
Bachelor thesis
Computer Science

Radboud University

Ascon: An attempt in NEON on
the Cortex-A8

Author:
Noël Bangma
s4433939

First supervisor/assessor:
Dr. Peter Schwabe

peter@cryptojedi.org

Second assessor:
Prof. Dr. Lejla Batina

lejla@cs.ru.nl

April 18, 2018

Abstract

We notice that the critical function of the authenticated-encryption algo-
rithm and CAESAR[1] candidate Ascon[10] is the permutation function.
While there exists a general optimization for 32-bit architectures utilizing
the bit interleaving technique, we attempt to improve performance on the
Cortex-A8 using the NEON instruction set extension. We conclude that our
implementation is substantially slower than the nonspecific 32-bit optimiza-
tion, and argue this is because of costly rotates and because Ascon is not
well-suited to NEON’s strong points for crypto.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Ascon . 5

2.1.1 Initialization . 5
2.1.2 Finalization . 6
2.1.3 Permutation function 6
2.1.4 Security claims . 7

2.2 NEON architecture . 7
2.2.1 Register layout . 8
2.2.2 ALU and Load/Store Unit 8

2.3 Ascon128v12 optimized for 32-bit architectures 9

3 Implementation 10
3.1 Bottleneck . 10
3.2 Lower bound . 10

3.2.1 Initialization and finalization 11
3.2.2 Addition of round constant 11
3.2.3 Substitution layer . 11
3.2.4 Diffusion layer . 12
3.2.5 Combining results . 12

3.3 Deviation from lower bound 12
3.3.1 Diffusion layer . 13
3.3.2 Substitution layer . 13
3.3.3 Transposing into different layers 14
3.3.4 Round-constant preparations 15

4 Results 17

5 Related work 20
5.1 Other Ascon implementations 21

1

A Appendix 25
A.1 Single-static assignment translation of substitution layer . . . 25
A.2 Permutation function . 26
A.3 Substitution layer and addition of round constant 29
A.4 Diffusion layer . 30

2

Chapter 1

Introduction

CAESAR [1] (Competition for Authenticated Encryption: Security, Appli-
cability and Robustness) is a competition for authenticated-encryption algo-
rithms, with its first round started in 2014. Ascon [10] is one of the competi-
tors. Ascon is designed by Dobraunig, Eichlseder, Mendel and Schläffler of
Graz University of Technology. The algorithm is designed to be lightweight
and provide 128 bits of security. On the 5th of March of 2018, it was an-
nounced that Ascon was one of the seven finalists of the competition.

Currently, the fastest implementation of Ascon on the Cortex-A8 is an
implementation optimized for 32-bit systems. This implementation utilizes
bit interleaving for inexpensive rotates on 64-bit words whilst using 32-bit
instructions [6]. In the past years, multiple studies have shown that the
NEON instruction set can be used to great effect. [5] [15] [7]. We try to
improve performance by using the NEON extension on the Cortex-A8. This
allows us to compute on 128-bit registers.

We find that the critical function within the Ascon algorithm is the
permutation and therefore optimize that function. While doing so, there
are a few important points to consider:

• The balancing of the different processing units of the Cortex-A8.

• Dual issue cycles where possible to essentially execute instructions for
free.

• Utilizing the 128-bits instructions of the NEON instruction set where
possible.

• Prevent latency between instructions as much as possible by maximiz-
ing the amount of instructions between two dependent instructions, so
that the processing unit does not stall.

We find that our implementation is substantially slower than the general
32-bit optimization, but still twice as fast as the reference implementation.

3

This is mainly because Ascon is not well suited for the NEON instruction set.
For example, NEON lacks a rotate instruction and Ascon has 10 rotations in
the non-linear layer. Furthermore there is little use for dual issue cycles, and
due to data cohesiveness a large number of instructions in the substitution
layer still operates on 64-bit vectors.

4

Chapter 2

Preliminaries

2.1 Ascon

Ascon [10] is a family of lightweight authenticated-encryption algorithms
designed for the CAESAR [1] competition. In this thesis, we will focus on
Ascon12,6-128-64, which will be referred to as ”Ascon”. While parameters
such as the key size are not set in stone, a key size of 128 bits is recommended
as well as a public nonce of 128 bits. For more information about the default
configuration, we refer to the Ascon specification document. All images used
below are also taken from the submission paper [10].

Ascon utilizes a sponge-based mode of operation. For encryption, a 320-
bit state is initialized with an IV, the key and public nonce. After 12 rounds
of the permutation function, the algorithm starts with processing associated
data, denoted as Ax. This process only manipulates the S-box. Ciphertext
is extracted at the same time as the plaintext is processed, block by block.
At last, a message tag of 128 bits is added.

IV‖K‖N 320
pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

As seen above, it is clear that Ascon has very little overhead. Only two
base permutations are needed: one for initialization, and one for finalization.

2.1.1 Initialization

The 320-bit state is initialized by appending the IV with the secret key K
and the used public nonce N. As per default configuration, the secret key

5

and public nonce have a combined length of 256 bits. The IV makes up the
remaining bits by describing the configuration of Ascon used via the key size
k, rate r, initialization and finalization round number a, and intermediate
round number b. The 32 remaining bits of the IV are set to 0. As per default
configuration, we have a key size of 128 bits, a rate of 64 bits, initialization
and finalization round number 12, and intermediate round number 6.

IV = k || r || a || b || 0288−2k

IV = 16 || 8 || 12 || 6 || 0288−2k

S = IV ||K ||N

Then, a rounds of the permutation function are applied to the state. Finally,
the last 16 bytes of the resulting state are xored with the key to complete
the initialization.

2.1.2 Finalization

After encrypting all associated data and plaintext, the derived state is xored
with the secret key K. The resulting state is manipulated by a rounds of the
permutation function, after which the message tag is produced by xoring
the final k bits of the state with K.

S = pa(S ⊕ (0r ||K || 0c−k))

T = dSek ⊕K

As a result, the ciphertext has length |P |+ |T |.

2.1.3 Permutation function

The permutation function of Ascon consists of an addition of a round con-
stant, a non-linear layer and a linear layer. For all layers, the 320-bit state
is divided into five words x 0 through x 4 of 64 bits each. The addition of the
round constant operates only on x 2. The figure below shows how each word
is manipulated by the substitution layer.

x0

x1

x2

x3

x4

⊕

⊕

⊕

5
5

5
5

5

�

�

�

�

�

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

5

x0

x1

x2

x3

x4

6

The linear layer shown below diffuses 64-bit words by mixing the bits
within each word.

Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

2.1.4 Security claims

Ascon claims to offer the following security:

Table 2.1: ASCON security claims

Requirement
Security in bits

ASCON-128 ASCON-128a

Confidentiality of plaintext 128 128

Integrity of plaintext 128 128

Integrity of associated data 128 128

Integrity of public message number 128 128

As most authenticated-encryption algorithms, Ascon leaks the length of
the plaintext. The length of the ciphertext is simply the length of the plain-
text with the message tag appended. If interested in the security analysis
of Ascon, there are numerous papers available. For example, there is an
analysis of Ascon’s security claims made in their submission paper [16], a
general cryptoanalysis of Ascon [9] and an analysis of the security of Ascon
against state-recovery attacks [11]. The designers of Ascon list most relevant
literature, both on security and implementation, on their website 1.

2.2 NEON architecture

Because the algorithm will be optimized for the Cortex-A8, we will specif-
ically delve into the NEON implementation of this microprocessor. NEON
is an SIMD (Single Instruction Multiple Data) extension for the ARM ar-
chitecture. SIMD means that with a single instruction, the same operation
can be performed on all elements of a vector. These elements are of course

1http://ascon.iaik.tugraz.at/analysis.html

7

also written to a vector, resulting for very fast data manipulation if the un-
derlying data layout allows it. To illustrate this, the VADD instruction with
128 bit operands is able to perform 16 additions of 8-bit integers in a single
cycle.

2.2.1 Register layout

The NEON architecture on the Cortex-A8 houses a total of 2048 bits in
registers. It consists of 16 registers of 128 bits q0 through q15. However,
these registers are made up of 32 registers of 64 bits d0 through d31 in the
way that d0 and d1 together represent q0. Finally, these 32 registers are
separated into 64 registers s0 through s63.

Table 2.2: How NEON-registers share memory space.

q0 128-bit register

d0 d1 64-bit registers

s0 s1 s2 s3 32-bit registers

It is important to note that for most instructions, a singleword operation
will take the same amount of NEON-cycles as a quadword operation. To
fully utilize the NEON unit, it is crucial to use as much 128-bits instructions
as possible.

2.2.2 ALU and Load/Store Unit

The NEON implementation consists of both an arithmetic unit and a load/-
store unit. Both operate on vectors with a maximum size of 128 bits. These
units execute independently of each other. Because of this design, we can
create so-called ”dual issue cycles” by using both units in a single NEON cy-
cle. Besides dual issuing the ALU and the Load/Store unit, we can execute
a regular ARM instruction at the same time as a NEON instruction. We do
not find much use for the dual issue capability: NEON operates on a small
state and we have no need for spills. However, we can still use it to copy the
content of registers with a byte permute instruction whilst also executing
an arithmetic instruction. This enables us to use instructions operating on
128 bits more than before, because we can move data around for free using
byte permute instructions such as the vector-extract instruction.

8

2.3 Ascon128v12 optimized for 32-bit architectures

Ascon comes with multiple implementations. There are reference implemen-
tation available in C, Java and Python. For C, there also exists implemen-
tations optimized for 32-bit systems and 64-bit systems. When compared
to the reference implementation, the 32-bit optimized version is about three
times as fast on the Cortex-A8. A large part of the increase in performance
is because of a technique called bit interleaving, which can be used to ef-
fectively compute rotations on 64-bit words with 32-bit registers. Consider
64-bit word W stored in 32-bit registers U and V, where U contains W [i], i
mod 2 = 0 and V contains W [i], i mod 2 = 1. Then, rotating W by
even number 2x bits means rotating both 32-bit words with x. Rotating W
by odd number 2x + 1 is slightly more difficult. Then, U = ROT (V, x + 1)
and V = ROT (U, x). This principle is further outlined in a general sense in
the Keccak implementation overview [6]. Since rotates of 64 bits with 32-bit
registers are otherwise expensive and Ascon features 10 rotates in the per-
mutation function, the gain in performance heavily outweighs the overhead
caused by setting up this layout.

9

Chapter 3

Implementation

3.1 Bottleneck

As explained in Section 2.1, Ascon has small overhead. This means that to
optimize the algorithm, one needs to only enhance the performance of the
permutation function. This function accounts for over 90% of CPU when a
kilobyte of associated data and message is processed.

Listing 3.1: Permutation function

void permutation(u8∗ S, int start , int rounds) {
for (i = start ; i < rounds + start ; i++) {

// addition of round constant
x2 ˆ= ((0xfull − i) << 4) | i ;
// substitution layer
x0 ˆ= x4; x4 ˆ= x3; x2 ˆ= x1;
t0 = x0; t1 = x1; t2 = x2; t3 = x3; t4 = x4;
t0 =˜ t0 ; t1 =˜ t1 ; t2 =˜ t2 ; t3 =˜ t3 ; t4 =˜ t4 ;
t0 &= x1; t1 &= x2; t2 &= x3; t3 &= x4; t4 &= x0;
x0 ˆ= t1 ; x1 ˆ= t2 ; x2 ˆ= t3 ; x3 ˆ= t4 ; x4 ˆ= t0 ;
x1 ˆ= x0; x0 ˆ= x4; x3 ˆ= x2; x2 =˜ x2;
// linear diffusion layer
x0 ˆ= ROTR(x0, 19) ˆ ROTR(x0, 28) ;
x1 ˆ= ROTR(x1, 61) ˆ ROTR(x1, 39) ;
x2 ˆ= ROTR(x2, 1) ˆ ROTR(x2, 6) ;
x3 ˆ= ROTR(x3, 10) ˆ ROTR(x3, 17) ;
x4 ˆ= ROTR(x4, 7) ˆ ROTR(x4, 41) ;

}
}

3.2 Lower bound

The permutation loop consists of three layers: the addition of round con-
stant, the substitution layer and the diffusion layer. Besides the actual loop,

10

it is also necessary to load and store the state to NEON registers.
The calculated lower bound depends on a number of factors. First of

all, we assume that there is no latency. This means that for all instructions,
the required source registers are available when the instruction is executed.
Thus, no instruction will stall. Secondly, both the ALU and the load/store
unit will be running in parallel at all times, potentially cutting the minimal
amount of cycles in half. Lastly, we assume that all data is in the optimal
location for 128-bit instructions when possible.

3.2.1 Initialization and finalization

The function is given a 320-bit state as argument. Before executing the
loop, we need to load the state to NEON registers. This takes 4 cycles
of the load/store unit. We also need to prepare the addition of the round
constant: we store a constant 0xFU to an ARM core-register and make sure
the d0 register consists of only zeroes. The regular ARN instructions and
single NEON arithmetic instruction used for this can be executed in parallel,
and thus do not influence the lower bound. Finally, we need to push the
callee NEON registers. For finalization, we just need to store the state to
r0, reverse the registers again and pop the callee registers. This also takes
7 cycles of the load/store unit.

3.2.2 Addition of round constant

The addition of the round constant is made up of four parts: subtracting
the round number from a constant 0xFU, shifting the results by 4 bits to the
left, performing a logical OR with the round number and finally an XOR
with x2 - bit 129 to 192. Bar the final XOR, we can use regular ARM-core
instructions for this. However, moving the ARM-core register to a NEON
register to perform the XOR on takes 2 full cycles of the load/store unit.
The final XOR takes 1 cycle of the ALU.

3.2.3 Substitution layer

The substitution layer is made up of 22 arithmetic operations on 64-bit
operands: 11 XORs, 6 INVs and 5 ANDs. All of these instructions take
1 cycle to execute. However, with NEON we can potentially halve the
amount of instructions by using 128-bit operands instead. This comes down
to a minimum of 6 XORs, 3 INVs and 3 ANDs performed by the ALU. By
combining the remaining 64-bit XOR with the required XOR in the round
constant, we can theoretically use a 128-bit instruction for those as well.

11

3.2.4 Diffusion layer

The diffusion layer consist of 10 rotates by an immediate, and 10 XORs.
Unfortunately, the NEON instruction set does not include a rotate instruc-
tion. This means that for every rotate, we use two shifts and an XOR. This
comes down to 20 shifts and 20 XORs in total. NEON only allows shifting
on 128-bit registers if both 64-bit words are shifted by the same value, so
those 20 shifts will take 20 cycles. However, the 20 XORs can potentially
be reduced to 10 XORs on 128-bit operands. In total, this layer takes a
minimum of 30 cycles of the ALU. We also note that none of the rotations
used are by multiples of 8, which means that we are unable to use a byte
permute instruction to imitate a shift.

3.2.5 Combining results

We have seen that ALU instructions dominate both regular ARM instruc-
tions and load/store instructions. Because of that, we will disregard all
ARM and almost all load/store instructions: while we assume there is no
latency, storing the state will always be the final instruction and requires its
final source register to store in its 3rd cycle of execution. Thus, storing the
state still takes at least 3 cycles because these registers are only available
when the ALU is done with the permutation. Similarly, loading the first
register with the first 64 bits of the state also takes 3 cycles. During those
3 cycles, no arithmetic instruction can be executed because they all depend
on the state.

With that in mind, for each iteration of the loop we conclude a lower
bound of 45 cycles: 2 for moving an ARM core register to a NEON register,
12 for all operations needed for the addition of the round constant and
substitution layer, and 30 cycles for the diffusion layer. The overhead, that
is the initialization and the finalization, takes a minimum of 6 cycles. This
comes down to a total lower bound of 6 + 45n, with n being the amount of
rounds performed. This means 274 cycles per 6 rounds of permutation, and
thus processing a byte every 34.25 cycles, bar non-loop overheads.

3.3 Deviation from lower bound

It should not be a surprise that the implementation deviates from the lower
bound. Some latency is unpreventable because instructions depend on each
other. An example of this is VEOR q4, q4, q3 VMVN q5, q4. Register q4

is needed for the second instruction, but the result of the first instruction
is not yet available when required. This causes the ALU to stall for several
cycles.

12

3.3.1 Diffusion layer

Another example is the diffusion layer. In theory, the diffusion layer can be
executed with 10 XORs and 20 shifts with every XOR being operated on
two 128-bit registers. In practice, this is not possible due to the latency of
the shift operations. Consider the following snippet:

Listing 3.2: Single rotate

VSHR.U64 d28, d1, #19
VSHL. I64 d29, d1, #45
VSHR.U64 d30, d1, #28
VSHL. I64 d31, d1, #36
[. . .]
VEOR q14, q14, q15
VEOR d26, d28, d29
VEOR d1, d1, d26

It is obvious that the results of all shifts can be combined with a single XOR
instruction on 128-bit operands, however the other two XORs are dependent
on each other, so they cannot be executed at the same time with a single
instruction. In practice, this means that we need 7 instructions to calculate
a 64-bit word in the diffusion layer, versus 6 instructions we calculated in
the above section: A net loss of 5 cycles per round. However, rather than
calculating a single 64-bit word at a time, we can of course use a 128-bit reg-
ister for the final XOR and perform two assignments in one instruction. This
makes it possible to do 2 assignments in 13 cycles, losing only 1 cycle per two
assignments. Another slight improvement we are able to do when we exe-
cute two assignments at the same time, is combining the intermediate XOR.
However, since the required operands are in adjacent registers, we need to
duplicate 3 registers to be able to combine the instructions. Due to the
fact that we still need to wait on the intermediate computations, we frankly
only have enough ALU cycles to burn to do this once without introducing
additional latency. Ultimately, this means we can execute the diffusion layer
in 32 cycles. See Appendix A.4 for the final isolated implementation of the
diffusion layer.

3.3.2 Substitution layer

The substitution layer is a whole different beast altogether. Contrary to the
diffusion layer, data is much more entangled. To put into perspective when
which data is needed and what data an instruction depends on, we rewrote
the atomic 64-bit operations, as outlined in the reference C implementation,
to single static assignment form, which you can see in Appendix A.1.

This expression of the arithmetic operations was then used to try to
create an order of instructions with as little latency as possible, whilst com-
bining as many operations as possible to 128-bit instructions with the help

13

of byte permutation instructions to move data around. To improve per-
formance, the addition of the round constant was mixed in as well. The
individual result can be seen in full at Appendix A.3. Of course, the actual
code cannot be easily compared to the single static assignment form. The
assembly was written with a couple of things in mind:

• Create a register alignment which allows as much 128-bit instructions
as possible.

• Try to allow two instructions between computing the value of register
and using it elsewhere again to prevent the stalling of the ALU.

• Move data around as soon as it is available using the VEXT instruc-
tion. VEXT takes elements from two source registers and outputs it to
a destination register, so using VEXT with identical registers makes
it a duplicate instruction.

• Allow a fluent transition from and to the diffusion layer, eliminating
latency between the two phases and using the transition to prevent
latency at the end of the substitution layer.

• Dual issue cycles where feasible.

3.3.3 Transposing into different layers

What is not shown in A.3 is how the substitution layer transposes into the
diffusion layer. Because the last computations are highly dependent on each
other, we combat the latency this would cause by starting to shift the final
values of the substitution layer as soon as they are available for use.

14

Listing 3.3: An abstract image of transition between substi-
tution and diffusion.

.looptop:

VEOR d14, d1, d5

VEXT.64 d6, d2, d2, #0

VMOV d0[0], r12

VEOR d8, d3, d0

VEXT.64 d7, d4, d4, #0

[...]

VMVN d3, d15

VEOR d5, d9, d2

VEOR q3, q3, q7

VEXT.64 d4, d7, d7, #0

VSHR.U64 d13,d3,#6

VSHL.I64 d15,d3,#58

VEOR d1, d14, d5

VEXT.64 d2, d6, d6, #0

END OF SUBSTITUTION

VSHR.U64 d12, d3, #1

VSHL.I64 d14, d3, #63

[...]

VEOR d1,d1,d26

VEOR q1,q1,q3

VEOR q2, q2, q15

[update loop var]

.bne looptop

VSTM.64 r0, {d1-d5}

Furthermore we ensure that no shifts of the diffusion layer stall, and that
the first instructions of the substitution layer are not dependent on the last
instructions of the diffusion layer. Coincidentally, we also compute them in
the favorable order for storing when we exit the loop with as little latency
as possible.

3.3.4 Round-constant preparations

All of the NEON-registers used during the permutation function are loaded
with a result of an arithmetic operation or a byte permutation, bar the
register used for the round constant. Because the round constant only uses
8 bits of the 64-bit register and the usual NEON load instructions would fill
the whole register, we specify only to load a portion of the register. As a
result, we need to wipe the remainder of this register before we use it. At
the very beginning of the permutation, the load/store unit is saturated with

15

loading the state. We use this time to dual issue clearing the d0 register
with an arithmetic instruction.

16

Chapter 4

Results

All of the algorithms participating in the CAESAR competition have been
benchmarked using the SUPERCOP toolkit [2]. This is a framework used
to benchmark all sorts of crypto algorithms, on all sorts of devices, provided
by eBACS [3]. Because previous versions of Ascon have also been bench-
marked on the Cortex-A8, as well as other finalists, it makes sense to use
this framework because we can directly compare the outcome to previous re-
sults. We used the latest release of SUPERCOP at time of writing, which is
the version released 18-12-2017. The full source code of our implementation
is available on GitHub 1.

SUPERCOP benchmarks all implementations of an algorithm against
each other, but also against the same implementation with different compil-
ers and compiler flags. The compiler and compiler flags chosen by SUPER-
COP for our implementation are gcc -mcpu=cortex-a8 -mfloat-abi=hard

-mfpu=neon -O3 -fomit-frame-pointer, for the reference implementation
they are clang -O3 -fwrapv -march=armv7-a -mfloat-abi=hard

-mfpu=vfpv3-d16 -fomit-frame-pointer -Qunused-arguments, and for
the implementation optimized for 32-bit systems (henceforth opt32) they
are gcc -fno-schedule-insns -O2 -fomit-frame-pointer. The gcc ver-
sion used was 9.4.2, for all implementations.

We publish the same categories in Table 4.1 as the categories listed on
eBAEAD [4]. We use the same definition for ’long’ as eBAEAD: 1/1920
of the difference in cycle counts between handling a 2048-byte message and
handling a 128-byte message. Furthermore ”x + y encrypt” refers to en-
crypting a message with x bytes of associated data, and y bytes of message.
The results are available in Table 4.1.

We note that our implementation is substantially slower than opt32, yet
still considerably faster than the reference implementation. This is mainly
because we are unable to utilize the NEON core’s potential as much as we
would like to:

1https://github.com/NoodleSkadoodle/Ascon128v12-NEON

17

• All of the rotates operate on 64-bit vectors, and furthermore there is no
rotate instruction in NEON. Thus, every rotate takes at least 3 cycles
using shifts and an XOR. As comparison, due to the bit-interleaving
technique the same rotation can be performed using 32-bit instructions
for free, as part of an arithmetic instruction.

• We find little use of dual issue cycles. None of the rotates are with mul-
tiples of 8, forcing us to use arithmetic instructions for all of them. We
only use dual issue cycles to duplicate a register’s content to another
register, to be able to use instructions on 128-bit operands.

• Even with duplicating registers, there are still plenty of instructions
that operate on 64-bit vectors. This is mainly because of the data
cohesiveness. When we are unable to use 128-bit instructions without
introducing additional latency, we are better off not using the 128-bit
instruction at all.

Furthermore, it is also important to consider the other point of view: Per-
haps our implementation is not typically slow, opt32 is just tremendously
fast. We have calculated a lower bound of 34.25 cycles/byte, and opt32 out-
performs even this lower bound. It would be interesting to try to combine
both implementations, using regular ARM instructions for the rotates using
bit interleaving, whilst using NEON for the substitution layer. However,
because loading and storing from ARM-core registers to NEON registers is
very expensive, and thus we do not think that this would improve perfor-
mance over either a pure NEON or a pure regular ARM implementation.

18

Table 4.1: Benchmarking results

Ascon128-Ref Ascon128-Neon Ascon128-opt32

long+0

encrypt 91.29 54.73 29.51

decrypt 91.41 55.21 30.76

forgery 91.41 55.22 30.75

long+long

encrypt 91.49 54.87 32.13

decrypt 96.29 59.05 32.69

forgery 91.26 55.36 32.70

0+long

encrypt 91.67 54.93 34.78

decrypt 101.00 62.48 34.62

forgery 91.01 55.50 34.63

1536+0

encrypt 94.29 56.79 30.89

decrypt 94.49 57.26 30.19

forgery 94.44 57.23 32.16

1536+1536

encrypt 93.00 55.87 32.83

decrypt 97.76 59.97 33.42

forgery 92.68 56.36 33.42

0+1536

encrypt 94.18 56.69 35.98

decrypt 103.60 64.29 35.91

forgery 93.45 57.60 35.90

64+0

encrypt 163.28 103.78 62.66

decrypt 165.67 103.78 64.69

forgery 163.90 103.28 64.53

64+64

encrypt 128.82 79.31 49.43

decrypt 133.28 83.52 50.02

forgery 126.48 79.05 49.86

0+64

encrypt 152.03 97.56 64.25

decrypt 163.44 105.75 65.13

forgery 149.69 96.72 64.88

19

Chapter 5

Related work

On the 5th of March 2018, the finalists of the CAESAR competition were
announced. These are ACORN, AEGIS, Ascon, COLM, Deoxys-II, MORUS
and OCB. For all candidates, benchmarks are made available online [3]. The
comparison between those algorithms, Ascon-opt32 and our implementation
is shown in Table 5.1. When multiple parameter configurations where avail-
able, we chose the primary recommendation listed in the submission docu-
ments. For example, the MORUS family has 3 configurations which differ
in key size and state size. We compare with MORUS-1280-128, because it
is the primary recommendation. Furthermore, since the online results were
not completely up to date and sometimes incomplete, we ran the bench-
marks using the SUPERCOP suite locally. Both OCB and COLM were
not compatible with the framework and did not produce results. For OCB,
benchmarks were available online but with large variance. Because of this
unreliability, we chose not to include those results. As for COLM, no results
were available online and this algorithm was thus also omitted. Our data is
at the time of writing not yet included online, but the data dump is made
available on GitHub 1.

Of the 6 other finalists, only MORUS [13] has an implementation opti-
mized for NEON. This increased their performance, compared to the refer-
ence implementation, by 50% [8]. Despite the lack of existing implementa-
tions among the finalists, there are various papers that suggest crypto could
benefit from using the NEON extension [15] [5] [7].

Our implementation of Ascon is quite slow compared to other algorithms.
With short messages, like the 64+0 category, it performs very well and is
only slower than MORUS. However, when the size of data increases, the
other algorithms outperform Ascon. Only Deoxys-II [14] is slower. Deoxys-
II performs notably slow when processing associated data: Where the al-
gorithms are similar in speed in the long+0 category, Deoxys-II is almost
twice as slow in 0+long. The same can be seen in the 1536+0 and 0+1536

1https://github.com/NoodleSkadoodle/Ascon128v12-NEON

20

categories. Deoxys-II is almost twice as slow in 0+1536, but performs simi-
larly to Ascon128-NEON in 1536+0. While Ascon128-opt32 is substiantially
faster than Ascon128-NEON, it is still significantly slower than ACORN and
AEGIS in the long categories

5.1 Other Ascon implementations

The Ascon development team provides several implementations of the algo-
rithm. There are reference implementations available for Python and Java,
both reference and optimized implementations in C, and a hardware imple-
mentation. All of these are available on GitHub 2. There are two optimized
C implementations, besides the 32-bit implementation also one for 64-bit
systems.

There are also other optimizations of Ascon not created by the devel-
opment team. For example, Ascon has a hardware implementation suitable
for RFID tags, Wireless Sensor Nodes and Embedded Systems that is able
to process up to 5.5Gbit/sec of data (0.75 cycles/byte) [12]. For further
reading on Ascon implementations, most related papers are linked on the
Ascon website 3.

2https://github.com/ascon/ascon collection
3http://ascon.iaik.tugraz.at/analysis.html

21

Table 5.1: Ascon vs other CAESAR finalists

Ascon128-
Neon

Ascon128-
opt32

ACORN AEGIS-128L Deoxys-II-128 MORUS-
1280-128

long+0

encrypt 54.73 29.51 18.25 19.01 55.75 5.42

decrypt 55.21 30.76 19.25 18.98 55.71 5.39

forgery 55.22 30.75 19.25 18.97 55.70 5.41

long+long

encrypt 54.87 32.13 18.50 19.50 84.04 4.41

decrypt 59.05 32.69 19.50 19.33 83.98 4.39

forgery 55.36 32.70 19.50 19.33 84.19 4.40

0+long

encrypt 54.93 34.78 18.76 19.92 112.34 6.04

decrypt 62.48 34.62 19.78 19.68 112.19 6.02

forgery 55.50 34.63 19.75 19.69 112.51 6.03

1536+0

encrypt 56.79 30.89 24.91 25.72 58.88 6.12

decrypt 57.26 30.19 25.92 25.61 58.81 6.22

forgery 57.23 32.16 25.93 25.61 58.86 6.26

1536+1536

encrypt 55.87 32.83 21.86 22.81 86.31 4.83

decrypt 59.97 33.42 22.86 22.66 86.22 4.84

forgery 56.36 33.42 22.87 22.65 86.40 4.85

0+1536

encrypt 56.69 35.98 25.42 26.55 116.13 6.94

decrypt 64.29 35.91 26.43 26.34 116.03 6.91

forgery 57.60 35.90 26.44 26.33 116.38 6.91

64+0

encrypt 103.78 62.66 177.97 178.88 130.47 108.55

decrypt 103.78 64.69 179.12 178.52 130.50 111.09

forgery 103.28 64.53 179.55 178.33 131.23 111.66

64+64

encrypt 79.31 49.43 99.00 99.55 138.06 44.60

decrypt 83.52 50.02 100.13 99.25 138.11 45.69

forgery 79.05 49.86 100.32 99.09 139.11 46.53

0+64

encrypt 97.56 64.25 178.43 179.28 203.59 84.84

decrypt 105.75 65.13 179.69 179.31 203.73 87.53

forgery 96.72 64.88 180.01 178.89 205.44 88.08

22

Bibliography

[1] Daniel Bernstein. CAESAR: Competition for Authenticated Encryp-
tion: Security, Applicability, and Robustness. https://competitions.
cr.yp.to/caesar.html, 2018 (accessed April 18, 2018).

[2] Daniel Bernstein. System for Unified Performance Evaluation Related
to Cryptographic Operations and Primitives. http://bench.cr.yp.

to/supercop.html, 2018 (accessed April 18, 2018).

[3] Daniel Bernstein and Tanja Lange. eBACS: ECRYPT Benchmarking
of Cryptographic Systems. http://bench.cr.yp.to/, 2018 (accessed
April 18, 2018).

[4] Daniel Bernstein and Tanja Lange. Measurements of CAE-
SAR candidates, indexed by machine. http://bench.cr.yp.to/

results-caesar.html, 2018 (accessed April 18, 2018).

[5] D.J. Bernstein and P. Schwabe. NEON Crypto. In International Work-
shop on Cryptographic Hardware and Embedded Systems, 7428:320–339,
2012.

[6] Daemen J. Peeters M. Van Assche G. & Van Keer R. Bertoni, G. Kec-
cak implementation overview (v3.2). https://keccak.team/files/

Keccak-implementation-3.2.pdf, 2012.

[7] J. López D. Câmara, C.P.L. Gouvêa and R. Dahab. Fast software
polynomial multiplication on ARM processors using the NEON en-
gine. International Conference on Availability, Reliability, and Security,
8128:137–154, 2013.

[8] Oussama Danba. Optimizing the authenticated cipher MORUS using
NEON. Bachelor’s thesis, Radboud University, Nijmegen, 2017.

[9] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Cryptanalysis of Ascon. In Kaisa Nyberg, editor, Topics
in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA
Conference 2015, San Francisco, CA, USA, April 20-24, 2015. Pro-
ceedings, volume 9048 of Lecture Notes in Computer Science, pages
371–387. Springer, 2015.

23

[10] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon v1.2. Submission to the CAESAR competition: http:
//competitions.cr.yp.to/round3/asconv12.pdf, 2016.

[11] Ashutosh Dhar Dwivedi, Milos Kloucek, Pawel Morawiecki, Ivica
Nikolic, Josef Pieprzyk, and Sebastian Wójtowicz. Sat-based crypt-
analysis of authenticated ciphers from the CAESAR competition. IACR
Cryptology ePrint Archive, 2016:1053, 2016.

[12] Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph
Ehrenhöfer. Ascon hardware implementations and side-channel evalua-
tion. Microprocessors and Microsystems - Embedded Hardware Design,
52:470–479, 2017.

[13] T. Huang H. Wu. The authenticated cipher MORUS (v2). Submis-
sion to the CAESAR competition: http://competitions.cr.yp.to/

round3/morusv2.pdf, 2016.

[14] T. Peyrin J. Jean, I. Nikolic and Y. Seurin. Deoxys v1.v41. Submis-
sion to the CAESAR competition: http://competitions.cr.yp.to/

round3/deoxysv141.pdf, 2016.

[15] Hwajeong Seo, Zhe Liu, Johann Großschädl, and Howon Kim. Effi-
cient arithmetic on ARM-NEON and its application for high-speed RSA
implementation. Security and Communication Networks, 9(18):5401–
5411, 2017.

[16] Serge Vaudenay and Damian Vizár. Under pressure: Security of caesar
candidates beyond their guarantees. Cryptology ePrint Archive, Report
2017/1147, 2017. https://eprint.iacr.org/2017/1147.

24

Appendix A

Appendix

A.1 Single-static assignment translation of substi-
tution layer

t0 = x0 ⊕ x4

t2 = x2 ⊕ x1

t4 = x4 ⊕ x3

n0 = ¬ t0

n1 = ¬ x1

n2 = ¬ t2

n3 = ¬ x3

n4 = ¬ t4

a0 = n0 ∧ x1

a1 = n1 ∧ t2

a2 = n2 ∧ x3

a3 = n3 ∧ t4

a4 = n4 ∧ t0

i0 = t0 ⊕ a1

i1 = x1 ⊕ a2

i2 = t2 ⊕ a3

i3 = x3 ⊕ a4

e4 = t4 ⊕ a0

e0 = i0 ⊕ e4

e1 = i1 ⊕ i0

e2 = ¬ i2

e3 = i3 ⊕ i2

25

A.2 Permutation function

.fpu neon

.text

.align 4

.global permutation

5 .global permutation

.type permutation STT_FUNC

.type permutation STT_FUNC

permutation:

permutation:

10 SETEND LE

VLDM.64 r0, {d1-d5}

MOV r3, #0xf

VMOV.I8 d0, #0

15 add r2, r1, r2

VPUSH {q4,q5,q6,q7}

._looptop:

20 sub r12, r3, r1

LSL r12, r12, #4

orr r12, r12, r1

#########################

START OF SUBSTITUTION

25 #########################

VEOR d14, d1, d5

VEXT.64 d6, d2, d2, #0

VMOV d0[0], r12

VEOR d8, d3, d0

30 VEXT.64 d7, d4, d4, #0

VMVN d2, d14

VEXT.64 d9, d5, d5, #0

VEOR q4, q4, q3

VMVN q5, q4

35 VEXT.64 d15, d8, d8, #0

VMVN q6, q3

VEXT.64 d3, d10, d10, #0

VAND q6, q6, q4

VAND d11, d11, d14

40 VAND q1, q1, q3

VEXT.64 d10, d3, d3, #0

26

VEOR q7, q7, q6

VEOR q3, q3, q5

VMVN d3, d15

45 VEOR d5, d9, d2

VEOR q3, q3, q7

VEXT.64 d4, d7, d7, #0

VSHR.U64 d13,d3,#6

VSHL.I64 d15,d3,#58

50 VEOR d1, d14, d5

VEXT.64 d2, d6, d6, #0

######################

START OF DIFFUSION

55 ######################

VSHR.U64 d12,d3,#1

VSHL.I64 d14,d3,#63

VSHR.U64 d24,d2,#61

60 VSHL.I64 d25,d2,#3

VEOR q6, q6, q7

VSHR.U64 d26,d2,#39

VSHL.I64 d27,d2,#25

65 VSHR.U64 d28,d1,#19

VSHL.I64 d29,d1,#45

VEOR q12, q12, q13

VSHR.U64 d30,d1,#28

VSHL.I64 d31,d1,#36

70 VEXT.64 d7, d12, d12, #0

VSHR.U64 d16,d4,#10

VSHL.I64 d18,d4,#54

VEXT.64 d9, d13, d13, #0

75 VSHR.U64 d17,d4,#17

VSHL.I64 d19,d4,#47

VEXT.64 d6, d24, d24, #0

VSHR.U64 d20,d5,#7

80 VSHL.I64 d22,d5,#57

VSHR.U64 d21,d5,#41

VEXT.64 d8, d25, d25, #0

VSHL.I64 d23,d5,#23

85 VEOR q14, q14, q15

27

VEOR q12, q12, q13

VEOR q10, q10, q11

VEOR q8, q8, q9

VEOR q3, q4, q3

90 VEOR d26, d28, d29

VEOR d30,d16,d17

VEOR d31,d20,d21

VEOR d1,d1,d26

VEOR q1,q1,q3

95 VEOR q2, q2, q15

add r1, r1, #1

CMP r1, r2

bne ._looptop

100 VPOP {q4,q5,q6,q7}

VSTM.64 r0, {d1-d5}

return with the link register

bx lr

28

A.3 Substitution layer and addition of round con-
stant

sub r12, r3, r1

2 LSL r12, r12, #4

orr r12, r12, r1

VEOR d14, d1, d5

VEXT.64 d6, d2, d2, #0

7 VMOV d0[0], r12

VEOR d8, d3, d0

VEXT.64 d7, d4, d4, #0

VMVN d2, d14

VEXT.64 d9, d5, d5, #0

12 VEOR q4, q4, q3

VMVN q5, q4

VEXT.64 d15, d8, d8, #0

VMVN q6, q3

VEXT.64 d3, d10, d10, #0

17 VAND q6, q6, q4

VAND d11, d11, d14

VAND q1, q1, q3

VEXT.64 d10, d3, d3, #0

VEOR q7, q7, q6

22 VEOR q3, q3, q5

VMVN d3, d15

VEOR d5, d9, d2

VEOR q3, q3, q7

VEXT.64 d4, d7, d7, #0

27 VSHR.U64 d13,d3,#6

VSHL.I64 d15,d3,#58

VEOR d1, d14, d5

VEXT.64 d2, d6, d6, #0

29

A.4 Diffusion layer

VSHR.U64 d13,d3,#6

VSHL.I64 d15,d3,#58

VSHR.U64 d12,d3,#1

VSHL.I64 d14,d3,#63

5

VSHR.U64 d24,d2,#61

VSHL.I64 d25,d2,#3

VEOR q6, q6, q7

VSHR.U64 d26,d2,#39

10 VSHL.I64 d27,d2,#25

VSHR.U64 d28,d1,#19

VSHL.I64 d29,d1,#45

VEOR q12, q12, q13

15 VSHR.U64 d30,d1,#28

VSHL.I64 d31,d1,#36

VEXT.64 d7, d12, d12, #0

VSHR.U64 d16,d4,#10

20 VSHL.I64 d18,d4,#54

VEXT.64 d9, d13, d13, #0

VSHR.U64 d17,d4,#17

VSHL.I64 d19,d4,#47

VEXT.64 d6, d24, d24, #0

25

VSHR.U64 d20,d5,#7

VSHL.I64 d22,d5,#57

VSHR.U64 d21,d5,#41

VEXT.64 d8, d25, d25, #0

30 VSHL.I64 d23,d5,#23

VEOR q14, q14, q15

VEOR q12, q12, q13

VEOR q10, q10, q11

35 VEOR q8, q8, q9

VEOR q3, q4, q3

VEOR d26, d28, d29

VEOR d30,d16,d17

VEOR d31,d20,d21

40 VEOR d1,d1,d26

VEOR q1,q1,q3

30

VEOR q2, q2, q15

31

