van databases tegen zou tegen komen.

5.1.1 Naamgeving als probleem

Wat betreft naamgeving als probleem bij schema integratie is dit eigenlijk makkelijk te
herkennen, toch is het een probleem. In database A heet een tabel klant en in database B
heet een soortgelijke tabel customer. Hier is dus alleen de taal anders maar toch is het niet
makkelijk om dat op een eerste kijk te herkennen. Als alleen de naamgeving van de tabellen
anders is, maakt dat op zich nog niet heel veel uit.

Het wordt eerder een probleem als men nu naar de tabellen en hun structuur kijkt. Hier is
dus nog meer zorgvuldigheid verlangd als bij de tabellen. Attributen zoals klantnummer
en customer id blijken hetzelfde te zijn, maar toch moet men hier precies naar gaan kijken.
Echter belangrijk is dat hun opbouw bij elkaar past. Dat komt in de volgende secties aan de
orde.

5.1.2 Verschillende structuren

Binnen sommige databases wordt een onderscheid gemaakt tussen personen en bijv. studen-
ten, maar als men dit goed bekijkt ziet men dat studenten een subtype personen zijn met
een bepaald eigenschap, die bepaald dat ze student zijn.

Hoe kan men nu twee databases waar de gemeenschap ligt bij aan de ene kant studenten
en aan de andere kant personen? Moet men nu de personen vertalen naar studenten of
juist andersom? Het is hier van essentieel belang om hier de juiste beslissing te nemen, want
deze beslissing heeft invloed op de nieuwe database die uit de twee bestande databases zou
worden gecreéerd. In het gekozen voorbeeld van de studenten en personen, zou men dus
kijken dat de studenten worden geconverteerd naar personen. In deze nieuwe tabel perso-
nen kan men dan een nieuw attribuut toevoegen, waar men in staat is tussen studenten en

13

niet-studenten een onderscheid te plegen. Zo verliest men geen informatie bij het joinen van
de twee databases.

5.1.3 Verschillen in opbouw van attributen

Nu werden al bepaalde problemen open gelegd, maar toch zijn er nog meer problemen, die
kunnen optreden. Bij het volgende probleem gaat het om de opbouw van attributen. Als
voorbeeld is in database A de straat en huisnummer in een veld opgeslagen, maar in tabel B
worden straat en huisnummer als twee aparte attributen gezien. Hoe gaat men hiermee om?
Als mogelijke oplossing zou men hier aan een nieuw attribuut denken voor database B en dat
attribuut is dan straat en huisnummer samen gevat. Dat levert op zich ook weer problemen
ook, want dan heb je gegevens dubbel in de tabel staan. Als deze bij de join van de databases
A en B niet wordt meegenomen, dan is dat niet erg. Echter belangrijk is hier de aanpassing
van het programma wat gebruik maakt van de database.

5.2 Inhoudelijke Problemen

Inhoudelijke problemen, of semantische problemen zijn problemen rond de inhoud van de
databases en tabellen. Gedeeltelijk zou men kunnen zeggen, dat deze problemen weer dicht
samen hangen met met structuren, toch dat is niet zo. De structuur van een tabel bepaald
nog lang niet wat er daadwerkelijk in komt te staan. De meeste invloed hierop hebben
de gebruikers van de programma’s, die toegang hebben tot een database. Zij bepalen wat
in een database komt te staan of niet. De programmeur van een programma kan hier wel
beperkingen op leggen, maar toch is hij niet in staat om echt naar de inhoud te kijken.
Fouten zoals een verkeerd postcodeformaat zou de programmeur kunnen opvangen, maar
geen typefouten.

5.2.1 Verschillende datatypes en gelijke bereiken

Als men nu twee databases wil fuseren en dat op basis van een gemeenschappelijk attribuut
dan kijkt men welke eigenschappen hebben die gemeenschappelijke attributen. Zo ziet men
in database A dat het attribuut van het type integer is en in database is het tegenoverge-
stelde attribuut van het type double.

Hieruit kan men nu afleiden dat een van de twee attributen moet worden aangepast. Het
makkelijkst is dan de integer te converteren in een double. Dit kan makkelijk worden gedaan
door een aanpassing van database A.

Verder zijn attributen zoals string en integer moeilijker, om deze op één gelijk type te con-
verteren. Stel een klantnummer in database A met een prefix A02/52 en een gewone klant-
nummer zonder letters in database B: 353282/. Hierbij zou één oplossing kunnen zijn dat
je de prefix uit database A weghaalt: 02452, maar dit converteert naar een integer maakt
er 2452 van. Nu is het athankelijk of database B bij nul is begonnen en of de nummers die
nu uit database A komen al aan de orde zijn gekomen. Als het niet het geval is is het nu
makkelijk de twee databases te joinen en als het wel het geval is moet men een fictieve prefix
verzinnen op basis van cijfers. Als het hoogste klantnummer in database B ”3542824is en
het hoogste klant nummer bij database A 2452 zou men uit 2452 zoiets vormen als 3552452
en alle nieuwe klant nummers beginnen vanaf 3600000. Daarmee is men in staat om alle
oude klanten te managen en ook alle nieuwe klanten, die een nieuw nummer krijgen.

14

5.3 Problemen rond Security

Een heel ander probleem ontstaat als de gebruiker binnen elke database in een tabel worden
opgeslagen. Zo heeft elke gebruiker daar meestal een eigen 1D, een wachtwoord en dan ook
nog bepaalde rechten binnen de applicatie. Meestal moet bij het opstarten van een applicatie
(frontend) je gebruikersnaam en je wachtwoord aangeven, daarmee men het programma
iiberhaupt kan gebruiken. Hoe moeten deze problemen opgelost worden? Een voorstel zou
hier kunnen zijn dat de gebruikers worden samen gevoegd, zodat men men alleen nog een
gebruiker per persoon heeft in plaats van meerdere logins per persoon. In de huidige situatie
hebben de gebruikers meerdere logins binnen de verschillende applicaties. In een geintegreerd
schema zou de gebruiker alleen nog één keer voorkomen, namelijk in de ene tabel voor de
gebruikers. Hier wordt dan ook zijn wachtwoord opgeslagen en om de rechtenstructuur bij
te houden, die er al eerder was moet men nu voor elk kolom/attribuut wat er al was dit
attribuut ook weer in de nieuwe structuur gaan inbouwen.

15

Hoofdstuk 6

Schema Integratie

Als men he over schema integratie heeft, zo komen er meteen bepaalde vragen naar boven.
Deze vragen worden hier nu genoemd en geven ondersteuning om een integratie door te
voeren.

1. Welke databases zijn betrokken? (Wat is de basis van het nieuwe schema?)
2. Bestaan er structuren voor deze databases? (zo nee, maak deze!)

3. Hoeveel informatie staat in de structuren? (alle tabellen (inclusief naam), alle attribu-
ten(inclusief naam) en hun eigenschappen en beperkingen)

4. Zoek overlap binnen de structuren!

5. Hoe kan men deze overlap fuseren?

6. Welke problemen zou bij het fuseren tegen komen?

7. Kan ik een proeffusie doen, voordat ik werkelijk ga fuseren? Zo ja, doe het!
8. Fusie uitvoeren.

Met behulp van deze vragen wil wordt een lijst van doelen introduceert. Die doelen moeten
één voor één worden bereikt. Het is niet mogelijk om doel 3 te halen, als doel 1 nog niet
gehaald is. Dankzij [3] en [5] waar ik de idee met de doelen vandaan heb.

Doel 1 (D1) Structuren van alle gewenste databases / pre-integration

Doel 2 (D2) Overlap tussen de databases bepalen / schema conforming

Doel 3 (D3) Nieuwe structuur ontwikkelen / schema merging

Doel 4 (D4) Integratie uitvoeren (als het kan met data') / schema restructuring

Het einddoel is een schema, wat alle eigenschappen van de voorafgaande databases bevat.
Hiervoor maakt [5] gebruik van de term ”common data model”, als er het geval is dat er data
tussen meerdere databases wordt gedeeld. Hiermee wordt bedoeld, dat meerdere bestaande
schema zo worden samen gevoedt, dat er één gemeenschappelijk schema uit ontstaat. Meestal
zijn de databases onafhankelijk van elkaar ontwikkelt worden. Om deze reden blijkt het, dat
er vaak andere concepten werden gebruikt om the universe of discourse? te representeren.

'Deze stap zou dan data integratie zijn
2Universe of discourse (uod) beschrijft de omgeving van een dataschema

16

Verder bestaat ook de mogelijkheid dat de databases eigenlijk hetzelfde willen uitdrukken,
maar dat gebeurt dan op verschillende manieren. Bij schema integratie wordt nu daarop
gelet, dat deze valkuilen niet op treden en men deze integratie problemen met behulp van
transformatie oplost. Transformatie exporteert een bestaand schema naar een nieuw schema.
Het export wordt zodanig door gevoerd, dat het nieuwe equivalent is met het oude schema.
Deze equivalentie is zo belangrijk, omdat applicaties, die gebruik maken van deze database,
niet helemaal opnieuw zouden moeten ontworpen worden.

Zoals in figuur 6.1 te zien, zijn er verschillende symbolen, die in dit hoofdstuk gebruikt

Name Symbol Name Symbol

entity | name ‘ |

i 5 1'elah0nsl“up < name >
attribute ——C) name R

: T

Figuur 6.1: Gebruikte symbolen

siibset

worden. FEen entiteit wordt beschreven aan de hand van een vierkant met de bijhorende
naam erin, een attribuut hangt vast aan een entiteit, een subset wordt met behulp van een
pijl weer gegeven en een relatie tussen twee entiteiten wordt weergegeven met een ruit, waar
de entiteiten aan vast hangen. In figuur 6.1 wordt ook gebruik gemaakt van ER? modellering.
Om een duidelijke inzage te krijgen op ER is het goed om naar [7]. Daar maken ze gebruik
van ER oom een compleet nieuwe database op te bouwen. Daarbij gebruiken ze entiteiten,
relaties en cardinaliteiten* om het design van de database te bepalen. Hierbij wordt ook
duidelijk in [7] aangegeven, dat er geen enkele standaard is hoe men ER moet toepassen. Er
is geen algoritme wat uit een gegeven set van requirements een eenduidig schema vormt.
Het doel van ER te abstraheren en alleen de data te zien. ER gaat dan alleen nog om de
belangen van de datastructuur in.

3Entity Relationship: is een vorm van weergave voor datastructuren. ER wordt meestal in de conceptfase
van softwareontwikkeling gebruikt en ER is de basis voor het design van een database
4Geven specifieke informaties over relaties tussen entiteiten aan

17

6.1 Schema equivalentie

Binnen de literatuur van [5] is er een onderscheid gemaakt van drie categorieen, wat schema
equivalentie betreft.

X ‘
e, o | e L e,
J }"

(a) Entiteit / Attribuut Equivalentie

e O I e O I

X
_" el R }.' ez

(b) Entiteit / Relatic Equivalentic

— e

e [——od TL

a {VI:-”:Vn} E\:'] Evz

{c) Attribuut / Subtype Equivalentic

Figuur 6.2: Schema Transformaties

Transformationele Equivalentie Een transformationele equivalentie bestaat tussen twee
schema’s, als eer een primitieve omkeerbare transformatie bestaat om met behulp van S
dan S’ te produceren. [5] Als voorbeeld dient hiervoor figuur 6.2(a), waar een attribuut
als equivalent geacht wordt naar een attribuutloze entiteit, die aan precies een relatie is
verbonden. Verder bestaat er ook de equivalentie tussen twee meerdere-op-meerdere relaties
en twee een-op-meerdere relaties. Zie hiervoor figuur 6.2(b).

Mapping Equivalentie Mapping equivalentie bestaat tussen twee schemas S en S’ als er
VOOr een gegeven paar van instanties er een één-op-één relatie van hun elementen bestaat. 5]
Als voorbeeld hiervoor nemen wij figuur 6.2(a). Deze figuur is equivalent waartegen de figuur
6.2(a) een voorbeeld laat zijn, waar geen equivalentie bestaat. Mapping equivalentie is niet
allen de transformationele equivalentie, want ze houd ook in dat men kennis heeft over de
instanties van de entiteiten.

Gedragbetrokken Equivalentie Deze bestaat tussen twee schema’s S en S’ als er voor
elke query Q over een instantie I van schema S een transformatie van S naar S’, van I naar
een instantie I’ van S’ and QQ naar Q’ over I’ bestaat, zo dat Q en Q’ hetzelfde resultaat
hebben en vice versa, voor elke query Q' over een instantie I’ van schema S’.[5]

Alle beschreven stappen in de figuren 6.3 en 6.2 zijn noodzakelijke stappen voor de
integratie van schema’s. Zij zijn equivalentie’s, waar het doel is deze te verwijderen. Zo

18

—nd

€ |——ob

—>

e' Ca
C

(a) Entiteitssamenvatting

d
C —0
o 0:x €1
T T
¢ & Tx°"

(c) Optioneel Attribuut Verwijdering

€ —?3' €y —g
. — %
e 0 €7

(b) Redundant Attribuut Verwijdering

a
€ |0

It

(d) Generalisatie van attributen

c
A A —p
a d
o g €2 —
e N
— > T
¢,

(2) Verwijdering van redundante relaties (1)

€ /\> €2

1 f

ey /\> e'y

e S [
NS

T N

e’ O

&

'E'z

T

L
€

N

() Verwijdering van redundante relaties (2)

€2

Figuur 6.3: Schema samenvattende en herstructureerende transformaties

19

wordt in 6.2(b) twee relaties afgeleid tot één relatie. Hier is namelijk R de join van R1 en

R2.

6.2 Doel 1 (D1) Pre-Integratie

Om D1 te bereiken is het dus noodzakelijk alle bijhorende schema’s beschikbaar te hebben.
Binnen [5] wordt deze stap beschreven als het creéren van éxport schemaén de elementen
die geintegreerd moeten worden zijn geselecteerd. Ook binnen [3] zijn deze stappen duidelijk
waar gewenst wordt dat men alle schema’s boven tafel krijgt.

6.3 Doel 2 (D2) Schema goedkeuring

Binnen [5] wordt deze stap beschreven als het uitvoeren van conflict detection en conflict
resolution. Het resultaat is een new schema welke het bestaande schema op een nieuwe
manier laat zien. Bij [3] wordt hier dus duidelijk dat men de relaties onder elkaar wil zien.

Het is dus noodzakelijk om alle conflicten tussen de modellen op te lossen en hiervoor wordt
gebruikt gemaakt van homoniem- en synoniem-verwijderde transformatie’s. Hoe men hier
begint hangt af van de gekozen strategie. Heeft men hier dus één groot schema en meerdere
kleinere schema’s die moeten worden aangepast, zo zou men hier of de kleine schema’s
zodanig veranderen, dat deze bij het grootte schema passen en bij de anderen schema’s.
Deze aanpak is verduidelijkt in figuur 6.4(a) Aan de andere kant zou men het grootte schema
kunnen aanpassen zo dat het bij de kleine schema’s past. Bij de laatste keuze moet men erop
letten, dat er geen conflicten bestaan tussen de kleine schema’s. De laatste aanpak wordt in
figuur 6.4(b) weergegeven.

09 (e

{a) Kleine Schema’s aanpassen ib) Groot Schema aanpassen

Figuur 6.4: Mogelijke aanpassingen voor de schema’s

6.3.1 Entiteitsoverlap

Als een een entiteisoverlap tussen een paar van gerelateerde modellen < S, I, Fxtgr > en
< 8, I', Exts > bestaat, dan zijn er twee entiteiten van type e van S en €’ van S’, zo dat
object(e) = object(e’). Zo is er een entiteitsconflict als Fxtg(e) # Extg p(€').

In dit geval moet word e veranderd en hernoemd naar €”, welke dan het Schema(S”) = S
heeft als de homonieme verwijder operatie wordt toegepast: hernoem(e,e”).

20

6.3.2 Relatieoverlap

Het kan ook het geval zijn dat er relaties zijn waar overlap tussen een paar van gerelateerde
modellen < S, I, Extg; > en < S',I', Extg i > bestaat, als er de schema’s < 7, e7,e3 > in S
en < 1’ el, ey, >1in S’ zo dat object(ey) = object(e}), object(es) = object(ey) en object(r) =
object(r’). Als er nu Extg (,r,e +1,e+2 >) # Extg p(< 1, €], e, >) dan bestaat er zeker
een relatieconflict tussen < S, I, Extg; > en < S', I', Extg pp >.

Ook in dit geval geven wij r een nieuwe naam om het probleem op te lossen. Zo wordt uit
r dan r”, waar dus geldt dat Schema(r”) = S als de homonieme verwijder operatie van
renamer(r, ") wordt toegepast.

6.3.3 Attribuutoverlap

Ten slotte wil ik graag zoals in [5] op overlap van attributen in gaan. Er bestaat een
overlap als < S, I, Extgy > en < S',I', Extg p >, als er minstens één attribuut a van S
en één a’ van S’ is, zo dat object(a) = object(a’) ofwel Extg(a) # Exts p(a’) of er zijn
schema’s < Null,e,a > in S en < Null,e’;a’ > in S’ so dat object(a) = object(a’) en
Extg (< Null,e,a >) # Extg (< Null, e, a’ >).

Als bij dit conclict alleen a en a’ betrokken zijn, zo kunnen wij a veranderen zodat wij a
een nieuwe naam a” geven, waar geldt Schema(a”) = S, de homonieme verwijder operatie
wordt toegepast.

6.4 Doel 3 (D3) Schema samenvatting

Binnen [5] worden hier de relaties geidentificeerd en een gezamelig schema opgesteld. Om
de relaties te vinden wordt binnen [3] aangegeven dat men hier dus een update zou moeten
doorvoeren om de relaties van de schema’s te zien. Verder wordt van D3 een doelschema
verwacht, wacht getransformeerd kan worden na de bronschema’s. Beide schema’s moeten
syntactisch correct zijn en uiteindelijk wordt verwacht, dat alle concepten uit het bronschema
in het doelschema weer te vinden zijn.

Er van uitgaande dat alle conflicten opgelost zijn, moet een hernoeming plaatsvinden, waarbij
alle entiteiten, attributen en relaties een nieuwe naam krijgen. Om de hernoeming door te
voeren wordt de functie rename gebruikt. Deze bestaat uit drie parameters, namelijk

n is een identificatie voor een schema
SID identificeert het union schema

Object(n) is een bepaald object uit n
rename,(n, S1D||Obejct(n) >

Volgens [5] bestaat er een zijeffect: entiteiten en attributen, welke dezelfde naam in het union
model hadden worden samen gevat en nog de samenvatting van relaties met dezelfde naam.
Dit proces wordt weer gegeven in figuur 6.3(a). Hierna kunnen nu relaties, verbindingen en
unions worden toegepast.

Als resultaat krijgt men nu een samengevat model, wat weer zo getransformeerd kan worden,
dat het de oorspronkelijke schema’s weergeeft.

21

6.5 Doel 4 (D4) Schema Herstructureering

Binnen [5] wordt de kwaliteit van het schema gecontroleerd, redundant informatie wordt
verwijdert en het resultaat is een minimale union of de oorspronkelijke schema’s. De laatste
stap wordt binnen [3] net iets anders beschreven, namelijk zo dat men hier dus de equivalentie
moet zien, die in de eerdere drie functies werd gevonden.

22

Hoofdstuk 7

Uitvoering van integratie

In dit hoofdstuk wordt nu de beschreven aanpak op een daadwerkelijke voorbeeld los gelaten.
Er wordt dan gebruik gemaakt van de eerder beschreven databases en een gemeenschappelijk
databaseschema opgebouwd.

Tijdens de integratie wordt abstraheert van veldgroten, zoals bijvoorbeeld tekst met maxi-
maal lengte van 50 tekens. Dit soort instellingen zijn makkelijk implementeerbaar en hoeven
dus expliciet te worden behandeld.

7.1 CRM Database

In figuur 7.1 is de oorspronkelijke structuur van de CRM database te zien. Zo als men ziet
bestaan er tussen de tabellen enige relaties en sommige tabellen staan los van alle anderen
tabellen. Verder worden nu alle belangrijke tabellen genoemd en ook dieper uitgelegd. Dat
houdt in dat men weet wat voor soort data in de tabel te vinden is. Deze bestaande structuur

tbIRequestAmount

tbIRequestFromCustomer

tbISignerright

tbISignerleft

tblProject
tbIEmployees

Figuur 7.1: Oorspronkelijke structuur van de CRM database

tbIProducts

tblDistribution tbIRequestSub

tblIRequestAdress tbITitle

tblPrintout

)

thOﬁerPositions}—[tblOffer
tbiDelivery
tblAdresses

tblUser

tbISigners

tbIProjectProducts

tbIPayment

tbIProjectAction

tblProjectdefinition

wordt nu zodanig verandert dat een join met de twee andere databases (ERP en Order
Management) mogelijk is. In figuur 7.2 zijn nu alle belangrijke tabellen gemarkeerd. Vanaf
hier weet men nu, waarop men moet focussen. Dat is echter belangrijk, want de anderen

23

databases moeten ook worden aangepast en men moet de overlap zien te pakken. Op basis
van de overlap tussen de databases kan dus een nieuw schema worden gecreéerd.

7.1.1 tblAdresses

De tabel tblAdresses bevat adressen van klanten en mogelijke klanten. Sommige adressen
zijn terug te vinden in de ERP database. In deze scriptie abstraheer ik van deze situatie
omdat ik alleen focus op schema integratie en niet data integratie.

’ Veld \ Type \ Beschrijving ‘
Adressno AutoWaarde | Een uniek getal voor elke klant
Company Tekst De naam van de onderneming
Company?2 Tekst Soms nodig omdat naam van onderneming te lang is
Position Tekst De positie van de contactpersoon
Title Tekst De aanspraak van de contactpersoon
Surname Tekst Achternaam van contactpersoon
Firstname Tekst Voornaam van contactpersoon
Department | Tekst Afdeling van contactpersoon
Street Tekst Straat waar onderneming thuis is
PLZ Tekst Postcode van onderneming
City Tekst Stad van onderneming
Phoneno Tekst Telefoonnummer van contactpersoon
Fax Tekst Faxnummer van contactpersoon
Mobilephone | Tekst Mobilnummer van contactpersoon
Email Tekst Emailadres van contactpersoon
URL Tekst Internetadres van onderneming
Mailing Boolean Bepaald of hij newsletters ontvangt
delete Boolean Bepaald of adres kan worden verwijdert

Tabel 7.1: Huidig tabelschema van tblAdresses

7.1.2 tblDistribution — tblSupplier

Binnen de CRM database wordt ook gebruik gemaakt van leveranciers. Zo worden bepaalde
aanvragen naar een leverancier gestuurd die dan met een offerte erop reageert. Omdat al
binnen de andere twee databases tabellen bestaan, die adresses van leverancier bijhouden
wordt deze tabel hernoemt naar tblSupplier.

7.1.3 tblOffer

Binnen tblOffer worden alle offertes bijgehouden, behalve de posities binnen een offerte. Zo
wordt alleen een datum, een klantnummer een medewerker en nog enkele andere informatie
per offerte opgeslagen.

7.1.4 tblOfferPositions

In de laatste tabel die belangrijk is voor de schema integratie worden de posities van de
offertes bijgehouden. Dat betekent per offerte ziet men hier dus alle producten, die geofferd
werden.

24

’ Veld \ Type \ Beschrijving
Distributerno AutoWaarde | Een uniek identifier voor elke leverancier
Distributorname Tekst Naam van leverancier
Distributorcontact | Tekst Contactpersoon bij leverancier
Distributoremail Tekst Emailadres van contactpersoon
Distributorfax Tekst Faxnummer van contactpersoon
Distributorstreet Tekst Adres van leverancier
Distributorcode Tekst Postcode van leverancier
Distributorplace Tekst Plaats van leverancier
Distributorland Tekst Land van leverancier

Tabel 7.2: Huidig tabelschema van tblDistribution

’ Veld \ Type \ Beschrijving
offerno AutoWaarde | Een uniek getal voor elke offerte
Adressno Getal Geeft bij offerte bijhorende klant aan
company Tekst Geeft nog eens de naam van de klant aan
offeruser Tekst Welke gebruiker heeft de offerte gecreéerd
offerdate Datum Geeft aan wanneer de offerte werd gecreéerd
offertext1 Memo Tekst aan het begin van de offerte
offertext2 Memo Tekst aan het eind van de offerte
delivery Tekst Geeft de levervoorwaarden aan
payment Tekst Geeft de betalingsvoorwaarden aan
deliverytime Tekst Geeft aan wanneer de producten kunnen worden geleverd
signerleftstate | Tekst Geeft status van ondergetekende links weer
signerleft Tekst Wie gaat links ondertekenen
signerrightstate | Tekst Geeft status van ondergetekende rechts weer
signerright Tekst Wie gaat rechts ondertekenen

Tabel 7.3: Huidig tabelschema van tblOffer

] Veld \ Type \ Beschrijving ‘
offerposno AutoWaarde | Uniek identifier voor elk offertenartikel
offerno Getal Geeft aan bij welke offerte de artikel hoort
offerpos Getal Geeft de positie binnen de offerte aan
postext Memo De artikelbeschrijving
amount Getal Hoeveel wordt aangeboden
unitper100 boolean Bepaald of per 1000 wordt berekend
deliveries Getal In hoeveel leveringen gaat men leveren
unitprice Currency Prijs per artikel
allroundprice | Valuta Totale prijs

Tabel 7.4: Huidig tabelschema van tblOfferPositions

25

7.1.5 tblPayment

Een ander voorwaarde van een offerte is, dat de betalingsvoorwaarden in een offerte worden
genoemd. Het voorbeeldbedrijf heeft hiervoor enkele standaardvoorwaarden, die in de tabel
tblPayment staan.

’ Veld ‘ Type ‘ Beschrijving ‘

paymentno | AutoWaarde | Een uniek getal voor elke betalingsvoorwaarde
payment Tekst De betalingsvoorwaarde zelf

Tabel 7.5: Huidig tabelschema van tblPayment

7.1.6 tblSigners

Elk offerte hoort ondertekent. Hiervoor worden alle medewerkers, die mogen ondertekenen
in tabel tblSigners opgenomen.

’ Veld \ Type \ Beschrijving ‘
signerno AutoWaarde | Een uniek getal voor elke ondergetekende
signerfirstname | Tekst Voornaam van ondergetekende
signersurname | Tekst Achternaam van ondergetekende
signerstate Tekst De status van de ondergetekende

Tabel 7.6: Huidig tabelschema van tblSigners

7.1.7 tblTitle

Elke persoon kan worden aangesproken met ”Herr”, ”Frau”, ”Doktordder ” Professor”. Deze
mogelijke aanspraken staan in de tabel tblTitle.

’ Veld ‘ Type ‘ Beschrijving ‘
Titleno | AutoWaarde | Een uniek getal voor elke aanspraak
Title Tekst De aanspraak zelf

Tabel 7.7: Huidig tabelschema van tblTitle

7.1.8 tblUser

Deze tabel bevat gegevens over de gebruikers en hun rechten, wat ze binnen de bijhorende
applicatie mogen doen en wat ze niet mogen doen. Verder is deze tabel ook van belang, want
bij elke bestelling moet duidelijk zijn, wie deze bestelling heeft geschreven.

7.1.9 Het nieuwe CRM schema

Uiteindelijk hoeft op dit moment aan de structuur van de database niets worden verandert.
Alleen na de globale analyse gaat het hierna verder met de analyse van alle tabellen en hun
aanpassingen.

26

’ Veld \ Type \ Beschrijving ‘

Userid AutoWaarde | Een uniek getal voor elke gebruiker
Username | Tekst De gebruikersnaam

Realname | Tekst De daadwerkelijke naam van de gebruiker
Password | Tekst Het wachtwoord

Permission | Getal De rechten binnen de applicatie

Tabel 7.8: Huidig tabelschema van tblUser

tbIRequestAmount

tbIRequestFromCustomer

tbISignerright ’

tblProduct:
tbIRequestSub roaucts

tbIDistribution

tbIRequestAdress

tbiTitle

tbIPrintout
tbiSigners
tblUser

tbIProjectProducts
tblProject
tbIProjectAction

tbIEmployees tbIProjectdefinition

Figuur 7.2: Belangrijke tabellen van de CRM database

GblOfferPositions)—(tblOffer
tbiDelivery
tblAdresses

tbISignerleft

tbIPayment

7.2 ERP Database

De oorspronkelijke structuur van de ERP database is te zien in figuur 7.3. Zoals te zien is
zijn er een groot aantal tabellen met elkaar verbonden. In dit net van tabellen staat de tabel
tblKD zeer centraal. Dat komt daardoor, dat dit de tabel is voor de klanten. Hier staan dus
alle klanten in en ze kunnen een offerte krijgen (tblAngebote), een orderbevestiging(tblABs),
een rekening(tblRechnungen) of een bijschrift(tblGutschriften). Aan de andere kant kan elke
klant meerdere adressen hebben waarheen een product moet worden gestuurd. Deze adressen
staan in tblLief Adr. Ten slotte is dan nog voor elke klant bepaald wanneer hij een rekening
moet betalen. Er wordt onderscheid gemaakt of men nu meteen moet betalen of binnen 1,
2 of 4 weken. Deze informatie staat in de tabel tblZMod.

Om het schema te kunnen joinen met de andere databases is het noodzakelijk enige aanpas-
singen door te voeren. Hierbij valt op dat er op sommige en niet alle tabellen moet worden
gefocust. De belangrijke tabellen zijn gemarkeerd in figuur 7.4.

Na een aanpassing van het schema, ziet de database dan zo eruit. Zie figuur 7.5. Zoals men
ziet zijn enkele namen verandert. Verder blijven sommige tabellen nog belangrijk terwijl
ze nog niet hernoemd zijn. Dat is belangrijk want de structuur van de databases moet zo
worden geconstrueerd, dat men het nieuwe schema kan vertalen naar het oude schema.

27

tblErl6s

)
_)

tblBuchung thBuchungeD
iztod tblSerCount

tblLief_Adr
tblIPassword
Gb'ReChnunge'D Gb'AngebOte] tblABs tblGutschriften
tblText2

GblRechnungD (tblAngebotj[tbIAB) thiGutschrift

tblArtikel

CblArﬁkeIGruppej/GblArtNr_Lief tblLief_adr

Figuur 7.3: De oorspronkelijke structuur van de ERP database

tblText1

tbiBuchung thBuchungen) [tblErios]
tbISerCount

tbIPassword

tb'ReChnungefD Gb'A"erm) tblABs tblGutschriften
thiText2
EblRechnung) (tblAngebot)(thIAB j thiGutschrift thiText1

tblArtikel

GbIArtikeIGruppe]/GblArtNr_LieHblLief_adf)

Figuur 7.4: Belangrijke tabellen binnen de ERP database

tbIKDLief_Adr

!
i

28

7.2.1 tblAngebote — tblOffer

Deze tabel bevat alle gecreéerde offertes voor de klanten. In verbinding met de andere tabel
tblOfferpositions waar alle aangeboden artikelen in staan. In vergelijking met de andere
databases lijkt de structuur op de structuur van de tabel tblOffer uit de database CRM.
Daarom wordt de tabel hier hernoemt naar tblOffer.

’ Veld \ Type \ Beschrijving ‘
AngebotsNr | AutoWaarde | Een automatische waarde voor elk offerte
KDNr Getal Bepaald de klant voor die de offerte is
Freitext1 Memo Tekst die boven de offerte staat
Freitext2 Memo Tekst die onder de offerte staat
ABDatum Datum Datum van de offerte
Lieferzeit Tekst Wanneer worden de producten geleverd
MA Tekst Verantwoordelijke medewerker
Summen Boolean Toon som van alle producten

Tabel 7.9: Huidig tabelschema van tblAngebote

7.2.2 tblAngebot — tblOfferpositions

De tabel bevat alle producten die ooit in een offerte zaten. Binnen de tabel vind men alleen
en artikelnummer die dan verwijst naar een artikel uit de artikeltabel. De informatie uit de
tabel tblAngebot lijkt op de informatie uit de tabel tblOfferpositions uit de CRM database.
Daarom tblAngeobt hernoemen naar tblOfferpositions.

’ Veld \ Type \ Beschrijving
AngebotsNr Getal Bepaald in welk offerte die artikel komt te staan
Pos Getal Welke positie heeft het artikel binnen de offerte
ArtikeINr MSC | Getal Op basis van een artikeltabel wordt naar een artikel verwezen
Anz Getal Hoeveel producten worden geoffreerd
VK Currency | Prijs voor één artikel

Tabel 7.10: Huidig tabelschema van tblAngebot

7.2.3 tblKD — tblAdresses

Orderbevestigingen, rekeningen, bijschriften en andere documenten gaan alle naar de klanten
van het bedrijf. Hiervoor worden alle adresgegevens in de tabel tblKD bijgehouden. Ook hier
wordt de tabel hernoemt, want de inhoud lijkt sterk op de inhoud van de tabel tblAdresses
uit de database CRM. Daarom wordt tbIKD hernoemt naar tblAdresses.

7.2.4 tblLief_ Adr — tblSupplier

In deze database zit een eigen tabel voor alle artikelen. Zo heeft dus elk artikel een eigen
nummer maar elk artikel heeft ook een artikelnummer bij de leverancier waar dit artikel
wordt bestelt. Hiervoor is het noodzakelijk om dan te weten welke leverancier dat is. De
tabel wordt ook hernoemt, want ze lijkt op andere tabellen uit een van de andere twee
databases. Nieuwe naam: tblSupplier.

29

’ Veld \ Type \ Beschrijving

Mandant_Nr Getal Een bepaald getal voor elke klant

KDNr Getal Een uniek klantnummer

Anspr_P Tekst De contactpersoon bij de klant

Bemerk Memo Opmerkingen voor intern gebruik
R_Anschr_Firma Tekst Naam van de klant

R_Anschr_Namel Tekst Uitbreiding van klantnaam

R_Anschr_Name2 Tekst Uitbreiding van klantnaam

R_Anschr_Strasse Tekst Het adres van de klant

R_Anschr_PLZ Tekst Postcode van klant

R_Anschr_Ort Tekst Plaats van klant

R_Anschr_Land Tekst Land waar zich klant bevindt

Z Mod Getal Een verwijs naar de betalingsvoorwaarden
Lieferung Tekst Leveringsvoorwaarden

Euro Boolean | Betaald klant in Euro?

UST_ID Tekst De Umsatzsteueridentnummer (in Duitsland verplicht)
Anrede Tekst De aanspraak voor de klant

Tel Tekst Het telefoonnummer

Fax Tekst Het faxnummer

email Tekst Het emailadres

AnredeJM Tekst De aanspraak voor een uniek newsletter
VornameJM Tekst De voornaam voor een uniek newsletter
NachnameJM Tekst De achternaam voor een uniek newsletter
Mailing Boolean | Bepaald of klant een newsletter krijgt
Verkaeufer Tekst Intern verantwoordelijke persoon voor de klant
Buchungskonto Getal Een rekening voor de boekhouding
Buchungsgegenkonto | Getal Een rekening voor vorderingen (boekhouding)

Tabel 7.11: Huidig tabelschema van tbIKD

’ Veld \ Type \ Beschrijving
L_Nr AutoWaarde | Uniek identifier voor leverancier
L_Firma | Tekst Naam van leverancier
L_Name | Tekst Contactpersoon
L_Tel Tekst Telefonnummer
L_Fax Tekst Faxnummer
L_email | Tekst Emailadres van contactpersoon
L_strasse | Tekst Adres van leverancier
L_PLZ Tekst Postcode
L_Ort Tekst Plaats

Tabel 7.12: Huidige tabelschema van tblLief_Adr

30

7.2.5 tblPassword — tblUser

Het frontend vraagt elke gebruiker bij het starten na gebruikersnaam en wachtwoord. tbl-
Password bevat de gebruikersnamen, de wachtwoorden en de rechten, wat ze binnen het
programma mogen doen. Omdat deze tabel soortgelijke data als de tabellen tblUser van de
databases CRM en OM bevat, wordt deze tabel hernoemt naar tblUser.

’ Veld \ Type \ Beschrijving ‘
Erfasser Tekst | De gebruikersnaam
Password Tekst | Het wachtwoord

Berechtigung | Getal | Recht van gebruiker binnen het ERP

Tabel 7.13: Huidig tabelschema van tblPassword

7.2.6 tblZMod — tblPayment

In deze tabel zijn alle mogelijke betalingsvoorwaarden opgeslagen. Binnen deze tabel wordt
ook vastgehouden hoe lang een betaling mag duren en binnen het programma is eraan
gekoppeld dat op de rekening al het datum bekend is, waarop de klant betaald moet hebben.
Deze betalingsvoorwaarden komen al in de CRM database voor en om deze reden wordt ook
deze tabel dan hernoemt naar tblPayment.

| Veld | Type | Beschrijving |

Z Mod | Getal | Een uniek identifier voor elke betalingsvoorwaarde
Z_Text | Tekst | De tekst voor de betalingsvoorwaarde

Z_Tagel | Getal | Aantal dagen bij voorwaarde 1

Z_Prozl | Getal | Korting bij voorwaarde 1

Z Tage2 | Getal | Aantal dagen bij voorwaarde 2

Z_Proz2 | Getal | Korting bij voorwaarde 2

Z_Tage3 | Getal | Aantal dagen bij voorwaarde 3

Z_Proz3 | Getal | Korting bij voorwaarde 3

Tabel 7.14: Huidig tabelschema van tblPayment

7.2.7 Het nieuwe ERP schema

7.3 Order Management

Het Order Management is maar een heel klein database. Er zijn in het totaal maar 6 tabellen,
die de basis voor het Order management zijn. De oorspronkelijke structuur is te zien in figuur
7.6. Na een analyse is duidelijk dat de tabellen tblUser, tblSigners, tblTitle en tblSupplier van
belang voor de schema integratie zijn. In figuur 7.7 zijn deze tabellen gemarkeerd. De namen
van de tabellen wordt niet aangepast omdat men bij deze database tijdens de ontwikkeling
al erop gelet had, dat ze gelijk zijn met de tabelnamen uit de database CRM.

7.3.1 tblSigners

Op elke bestelling hoort een handtekening en alle medewerkers die een handtekening hier
mogen zetten staan in deze tabel.

31

tbIBuchung thBuchungen) (tblErlbs]
tbISerCount
' tblUser '

tbIRechnungen (tblOffer) -
[] tblABs tblGutschriften thlText2
(tblOﬁerpositions) [thIAB] WiGutschrift thiText1

tblArtikel

GbIArtikelGruppe}/GbIArtNr_LieHblsuF’P“el)

Figuur 7.5: Aangepaste tabellen binnen de ERP database

tbIPayment

tbIKDLief_Adr

tblAdresses

tbIRechnung

tblOrderpos

tblOrder

tbISigners

Figuur 7.6: Oorspronkelijk schema van de order database

tbISupplier

tblOrderpos tblOrder) (tbiTitle)

(tblUser (tblSigners) tbISupplier

Figuur 7.7: Het aangepast schema van de order database

’ Veld ‘ Type ‘ Beschrijving ‘
signerno AutoWaarde | Een uniek getal voor elke ondergetekende
signerfirstname | Tekst De voornaam van de ondergetekende
signersurname | Tekst De achternaam van de ondergetekende
signerstate Tekst De status van de ondergetekende

Tabel 7.15: Huidig tabelschema van tblSigners

32

7.3.2 tblSupplier

Om een bestelling uit te voeren is het noodzakelijk een leverancier te hebben. De tabel
tblSupplier bevat alle adresgegevens van alle leveranciers.

] Veld \ Type \ Beschrijving ‘
supplierno | AutoWaarde | Een unieke getal voor elk leverancier
company Tekst De naam van de leverancier
street Tekst Straat
citycode Tekst Postcode
city Tekst Stad
title Tekst Aanspraak
firstname Tekst Voornaam van verantwoordelijke
surname Tekst Achternaam van verantwoordelijke
customerno | Tekst Klantnummer bij leverancier
faxno Tekst Faxnummer van leverancier

Tabel 7.16: Huidig tabelschema van tblSupplier

7.3.3 tblTitle

Elke persoon kan worden aangesproken met ”Herr”, ”Frau”, "Doktor”, of ”Professor”. Elke
aanspraak heeft ook een unieke identifier. Deze mogelijke aanspraken staan in de tabel
thl Tutle.

’ Veld \ Type \ Beschrijving ‘

Titleno | AutoWaarde | Een uniek getal voor elke aanspraak
Title Tekst De text voor de aanspraak

Tabel 7.17: Huidig tabelschema van tblTitle

7.3.4 tblUser

Deze tabel bevat gegevens over de gebruikers en hun rechten, wat ze binnen de bijhorende
applicatie mogen doen en wat ze niet mogen doen. Verder is deze tabel ook van belang, want
bij elke bestelling moet duidelijk zijn, wie deze bestelling heeft geschreven.

’ Veld \ Type \ Beschrijving ‘
Userid AutoWaarde | Een uniek getal voor elke gebruiker
Username | Tekst Inlognaam van de gebruiker
Password | Tekst Het wachtwoord
Permission | Getal Rechtestatus van de gebruiker

Tabel 7.18: Huidig tabelschema van tblUser

33

7.4 Overlap tussen de databases

In deze sectie worden nu alle overlappende tabellen samen gevoegd, wat de structuur betreft.
Ik abstraheer dan bij de nieuwe tabellen van de beschrijving, want deze zal hetzelfde blijven
en enkel uitleg bij elk tabel geeft dan de veranderingen ten opzichte van de oorspronkelijke
tabellen aan. Zoals in tabel 7.19 te zien is, zijn er een aantal tabellen, waar overlap bestaat.

’ ERP \ CRM \ oM ‘
tblUser tblUser tblUser
tblSupplier tblSupplier tblSupplier
tblTitle tblTitle tblTitle
tblAdresses tblAdresses -
tblOffer tblOffer -
tblOfferpositions | tblOfferpositions | -
tblAdresses tblAdresses -
tblPayment tblPayment -
tblDelivery tblDelivery -

- tblSigner tblSigner

Tabel 7.19: Overlappende tabellen tussen de drie databases

In het volgende gedeelte worden deze tabellen nu aangepast en dan tot een tabel samen
gevat.

7.4.1 tblAdresses

Adressen van klanten worden in de databases ERP en CRM bijgehouden. Dit levert op
dit moment veel werk op, als bijvoorbeeld een adres van een klant verandert. Dan moet
deze adres zowel in de ERP als ook in de CRM database worden aangepast. De tabel
7.20 toont een overzicht over de structuren van de tabellen binnen de ERP database en
binnen de CRM database. Enkele velden zijn gelijk en die kunnen ook zonder problemen
worden samengevoegd, maar voor de andere problemen zou men moeten kijken hoe men deze
het best fuseert. De velden (Company, R Anschr Firma), (Company2, R Anschr Namel),
(Title, AnredeJM), (Surname, NachnameJM), (Firstname, VornameJM), (Street, R Anschr
Strasse), (PLZ, R Anschr PLZ), (City, R Anschr Ort), (Phoneno, Tel), (Faz, Faz), (Email,
email) en (Mailing, Mailing) kunnen zonder problemen worden samengevoegd. Hierbij wordt
de naamgeving uit de database CRM aangehouden om ze generiek te houden. Dit omdat
Engels meer in de I'T branche wordt gebruikt. Bij de analyse valt op dat de binnen het CRM
adressnummers(Adressno) worden gebruikt en binnen het ERP wordt klantnummers(KXDNr)
gebruikt. Beide zijn de unieke sleutel en de identificatie voor een klant. Zo zal men deze twee
velden samen vatten tot het veld customerno. De volgende velden kunnen zonder problemen
worden overgenomen, want ze bestaan maar in één van de twee databases:

R Anschr Name2 wordt hernoemt naar Company3
Position wordt zonder verandering overgenomen
Department wordt zonder verandering overgenomen
R Anschr Land wordt hernoemt naar country

Mobilephone wordt zonder verandering overgenomen

34

| CRM \ | ERP
Adressno AutoWaarde | KDNr Getal
Company Tekst R_Anschr_Firma Tekst
Company?2 Tekst R_Anschr_Namel Tekst
- - R_Anschr_Name2 Tekst
- - Position Tekst
Title Tekst AnredeJM Tekst
Surname Tekst NachnameJM Tekst
Firstname Tekst VornameJM Tekst
Department | Tekst - -
Street Tekst R_Anschr_Strasse Tekst
PLZ Tekst R_Anschr_PLZ Tekst
City Tekst R_Anschr_Ort Tekst
- - R_Anschr_Land Tekst
Phoneno Tekst Tel Tekst
Fax Tekst Fax Tekst
Mobilephone | Tekst - -
Email Tekst email Tekst
URL Tekst - -
- - UST_ID Tekst
- - Verkaeufer Tekst
- - Lieferung Tekst
- - Buchungskonto Getal
- - Buchungsgegenkonto | Getal
- - Bemerk Memo
Mailing Boolean Mailing Boolean
delete Boolean - -

Tabel 7.20: Opbouw van alle adrestabellen

35

URL wordt zonder verandering overgenomen

UST ID wordt hernoemt naar salestaxno

Verkaeufer wordt hernoemt naar seller

Lieferung wordt hernoemt naar delivery

Buchungskonto wordt hernoemt naar customeraccount
Buchungsgegenkonto wordt hernoemt naar vendoraccount
Bemerk wordt hernoemt naar notice

delete wordt zonder verandering overgenomen

Uit al deze stappen ontstaat een nieuwe tabel, die in staat is de inhoud van beide oorspron-
kelijke tabellen te bevatten.

| CRM & ERP | |

customerno AutoWaarde
Company Tekst
Company?2 Tekst
Company3 Tekst
Position Tekst
Title Tekst
Surname Tekst
Firstname Tekst
Department Tekst
Street Tekst
PLZ Tekst
City Tekst
Country Tekst
Phoneno Tekst
Fax Tekst
Mobilephone Tekst
Email Tekst
URL Tekst
salestaxno Tekst
Seller Tekst
Delivery Tekst
Customeraccount | Getal
Vendoraccount Getal
Notice Memo
Mailing Boolean
delete Boolean

Tabel 7.21: Eindversie van tblAdresses

36

7.4.2 tblOffer

Offertes worden alleen in de databases ERP en CRM gemaakt. De opbouw van beide offertes
is op zich wel redelijk gelijk. Standaardwaarden zoals gebruiker, datum, levertijd en klant
zijn zowel in de ERP als ook in de CRM database te zien. Ook de teksten boven en onder de
offerte worden in beide databases gebruikt. Een overzicht van alle velden is getoond in tabel
7.22. In het begin van de fusering van de tabellen tblOffer zullen ten eerste de velden worden

CRM | [ERP | |
offerno AutoWaarde | AngebotsNr | AutoWaarde
Adressno Getal KDNr Getal
company Tekst - -
offeruser Tekst MA Tekst
offerdate Datum ABDatum | Datum
offertext1 Memo Freitext1 Memo
offertext2 Memo Freitext2 Memo
delivery Tekst - -
payment Tekst - -
deliverytime Tekst Lieferzeit Tekst
signerleftstate | Tekst - -
signerleft Tekst - -
signerrightstate | Tekst - -
signerright Tekst - -

- - Summen Boolean

Tabel 7.22: Opbouw van tblOffer

bekeken, waar duidelijk is, dat hetzelfde typ data in staat. Deze velden zijn: offerno (An-
gebotsNr), AdressNo (KDNr), offeruser (MA), offerdate (ABDatum), offertextl (Freitextl),
offertext? (Freitext2) en deliverytime (Lieferzeit). Bij deze velden wordt het naam van de
database CRM aangehouden, behalve bij het veld Adressno, dit wordt hernoemt naar cus-
tomerno. De reden hiervoor is, dat het altijd een klant is (customer), die een offerte krijgt.
Verder heb ik na enkel onderzoek van de CRM-applicate achterhalt, dat het veld compa-
ny overbodig blijkt en dus kan worden verwijdert. Dit soort beslissingen zijn essentieel
voor integraties. Verder is een onderscheid in de hele opbouw van de databases ERP en
CRM te zien. Zo worden bij CRM de voorwaarden per offerte ingesteld en bij ERP wor-
den ze per klant ingesteld. Dat is dus een essentieel verschil wat betreft de opbouw. Na
een interview met de manager van MSC bleek dat het bij beide databases niet helemaal
efficiént is geimplementeerd. De wens is dat een klant een standaardinstelling krijgt voor
beide voorwaarden. Deze standaardvoorwaarden worden dan bij het aanmaken van een of-
ferte overgenomen. Toch is de gebruiker dan in staat om de overgenomen voorwaarden te
veranderen, naar individuele voorwaarden, alleen voor een bepaald offerte. Daarom blijven
delivery en payment in deze tabel bestaan. Ten slotte blijven de laatste vijf velden ook
bestaan. Zo wordt binnen het CRM nog steeds gebruik gemaakt van ondergetekende en ook
een som wordt nog steeds gebruikt bij het ERP. Zo kan het CRM de som negerene en an-
dersom kan het ERP de ondergetekende negeren. Alle veldnamen zullen nu vertaald worden
naar het Engels om een lijn te hebben wat de veldnamen betreft. Het resultaat is te zien in
tabel 7.23.

37

| CRM & ERP | |

offerno AutoWaarde
customerno Getal
offeruser Tekst
offerdate Datum
offertext1 Memo
offertext2 Memo
delivery Tekst
payment Tekst
deliverytime Tekst
signerleftstate | Tekst
signerleft Tekst
signerrightstate | Tekst
signerright Tekst
sum Boolean

Tabel 7.23: Eindversie van tblOffer

7.4.3 tblOfferpositions

Elk offerte bevat minstens één product en deze informatie over de producten worden in een
aparte tabel bijgehouden. De relatie bij een offerte en de producten is een 1:n relatie, waar
men dus één offerte heeft en n producten, die deel zijn van de offerte. Als laatste tabel wil ik
nu deze tabel fuseren uit de databases ERP en CRM. Tabel 7.24 geeft hier een inzicht hoe de
huidige structuur van de tabellen is. Zoals men ziet wordt hier de integratie iets moeilijker

CRM | ERP | |

offerposno AutoWaarde | - -

offerno Getal AngebotsNr Getal
offerpos Getal Pos Getal
postext Memo - -

- - ArtikeINr MSC | Getal
amount Getal Anz Getal
unitper100 boolean - -

deliveries Getal - -

unitprice Valuta VK Currency

allroundprice | Valuta - -

Tabel 7.24: Opbouw van de tabellen tblOfferPositions

als bij de andere tabellen. Zo wordt in het ERP systeem geen unieke identifier bijgehouden,
maar een toevoeging zou geen nadeel opleveren. De volgende velden worden fuseert:

offerno vs. AngebotsNr wordt samengevat naar offerno
offerpos vs. Pos wordt samengevat naar offerpos
postext wordt hernoemt naar offerpostext

ArtikelNr MSC wordt hernoemt naar offerarticleno

amount vs. Anz wordt samengevat offeramount

38

unitprice vs. VK wordt samengevat naar offerprice
allroundprice wordt hernoemt naar offersumprice

Verder blijkt, dat er een basisverschil in de twee databases is. Zo worden binnen het CRM alle
producten apart ingetypt en de gebruiker moet dan elke keer opnieuw de artikelbeschrijving
toevoegen. In tegenstelling hiertoe wordt binnen het ERP een aparte tabel met artikelen
beheert en elke positie van een offerte is een verwijzing naar een artikel. Men zou dus hier
moeten kjiken dan of die een is ingevuld, of die ander, maar niet allebei. Dit zou kunnen
worden beschreven als:

offerpos ® offerarticleno = (offerpos A= offerarticleno) V (= offerpos A offerarticleno)

Na al deze aanpassingen komt men tot het nieuwe schema, te zien in figuur 7.25.

| CRM & ERP | |
offerposno AutoWaarde
offerno Getal
offerpos Getal
offerpostext Memo
offerarticleno Getal
offeramount Getal
unitper100 boolean
deliveries Getal
offerprice Currency
offersumprice Currency

Tabel 7.25: Eindversie van de tabel tblOfferPositions

7.4.4 tblPayment

De tabel voor de betalingsvoorwaarden bestaat alleen bij de databases ERP en CRM. In de
OM database bestaat deze tabel niet, omdat hier geen betalingsvoorwaarden noodzakelijk
zijn. Zoals in tabel 7.26 te zien is, bestaat er overlap tussen de twee tabellen tblPayment uit
de databases ERP en CRM. Om nu beide tabellen samen te voegen wordt de structuur van
de ERP-tabel aangepast en dan kunnen deze twee tabellen worden fuseert. De aanpassingen
zijn als volgt:

Z Mod wordt hernoemt naar paymentno en de waarde wordt ingesteld als AutoWaarde

| CRM \ | ERP | |
paymentno | AutoWaarde | Z_Mod | Getal
payment Tekst 7 Text | Tekst
- 7 _Tagel | Getal
- Z._Prozl | Getal
- Z_Tage2 | Getal
- Z_Proz2 | Getal
- Z_Tage3 | Getal
- Z_Proz3 | Getal

Tabel 7.26: Structuren van de tabellen tbIPayment

39

| CRM & ERP | |

paymentno AutoWaarde
payment Tekst
daysl Getal
percent1 Getal
days2 Getal
percent2 Getal
days3 Getal
percent3 Getal

Tabel 7.27: Eindversie van tblPayment

| CRM \ | OM \ |
signerno AutoWaarde | signerno AutoWaarde
signerfirstname | Tekst signerfirstname | Tekst
signersurname | Tekst signersurname | Tekst
signerstate Tekst signerstate Tekst

Tabel 7.28: Opbouw van de tabellen tblSigners

Z _Text wordt hernoemt naar payment
Z _Tagel wordt hernoemt naar daysl

Z _Prozl wordt hernoemt naar percentl
Z _Tage2 wordt hernoemt naar days2

Z _Proz2 wordt hernoemt naar percent2
Z _Tage3 wordt hernoemt naar days3

Z _Proz3 wordt hernoemt naar percent3

Na deze aanpassingen is het resultaat nu een tabel 7.27, waarin alle veranderingen zijn
verwerkt.

7.4.5 tblSigners

Bij de ondertekeningen is het zo, dat alleen in de databases CRM en OM gebruik van een
tabel wordt gemaakt, waar ondergetekende in staan. Binnen de ERP database is dit opgelost
door standaardteksten, die in aparte tabellen staan. Zoals in tabel 7.28 duidelijk te zien is
hoeft men hier niets aan te veranderen. Dat bekentent dus wij kunnen een nieuwe tabel op
basis van de twee tabellen tblSigner maken. Het resultaat is dan te zien in tabel 7.29 waar
dus beide databases gebruik van kunnen maken.

7.4.6 tblSupplier

Alle drie databases bevatten adresgegevens over leveranciers. Hierbij valt op dat de tabellen
verschillen zijn opgebouwd. Deze verschillen worden in de tabel 7.30 duidelijk gemaakt.
Na enkele aanpassingen zouden dan alle drie databases een gelijk schema bevatten, zodat de
tabellen kunnen worden fusert. In tabel 7.30 ziet men nu duidelijk, dat hier duidelijk overlap

40

| CRM & OM |

|

signerno AutoWaarde
signerfirstname | Tekst
signersurname | Tekst
signerstate Tekst

Tabel 7.29: Eindversie van tblSigners

| CRM \ | ERP | | OM |

Distributerno AutoWaarde | L_Nr AutoWaarde | supplierno | AutoWaarde
Distributorname Tekst L_Firma | Tekst company Tekst

- - - - title Tekst

- - - - firstname Tekst
Distributorcontact | Tekst L_Name | Tekst surname Tekst
Distributoremail Tekst L_email | Tekst - -
Distributorfax Tekst L_Fax Tekst faxno Tekst
Distributorstreet Tekst L_strasse | Tekst street Tekst
Distributorcode Tekst L_PLZ Tekst citycode Tekst
Distributorplace Tekst L_Ort Tekst city Tekst
Distributorland Tekst - - - -

- - L_Tel Tekst - -

- - - - customerno | Tekst

Tabel 7.30: Opbouw van de tabellen tblSupplier

bestaat bij de velden: supplierno, suppliername, supplierfazx, supplierstreet en supplierplace.
Bij de contactpersoon ontbreekt de opbouw van de brontabel uit de database OM. Daar
wordt een onderscheid gemaakt tussen aanspraak, voornaam en achternaam. Na enkele
afwegingen neem ik de beslissing om dit onderscheid bij te houden. Zo moet men dan bij
een data integratie de inhoud van de velden verversen en splitsen in aanspraak, voornaam
en achternaam. Het land, het telefoonnummer en een klantnummer lijkt zeer logisch te zijn
en zo worden deze drie velden in de nieuwe tabel 7.31 ook ingebouwd.

7.4.7 tblTitle

De aanspraken worden in alle databases gebruikt. Dat is vrij duidelijk want zodra men
contact heeft met personen via brieven is het noodzakelijk om een aanspraak te hebben. Deze
aanspraken worden dan bij de brieven zelf gebruikt en de computer weet hoe hij daarmee
moet omgaan. Door kleine if-then algoritmes is dan een procedure in staat om de juiste
aanspraak in een brief of newsletter te zetten. Bij de ERP database ontbreekt deze functie
omdat ze vanaf begin niet is geimplementeerd. Daardoor worden nu alleen de tabellen uit
de databases OM en CRM fuseert. Hun huidige structuur is te zien in tabel 7.32, waar
duidelijk wordt, dat Net zoals bij de tabel tblSigners is hier geen verandering noodzakelijk,
beide tabellen hebben dezelfde opbouw en worden dus samengevat naar tabel 7.33.

7.4.8 tblUser

Zoals eerder aangegeven bevat elke database een tabel voor de gebruiker van de bijhorende
applicatie. Deze tabellen worden nu bij de integratie zodanig aangepast, dat alle drie tabellen
in een tabel komen te staan. In tabel 7.34 worden voor het eerst alle tabelstructuren getoond

41

]CRM&ERP&OM\ ‘

supplierno AutoWaarde
suppliername Tekst
title Tekst
firstname Tekst
surname Tekst
supplieremail Tekst
supplierfaxno Tekst
supplierstreet Tekst
suppliercitycode Tekst
suppliercity Tekst
supplierland Tekst
suppliertel Tekst
suppliercustomerno Tekst

Tabel 7.31: Eindversie van tblSupplier

[CRM | oM |
Titleno | AutoWaarde | Titleno | AutoWaarde
Title Tekst Title Tekst

Tabel 7.32: Opbouw van de tabellen tblTitle

] CRM & OM \ ‘
Titleno AutoWaarde
Title Tekst

Tabel 7.33: Eindversie van tblTitle

42

| CRM | | ERP \ | OM \ |

Userid AutoWaarde | - - Userid AutoWaarde
Username | Tekst Erfasser Tekst | Username | Tekst
Realname | Tekst - - - -

Password | Tekst Password Tekst | Password | Tekst
Permission | Getal Berechtigung | Getal | Permission | Getal

Tabel 7.34: Opbouw van de gebruikerstabellen

[CRM & ERP & OM | |

Userid AutoWaarde
Username Tekst
Realname Tekst
Password Tekst
Permission Getal

Tabel 7.35: Eindversie van de gebruikerstabellen

en na aanpassing ziet men dan niet meer drie tabellen, maar één tabel waar alle drie databases
van gebruik kunnen maken. Zoals in tabel 7.34 te zien is zijn enkele veldnamen en types
hetzelfde. Nu moeten nog de velden uit de tabel tblUser(ERP) worden aangepast. De
aanpassingen zijn als volgt:

Erfasser wordt hernoemt naar Username
Berechtigung wordt hernoemt naar Permission

Het resultaat na aanpassing is te zien in tabel 7.35.

43

7.5 Nieuwe Database

In de voorafgaande sectie werd de integratie van de drie databases uitgevoerd en nu wordt
het hele nieuwe schema getoond. In enkele delen van het nieuwe schema zal men nog de
oorspronkelijke databases terug vinden, maar dat is niet erg. De beschreven aanpak was

juist zo bedacht dat men in staat is om het schema terug te kunnen vertalen.

tbiSigners

tblProjectAction
tblOrderpos

tblProjectdefiniti
tlProject
tblOrder
tbIEmployees

‘» tblAdresses tblProjectProducts
tbIKDLief _Adr

tbIRechnungen ' tb'Oﬁe’) (tlABs] tbiGutschriften
tblSignerleft .
tbiRechnung GblOfferpositions) tblAB tblGutschrift
\

(tblText1)[tolText2) tolArtikel tblTitle tbISupplier
GbIArtikeIGruppe CblArtNr_Liea/
tblSerCount

tbIPayment

J_—

:

tblBuch
thiBuchung uchungen tbIRequestAdress

tblErlos

tblPrintout

tbIRequestSub

tblProducts tblDelivery

tbIRequestAmount

EblRequestFromCustomeD

Figuur 7.8: Het nieuwe Database schema

Hoofdstuk 8

Waar staat de gebruiker?

De gebruiker staat zoals in het begin genoemd eigenlijk buiten het gebeurtenis rond de
integratie. In het geval van MSC is het daadwerkelijk zo dat de gebruiker dagelijks 3 pro-
gramma’s moet opstarten om toegang tot alle data te hebben. Wat voor nadelen dat weer
oplevert is duidelijk: het kost geheugen op de PC waarmee gewerkt wordt, deze PC wordt
daardoor trager en verder heeft de gebruiker moeite om niet de overzicht over de drie pro-
gramma’s te verliezen.

De betekenis van een integratie is ook voor andere personen binnen een organisatie van es-
sentieel belang. Zo heeft de manager, dankzij het nieuwe schema, de mogelijkheid om een
verbeterde overzicht van alle data te krijgen. Door het nieuwe schema is de manager nu in
staat om verbanden te tonen, die zonder het nieuwe schema moeilijk waren te tonen. Daar-
door heeft de manager de mogelijkheid om het competitive advantage uit te bouwen. Hoe
kan dat nu?

Binnen organisaties zijn informatie systemen sinds enkele jaren het hart van de organisaties
zelf. Er zijn nog nauwelijks organisaties, die geen informatie systeem gebruiken. Informatie
systemen maken gebruik van databases (backend) en de weergave van de data erin gebeurt
via applicaties (frontend). Is de gebruiker niet tevreden met de applicatie zo wordt hij pro-
beren te vermijden dat hij met het programma moet werken. Waar is hier nu de relatie met
databases?

Databases zijn de basis van vele applicaties. Om deze reden zijn de structuren van groot
belang voor alle dingen die erop opgebouwd worden. Een goede structuur levert een goede
basis voor de rest. De focus van deze scriptie ligt dus daarin een hulpmiddel te zijn voor de
opbouw van een samengevat schema en verder nog van een verbeterd samengevat schema.
De applicatie die dan om die database omheen wordt gebouwd, kan dan ook zo opgebouwd
worden dat ze zo veel gebruiksvriendelijkheid bied als mogelijk is. Dan is de gebruiker ook
tevreden, gaat het programma graag gebruiken en de kans is nu groter dat hij/zij zijn/haar
werk met plezier doet. Deze uitspraak baseert op het Technology Acceptance Model(TAM)
uit [1] weergegeven in figuur 8.1. Het TAM geeft duidelijk aan, dat aan de hand van het
design de gebruiker zijn nut trekt en ook de eenvoudige omgang met het systeem. Uit de
nut en de gebruiksvriendelijkheid ontstaat dan het gedrag of de gebruiker het systeem gaat
gebruiken en daaruit weer zijn daadwerkelijk gedrag wat betreft het gebruik van het systeem.
Deze analyse is van belang voor de database, want zoals eerder aangegeven, is de database
de basis van het systeem.

45

Perceived

usefulness
Svstem design Altitude Actual
features Towards using| |Svstem use
Perceived
Ease of use
External Cognitive Affective Behavioural
stimulus response response response

Figuur 8.1: Technology Acceptance Model

46

Hoofdstuk 9

Conclusies

Zoals men binnen deze scriptie zag, zijn integraties uitvoerbaar. Echter is door dit onderzoek
duidelijk geworden, dat een nauwkeurige voorbereiding essentieel is. Het gebruik van de
transformatietaal is een voorwaarde om iiberhaupt een integratie door te voeren. De taal
helpt namelijk erbij de verschillenden databases en tabellen zodanig voor te bereiden, dat
men ze dan makkelijk kan samen voegen. Verder is de analyse van de tabellen en databases,
die men wil samen voegen ook een voorwaarde voordat men met een integratie kan beginnen.
Bij het uitvoeren is een overzichtsplaatje nuttig, wat de samenhangen tussen de databases
en (dan op een niveau dieper) tussen de tabellen markeert. Hieruit kan men een soort plan
afleiden, die de architect helpt om de twee of meer databases te integreren. Bij dit soort plan
kan men dan alle losse tabellen nemen en zodanig bijstellen, dat ze samen passen. Essentieel
bij dit stap is, dat men de relaties tussen de tabellen moet in de gaten houden, want als men
deze kwijt raakt dan werkt het hele systeem niet meer.

In het begin leek het voor mij makkelijker om te focussen op de tabellen die eenvoudiger
waren opgebouwd. Dat hield dus in dat ik mij op tabellen had gefocused (tenminste in het
begin), die een klein aantal velden bevatten. Daardoor was het begin erg makkelijk want de
kleinere tabellen waren dan makkelijker om te fuseren. Met enige oefening kon ik dan verder
gaan met de anderen tabellen, die groter en ingewikkelder waren. Daarbij viel dan op dat
de oefening met de kleine tabellen een goed stap was, want zo waren de basisstappen voor
de integratie makkelijk uit te voeren.

Verder had ik steeds het gevoel ik mis iets in de integratie en ik kwam ook later daarachter
dat het de data integratie was die ik miste. Daardoor had ik altijd dat gevoel dat de integratie
toch niet helemaal gaat lukken, maar toch, zoals ik in het begin zei abstraheer ik binnen
deze scriptie van de data in de tabellen.

47

Hoofdstuk 10

Uitbreidingen & Toekomst

Zoals te zien is gaat deze scriptie alleen over de schema’s en de bijhorende integratie. Wat
hoort er eigenlijk nog bij? De focus van deze scriptie ligt bij de schema’s van de data-
bases. Om databases samen te vatten moet men niet alleen de schema’s bekijken maar ook
de data. Hiervoor is het noodzakelijk om een zorgvuldige data analyse door te voeren. Bij
deze analyse zou men dan bijvoorbeeld overlap tegenkomen van databereiken (werd al erder
genomend). Data integratie houdt zich dan hiermee bezig om dit soort overlap op te lossen.
Naast de data integratie is er ook een aanpassing van het frontend noodzakelijk. Het fron-
tend maakt namelijk gebruik van het backend. Het frontend moet namelijk zodanig worden
aangepast dat het kan omgaan met de nieuwe structuur die door de integratie is ontstaan. Zo
werden door de integratie nieuwe velden geintroduceerd of bepaalde velden samen gevoegd.
Deze veranderingen moeten dan ook in het frontend terug komen.Dat betekent hier moet
ook nog heel veel werk worden ingestoken.

Ten slotte zijn de veranderingen van backend en frontend van essentieel belang voor de
gebruikers. Zij maken elke dag gebruik van het programma en zij moeten de nieuwe aan-
passingen begrijpen, daarmee meteen het programma op de beste manier door hun wordt
gebruikt. Dat betekent, dat de gebruiker, weet waarvoor welke velden/tabellen zijn en hoe
hij binnen het programma daarmee moet omgaan. Hij moet geen kundige te zijn om het te
begrijpen, maar toch moet het verschil met de oude versie worden aangegeven.Vooral het
dubbel werk valt dan weg.

Als men nu niet alleen de hier doorgevoerde integratie bekijkt, maar ook verder kijkt, dan
zou men zien dat een integratie zowel op schema als ook op data basis, moeilijk zal worden.
Het probleem is daarbij dat steeds meer programma’s gebruik maken van databases en in elke
organisatie groeit het aantal applicaties dat gebruik maak van een database. Als manager en
ook als systeembeheerder wil men graag zo veel data als mogelijk op een plaats hebben staan.
Of om het duidelijker te maken: Alles in één database. Dat vereenvoudigd het beheren van
de data en aan de andere kant kan men zo ook meer informatie uit trekken. Zoals eerder
getoond, zouden data warehouses hier een oplossing kunnen zijn, maar toch zijn deze niet
altijd up-to-date. Verder is het makkelijker om alle data op een plaats te hebben, want de
applicaties, die gebruik maken van de databases hebben dan maar alleen een toegang nodig,
namelijk naar die ene database. Zo verdwijnen dan ook de applicaties bij de gebruiker en
in het beste geval heeft hij alleen nog maar één applicatie nodig, die toegang heeft tot de
nieuwe database. Een gebruiker met alle rechten heeft dan ook volledige toegang en kan alle
mogelijke relaties uit alle data trekken. Dat was zonder de integratie niet mogelijk, want de
data was over meerdere plekken verspreid.

48

Bibliografie

[1] Managing Information Systems: An organizational perspective
Boddy, D., Boonstra, A., Kennedy, G., (2005)
2nd edition, Prentice Hall, Financial Times, Edinburgh

[2] Strategic Alignment: Leveraging information technology for transforming organizations
Henderson, J.C. , N. Venkatraman
IBM Systems Journal (1999), vol. 38, Nos 2 and 3, p. 472-484

[3] Schema Integration methodology and its verification by use of information capacity
Kwan, I., Fond, J.
Information Systems Vol. 24, No. 5, pp. 355-376, 1999

[4] Data warehouse-in-practice: exploring the function of expectations in organizational out-
comes
Massa S., Testa S.
Science Direkt - Information & Management 42 (2005) 709718

[5] A formalisation of semantic schema integration
McBrien, Peter and Puolovassilis, Alexandra
Information Systems, Vol. 23, No. 5, pp. 307 - 334, 1998

[6] Semantic schema refinements for multilevel schema integration
Santucci, Giuseppe
Data & Knowledge Engineering 25 (1998), pp. 301-326

[7] An Intelligent Tutoring System for Entity Relationship Modelling
Suraweera, P., Mitrovic A., Intelligent Computer Tutoring Group, Computer Science De-
partment, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
International Journal of Artificial Intelligence in Education, Vol. 14, pp. 375417, 2004

[8] Siz methodological steps to build medical data warehouses for research
Szirbika N.B. Pelletier C. Chaussalet T.
international journal of medical informatics 75 (200 6) 683691

49

