BACHELOR THESIS
COMPUTER SCIENCE

h

G .
é.\9 Ny |
orrer

O’*IINe-‘?@

RADBOUD UNIVERSITY

Simulating NXT-robots

Author: First supervisor/assessor:
Giel Besouw Prof. dr. J.J.M. Hooman
5448389 hooman@cs.ru.nl

Second supervisor:
T.C. Nagele, MSc
t.nagele@cs.ru.nl

April 16, 2018

Abstract

High schools put ever more effort in riveting students for a higher education
in science. The high school course NLT offers students a wide variety of sub-
jects to spark interest in chemistry, physics, biology and computer science.
This research intends to support the robotics module by investigating the
possibilities to employ simulation software. We investigated the following
research question: What are the possibilities to use virtual prototyping to
support the NLT Robotics module? The answer to this question lies in soft-
ware called Roboter Simulator. This allows the robot used in the module
to be simulated. The program was tested for accuracy and modified where
necessary according to a list of requirements which was set up in accordance
with an interview conducted with one of the developers of the module.

Contents

1 Introduction
1.1 Preliminaries

2 Research
2.1 Approach
2.2 Planning/Timetable

2.3 Requirements

3 Existing Tools

3.1 Roboter Simulator
3.2 RobotSim
3.3 NXCsimulator.
3.4 Commercial Solutions
3.5 Conclusion

4 Accuracy Experiments

4.1 Powerlevel
4.2 Batterylevelo
4.3 Surface.
4.4 Speed experiment
4.5 Turning experiment

5 Modifications

5.1 Behaviour o
5.2 User Interface
5.3 Networking
54 Rendering Lo
5.5 Changed constants

5.6 Future changes
6 Conclusions

7 Discussion

11
12
14
16
17
17

18
20
22
22
23
25

27
27
28
29
29
29
30

31

33

A Appendix
A1 Variant A
A2 Variant B

B Appendix
B.1 Variant A
B2 Variant B

C Appendix
C.1 Variant A
C.2 Variant B

Chapter 1

Introduction

This research is conducted in the context of the high-school course Natuur,
Leven en Technology, translated literally to Nature, Life and Technology.
Henceforth we abbreviate this to NLT. The course was introduced in 2007
to motivate students to choose for higher education in science. This course
consists of many different modules which teach students about a variety of
subjects in the field of biology, chemistry, math, physics and software science.
To teach students about the field of robotics and ignite their interest in fields
like electronics, programming and mechatronics, the NLT module Robotics
was introduced [3]. In this module LEGO NXT kits are used. These kits
come with a wide variety of parts to give people the freedom to build a large
range of different robots. Parts range from wheels to gears to connection
rods. To make the robot move three servomotors are included. These motors
can operate at variable speeds and they are able to rotate with a precision
of a single degree. It also features a number of different sensors, by default
an NXT-kit contains the following sensors:

e Two touch sensors, to detect collisions or serve as physical buttons.

e One light sensor, to detect different colors and light-levels from a short
distance. This can be used to detect whether the robot is driving over
colored strips or to follow a path.

e One sound sensor, to discern between noise levels and tones.

e One ultrasonic sensor, to use echolocation to determine distance to
objects in front of it.

In the NLT-module, students program pre-built robots which are not
changed. Such a robot has two actuators, one touch sensor, one ultrasonic
sensor and one light sensor installed. The actuators are connected to the
front wheels, with a turning wheel mounted on the back of the robot. The
touch sensor is serves as a bumper. The light sensor is attached behind

the touch sensor facing the floor. In this configuration it can be used to
detect color differences on the floor, which for example can allow the robot
to follow a track. The ultrasonic sensor is mounted on the top of the robot.
Figure 1.1 shows what the robot looks like.

Figure 1.1: Front and rear view of the robot used in the course

Using this robot the students have to do assignments by building a pro-
gram and uploading this to the robot. Students are required to use BricxCC
to program their robot [3, p. 11]. They have to use NXC, a programming
language based on C made suitable for NXT-robots. The assignments start
off simple, examples include: “Make the robot drive in the shape of an
eight.” or ”Make the robot drive to the end of the arena and back”. This is
supported by teaching students how to write understandable and expand-
able code and comments. Exercises get progressively harder; at the end
of the course students are expected to solve problems like: ”Drive around
the course reaching all checkpoints without bumping into any obstacles.”
Especially the harder exercises teach students algorithmic thinking.

The NLT-module Robotics could be improved if robot hardware could
be simulated. Most schools only have a few robots available for a group of
twenty to thirty students. It is obvious that testing takes a lengthy amount
of time. It should also be noted that it is impractical to assign homework
since testing is impossible at home.

In general the simulation of hardware is referred to as virtual prototyp-
ing. Virtual prototyping is defined as simulating the behaviour of a certain
object on a computer. In our study we limit ourselves to the simulation of
NXT-robots. There has been little research on virtual prototyping with re-
gards to educational robotics. Virtual prototyping is mostly used in product
development to develop first versions which can be tested for early design

flaws. These models can reduce development cost as they eliminate the need
for a usually very expensive prototype [1].

Virtual prototyping is also frequently employed in the development of
microcontrollers. In this context it is used as a tool to produce better
quality systems for a couple of reasons. Firstly, by using simulated hardware
beforehand, it can be adapted while software is in development to better
support changing requirements as software changes. In the past, software
had to be modified to compensate for poorly designed hardware, which had
a detrimental effect on overall performance and adaptability. Secondly, the
overall development time can be cut significantly by employing simulated
hardware before developing a physical prototype. For instance, since the
amount of physical robots is limited, testing could be sped up by letting
students test their programs on a computer beforehand. Furthermore, trivial
errors can be spotted and resolved much quicker [2].

When simulating the outside world, it is important to determine how
much accuracy is needed. We define accuracy as how close simulation be-
haviour is to reality. Since the software is intended to run on school com-
puters and students’ laptops, a very intricate simulation environment is
undesirable considering the limited power of the hardware it is running on.
Furthermore, the goal of the simulation is to provide a general idea of how
the robot will behave in the real world, not to verify details. Nevertheless,
essential robot functionality should not be cut in favour of simulation speed.

Developing a new model requires time and effort. In all the aforementioned
areas where virtual prototyping is relevant, model development requires ex-
pertise about the way the real-world equivalent behaves. Let’s take as an
example the microchip in a thermostat. Company C wants to develop a new
microcontroller and decides to use a certain hardware platform. Furthermore
C decides to employ virtual prototyping to speed up development. After a
certain amount of time into development a revolution in electronics allows
microchips to be constructed for a fraction of the price. These chips however,
behave differently from the current ones and as such the model needs to be
rebuilt. As expected someone with advanced knowledge on microcontrollers
needs to construct a new model. While our field of study doesn’t require
very intricate details of the behaviour of actuators and sensors, changing
the robot in ways like moving actuators and sensors, addition, removal or
modification of transmissions or significant modification of weight or size of
the robot invalidates the virtual prototype.

The goal of our research is to either find a viable solution for simulating
NXT-robots in a school environment or we discover that development of new
software is feasible given the means the Robotics course has got. Alterna-
tively we consider this research a success if we can modify existing software
to make it suitable for a high-school environment. Our current hypothesis
points to slight modification of existing software to make simulation for ed-

ucational purposes viable. To achieve this goal we devised a central research
question with subquestions. These are as follows:

What are the possibilities to use virtual prototyping to support the NLT
Robotics module.

a) What should the solution be capable of to support the Robotics mod-
ule?

b) Are there existing solutions which can either be used or from which
certain components could be used in a new program?

¢) How accurate must the simulator be?

1.1 Preliminaries

Here the terminology will be explained in order to understand this paper

Actuators are the motors that make the robot move. The brick is the
central computer for the robot. It handles sensor input, processes instruc-
tions and controls the movement of the actuators. The sensors and actuators
are plugged into so-called ports. The brick has four in-ports, 1, 2, 3 and 4
which are used for sensors and three out-ports A, B and C which are used
for actuators and lights. The brick is shown below in figure 1.2. NXT is
the name of the robotic system. If we refer to the NXT-robot, we mean the
physical robot students use. NXC is the programming language students
write their programs in. This is compatible with the default operating sys-
tem as used in the course. LeJOS is an alternative operating systems to be
used by NXT-robots. Programs for LeJOS [10] are written in Java instead
of NXC.

Figure 1.2: NXT Brick

ACTUATORS

SENSORS

Chapter 2

Research

2.1 Approach

We start with answering the first subquestion, that is, determining the re-
quirements for this project. It’s important to define these as quickly as
possible since this will tell us what the most important aspects of the solu-
tion are.

We shall simultaneously investigate existing programs and see how they
match these requirements. How we proceed depends on what programs
we found. When we find candidate programs we need to test them for their
viability in a school environment. Otherwise development of an early version
of simulation software will be the next step. The goal, however, is not to
develop a fully functioning virtual prototype, we mainly want to test for the
viability of developing such a piece of software.

The requirements are formulated by conducting an interview with one
of the developers of the module to figure out what they find important in
simulation software. We ask teachers because then we can define require-
ments for a simulation environment that is both pleasant to work with and
teaches students the most about the subject matter.

To answer subquestion ¢) we will run an experiment by comparing the
behaviour of the real-world robot with the simulated one. Because we are
dependent on the requirements to define some of our experiment variables,
we can start with testing and writing code used in these experiments after the
requirements are clear. The next course of action is defined by the previous
steps. If we find a program which is sufficient we shall modify it where
necessary. Otherwise a proof of concept will be written. We can include
useful components we found in the other programs in this prototype. The
final steps are finishing the thesis, writing an action plan for future research
following up on this thesis and presenting this thesis.

Table 2.1: Planning

| Activity Deadline Expected Result
1 Find existing software for sim- | 12-11-2017 We will be able to find a num-
ulating NXT-robots ber of existing solutions.
2 Define requirements 26-11-2017 We will be able to make a list
of requirements.
3 Define tests and write pro- | 26-11-2017 Programs and test parameters
grams to determine accuracy will be written. Chapter on
experiment will be written.
4a | Determine accuracy of found | 8-12-2017 We will find the found solu-
solution tion to be accurate
4b | Determine which parts of the | 8-12-2017 -
found solution can be reused
5a | Determine where the program | 17-12-2017 Program is ready for use as-is.
needs to be modified
5b | Write prototype 1-1-2018 Modified program can be
tested in schools.
6 Write action plan for finishing | 1-1-2018 Action plan is ready
the project.
Finish writing thesis 8-1-2018 Final version is ready
Give presentation 17-1-2018 Presentation has been done

2.2 Planning/Timetable

The project planning can be found in table 2.1.

2.3 Requirements

We have conducted an interview with one of the teachers responsible for
the development of the module Robotics to determine what needs to be
implemented to provide the most benefit to the module. We have listed the
requirements for the simulation environment below ordered from most to
least important:

1.

2.

Make the simulator and the real robot accept the same code.

The software must be compatible with Windows PCs.

Make the simulator as accurate as possible. This means a difference
in execution time of at most 10 percent. This is further explained in

chapter 4.

4. Allow lights and sounds to be simulated
5. Allow text messages to be printed
6. Add support for a colour sensor

7. Add support for the next generation of LEGO robots, the EV3 system.

The requirements were determined in such a way that the resulting pro-
gram would help students the most with doing the exercises. To make our
simulator as accurate as possible, we shall take two steps. Firstly we will
conduct the aforementioned experiment to determine where differences in
the behaviour of the real robot and the simulation lie. The second step is
simply changing the program to remove most, if not all, of these differences.
The way sounds and lights will be implemented depends on the amount of
time we have left after completing the previous tasks. If we have plenty
of time we will add functionality to actually show lights and make sounds.
Should this not be the case we will reduce this to messages saying that a
certain light or sound has been activated. Implementation of text messages
will be developed concurrently with sounds and lights since they work the
same way. Support for colour sensors will probably not be developed since it
will require a large investment of time. Adding support for the EV3, which
is the next generation of LEGO robots, is future work.

10

Chapter 3

Existing Tools

We scoured the internet to find software which can simulate NXT-robot
behaviour. We came upon three open source solutions and two closed-source
commercial solutions.

Open source:

e Roboter Simulator [5] [11]
e RobotSim [6]
e NXCSimulator [7]
Closed source:
e Robot Virtual Worlds [4]

e Virtual Robotics Toolkit [9]

11

3.1 Roboter Simulator

Figure 3.1: Roboter Simulator

The first piece of simulation software we came upon is Roboter Simula-
tor [5]. It features 3D graphics with a simple arena made up of blocks. It
allows the users to raise, lower and color these blocks to create an obstacle
course. The light and touch sensors interact with these modified blocks to
create dynamic behaviour. The shape and actuators of the robot are always
the same and sadly Roboter Simulator offers no way for the user to modify
these settings. The developers of this program built the robot like a stan-
dard “car-bot”. Out-port B and C go the left and right wheels respectively.
By default in-ports 1 and 4 are connected to the left and right touch sensors,
in-port 2 is connected to the light sensor and lastly in-port 3 is connected
to the ultrasonic sensor which is attached on the front of the robot. The
simulator allows the user to modify these sensor settings by changing their
type, their rotation in perspective to the brick and whether the sensor faces
forward or downward. Roboter Simulator is integrated with BricxCC to
allow easy uploading of programs to the simulator.

First we shall list pros and cons of this program to get a general idea of
the suitability for the NLT-module.
+ 3D-environment allows for good visualization.

+ The fact that Roboter Simulator is open source will allow for easy
modification of the program or repurposing of components should the
complete package prove to be not up to our requirements.

+ Integration with BricxCC allows for easy testing.

12

+ The layout of sensors is different from the layout of the robot used in
the NLT-module. However this layout can be modified to match our
robot.

— The block-based environment doesn’t allow for precise obstacle courses.
— Sensors do not seem to work.
— There is no colour sensor support.

While this might seem like a convincing list of pros and cons, the lack
of sensor functionality is significant disadvantage since these are essential
for nearly all robot programs. The situation now is that the robot simply
plows into the wall and keeps going even if the programming linked to a
sensor-signal would dictate otherwise. This means that Roboter Simulator
is unsuitable for simulating for NLT-students unless settings can be modified
to make sensor functionality work. Alas only simulating programs which do
not make use of sensors is not very exciting and not very useful considering
the assignments students have to do.

A closer inspection of the source code reveals that the issue Roboter
Simulator suffers from stems from the interpreter. Sensors do work, however
the interpreter present in the simulator ignores sensor-handling the way it
is taught in the NLT-module.

13

3.2 RobotSim

Figure 3.2: RobotSim

=101 x|

The second piece of simulation software we found is RobotSim by Aegidius
Pliiss[6]. It is an open source Java and Python library. It allows for users to
write Java programs for the NXT-brick. The simulation needs to be setup
by writing commands in a simulation class. In this same class, settings
regarding the playing field can also be added. The paragraph below contains
a more detailed explanation on how to setup a simulation. This simulation
class can be executed to render a 2D environment with a robot and a field.
The robot will perform the commands; the actions associated with these
commands are visualized in real-time.

The programming of simulation classes for RobotSim is somewhat different
from how it is done in BricxCC. The simulation classes are written in Java
along with the code the robot needs to run. Another difference is that one

14

does not tell an individual actuator what to do when using RobotSim. To
move the robot one tells it to go forward, left, etc. This combination of
actuators is called a gear. This is different from BricxCC programming
in the sense that BricxCC requires users to control individual actuators to
perform actions. If one would want the robot to turn around its center, you
would program an actuator to go forward while the other turns in reverse.
Sensors are programmed in the same way as in BricxCC except for the
syntax. At some point in the program the sensor is activated, after which
its state can be extracted. In the case of a touch sensor this can be either 0 or
1, reflecting whether it is pressed or not. When programming a RobotSim
simulation the state of a touch sensor can be checked with the isPressed
function.

First we shall list pros and cons of RobotSim to get a general idea of the
suitability for the NLT-module.

+ The arena can be modified easily and extensively; obstacles of many
shapes and sizes can be added and it features the ability to color the
floor.

+ Because of the way the software is built, it is possible to simulate
multiple robots at once.

— This software only simulates programs written for leJOS which means
that the NLT-module needs to be changed considerably to make this
software usable.

— Regardless of the language the original program was written in, to
simulate a program it has to be translated to make use of gears in
order for it work with RobotSim.

RobotSim will not be experimented upon for accuracy since there are
two problems which prevent NXTSim from being a viable solution. Firstly
the code is different from the code that a robot running leJOS accepts. As
was mentioned earlier NXTSim makes use of gears. leJOS does not support
this way of implementing actuators. Even if the course would be changed
to have the robots make use of 1leJOS, students’ code would still need to
be modified to make use of NXTSim. The second problem is the need for
arenas to be built programmatically. The developers of the course would
need to create every arena beforehand, ask of students to program arenas or
teach every NLT teacher how to implement arenas. Every approach has its
disadvantages. The first alternative is very inflexible, the second is highly
likely to fail as students are only just introduced to programming and the
third is impractical and time-consuming.

15

3.3 NXCsimulator
Figure 3.3: NXCsimulator
o =
» €C ¢
L4

Pobor in the center
Draw marks

NXCsimulator for NXCeditor[7] is the third option to simulate NXT-robots.
Just like the first option we discussed, this program is an extension of an
existing editor. NXCeditor supports programming NXT and EV3 bricks in
C, C++ and NXC, the same language used when working with BricxCC.
The simulated robot can be highly customized in the settings menu; the
position and size of the wheels can be modified and the position, type and
orientation of the sensors can be changed. First we shall list pros and cons
of this program to get a general idea of the suitability for the NLT-module.

|
+

The robot is highly customizable
Integration with NXCeditor allows for easy testing.

The usage of bitmaps to represent obstacle courses allows for easy
customization of the arena.

Since NXCeditor is currently not being used by the NXT-module,
some changes have to made. However, the interface and functionality
is largely the same so the transition shouldn’t be too difficult.

This software only runs on Linux or a Linux-based virtual machine.

NXCsimulator is highly unstable

Getting NXCsimulator to run is a significant challenge since it is build
on the Gambas3 [8] platform. This is an object-oriented dialect for BASIC.

16

The difficulties reside in a couple of factors. Firstly Gambas-code cannot
be compiled to run on Windows machines. This presents problems with
rolling out software in schools as most machines run Windows. Secondly
the software is highly unstable, segmentation faults are common.

3.4 Commercial Solutions

We found two commercial NXT simulation software packages. After a short
look we found out that both of these solutions are closed source and rather
expensive. Still, we shall add them to our list for completeness sake. Robot
Virtual Worlds is the first commercial software package we found. It fea-
tures a complete 3D environment and the built-in exercises helps students
learn programming. It is available for multiple robotic platforms [4].

The second commercial package is called Virtual Robotics Toolkit. Vir-
tual Robotics Toolkit comes with a 3D environment just like Robot Virtual
Worlds. The most important feature however is the physics engine in con-
junction with the ability to import robots from LEGO Digital Designer.
This means that any type of robot, not just the Tribot, can be simulated
with this program. This allows for a lot of flexibility with assignments since
the students are not restricted to one type of robot. Sadly this package only
supports standard block-based programs; this is the same type of program-
ming as is used by default for NXT-robots.

3.5 Conclusion

It turns out Roboter Simulator is the only viable solution and is the only one
we will use for accuracy experiments. NXCsimulator simply does not work
on Windows. RobotSim isn’t a fleshed-out program. This is compounded
by the fact that it does not support NXC-code; the primary benefit of simu-
lating robots, namely saving time, is nullified by all the extra steps involved
in running a simulation with RobotSim.

17

Chapter 4

Accuracy Experiments

One of our requirements for this project is accuracy. Our way of getting an
idea of accuracy is with experiments. To determine whether the simulation
software we found online is suitably accurate with regards to the real-life
behaviour of our robots, we shall run a number of tests. These tests are
aimed at the movements of the robot as these are essential to a robot. The
actuators define the movement of the robot. To find out how the movement
of the robot and the simulator differs we need to find out the difference
between actuators of robot and simulation. This difference can best be
measured by looking at the difference in speed. The experiments are set
up so that the robot and simulation both drive the same distance. By
recording execution time we can find out how fast both are. Since we cannot
measure distance with a ruler in the simulator, we have to find which unit
is equivalent to a centimeter in real life. The only value in the simulator
which is comparable to real life is the size of the robot. The simulated robot
is approximately 2 by 2 blocks in size. The entire arena of the simulation is
20 by 20 blocks in size. This equals 10 by 10 robots. The real life version
has a size of 27.5cm. This gives us an arena size of 275cm. Minus the blocks
on all sides a functional arena of two and a half meters remains. In figure
4.1 the arena is shown.

18

Figure 4.1: The arena

We have made two programs and determined a norm for the differences
between the robot and the simulation; the average may differ at most 10%.
The contents of these programs can be found in appendices A and B. Each
program has two variants; one is used by the robot and one is used by
Roboter Simulator. Appendix A is a program which instructs the robot to
drive forward until it hits a wall. Appendix B instructs the robot to spin
around its axis for a set amount of spins. We have made two variants for
the program. Variant A is used by the robot and makes the robot show
the execution time after it has finished running. Variant B is used by the
simulator. The program of appendix C is the same as the one in appendix
B only in the other direction. It makes the robot turn before running the
real test. This is done to position the simulated robot 100cm from the wall
which is the same distance as the real robot drives. These programs serve
to answer the following questions:

e Is the speed of the robot the same as that of the simulated robot?

e Are the turns made by the real robot the same as the ones made by
the simulated robot?

The following environmental conditions will be used to determine the
consistency of behaviour of the real-life robots:

e Different power levels for motor input. See section 4.1.

e Different battery levels, we shall test the robot at full, three-quarter
full, half, quarter full and nearly empty battery life. See section 4.2.

19

e The surface on which the robot is driving. We shall test on a paper
obstacle field, a wood platform and linoleum flooring. See section 4.3.

Our experiments will be performed in multiple iterations. Every iteration
we shall modify the power constant of variant B of our program to correct
inaccuracy found in the previous iteration and run it again. This will be
repeated until the difference between variant A and variant B falls within
the margin of 10%. The goal is to find what value relevant constants have to
be changed to make to Roboter Simulator accurate. This will be explained
more thoroughly in chapter 5. All experiments follow the same pattern.
The program will be run 10 times and the times in the simulator will be
measured with a stopwatch. The times of the robot will be measured with an
internal clock. The median of the 10 executions is taken so any outliers don’t
influence the result. Times are shown in tables; The unit of measurement for
the other results are second:hundredth of a second. Firstly the experiments
on environmental conditions will be shown.

4.1 Power level

We mentioned earlier that we are going to test the influence of different
factors on the behaviour of the robot. First the difference in execution
time will be measured with different power levels. Ideally we will find that
execution time decreases linearly with increase in power. The first run will
determine the execution time for both simulator and robot at a power level
of 50%. This is the same as the power level of other experiments. The
program in appendix A is used. The results are shown in table 4.1. The
unit of measurement for this and the other results are second.hundredth of
a second.

Table 4.1: Power experiment iteration 1
Robot Simulator

06.24 01.66
06.20 01.70
06.25 01.62
06.26 01.56
06.27 01.55
06.26 01.53
06.25 01.68
06.27 01.61
06.30 01.55

Median 06.26 01.62

20

We have reduced the power to 25%. After running the experiment again

we found the results shown in table 4.2.

Table 4.2: Power experiment iteration 2

Robot
12.82
12.94
12.62
13.01
12.97
13.09
13.27
13.03
13.19

Simulator
03.16
03.13
03.42
03.33
03.28
03.37
03.39
03.11
03.23

Median 12.97

03.23

From our results we can see that halving the power about doubles the
simulation time. The real robot takes just over twice as long to complete the
same program, while the simulator uses slightly less than twice the amount
of time. We will now increase the power to 100%. We expect the average
time to be half as long as the time shown table 4.1. The results of this

iteration are shown in table 4.3.

Table 4.3: Power experiment iteration 3

Robot
03.03
03.05
03.04
03.01
03.03
03.04
03.03
03.06
03.04

Simulator
00.72
00.89
00.84
00.86
00.87
00.80
00.98
01.05
00.99

Median 03.03

00.87

We can see from the results that the speed of the robot scales linearly

with power.

21

4.2 Battery level

In contrast to the simulation the real robot runs on a battery. We were un-
able to find literature comparable to this one where the influence of battery
level on actuator performance was tested. Since the simulator’s precision is
one of the most important requirements we want to figure out the whether
the battery level affects performance.

The robots will once again execute the programs described in appendix
A, this time with reduced battery. battery levels are reduced to 75%, 50%,
25% and 5%. At each level we executed the programs and kept track of the
time. The results are shown in table 4.4.

Table 4.4: Battery Experiment
% 50% 25% 5%

06.18 06.27 06.32 06.43
06.22 06.29 06.28 06.39
06.32 06.28 06.28 06.40
06.24 06.31 06.32 06.40
06.23 06.32 06.32 06.43
06.25 06.29 06.33 06.46
06.27 06.24 06.35 06.46
06.26 06.30 06.34 06.50
06.26 06.31 06.36 06.49
Median 06.25 06.29 06.32 06.46

The results show us that the difference between battery levels is negli-
gible. The execution time difference between 100% en 5% is two-tenth of a
second compared to a total execution time of over 6 seconds. This is well
within our margin of 10% and therefore we do not deem it necessary to take
the battery level into account for simulation.

4.3 Surface

As mentioned earlier we wish to measure in what way the surface affects
the performance of the robot. Since no research has been done in this area
with regards to NXT robots a short experiment has been done to find out
whether this influence is significant. We shall execute the program described
in appendix A on the most common surfaces. These are paper, wood and
linoleum flooring. One might wonder in what situation these surfaces come
into play. The arena which the light sensor interacts is printed on paper.
The platforms on which the robots drive are made out of wood; when the

22

paper arena isn’t necessary the surface is thus wood. The floor is used when
testing intermediate programs. The surface for every test other than the
ones described in this section are on wood. Test results are shown in table
4.5.

Table 4.5: Surface experiment results
Paper Platform Floor
06.07 06.03 06.39
06.10 06.03 06.38
06.15 06.06 06.41

06.11 06.04 06.43
06.15 06.06 06.45
06.21 06.06 06.41
06.16 06.09 06.45
06.17 06.06 06.40
06.15 06.08 06.43

Median 06.15 06.06 06.41

As one can see the difference between the paper playing and the wooden
platform is negligible. It easily falls within the 10% accuracy margin. The
difference with the floor is more significant but still falls within the margin.
Hence no modifications are necessary.

4.4 Speed experiment

The results from the experiment show that the robot behaves consistently
under different conditions. We will use the program of appendix A to de-
termine the difference in speed between robot and simulation. The robot
uses variant A while the simulator uses variant B. The robot’s execution
time will be measured with a built-in stopwatch. The results of our tests
are shown in the table 4.6.

23

Table 4.6: Experiment 1 iteration 1
Robot Simulator

06.18 01.90
06.03 01.88
06.23 02.00
06.09 01.81
06.41 01.83
06.06 01.72
06.13 01.91
06.41 01.83
06.82 01.78

Median 06.23 01.83

Since we are seeing considerable differences between our simulation and
robot, we decided it best to reduce the speed of the simulation. On average
the simulation time is a about a third of the real execution time. We shall
therefore cut the power by two-thirds. We redid the experiment with the a
modified constant pwr. Constant pwr in variant B has a value of 16. The
results of the second iteration are shown in table 4.7.

Table 4.7: Experiment 1 iteration 2
Robot Simulator

06.18 05.18
06.03 04.70
06.23 05.01
06.09 05.03
06.41 05.05
06.06 04.92
06.13 04.93
06.41 04.90
06.82 05.07

Median 06.23 05.01

The simulated robot drives about as fast as the real robot. But the norm
of 10% is not achieved. Hence pwr will be changed to 12. The next iteration
of the experiment yielded the results shown in table 4.8:

24

Table 4.8: Experiment 1 iteration 3
Simulator Robot

06.32 06.18
06.37 06.03
06.35 06.23
06.47 06.09
06.31 06.41
06.35 06.06
06.53 06.13
06.40 06.41
06.21 06.82
Median 6.35 06.18

At this point we consider the differences between the real world and
simulation negligible since our norm is satisfied. We now know that we have
to reduce the speed of Roboter Simulator to 25% of its original value. In
the next chapter we will show what constant exactly was changed.

4.5 Turning experiment

We continue with the next part of the experiment. We have to find out
what the difference of turn speed is between the simulator and the robot.
We use the program defined in appendix B and C to test the turn speed.
The program of appendix C is the same as the one of appendix B only in the
other direction. Just as with the first iteration we shall measure and compare
execution time to determine accuracy. This program makes the robot spin
around its axis. We have measured the time it takes for the robot to spin
five times. Just as with the speed experiment the robot’s time is measured
by the robot itself while the simulator is timed with a stopwatch. Both left
turns and right turns were tested. The times are shown in the table below:

25

Table 4.9: Experiment 2 iteration 1
Robot left Robot right Simulator left Simulator right

10.97 11.15 21.70 21.62
10.89 10.71 21.63 21.63
10.92 11.05 21.53 21.53
10.87 10.79 21.57 21.68
10.98 11.07 21.54 21.49
10.99 11.06 21.43 21.57
10.97 11.13 21.67 21.67
10.94 10.89 21.44 21.63
11.01 10.87 21.72 21.67
Median 10.97 11.05 21.63 21.63

As can be seen the real robot spins twice as fast. The turn speed con-
stant in Roboter Simulator was increased by 100% to compensate for this
difference. The exact change is described in the next chapter.

26

Chapter 5

Modifications

In this chapter we shall explain which components Roboter Simulator con-
tains and the changes we shall make to these components to fulfill the re-
quirements. Only parts of the actual Roboter Simulator software will be
considered, i.e. external libraries used by Roboter Simulator will be left
out. We shall first provide a description of the classes that make up the
program. These descriptions feature a short explanation of the function of
the class and whether or not it will be modified. The second part describes
in what way we modified classes; how they used to behave and how they
behave now. We have put these classes in categories; classes categorized as
networking or rendering classes will not be modified. The rendering classes
work as they should and networking functionality is not part of our require-
ments. We have listed these classes for completeness.

5.1 Behaviour

Controller.cpp. This class brings everything together. The camera and
controls are handled by this class. It also defines things like the size of the
arena. The functions defined here make the application behave the way it
should. It holds a variable which defines the turn speed of the robot. If we
find the turn speed to be differing too much from the real-world behaviour
of the robot, we shall modify it in this class.

Environment.cpp This class handles the arena. Although the size of the
arena is defined in Controller the actual functionality is defined in this class.
This class works fine as is, hence we will not change it.

Interpreter.cpp and helper classes. These classes take code as input
to transform these into instructions for the robot. We need to modify these
classes to make the robot and simulator accept the same code.
Motor.cpp. The name implies its function, this class takes care of the
functionality of the motors of the robot. As was mentioned in the chapter
on the experiment, we modified the speed constant to make the real robot

27

and the simulated one equally as fast.

Robot.cpp. This class defines the robot and all of its properties. Properties
such as wheel position, sensor position and general shape. We have modified
this class to make the simulated robot resemble the real robot more.
RobotSpeaker.cpp RobotSpeaker implements sounds which the real robot
can also produce. We do not have to modify this class as there are no specific
requirements with regards to sounds other than basic implementation.
Simulation.cpp. Simulation handles the robot interacting with the envi-
ronment. Things like the robot running into a wall is handled by this class.
We did not modify this class.

SoundBuffer.cpp. This class makes sure the sounds the robot makes are
not played concurrently. As we mentioned in the paragraph on RobotS-
peaker, there are no specific requirements with regards to sound other than
the implementation of it.

SoundController.cpp. This is the controller-class for everything sound-
related. Just as Controller.cpp for the whole program, this class brings all
the sound-classes together and makes it into a functioning whole. Again,
this component will not be modified.

System.cpp. System.cpp is a little less obvious; it simulates the NXT-
brick. On first sight this seems unnecessary because the Brick handles sensor
input and motor output. However the brick is also capable of basic math,
control and data instructions. In short, it is capable of executing basic
computer programs. Since this class emulates the brick which works as it
should, this class will not be modified.

5.2 User Interface

EnvironmentEditor.cpp. This class gives the user the ability to edit the
arena on-the-fly by raising, lowering and coloring blocks. This class might
be needed to be modified to allow users to color the blocks more than just
white, grey and black. Should we have time to implement color sensors,
colored blocks will need to be available as well.
SensorConfigurationScreen.cpp. This class builds part of the UI, namely
the buttons and dials with which to modify type, orientation and direction
of the sensors. Should we have enough time to implement color sensors we
will have to modify this class as well.

UI elements. UIButton.cpp, Ullcon.cpp, UIKnob.cpp and UIRa-
dioGroup are the elements that make up the user interface of the program.
These classes only handle the interaction of the user with these elements,
what happens afterwards is passed to other classes. We will need to add
text messages according to the requirements, so another class needs to be
added to this set.

UserInterface.cpp This class groups the elements mentioned above into

28

a single class. This class executes what should happen when a certain Ul-
element is interacted with. This class needs to be modified to allow for text
messages to be printed on-screen.

5.3 Networking

We will not modify this category of classes.

Client.cpp. This class handles client functionality for networking with this
program.

NetworkInterface.cpp. This is an interface for the networking part of the
software.

NetworkPacket.cpp. This class implements packets for the networking
part of the software.

Server.cpp. This class handles server functionality for networking with
this program.

ServerBrowser.cpp. ServerBrowser implements the window which allows
clients to search for servers running this software.

5.4 Rendering

We will not modify this category of classes.

Drawer.cpp. The Drawer class handles rendering of 3D graphics on screen.
It holds all the necessary code to draw the robot and arena. The program
uses the SDL-library to support 3D graphics, which is used in this class.
EnvironmentDrawer.cpp. This is a support class for Drawer, it handles
drawing the arena.

Model.cpp. Helper class for Drawer. It is used to translate vertex data
suitable for SDL.

RobotDrawer.cpp. This is a support class for Drawer, it handles the
drawing of the robot.

Texture.cpp. Texture handles the texturing of the rest of the 3D environ-
ment i.e. the robot and the arena. It’s a helper class for Drawer.cpp.

5.5 Changed constants

In the previous chapter we performed an experiment to determine the differ-
ences between the movement of the simulator and the robot. The first change
we made to Roboter Simulator is modifying the variable powerToSpeedRa-
tio from 2.5 to 10.0 in Motor.cpp. This had the effect of making the speed
of the robot close to the speed of the simulated robot. As a result from this

29

change the turn speed of the simulation needed to be doubled. We fixed this
by modifying the turnSpeed variable in Controller.cpp from 3.0 to 6.0.

5.6 Future changes

This section serves as a guideline for future changes. In section 2.3 we listed
a number of requirements for the simulation software we found. We shall
describe what requirements still need to be implemented and how we think
this can be done.

The first part we would add are lights and sounds. We prioritize this
requirement because it is the most important unimplemented requirement
behind requirement 1. The reason we choose lights and sounds over re-
quirement 1 is the ease of implementation. Furthermore the overall benefits
of implementing requirement 4 outweigh the benefits of implementing re-
quirement 1. The only reason requirement 1 is not fulfilled is because of the
difference between the way sensors function. Everything else is programmed
the same. We would implement requirement 5 afterwards since this is the
next in the list of requirements. The next requirement to implement is re-
quirement 1. requirement 6 requires a lot of work to implement. To have
a colour sensor the arena must first be able to be coloured something else
than just black, grey and white. After implementing requirement 1, colour
sensors should be implemented.

The authors of the original program[11] stated their opinions on how
they would improve Roboter Simulator. Regarding the scope of Roboter
Simulator at the time of implementation, the authors did not implement
the complete bytecode. This simply means that not all NXC operations
are supported by the simulator. This has became clear in Roboter Simu-
lator when certain ways of interacting with sensors did not function. The
authors mentioned that in future work it an avenue of improvement would
be expanding the bytecode. We agree as it removes the need for students
to change their code to get it to run, albeit it small changes. The differ-
ent way of implementing sensors for Roboter Simulator comes to mind. A
further improvement proposed by the authors is the usage of a more ad-
vanced physics engine. We believe this is not necessary because it serves to
improve the accuracy of the simulator. Accuracy can be assured however,
with modifications to constants specific to the robot, especially considering
the assignments students have to do. Another improvement the authors pro-
pose is adding more features to the arena. They give the example of ramps
to allow the robot to go to a higher point in the arena. For the same reason
as with the improved physics engine, the NLT course does not require these
kind of features.

30

Chapter 6

Conclusions

We set out to answer the question whether we could support the NLT mod-
ule Robotica. This question was supported by a number of sub-questions.
These questions are as follows:

a) What should the solution be capable of to support the Robotics mod-
ule?

b) are there existing solutions which can either be used or from which cer-
tain components could be used in a new program?

¢) How accurate must the resulting simulator be?

The first sub-question was answered by conducting an interview with one of
the developers of the NLT module Robotica. The most important requests
were to assure the simulator is accurate, students’ code doesn’t have to be
modified for the simulator to accept it and the software runs on Windows.
The answers to this question gave us the criteria which helped us answer
the second sub-question. We found that Roboter Simulator is good enough
to be used by students in the module Robotica, albeit with modifications.
We answered the third subquestion by combining an experiment with the
aforementioned interview. We compared the run-time of the simulator with
the robot’s run-time. In the interview we agreed upon a margin of 10 per-
cent. At first the run-times differed by a factor of three. We modified
Roboter Simulator to reduce the difference and reran the experiment until
the difference fell within the margin.

In the end we succeeded in fulfilling the most important requirements
to a large degree, in this sense we can say we are able to support the NLT-
module with simulation software. We have summed up all requirements
below with a short review on the extent to which each requirement is ful-
filled.

31

1. Make the simulator and the real robot accept the same code.
We mentioned earlier that the way students program sensors is different for
the simulator and the real robot. In short there are two ways to program
the sensor but one way does not work in conjunction with Roboter Simu-
lator. This is the only difference between the code that is accepted by the
NXT robot and the simulation. Still, strictly speaking the requirement is
not completely fulfilled.

2. The software must be compatible with Windows PCs. This
requirements is fulfilled as Roboter Simulator runs natively on Windows
machines.

3. Make the simulator as accurate as possible. This means a
difference in run-time of at most 10 percent. We ran a series of
experiments to determine how accurate Roboter Simulator was. Roboter
Simulator required changes to a number of constants in order to have it

fulfill the norm. These were succesfully implemented; the requirement is
fulfilled.

4. Allow lights and sounds to be simulated. As was mentioned in
the section on the action plan, it proved to be very difficult to get the
source-code to compile. This resulted in not having enough time to imple-
ment additional features. As such this requirement is not fulfilled.

5. Allow text messages to be printed. See requirement 4.

6. Add support for a colour-sensor. See requirement 4.

7. Add support for the next generation of LEGO robots, the EV3
system. This requirement is deemed the least important. The developer

of the Robotica course mentioned EV3 support doesn’t become relevant in
the near future. Because of this the requirement is not fulfilled.

32

Chapter 7

Discussion

Here we will discuss what we learned from this project, whether we deem
the project to be a success and how we would improve this kind of research
in the future.

Modifying open source software was not as easy as we initially thought.
Getting the source code to compile was a challenge but with the help from
the initial developers of Roboter Simulator we managed to implement some
of the proposed changes. We implemented fewer features than we expected
to. As mentioned earlier, modification of existing software was far more
time-consuming than we initially thought.

The results from our experiment were not as we initially expected. The
original version of the simulator moved three times as fast as the real robot.
We do not know why the original creators tuned the simulation to be this
much faster. It was equally as surprising after modifying simulation speed
to better match reality, that the turn rate of the simulated robot was slower.
A possible explanation might be that the robot on which the simulation is
based, had it’s wheels further apart than the robot used in the course.

There are certain limitations to our research. Although we consider it a
moderate success with regard to our requirements, we have done no research
on the actual usability by high-school students.

We suggest follow-up research either encompass implementing the re-
maining requirements or rolling out the program in schools to see how it
performs. The latter will verify whether fulfillment of the requirements
gives us an adequate program or if the requirements prove to be insufficient.
We believe it’s best to stick with Roboter Simulator since it gives us a strong
foundation to work with. The advantages are that it runs on Windows, is
integrated with BricxCC and has a 3D environment. Another alternative
is to build a program from scratch, however this requires a lot more effort
for things Roboter Simulator already has. Building on any of the other pro-
grams is suboptimal because of the difficulties presented by their respective
platforms.

33

Bibliography

[1] S.H. Choi, A.M.M. Chan, A virtual prototyping system for rapid product
development, 1994, Computer-Aided Design Volume 36, Issue 5, April
2004, Pages 401-412.

[2] Vijay K. Madisetti, Thomas W. Egolf, Virtual prototyping of Embedded
Microcontroller-Based DSP Systems, Georgia Institute of Technology,
1995, Journal IEEE Micro archive Volume 15 Issue 5, October 1995,
Page 9-21

[3] Johan Schuurbiers, Rachel Crane, Jozef Hooman, Lotte van de Ree
Robotica NLT-module, Radboud Universiteit Nijmegen, 2013

[4] Robot Virtual Worlds: http://www.robotvirtualworlds.com/

[5] Roboter Simulator: schuelerlabor.informatik.rwth-aachen.de/roboter-
simulator

[6] Aegidius Pluess’ RobotSim: http://www.aplu.ch/home/apluhomex.jsp?site=75

[7] Daniele Benedettelli’s NXCsimulator: http://www.thenxtstep.com/2012/03/nxc-
simulator.html

[8] Gambas3: http://gambas.sourceforge.net
[9] Virtual Robotics Toolkit: https://www.virtualroboticstoolkit.com/
[10] LeJOS Website: http://www.lejos.org/

[11] Kammer T., Brauner P., Leonhardt T., Schroeder U. Simulating LEGO
Mindstorms Robots to Facilitate Teaching Computer Programming to
School Students. In: Kloos C.D., Gillet D., Crespo Garcia R.M., Wild F.,
Wolpers M. (eds) Towards Ubiquitous Learning. EC-TEL 2011. Lecture
Notes in Computer Science, vol 6964. Springer, Berlin, Heidelberg pp
196-209 (2011)

34

Appendix A

Appendix

A.1 Variant A
int pwr = 50;
task main(){

long tl1 = CurrentTick();
SetSensorTouch(S1);
while(!SensorScaled(S4)){
SetSensorTouch(S4) ;
OnFwd (OUT_BC, pwr) ;
}
NumOut (60,LCD_LINE1,CurrentTick()-t1);
0ff (OUT_BC) ;
Wait (10000) ;

A.2 Variant B
int pwr = 50;

task main(){
SetSensorTouch(S1);
OnFwd (OUT_C, pwr) ;
Wait (140) ;
while(!SensorScaled(S4)){
SetSensorTouch(S4) ;
OnFwd (OUT_BC, pwr) ;

35

Appendix B

Appendix

B.1 Variant A
int pwr = 50;

task main()

{
long t1 = CurrentTick();
RotateMotor (OUT_B, pwr,9000) ;
RotateMotor (QUT_C, pwr,-9000) ;
NumOut (60,LCD_LINE1,CurrentTick()-t1);
0ff (OUT_BC) ;
Wait (10000);

B.2 Variant B
int pwr = 50;

task main()

{
RotateMotor (QUT_B, pwr,9000) ;
RotateMotor (QUT_C, pwr,-9000) ;
0ff (OUT_BC) ;

}

36

Appendix C

Appendix

C.1 Variant A
int pwr = 50;

task main()

{
long t1 = CurrentTick();
RotateMotor (OUT_B, pwr,-9000) ;
RotateMotor (QUT_C, pwr,9000) ;
NumOut (60,LCD_LINE1,CurrentTick()-t1);
0ff (OUT_BC) ;
Wait (10000);

C.2 Variant B
int pwr = 50;

task main()

{
RotateMotor (OUT_B, pwr,-9000) ;
RotateMotor (OUT_C, pwr,9000) ;
0£ff (OUT_BC) ;

}

37

