

Review and Comparison of

Instant Messaging Protocols

Computer Science

Bachelor Thesis

Tim van Lokven

0438006

January 23, 2011

2

Abstract

In this thesis, I will review and compare the two most popular Instant Messaging

protocols in the West. To this end, I will first determine which two protocols are the

most popular, and then formulate criteria to assess them. Each protocol will then be
examined to uncover the fundamentals that will help with assessing each protocol in
accordance with the criteria. I will then use the criteria to grade each protocol, which

will finally allow me to compare the protocols with one another to determine which

protocol obtains a higher score regarding the criteria, and then point out some
possible improvements.

3

Contents

1 Introduction .. 4

2 Popularity of Instant Messaging protocols ... 5

2.1 Usage Statistics .. 6

2.2 MSNP .. 8

2.3 OSCAR .. 8

3 Protocol Criteria ... 9

3.1 General ... 9

3.2 Security ... 10

3.3 Efficiency ... 10

3.4 User friendliness .. 10

4 MSN Protocol ... 11

4.1 Servers .. 11

4.2 Message Layout ... 14

4.3 Command Layout ... 15

4.4 Authenticating ... 17

4.5 Assessment ... 25

5 OSCAR Protocol ... 30

5.1 Servers .. 30

5.2 Frames .. 31

5.3 Message Layout ... 32

5.4 Authenticating ... 35

5.5 Buddy List ... 38

5.6 Instant Messaging .. 39

5.7 Assessment ... 40

6 Protocol Comparison .. 45

6.1 Servers .. 45

6.2 Commands .. 45

6.3 Authorizing .. 46

6.4 Buddy Lists .. 46

6.5 Messaging ... 47

6.6 Criteria .. 48

7 Conclusion .. 50

8 References .. 52

4

1 Introduction

In the past decade and a half, Instant Messaging programs have been one of the

most commonly used methods of communicating remotely by young people. They

have grown up with programs like MSN Messenger, Yahoo Instant Messenger and
AOL Instant Messenger, and use them vigorously to stay in contact with people who
they don't see often, but also just to chat with people they see every day. It will

come as no surprise that a good number of companies have created Instant

Messaging clients to try and generate some profit by playing into this very clear
trend.

With a large amount of Instant Messaging clients available, that all use different
underlying protocols, it raises the question of how these protocols differ. How do

they tackle certain problems that arise, and how does the quality of the protocols
compare?

In this thesis, I will determine what the two most popular Instant Messaging

protocols are, and compare them with the help of a number of criteria that I will
describe beforehand. These criteria will all concern the user comfort in some way,
since I believe that a good protocol is one that offers everything a user needs, offers

a sufficient amount of security and is not too taxing for the user's connection.

Because the Instant Messaging protocols are far too large to review completely, I will
focus on the following actions that every protocol should support:

- Authenticating.
- Retrieving the user's contact list.

- Starting a conversation with a friend.

- Sending and receiving messages.

After determining which two protocols I will review, I will give a detailed description

of their inner workings, and then assess them in accordance with the criteria. The
protocols will then be compared to one another, giving an overview of which protocol
functions better in which areas.

5

2 Popularity of Instant Messaging protocols

In order to find out which instant messaging protocols are the most popular, first it
needs to be made clear what a "popular client" is. It could be the highest rated

protocol, or the most frequently used one. I've decided to only look at the two most

frequently used protocols in the Western world. The reason for this, is that the
cultural and lingual differences between a country like China and the West are so
large, that it is very hard to say what the popularity of a protocol can be attributed to.

Furthermore, it will be much harder to find specifications of non-Western protocols,
due to them often not being available in English.

There aren't very reliable statistics available of instant messaging protocol usage, but
there is quite a bit known about the usages of instant messaging clients. For that

reason, I will look at the official statistics published by the developers of these clients.

In the case that these statistics are not made public, I will use the most reliable and
recent estimates available by third parties.

There is one issue with this approach. A lot of clients implement several instant

messaging protocols. The user counts for these clients won't give you accurate
information about which protocols are actually being used.

For instance, the Microsoft Notification Protocol (MSNP) is implemented by several

instant messaging clients. Some of the popular ones are Windows Live Messenger,
eBuddy and Pidgin. Windows Live Messenger is Microsoft's official instant messaging
client, and is the intended client for MSNP. This is the only protocol the client

supports. Pidgin and eBuddy support several other instant messaging protocols as
well as MSNP. It is therefore impossible to tell if the users of these programs are

actually using the Microsoft Notification Protocol, or if they are only using the other
protocols.

For that reason, I've decided to disregard instant messaging clients that implement

multiple protocols, and only focus on the official clients that the protocols were
intended to be used by. An exception to this is XMPP, because it is an open source
protocol and doesn't have an official client. The most well known client that uses this

protocol is Google Talk.

6

2.1 Usage Statistics

Table 2.1 contains a number of commonly used Instant Messaging protocols, and
gives a approximate number of active users for each. Furthermore, it lists the owners
of each protocol, and the Instant Messaging clients that make use of it.

Protocol Client Owner Active Users Statistics Date

MSNP
Windows Live
Messenger

Microsoft
Corporation

330 million June 2009

OSCAR

AOL Instant
Messenger

America
Online

53 million March 2006

ICQ 40-50 million February 2010

YMSG
Yahoo!
Messenger

Yahoo! 22 million September 2006

XMPP
Google Talk
(not official)

XMPP

Standards

Foundation

40-50 million January 2007

QQ Tencent QQ
Tencent
Holdings

448 million August 2009

Table 2.1: Active users of widely used Instant Messaging protocols.

7

2.1.1 Results

It appears that the QQ Protocol has the most active worldwide users. However, the
vast majority of these users reside in China. This protocol is hardly ever used in the

Western world, however there is very little information on why this is the case.

Because I have decided to limit myself to popular protocols in the West, I will not
look further into this protocol.

The Microsoft Notification Protocol has 330 million users, and is by far the most

frequently used instant messaging protocol in the Western world. Because AOL
Instant Messenger and ICQ both use the OSCAR protocol, it comes to about 100

million active users.

According to these results, the following protocols are the most popular in the West:

1) MSNP
2) OSCAR
3) XMPP

Since MSNP and OSCAR have the most active users, I will be reviewing and
comparing these Instant Messaging protocols in this thesis.

8

2.2 MSNP

The Microsoft Notification Protocol, also known as the Mobile Status Notification

Protocol, is Microsoft's instant messaging protocol. It's developed to be used by their
official clients, the most important being Windows Live Messenger (WLM). The
protocol is currently up to version 18 (MSNP18).

The protocol is not open source. However, due to its popularity, a lot of reverse
engineering has been done, and a lot of the protocol is public knowledge at this point.

The protocol is implemented by numerous third party clients.

Windows Live Messenger was released in 1999 under the name MSN Messenger, and
its popularity has since then been ever growing. Especially among the youth, WLM is

one of the primary means of communication. It comes pre-installed with Microsoft

Windows, which could be one of the reasons of its success.

2.3 OSCAR

OSCAR, or the Open System for CommunicAtion in Real-time, is an instant

messaging protocol owned by America Online (AOL). Currently, OSCAR is being used
by AOL's two main instant messaging clients: AOL Instant Messaging (AIM) and ICQ.

Despite it being called "open", the protocol is not open source. Just like MSNP, a

great part of the protocol has been reverse engineered. As AOL primarily focuses on
the American market, AIM is not very popular anywhere else. It has been the most
frequently used client in the United States, but in Europe, it has never been able to

come close to Windows Live Messenger.

9

3 Protocol Criteria

To objectively assess a protocol, it is necessary to construct a set of criteria that help
determine how well it scores in a number of fields. These will later be used to grade

protocols individually, and also to compare them among each other.

For each of the criteria, I will grade a protocol with a number ranging from 1 to 5.
The implied meanings of these numbers are the following:

1) Horrible.
2) Bad.
3) Decent.
4) Good.
5) Excellent.

Because I do not wish to value all the criteria equally, they will also be assigned a

weight. This weight will range from 1 to 3, and can be interpreted the following way:

1) Lesser importance.
2) Normal importance.

3) Higher importance.

3.1 General

� The protocol should be open source, and third parties should not be
discouraged from creating clients or servers for it.

 Weight: 3.

� The protocol should be comprehensible, with meaningful command names and
a clear structure.

 Weight: 1.

10

3.2 Security

The following criteria concern the authentication process of signing in to your instant

messaging account.

� The password restrictions must be strict enough to make the password not

vulnerable to easy attacks, like the dictionary attack.

 Weight: 3.

� The password must be transferred to the instant messaging server encrypted.

 Weight: 3.

� A message sent to another user should be encrypted.

 Weight: 2.

� The encryption used by the protocol must be sufficiently strong, making it

infeasible to crack.

 Weight: 3.

3.3 Efficiency

� There must not have a great data overhead, messages sent should be
reasonably short.

 Weight: 2.

� There should not be a great number of connections made by the protocol.
 Weight: 1.

� The protocol should not require a large number of messages for a simple

action.
 Weight: 2.

3.4 User friendliness

� There should be a large number of contacts allowed.

 Weight: 2

� The users should be able to pick different font styles and colors.
 Weight: 2.

� Users should be able to choose and change their own screen name.

 Weight: 3.

11

4 MSN Protocol

In this chapter, I will be examining the MSN Protocol. I will delve into the core
aspects of the protocol that are important to review the properties of it that lie within

the scope of this thesis.

4.1 Servers

First of all, I will be outlining the different servers that the protocol calls upon, which
is important to understand the inner workings of all the processes that are involved

when a user authenticates and starts a conversation with a friend.

4.1.1 Dispatch Server

This is often the first server the client contacts. The Dispatch Server redirects the
client to one of the Notification Servers, where the client will then authenticate. If the
client has previously stored a Notification Server, it can simply connect to that, and

skip the Dispatch Server altogether. However, if the client cannot connect to the
previous Notification Server, it will need the Dispatch Server to get a referral to a

new one. The Dispatch Server that the MSN Protocol uses is messenger.hotmail.com
on port 1863.

4.1.2 Notification Server

This is the main server of the MSN protocol. After connecting to it, the client
authenticates here. When the client has successfully logged in, it will receive the

friends list, including their current statuses (Online, Busy, Away or Offline). This
server keeps track of the client's presence, logging it out if it no longer responds.

The client can start a conversation with a friend, and the Notification Server will
assign a Switchboard Server to them, which they can then use to converse.

4.1.3 Switchboard Server

When two or more clients wish to have a conversation, a Switchboard Server will be

assigned to them. It will relay their messages to each other, and carry information

like the client's font type and color. Clients will also receive notifications when the
other is typing a message, or someone joins or leaves the conversation.

12

4.1.4 Server overview

Figure 4.1 shows how the main three different types of MSNP servers relate to one
another. It depicts that there is one Dispatch Server, which redirects users to several

possible Notification Servers, that in turn redirect the user to a number of

Switchboard Servers.

Figure 4.1: Overview of MSNP servers.

13

4.1.5 Conversation overview

To illustrate how two users connecting to the MSN network end up in the same
Switchboard Server, the Figure 4.2 may be referenced. The two users connect to the

Dispatch Server, and get referred to different Notification Servers, though this does

not have to be the case. When one user starts up a conversation with the other user,
a Switchboard Server is assigned to the both of them.
The colored arrows illustrate the referrals each user receives.

Figure 4.2: Server traffic when starting a conversation.

14

4.2 Message Layout

Every message from the client to the server is sent in the form of a command. There

are four types of commands, but the difference between them is fairly minimal.
These types are:

- Normal commands.

- Payload commands.
- Error commands.

- Asynchronous commands.

4.2.1 Command Names

Every command has a command name. This name consists of three capitalized

letters in the case of a standard command, and three digits in the case of an error
message. This command name is usually an acronym of the intended word, for

example USR for user and CHL for challenge.

4.2.2 Transaction ID

Any command sent from the client to the server is required to have a Transaction ID.
This is a number ranging from 0 to 232 - 1 which is used to match the client's

requests to the server's responses. The message sent from the server in response to
a command from the client will have the same Transaction ID.

Commands sent from the server to the client that are not sent in response to a

request will either have no transaction ID, or a transaction ID of 0.

15

4.3 Command Layout

Every type of command has a different layout. Though all similar, they are distinctly

different to account for the information they need to be able to contain in certain
events.

4.3.1 Normal Commands

Most commands fall under the category of normal commands. They are typically
used by the client to make request to the server, and used by the server to respond

to these requests. The syntax for these commands are shown in figure 4.3.

Figure 4.3: Normal command layout.

4.3.2 Payload Commands

A different type of command is used when a large chunk of text needs to be

transmitted. These commands are called payload commands, and they contain the

number of characters the text to follow will have, so the receiver knows how much
data to read. Figure 4.4 shows the layout for these commands.

Figure 4.4: Payload command layout.

16

4.3.3 Error Commands

In the case that something goes wrong, an error command is transmitted. Their
command name is a three digit error code. They also have a transaction ID, but no

additional parameters. Figure 4.5 shows how these commands are set up.

Figure 4.5: Error command layout

4.3.4 Asynchronous Commands

Commands sent by the server that are not in response to a client request are called

asynchronous commands. They do not contain an actual transaction ID, so this field

is either 0 or empty. The syntax for these commands can be seen in figure 4.5.

Figure 4.6: Asynchronous command layout.

17

4.4 Authenticating

4.4.1 Dispatch Server

The first step of logging into the MSN protocol is obtaining the address of a
Notification Server. For that purpose, it connects to the Dispatch Server. When

connected to it, several steps are taken to get a referral to a Notification Server.

First of all, the client tells the server what versions of the protocol it supports, using
the VER command. The server then responds with the protocol that will be used

henceforth, or will send an error and disconnect if the server doesn't support any of
the protocols.

The client then uses the CVR to send the server some basic information about itself.

This information includes the localization of the user, the operating system the client
runs on, the name of the client, and finally the email address the user wishes to login

to.
The server responds with the recommended client version to use, and the URLs to
download this version of the official client.

Finally the client requests to login with the USR command, again sending the server
the email address. The Dispatch Server then gives the client the address of a
Notification Server to login to.

18

Example session

Figure 4.7: Example session of getting a referral from the Dispatch Server.

19

4.4.2 Notification Server

The next step in the process is for the client to authenticate with the Notification
Server. This is a more complicated process.

Just like it did with the Dispatch Server, the client first tells the server what version
of the protocol it's using, and some basic information about itself, using the VER and
CVR commands. The server responds in a similar to the Dispatch Server.

The client then sends a login request again with the USR command, but instead of
getting a referral like it did from the Dispatch Server, the client will receive a policy

and a nonce from the Notification Server.

The MSN client then creates a Simple Object Access Protocol (SOAP) message that
contains the policy it received. The message also contains the login information of

the user; the email address and the password. The SOAP messages used by the MSN

protocol are long and not very readable or interesting, so I won't be looking at them
in detail.

The client then connects to another Microsoft Server, specifically the Server
Response File at https://login.live.com/RST.srf, and sends the newly created SOAP
message there. It will receive a SOAP response that contains a security token that

must be sent back to the Notification server, and a secret string.
The secret string and the nonce received from the Notification Server are then used

to compute a return value. This value is computed by creating a key using TripleDES

on the nonce. SHA1-HMAC is then used repeatedly on the key and then variations of

it. TripleDES is used one more time to compute the final return value.

Finally, the client sends the security token it got from the SOAP response and the

return value it computed to the Notification server, along with the computer's
globally unique identifier (GUID). If all went well, the server responds with a
confirmation that the client is now logged in.

20

Example Session

Figure 4.8: Example session of authenticating with the Notification Server.

21

Buddy List

Authenticating is not the only thing the MSN protocol uses SOAP requests for,
acquiring the buddy list requires one too. The client posts the request to

http://contacts.msn.com/abservice/abservice.asmx. As to not have to request the
entire contact list, which can be quite lengthy, every time the user logs in, the SOAP
message contains a time stamp of when the list was requested previously.
It is possible to use the SSL gateway to post this message, but the official client

doesn't do this. The SOAP response contains a list of contacts and information about

them.

After the client receives the contact list, it has to send this list to the Notification

Server with the ADL command. This is a payload command that sends an XML
message along with it. The layout of the XML message is as follows:

Figure 4.9: Example of a buddy list containing two contacts.

The Notification Server will then send a confirmation back to the client to let it know

that it has received the contact list, and has accepted it.

<ml l="1">

 <d n="domain1">

 <c n="email@hotmail.com" l="3" t="1"/>

 </d>

 <d n="domain2">

 <c n="test@hotmail.com" l="2" t="1"/>

 <c n="example@hotmail.com" l="2" t="4"/>

 </d>

</ml>

22

4.4.3 Starting a Conversation

Every conversation is held on a Switchboard Server. There are two ways to connect
to a server: you can request a new one or you can be invited to an already existing

one.

A Switchboard Server is requested by sending an XFR command to the Notification
Server with the string SB as a parameter. The Notification Server will then send back

the address of the Switchboard Server assigned to the client, and it will include an

authentication string. The client must then connect to the Switchboard Server and
authenticate with the USR command using the string it received from the Notification

Server.

Once connected, the client can send a CAL command to the Switchboard Server to
invite a contact to partake in the conversation. This command will include the

recipients email address.

The contact will then receive the asynchronous command RNG from their Notification

Server. This command will include some basic information; the email address and the
name of the person sending the invitation, the location of the Switchboard Server, an
authentication string and a session id.

The invitee connects to the Switchboard Server and authenticates with the ANS
command, using the authentication string and session id it received in the RNG
command from the Notification Server. The participants that are already present in

the conversation will receive the asynchronous JOI message to notify them that

someone has joined. The client connecting will receive one or more IRO commands
that inform it of the participants already present in the conversation.

23

4.4.4 Instant Messaging

Clients connected to the Switchboard server can now use the MSG command to send
messages to all the other participants. This is a payload command, with a parameter

that determines whether or not the server will respond with ACK and NACK to inform

you about your message's delivery status. The other participants will receive a MSG
command from the Switchboard Server, containing the message and the sender's
email address.

The following is an example to illustrate the layout of a message sent in this manner:

Figure 4.10: Example of a message sent over the MSN Protocol.

MSG 4 N 133\r\n

MIME-Version: 1.0\r\n

Content-Type: text/plain; charset=UTF-8\r\n

X-MMS-IM-Format: FN=Arial; EF=I; CO=0; CS=0; PF=22\r\n

\r\n

Hello! How are you?

24

4.4.5 Example Session

In this example, Bob is the only participant in the conversation until Alice joins. After
Bob is informed that Alice has joined, he sends her the message "Hi Alice!"

Figure 4.11: Example session of a conversation through the Switchboard Server.

25

4.5 Assessment

Now that the core mechanics of the MSN Protocol have been outlined, I will assess

the protocol using the criteria that I listed earlier.

4.5.1 General

 The protocol should be open source, and third parties should not be
 discouraged from creating clients or servers for it.

There is no official documentation of the MSN Protocol. Nearly all information
available is discovered through reverse engineering. Even now, the meaning of all

the data sent over the protocol is still not understood. The protocol uses a challenge
system that requires the client to compute a response token in a very complicated

way, designed to make it more difficult for third party software to make use of the
protocol.

Score: 1/5

 The protocol should be comprehensible, with meaningful command names and
 a clear structure.

The command names used all consist of three letters, followed by a transaction ID
and then a number of arguments. This makes for a very clear structure. The
command names are often acronyms, making it easier to remember their meaning.

Examples are SYN for "Synchronize" and USR for "User". However, the function of
the parameters are often unclear.

Score: 4/5

26

4.5.2 Security

 The password restrictions must be strict enough to make the password not
 vulnerable to easy attacks, like the dictionary attack.

MSN requires a password of at least six characters, and does not enforce using
numerical characters or symbols. With this, MSN asks the bare minimum of users
when it comes to password creation, resulting in possibly very weak passwords.

Score: 2/5

 The password must be transferred to the instant messaging server encrypted.

The user's password is sent to the server over a Hypertext Transfer Protocol Secure

(HTTPS) connection, and it's encrypted through 128 bit SSL. This is the only time the
user's password is transferred.

Score: 5/5

 A message sent to another user should be encrypted.

Messages sent from one person to another are not encrypted in any way. This makes

the MSN protocol not suited for confidential communication.

Score: 1/5

 The encryption used by the protocol must be sufficiently strong, making it
 infeasible to crack.

128 bit encryption is very secure. It is infeasible to crack, even with high numbers of

processors at your disposal. As thus, it is very widely used in all fields. This level of
encryption is easily sufficient for an instant messaging protocol.

Score: 5/5

27

4.5.3 Efficiency

 There must not have a great data overhead, messages sent should be
 reasonably short.

Messages sent by the MSN Protocol tend to be surprisingly concise, only containing
the bare necessities. There is not a large data overhead when sending messages.
However, the server does expect you to send meta data about your messages every

time, which seems redundant. This contains information such as font type, size and

color and encoding. This could be avoided by establishing this information once
initially, and storing it client side. It would then only need to be updated when the

user makes a change.

Score: 4/5

 There should not be a great number of connections made by the protocol.

The MSN protocol first connects to a Dispatch Server, which entire functionality is to
refer the client to a Notification Server. This Notification Server never seems to

change, so the Dispatch Server seems rather unnecessary. The buddy list is retrieved

through a HTTP connection, rather than through the Notification Server like you
might expect. All in all, this makes for more connections to more different services

than required. However, files and display pictures are communicated through the

Switchboard Server, so the number of new connections is not as high as it could be.

Score: 3/5

 The protocol should not require a large number of messages for a simple
 action.

I do not consider authenticating to be a simple action, so I will not take the long
authentication process into regard. Starting up a conversation with someone requires

several actions. The Notification Server needs to be contacted to get a referral to a
Switchboard Server, to which you must then authenticate. The client then has to

invite the other participant to join the Switchboard session, making this entire
process rather lengthy. However, the majority of a user's actions will be sending
messages to another person. This requires only a single command once both

participants are connected to the Switchboard Server.

Score: 4/5

28

4.5.4 User friendliness

 There should be a large number of contacts allowed.

The protocol itself does not restrict the maximum number of contacts that a user is

able to have. However, the official client will allow a user to have about a thousand
people in their buddy list. Even though this is a large number, the amount of data
the server needs to store for additional contacts is fairly minimal, so I do not think a

restriction needs to me imposed.

Score: 4/5

 The users should be able to pick different font styles and colors.

While the MSN protocol does not specifically include functionality for fonts and colors,
this information is communicated by the official client as preceding meta data before

every message that is sent by the user. This meta data is sent in the form of an
Internet Media type, better known as Multipurpose Internet Mail Extensions (MIME).
I do not find this a very elegant solution, and would prefer a protocol to have a more

strict built in format for it. It is now left to the clients to implement a work around to

achieve different font styles and colors.

Score: 2/5

 Users should be able to choose and change their own screen name.

Changing the user's display name is a very simple process, requiring only a single
command. This makes the process very short and uncomplicated, as it should be.

Furthermore, it accepts any characters the user wishes to use, as long as it is URL
encoded.

Score: 5/5

29

4.5.5 Results

Table 4.12 contains all scores that were given earlier regarding the MSN protocol and
includes an average score for each field. Finally, it shows a global average score of

how well the protocol performed in all fields.

Criterion Field Weight Score

Open source General 3 1/5

Comprehensible General 1 4/5

Field average General - 1.75/5

Password restrictions Security 3 2/5

Password encrypted Security 3 5/5

Messages encrypted Security 2 1/5

Strong encryption Security 3 5/5

Field average Security - 3.45/5

Data overhead Efficiency 2 4/5

Number of connections Efficiency 1 3/5

Number of messages Efficiency 2 4/5

Field average Efficiency - 3.80/5

Number of contacts User friendliness 2 4/5

Font styles and colors User friendliness 2 2/5

Choose display name User friendliness 3 5/5

Field average User friendliness - 3.86/5

Global average All - 3.37/5
Table 4.12: Grading the MSN Protocol according to the criteria.

30

5 OSCAR Protocol

In this chapter, I will be examining the OSCAR Protocol. Similar to the MSN Protocol,

I will look at its core mechanics to uncover relevant information that will help with

assessing the protocol later.

5.1 Servers

Just like the MSN Protocol, OSCAR also makes use of several different servers, that

all serve a different purpose. However, no server is directly comparable to an MSNP

server, as the functionality they offer is never exactly the same.

5.1.1 Authorization Server

This is always the first server the client contacts, in order to authenticate and get a

referral to the Basic OSCAR Service Server (BOSS). This server is only used for the
initial authentication, and can be closed after connecting to the BOSS.

5.1.2 Basic OSCAR Service Server

This is the main OSCAR server. The client will have to use this server to log in to the
AOL Instant Messenger network. In order to do so, the client will need the cookie it

received from the Authorization Server. The server is used for almost all of the main

tasks that clients will want to perform, like sending messages and requesting

information.

5.1.3 Others

There are several other servers, like the Buddy Icon Server, and the Chat Room
Setup Server. However, they don't offer any functionality that lies within the scope of
this research paper, so I won't be discussing them any further.

31

5.2 Frames

A server connection with the OSCAR protocol is split up into several frames, which

are sometimes referred to as channels. They are used to allow for parallel streams of
communication, without needing to connect to a different server. The frames have
numbers, and the protocol allows for up to 256 of them to be used, but only five

actually serve a purpose to this date.

5.2.1 #1 - Connection Start Frame

This frame can be seen as the "login channel". It is used to log in to any of the
servers. All communication with the Authorization Server occurs on this frame, as

well as the initial authentication with the Basic OSCAR Service Server.

5.2.2 #2 - Main Frame

Packets are most commonly sent over this frame. It covers most of the OSCAR
Protocol's functionality.

5.2.3 #3 - Error Frame

When something occurs that is undesirable or unexpected, and the server sends an
error message to the client over this frame.

5.2.4 #4 - Connection End Frame

When the server signs the client out of the network, it will send it a message over
this frame that contains an error code.

5.2.5 #5 - Keep Alive Frame

This is the newest OSCAR frame, and not much is known about it. It appears to be

used solely for ping-requests by the server to check that the client is still responding
when it has been idle for some time.

32

5.3 Message Layout

The OSCAR Protocol uses two wrapper protocols to make messages more organized

and easier to parse. It also uses a Type-Length-Value tuple to transform raw data
into something more recognizable and interpretable.

5.3.1 Frame Layer Protocol

The Frame Layer Protocol (FLAP) is a low level protocol that serves as a wrapper
around practically all messages sent over the OSCAR protocol. FLAP messages

contain a FLAP id, the frame number the message is sent over, a sequence id for the
purpose of synchronization and the length of the message within the FLAP wrapper.

Oddly, the FLAP id is always 2A, so it doesn't seem to serve a useful purpose. The
layout of a FLAP message is as follows:

Figure 5.1: Layout a FLAP wrapper.

5.3.2 Simple Network Atomic Communication

All messages sent over the Main Frame are also wrapped in a Simple Network Atomic

Communication (SNAC) wrapper. This is another low level protocol that sits on top of
the FLAP layer. This means that a message sent over the Main Frame is wrapped
twice, first by the SNAC protocol and then by FLAP.

SNAC messages are divided into different categories, called Food Groups. In turn,
every Food Group is divided into subtypes of SNAC messages. Each message also
contains a request id that is used to match a SNAC request with the server's

response. However, this is only necessary when requesting information from the

server, not when sending a command. A message also contains flags for some
additional information. The layout of a SNAC message is the following:

Figure 5.2: Layout of a SNAC wrapper.

33

5.3.3 Type-Length-Value Tuples

In order to allow raw data to be interpreted more efficiently, it is stored in a Type-
Length-Value (TLV) tuple. This wrapper is used for almost every type of data, and

makes data fields easily recognizable. A TLV tuple looks like this:

Figure 5.3: Layout of Type-Length-Value tuples.

5.3.4 Server Side Information Items

The server stores information about each account. This includes the account's buddy

list and their blocked list. Every item on such a list is stored in a structure. This

contains the name of the item, and specifies the item's id, type and group. The id of

an item is a unique value that represents the item. There are several different item
types, most notably buddies and blocked users. An item's group is always 0 unless it
is a buddy icon. Furthermore, a list item contains some data, consisting of any

number of TLV tuples that offer more information about the item. A SSI list item can
be represented in the following way:

Figure 5.4: Layout of Server Side Information Items.

34

5.3.5 Instant Messaging Data Structure

When an Instant Message is sent, the data necessary for the message to be received
properly is contained in Instant Message Data (IM Data) wrappers. An IM Data unit

consists of a type and a subtype, in order to make it easy to identify what kind of

data lies within. It also contains the length of the data for easy parsing by the
servers and clients. An IM Data wrapper has the following layout:

Figure 5.5 Layout of Instant Messaging Data Structures.

35

5.4 Authenticating

5.4.1 Authorization Server

The first step of logging into the AIM network is obtaining a cookie from the
Authorization Server to log into the Basic OSCAR Service Server (BOSS). In order to

do this, the client must connect to the Authorization Server at login.oscar.aol.com.

The server and the client first exchange FLAP version numbers.

The rest of the authorization process consists solely of SNAC messages. The client

will start by sending the server a SNAC message with the username of the account
that it is logging into. If the account name is recognized, the server will respond with

a message containing an authentication key, and the length thereof.

The client then uses this key, along with the password, to construct a md5 hash. It
sends this hash back to the server, with some more additional information. This

includes the account's screen name, client version numbers and localization
information. If all goes well, the server responds with the BOSS address and an
authorization cookie, along with some other information.

36

Example Session

Figure 5.6: Example session of authenticating using the Authorization Server.

37

5.4.2 Basic OSCAR Service Server

The client then proceeds to actually sign into the AIM network, by again sending its
FLAP version number to the server, but this time accompanied by the authorization

cookie received from the Authorization Server.

The rest of the communication uses SNAC messages. The server sends a list of
supported SNAC Food Groups to the client. The client then responds with the version

it supports for these groups. The server then shows the same courtesy, and sends a

list back with the versions it supports. The client then requests the list of the so
called rate limits from the server. A rate limit is a value that indicates how fast the

client is allowed to send messages to the server. For example, if the client exceeds

the Alert Level rate limit, it will receive an alert that it is close to being disconnected,
which will then happen if the client exceeds the Disconnect Level rate limit. After the
client receives this list from the server, it will send a message back acknowledging

that it has received the rate limits.

The next step is setting up all the services. The client will send several SNAC

requests to the server, and the server will send back responses. The client asks for
the limitations and parameters of buddy lists, profiles and instant messaging. It also
sends the server its own limitations and profile information.

The client then requests the Server Stored Information (SSI). This information
contains your buddy list, your privacy settings and your blocked list. The client can

make changes to this information if it wishes to do so. It will then sends a message

to the sever activating the Server Stored Information, which makes the changes the

client made to the SSI take effect, and is necessary in order for the server to start
sending presence notifications.

Finally, the client sends a message to the server indicating that it's ready to be
shown as online on the network now.

38

5.5 Buddy List

The buddy list is stored on the server as Server Side Information. In the

authentication process, when the client requests this information from the server, it
will receive the buddy list, among other things. An item in the SSI that represents a
buddy will contain the buddy's screen name.

The server's respond to a request for the Server Side Information will contain the
version of the SSI protocol, the number of items in the list, the actual list itself and

the timestamp of when the list was last updated. The version of the SSI Protocol is

currently 0. An example of such a message is the following:

Figure 5.7: Example of a contact list containing two users.

39

5.6 Instant Messaging

Inter Client Basic Message (ICBM) messages are used to send and receive Instant

Messages. Both incoming and outgoing messages are handled in the form of SNAC
commands. These commands contain information about the recipient or sender and
the message itself. Every message has an ICBM cookie, which helps the server link

conversations together. It also specifies the ICBM channel on which the message is

sent or received, which is always 1 for plain text messages. Furthermore, it lists the
account name of the recipient or sender and the length thereof.

In the case of an incoming message, the SNAC command contains additional

information about the sender, including their user status, idle time and account
creation time.

The SNAC command also contains two IM Data structures. The first structure defines
the capabilities the recipient needs to support in order to correctly receive the
message, and the second one contains the actual message, and some information

about it. This information includes the used encoding and language. The following

diagram shows a representation of an ICBM message for an outgoing instant
message:

Figure 5.8: Example of a message sent over the OSCAR Protocol.

40

5.7 Assessment

After outlining the core mechanics of the OSCAR protocol, I will now assess it in the

same fashion and using the same criteria as were used earlier to assess the MSN
protocol.

5.7.1 General

 The protocol should be open source, and third parties should not be
 discouraged from creating clients or servers for it.

Despite what the name Open System for Communication in Real-time implies, the

specifications for the protocol are proprietary. AOL has gone to great lengths to keep
competitors from implementing clients that are compatible with their protocol.

However, OSCAR does not make use of a challenge system that requires the
computation of a response.

Score: 3/5

 The protocol should be comprehensible, with meaningful command names and
 a clear structure.

The FLAP and SNAC wrappers that the OSCAR protocol makes use of results in low
legibility, because the data in these wrappers does not consist of ASCII characters,
making them very hard to read. Furthermore, the command names are not

meaningful, they are merely numbers that need to be looked up in a list in order to
be able to figure out their function.

Score: 1/5

41

5.7.2 Security

 The password restrictions must be strict enough to make the password not
 vulnerable to easy attacks, like the dictionary attack.

The OSCAR protocol itself does not enforce any password restrictions. However, the
AIM signup page requires a password of six to eight characters, that doesn't contain

any symbols. This means they actually prevent a user from choosing a strong

password, by not allowing symbols or passwords of over eight characters. In doing
so, they cause their passwords to be unnecessarily simple and easy to crack.

Score: 1/5

 The password must be transferred to the instant messaging server encrypted.

The password of an AIM account is not directly sent to the Authorization Server. An
md5 hash of the password is first computed, which is then transmitted over the
protocol. This is the only time the password is sent by the client.

Score: 5/5

 A message sent to another user should be encrypted.

Messages over the OSCAR protocol are not encrypted in any way, making it very

easy for someone with a packet sniffer to read every word that is communicated
between users.

Score: 1/5

 The encryption used by the protocol must be sufficiently strong, making it
 infeasible to crack.

MD5 hashes are no longer considered sufficiently safe. Anyone can use an online
website that makes use of a Rainbow Table to decrypt an md5 hash in many cases.

Considering many people do not choose a strong password, and this is also not

enforced by the protocol, this method is very unsafe. However, if a sufficiently strong
password is used, it is still very difficult to crack an md5 hash.

Score: 2/5

42

5.7.3 Efficiency

 There must not have a great data overhead, messages sent should be
 reasonably short.

No message sent using the OSCAR protocol is actually short. The FLAP and SNAC
wrappers add a fair amount of data to every message. The usage of TLV tuples and

IM Data structures also adds to this. As a result, practically every message sent has a

large data overhead.

Score: 2/5

 There should not be a great number of connections made by the protocol.

The protocol mainly communicates through the BOSS, but also uses separate severs

for authentication and buddy icons. It does not use additional servers for
conversations between users, so the total number of connections is relatively low.

Score: 4/5

 The protocol should not require a large number of messages for a simple
 action.

Starting up a conversation with the OSCAR protocol requires significantly fewer

actions than the MSN protocol demands. Participants in a conversation do not
converse over a separate server, instead the communication goes through the BOS
Server. Though this may be more chaotic, since the conversations have to be

separated with the help of ICBM cookies. All other actions typically require only one
message to be sent to the server, resulting in an overall low number of sent

messages.

Score: 5/5

43

5.7.4 User friendliness

 There should be a large number of contacts allowed.

When the OSCAR protocol sends the user's contact list to the client, it includes a 16-

bit word parameter that tells the client how many contacts there are. This means
that the maximum number of contacts the protocol supports is 216 (65536) people.
However, the official client only supports a maximum of a thousand friends in a

user's contact list.

Score: 4/5

 The users should be able to pick different font styles and colors.

The protocol itself does not have any support for different colors or font styles. The
only way to change the layout of messages, is to include this information in the

actual content. The official client makes use of this by using HTML to include markup
information in the message, so that it may be displayed as desired.

Score: 2/5

 Users should be able to choose and change their own screen name.

The OSCAR Protocol only supports the editing of the user's screen name's format.

This means that it is possible to change capitalizations and punctuations, but it is not

possible to make greater changes to the screen name. This means that the user will
have to register for a new account when a new screen name is desired.

Score: 2/5

44

5.7.5 Results

The following table contains all scores that were given earlier regarding the OSCAR
protocol and includes an average score for each field. Finally, it shows a global

average score of how well the protocol performed in all fields.

Criterion Field Weight Score

Open source General 3 3/5

Comprehensible General 1 1/5

Field average General - 2.50/5

Password restrictions Security 3 1/5

Password encrypted Security 3 5/5

Messages encrypted Security 2 1/5

Strong encryption Security 3 2/5

Field average Security - 2.36/5

Data overhead Efficiency 2 2/5

Number of connections Efficiency 1 4/5

Number of messages Efficiency 2 5/5

Field average Efficiency - 3.60/5

Number of contacts User friendliness 2 4/5

Font styles and colors User friendliness 2 2/5

Choose display name User friendliness 3 2/5

Field average User friendliness - 2.57/5

Global average All - 2.67/5
Table 5.8: Grading the OSCAR Protocol according to the criteria.

45

6 Protocol Comparison

6.1 Servers

Both the OSCAR Protocol and the MSN Protocol make use of a number of different

servers, each with its own distinct functionality. It is noteworthy that they have made
different choices in this regard.

While MSNP uses a Dispatch Server to refer to the protocol's main server, OSCAR

makes opted not to do this. They choose to have the client connect directly to the
server where authorization takes place. As opposed to the MSN Protocol, they have
opted to handle this very important action on a separate server, where the MSN

Protocol has the main server handle it. MSNP also requires the client to send a SOAP

file to the Login Server over SSL as a part of the authorization process.

Though OSCAR's main server doesn't take care of authorization, it still takes care of a

great deal of actions. All conversations are communicated by this server, and it keeps
track of the different ones by cookies. MSNP likes to split up the conversations and
have separate servers resolve them. OSCAR keeps things structured by using Frames,

which helps easily differentiate between different kinds of messages. However, since

the vast majority of data is transmitted over the second Frame, its usefulness is
limited.

6.2 Commands

The biggest difference between the two protocols when it comes to sending

commands to the servers, is that OSCAR makes use of wrappers and the MSN

Protocol does not.

OSCAR includes the sequence number in the FLAP wrapper, and MSNP includes this

number as the second parameter of every command. The first parameter is the
command name, which OSCAR includes in the SNAC wrapper. This allows OSCAR to

have a certain hierarchy for its commands, which is something the MSN Protocol
does not have. While this makes OSCAR commands more structured, it decreases the

readability of the command names.

OSCAR further structures its data with Type-Length-Value tuples, Server Side
Information Items and Instant Messaging Data Structures. MSNP chooses to simply
send data as plaintext information, which increases legibility for persons, but also

makes the data more chaotic.

46

6.3 Authorizing

Authenticating using the MSN Protocol is a much longer process than it is with the

OSCAR Protocol. The former makes use of an SSL connection where a separate Login
Server will compute a security token and a secret string that is returned to the client
upon receiving its user information. The secret string is then further manipulated by

the client, using a nonce received from the Notification Server, to computer a return

value. Combined with the security token, it is then used to finally log in to the system.

OSCAR uses a more direct approach. The client sends its username to the

Authorization Server, which sends back a response string. This is combined with the

user's password, the md5 hash of which is sent to the server, resulting in an
authorization cookie that will allow the user to log in to the system.

6.4 Buddy Lists

The OSCAR takes a more intuitive approach to the retrieval of contact lists. It can

simply be requested over the BOSS, and will be received in the form of SSI items.
This information can be easily cached, because there is also a command available to
request the time the buddy list was last changed on the server, so that the client

often will not have to request the list.

MSN requires the contact list to be retrieved through a SOAP message sent to a

separate server. This information can also easily be cached, as the SOAP request

includes the time the client has last updated the contact list. An XML format is used

to store the buddy list information. The client then has to send this information to
the Notification Server, which seems to be a very roundabout approach.

47

6.5 Messaging

MSNP uses an entire process to start a conversation with another user, which

involves a lot of messages being sent by the clients and servers before the
conversation even having started. A separate Switchboard Server is assigned to the
users, and they are notified of each other's presence. Messages sent back and forth

are then handled solely by the Switchboard Server, without the involvement of the

main server. The messages are marked up by the usage of Internet Media Types.

The OSCAR protocol takes an entirely different approach. The main server handles

conversations, and does so in a much simpler fashion. There is no real process to

start a conversation, clients simply send each other messages. The clients keep track
of ICBM cookies to link conversations together, so that they may be displayed in

separate windows for the user's convenience. Although both protocols do not have

support built in to handle the mark up of messages, AOL Instant Messenger uses
HTML to achieve this effect.

48

6.6 Criteria

6.6.1 General

The following table shows the side-by-side scores of the MSN Protocol and OSCAR in
the general area.

Criterion Weight Score MSNP Score OSCAR Winner

Open Source 3 1/5 3/5 OSCAR

Comprehensible 1 4/5 1/5 MSNP

Weighted Average - 1.75/5 2.50/5 OSCAR
Figure 6.1: Comparison of both protocols regarding the General criteria.

Both protocols score higher than the other on one criterion, and in the other one.

However, since I marked the Open Source criterion to be more important, OSCAR
has a higher weighted field average. However, both protocols have low scores here,

considering that a score of 3/5 should be the bare minimum of what is passable.

6.6.2 Security

Next up is the security area. Again, I have provided a comparison of the protocol's

scores in this field.

Criterion Weight Score MSNP Score OSCAR Winner

Password restrictions 3 2/5 1/5 MSNP

Password encrypted 3 5/5 5/5 Tie

Messages encrypted 2 1/5 1/5 Tie

Strong encryption 3 5/5 2/5 MSNP

Weighted Average - 3.45/5 2.36/5 MSNP
Figure 6.2: Comparison of both protocols regarding the Security criteria.

OSCAR doesn't manage to score higher than MSNP a single time in this area. MSN

allows stronger passwords, both protocols encrypt their passwords, and neither one

encrypts the messages sent by users. The MSN Protocol also uses a far stronger
password encryption than OSCAR does. It should be no surprise that MSNP has a far
greater average score than OSCAR does in the field of security.

49

6.6.3 Efficiency

The following table depicts the scores of the MSN Protocol and the OSCAR protocol
side by side.

Criterion Weight Score MSNP Score OSCAR Winner

Data overhead 2 4/5 2/5 MSNP

Number of connections 1 3/5 4/5 OSCAR

Number of messages 2 4/5 5/5 OSCAR

Weighted Average - 3.80/5 3.60/5 MSNP
Figure 6.3: Comparison of both protocols regarding the Efficiency criteria.

Both protocols score fairly well in this category. OSCAR falls behind when it comes to

data overhead, due to its numerous use of wrappers with every message that is sent.
It does however score higher at the other two criteria, making less connections and
requiring less messages to be sent. Despite this, the average score is still slightly less

than MSNP's, due to the difference in weights between the different criteria. Both

protocols have a respectable score in this area.

6.6.4 User Friendliness

For the final set of criteria, the following is the side-by-side comparison of the two

protocols in regards to user friendliness.

Criterion Weight Score MSNP Score OSCAR Winner

Number of contacts 2 4/5 4/5 Tied

Font styles and colors 2 2/5 2/5 Tied

Choose display name 3 5/5 2/5 MSNP

Weighted Average - 3.86/5 2.57/5 MSNP
Figure 6.4: Comparison of both protocols regarding the User Friendliness criteria.

OSCAR's biggest letdown here is not offering the option to change your display name.
Having to make a separate account for such a simple action is not acceptable. The

protocols score equally well at the other two criteria, since they allow a similar

number of contacts, and neither protocol directly supports font styles and colors.
This results in MSNP having a far higher average score, since OSCAR received a very

low score for the most important criterion.

50

7 Conclusion

Now that the protocols have been compared for every field of criteria individually, all
that remains is reviewing their scores across the board. The following table gives a

concise overview of the grades I have assigned to each protocol.

Field Score MSNP Score OSCAR Winner

General 2.00/5 2.50/5 OSCAR

Security 3.45/5 2.36/5 MSNP

Efficiency 3.80/5 3.60/5 MSNP

User friendliness 3.86/5 2.57/5 MSNP

Overall 3.41/5 2.67/5 MSNP
Figure 7.1: Comparison of both protocols regarding all the criteria.

The MSN Protocol has a respectable score in every field, except for General. This
results in an overall score of 3.41 out of 5, which is easily a passing grade. OSCAR

has a far less favorable grade list, only doing well in the efficiency field. This results

in a poor list for this protocol. Microsoft's MSN Protocol achieves a very clear victory
over AOL's OSCAR Protocol.

An obvious point of improvement for both protocols is releasing the official protocol
specifications, no longer battling against the creation of third party clients. Reverse

engineering will reveal enough information about protocols for third party clients to
exist, which is illustrated by the many clients available. If the creators of the protocol

want their clients to be used, they will just have to make them superior to any third
party clients, rather than trying to discourage those from being created.

Another advantage of making the protocols open source, is that add-ons may be
created by the community to improve the clients, and add functionality. This can be
clearly seen in the case of internet browsers like Mozilla Firefox, that has a very large

number of add-ons developed for it, increasing its functionality drastically.

Another step that should be taken is encrypting messages sent to the servers. Users

are often not aware that their messages can be read extremely easily by anyone who

listens in on the network. Microsoft does not offer any way to send encrypted

messages over the network, but there is third party software available to achieve this.
AOL does offer a way to send encrypted messages, but charges money for this

feature. Even though most users will not care that their messages are not being

encrypted, since instant messaging is mainly used for informal communication, it can
still be viable to offer this functionality to reach a broader audience.

51

Instant Messaging clients are facing a similar kind of competition that internet
browsers have been facing. MSN Messenger has always been installed on every

Windows computer, much like Internet Explorer, which is one reason why this client

is so popular. Traditionally, a lot of users always simply used what was available to
them. In this day and age though, people have become more aware that there are
alternatives, and Internet Explorer usage has dropped drastically. In order to

maintain Windows Live Messenger's dominant position, Microsoft will have to keep
working on making the client, and the underlying protocol, the best it can be.

All in all, both protocols still have room for improvement. If they want to stay ahead
of competitor's protocols, like the open source protocol XMPP, they will have to keep

evolving and offering more and better functionality.

52

8 References

[1] M. Mannan and P. van Oorschot. A protocol for secure public Instant

Messaging. (2006) Financial Cryptography and Data Security.

[2] R. Jennings, E. Nahum, D. Olshefski, D. Saha, Z. Shae and C Waters. A study
of Internet instant messaging and chat protocols. (2006) IEEE Network.

[3] D. Kormann and A. Rubin. Risks of the Passport single sign-on protocol.
(2000) Computer Networks.

[4] Nielsen//NetRatings. (2002) http://www.nielsen-online.com/pr/pr_020617.pdf

[5] How secure is the encryption used by SSL?

http://www.inet2000.com/public/encryption.htm

[6] OSCAR Protocol Specification.

http://web.archive.org/web/20080308233204/http://dev.aol.com/aim/oscar/

[7] jOSCAR Specification. http://code.google.com/p/joscar/wiki/FrontPage

[8] M. Mintz and A. Sayers. (2003) MSN Messenger Protocol.
http://www.hypothetic.org/docs/msn/

[9] MSNC - MSNPiki. (2008) http://msnpiki.msnfanatic.com/index.php/MSNC

[10] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions.

http://merlot.usc.edu/csac-f06/papers/Wang05a.pdf

[11] Rainbow Tables. http://kestas.kuliukas.com/RainbowTables/

[12] Wikipedia. Comparison of Instant Messaging protocols.
http://en.wikipedia.org/wiki/Comparison_of_instant_messaging_protocols

[13] Wikipedia. Active Instant Messaging client users.

http://en.wikipedia.org/wiki/Instant_messaging

[14] Windows Live Blog. 330 million MSN users. (2006)

http://messengersays.spaces.live.com/Blog/cns!5B410F7FD930829E!73591.en
try?sa=240631081

