SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY

BART JACOBS AND TARMO UUSTALU

Institute for Computing and Information Sciences, RadbOniversity Nijmegen, P.O. Box 9010, 6500 GL
Nijmegen, The Netherlands.
e-mail address; B.Jacobs@cs.ru.nl

Institute of Cybernetics, Tallinn University of Technolpd\kadeemia tee 21, EE-12618 Tallinn, Estonia
e-mail address: tarmo@cs.ioc.ee

Dedicated to Henk Barendregt on the occasion of his 60th birthday

ABSTRACT. This paper uses elementary categorical techniques tersgsically describe the se-
mantics of context-free grammars and of attribute evadndior such grammars. The novelty lies in
capturing inherited attributes and their evaluation vipaments and naturality.

1. INTRODUCTION

Context free grammars form a fundamental topic in compuiiense, as the basis for compiler
construction and language processing. The meaning of pase of such grammars is usually
captured via attributes and semantic equations. They défnattribute values at any node of any
given parse tree.

Knuth [7] is a classical paper on such semantics of conteg-fanguages. A later paper [1],
speaking of “Knuthian semantics” rephrases the materigdrims of multi-sorted algebras and uses
initiality for interpretation, following Goguest al. [2, 3]. A complicating factor in this setting is
that attributes come in two flavours, namely ‘synthesiseédttom-up) and ‘inherited’ (top-down),
which may lead to circular dependencies. Much research éas thevoted to avoiding such circu-
larities via syntactic criteria. The problem is side-stgjn [1] by working in a domain-theoretic
setting [3] in which the necessary fixed points always exist.

Here we ‘modernise’ the multi-sorted algebra approach pbylgeneralising it to the categor-
ical theory of algebras of functors (see [6] for an introdtutt. This allows us to:

(1) see an attribute grammar built on a context-free gransingoly as an algebra of the functor

associated with the context-free grammar;

(2) describe attribute evaluation systematically as aiaptarm of tree relabeling.

Most of this ‘modernisation’ is straightforward. Nevediss we spell it out in detail in order to

make it accessible to readers who are less familiar withgcaitsal techniques. The main (novel)
contribution of the paper comes at the end, where a combmafiexponents and naturality is used
to capture inherited attributes. This is our way of sidggiteg syntactic criteria.

REFLECTIONS ON TYPE THEORY, Essays Dedicated to Henk Barendregt Copyright © 2007 by
A-CALCULUS, AND THE MIND on the Occasion of his 60th Birthday Bart Jacobs and Tarmo Uustalu

181



182 BART JACOBS AND TARMO UUSTALU

2. FROM CONTEXT FREE GRAMMARS TO FUNCTORS

A context free grammar (CFG) is a standard notion in langymgeessing. It consists of a set
of production rules, likey — ajviv2a5v3, telling how non-terminale € V' can be replaced by a
string of both non-terminals; € V' and terminals:; € X. The right hand side is thus an element
of the set(V + X)* of words built from letters from eitheér” or ¥. Here we write+ for the disjoint
union of the two set¥, ¥. The grammar as a whole can thus be described by a singleduoroft
the form
f

Vv

P((V + 2)*) 2.1)

It maps a non-terminad € V to a set of right hand sides € f(v), written asv — w. This
description casts CFGs in “coalgebraic” form, following,[4ith V' as set of states. It allows for
easy generalisations to stochastic CFGs by taking theéldisbn monadD instead of the powerset
monadP in (2.1), or to weighted CFGs by taking the multiset monedinstead ofP. The coal-
gebraic representation leads to a trace semantics for se@s @ the Kleisli category associated
with the monad. It can be used to describe the associategtskglarse trees and generated strings,
see [4] for detalils.

Here we go in a different direction. We show how to associaith & CFG f as in (2.1)
an endofunctorF': Sets” — Sets" on the categonBets" of V-indexed families(X,),cy of
setsX,. A morphism(X,),cv — (Yu)vey In this category consists of a collection of functions
wy: Xy — Y, forv € V. Composition and identities are obtained “componentwise”

In order to define the functaF' associated witltf we need some notation. For a waed e
(V + 3)* of both non-terminals and terminals we writec V* for the word obtained fronw by
removing all terminals. Further, forla-indexed collectior{ X, ),cy and awordvy, ..., v,) € V*
we write X, ) = Xoy X -+ x X,, . This Cartesian product is a singletbr= {x} in case the

sequence is empty. Now we can define the funétoiSets” — Sets" associated witlf as:

F((Xv)vEV) = (Hwef(v) Xw) vev' (2-2)
The notation | is used for indexed disjoint union, as generalisation obihary+. It is easy to see
what the functo” does on morphisms = (i, : X, — Y},) namelyF(o)((w, z1,. .., 2,)) =
(W, Oy (1), -+, o, (z)), Wherew = (vy,...,vp).

The essence of this definition is already contained in [2, Aéne a multi-sorted signature is
associated with a CFG. We shall illustrate this functor dedimin our two leading examples below.
The next section will show how such functors between categaf indexed sets will be used for
providing semantics for languages.

veV?’

2.1. Binary tree grammar. A simple grammar for binary trees is stan—S S oerles|
dardly described via productions as on the right, say Witk {e;, ez, ...} 11521
The associated trees have labels from thefseit the leaves. We canS — 58

describe this grammar in coalgebraic form (2.1) as folloWwse state space is a singlet¢§'},
since this grammar is “single-sorted”. The associated gnapS} — P(({S} + E)*) is given as
g(S) = {{e) | e € E}U{(S,5)}, in which the above two productions are recognisable. Simee
categorySetst®} is isomorphic tdSets we get an associated functer: Sets — Sets given by:

G(X) = E+(XxX).
Again, it reflects the productions in obvious manner.



SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 183

2.2. Binary number grammar. Our next example from [7] is slightly IessB = oo0f1
trivial. It describes, on the right, a grammar for numberthefformg or 5.+,

N . . w i L — B|LB
wheres,~v € {0,1}* are bit strings. Now we have a “many-sorted” gram:
mar with set of non-terminal§B, L, N'} and coalgebra map: {B,L, N} — — L|LL
P(({B,L, N} + {0,1,.})*) given by three equationgi(B) = {(0), (1)}, h(L) = {(B), (L, B)}
andh(N) = {(L),(L,.,L)}. Notice the role of the dot (.) as terminal. There is an asdedi
endofunctorH on the categorBetst? N} = Sets®. It is given, according to (2.2) by:

H(XB,XL,XN) = (1—1—1,XB+(XL X XB),XL —I—(XL X XL))

We shall illustrate how for instance the last compon&nt+ (X x X) on the right hand side
of this definition arises. According to the general deswipi(2.2) we have as third component,
indicated by subscript—) n:

H(Xp, X1, Xn)n = [oenny(X8, XL, XN )o

= (XB, XL, XN)m'i‘ (XB, XLa XN)(L,.,L)

= (X, X1, Xn) 1y + (XB, X1, XN)(L,1)
= X+ (XL X XL).

Notice how the overline mapping-) removes the datsince it is terminal.

Itis not hard to see that categories of the f@ets" have arbitrary products] and coproducts
[ ] given by pointwise constructions. Also, exponef®s,),cy = (Y,),cv are obtained pointwise,
namely ag X, = Y, )vev -

3. PARSE TREES AS INITIAL ALGEBRAS

For an arbitrary endofunctdr: C — C on a categoryC an algebra is a map i@ of the form
a: F(A) — A. A homomorphism (or map) of algebras, froR(A) % A to F(B) Y Bisa
morphismf: A — Bin Cwith f o a = b o F(f). This yields a categorplg(F'), with obvious
forgetful functorAlg(F) — C which maps an algebr&(A) — A to its carrierA € C.

An initial algebra of an endofunctdr is an initial object in its categorAlg(F') of algebras. It
is an algebrd F A — A) with the special property that for each algebFaB — B) there is a unique
homomorphism of algebrd$’A — A) — (F'B — B). We shall often write this homomorphism
via “Scott” or “interpretation” bracket§—]: A — B, as in the diagram:

=D
~ (3.1)
= -1
A B
We have labeled the initial algebra map with the isomorphsymbol = since it is by general
reasoning an isomorphism. This fact is often called Lambkdthma, see for instance [6].

Initial algebras are typically term algebras, formed byat®ely applying the rules for term
formation. The mag — ]| obtained by initiality then provides the interpretationtefms in some
other domain in a “compositional” manner. It correspondsia€inition by induction, see [6] for
details. Later on we shall extensively use this homomomlpsoperty (3.1) of the mapping— |
for computing interpretations. Commutation of the diag@ptures semantic equations.




184 BART JACOBS AND TARMO UUSTALU

The initial algebra of a functoF, if it exists, is sometimes written asX. F'(X), or simply as
uF. There are general criteria that guarantee existence tidliaigebras, but they do not matter
here. Fundamental for what follows is the following obstioa

Fact 3.1. The initial algebra of the functaF: Sets” — Sets" associated as in (2.2) with a CFG
V — P((V 4 X)*) is given by the indexed collectiafP,),cy of setsP, of v-rooted parse trees of
the grammar.

We shall illustrate this result, and its application toibtitte grammars, for our leading exam-
ples. These attribute grammars will be identified as algebféhe associated functor.

3.1. Binary trees. Recall the functor ~

G(X) = E + (X x X) associated with G(BT) = E + (BT x BT) — BT

the grammar for binary trees in Subsec- 9
tion 2.1. We shall write its initial algebra € ( ! )
as set of binary §-rooted) tree®8T with 9
algebra map as on the right. This says (t1,t2) — < t1/ \t2 >

that ane-label goes to arb-rooted tree
with just this label at its leaf, and that a pair of trees is borad to a single5-rooted tree. Clearly
this is an isomorphism, because an arbitréryooted tree € BT has either such a direct leaf or a
binary node with two subtrees.

An attribute grammar extends a CFG with attributes and #eecaemantic equations for com-
puting certain values for parse trees. We introduce this@gninformally in examples. The at-
tribute grammars of this section will only have what are exlsynthesised attributes. Inherited
attributes will be considered later. Purely synthesizé&dbate grammars can be specified as alge-
bras and initiality is then used to compute the attributeieslof the root node.

A first example, from [8], is about the AVL property of binamgés. Recall that a tree is called
AVL when it is balanced in the sense that the heights of eaghgbdadjacent) subtrees differ at
most by one. The AVL attribute grammar is based on the binae €FG. The only nonterminal
has two attributesivl andht taking values from 2 antil where2 = {0, 1} is the set of Booleans.
The semantic equations associated to the production rrides a

al(s) = 1 forS —e eckE
ht(S) = 0
avi(S) = avi(Sy) Aavi(S,) A |ht(Sy) — ht(S,)| <1 for S — SyS,

ht(S) = max(ht(S,),ht(S,)) +1
Here, subscripts are used for telling apart different aenaes of one nonterminal in one production
(S occurs three times in the second production of the binagygrammar).
For us, this grammar is an algebra of the funatbr The carrier set i2 x N, where the first
component is for values @ivl and the second for values o The algebra structure is this:
G(2xN)=FE+((2xN)x(2xN)) 2 x N
e (1,0) (3.2)
((bg, he), (bryhy))  +——(bg Abp A |hg — hy| < 1,max(hy, hy) + 1)

How to read this? The valug, 0) for a leafe says that such a tree is AVL (value 1) and has height 0.
The second assignment is more complicated: suppose farsuletfee we already have a Boolean
valueb, € 2 for AVL-ness and height, € N, and similarlyb,. € 2 andh, € N for a right subtree.
For the tree combined from these subtrees we can then compute



SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 185

e the Boolean value for AVL-ness a&; A b, A |hy — h,| < 1. Indeed the combined tree is
AVL requires a conjunction of tree things: the left subtredVL (b,), the right subtree is
AVL (b,) and the difference of heights of the two subtrees is at most|d, — h,| < 1.
e the height as the maximum of the heights of the subtrees plesmmaxhy, ) + 1.
Initiality of BT gives an interpretation magp—]: BT — 2 x N as in (3.1). It consists of a pair of
maps] — ]1: BT — 2and] — ]2: BT — N, where] — ]; computes whether a tree is AVL afié-
computes the height. Commutation of the initiality diagramounts to two “semantic” equations:

1] - oo

Ht/s\t H = ([telo ATt D ATt ]2 = TEr J2| < 1, maxX([te ]2, [ 12) + 1)
l r

Here is a simple illustration. For convenience we write @egii on tree nodes; (simply to
distinguish them) and show during the computation only éevant part of the tree at that point.

S1
S/ \S
2 3 S9 Ss Sa S3
s ) - LA AR LA
el S|4 S|5 e|1 . 7N\ . e|1 , 7\
€9 €3 1
= <1A

8 b S G R A R il
o-ow([2],.[1,)+

= 1ALTAJ0=0[<1A[0—(max0,0)+1) <1
= 1

<1

Hence this tree is indeed AVL. Notice how the computatiorcpeals “bottom-up” in the sense that
values computed at subtrees are needed for values higheitlg free.

3.2. Binary numbers. We will now show that the initial algebra of the functfr: Sets® — Sets?
for the binary number grammar from Subsection 2.2 has tpéetBN = (BN, BNz, BNy) of
B-, L-, and N-rooted trees as initial algebra. Such an initial algebnasists of an isomorphism
H(BN) = BN in the categonSets®, and thus of a triple of isomorphisn#&(BN); = BN; for

i € {B,L,N}. They are given in the “obvious” manner by constructinggresee Figure 1.

The following attribute grammar is from [7]. It gives a way dssign numerical meaning to
parse trees of the binary numbers CFG. All nonterminals havattributeval and the nonterminal
L (for bitstrings) has a further attributen; the val attributes ofB and L and thelen attribute are
N-valued, theval attribute forV takes values fronf). The semantic equations are:

va(B) = b forB—b, be{0,1}
val(L) = val(B) for L — B

len(L) = 1

val(L) = 2val(L')+val(B) for L — L'B

len(L) = len(L')+1

val(N) = val(L) for N — L

val(N) val(Ly) + val(Ly)/2'®(E2)  for N — Ly.Lo



186 BART JACOBS AND TARMO UUSTALU

12

141 BN3
B
- ()
B
. (1)
BNp + (BN x BNp) — BN,
L
o ()
L
(tr,tp)¢ < tL/ \tB >
BNy, + (BNL X BNL) = BNy
N
a (i)
N
(tLl,tLQ)I <tL1/ | \tL2>

Figure 1: The initial algebra structure S$ets® of binary numbers

The presentation as an algebra uses a carriets> given by the triple of setéN, N2, Q),
with algebra/attribute structurd (N, N2, Q) — (N, N2, Q) given by the three maps in:

1+1 N
0 0
1 ¢ 1
N+ (N2 x N) N2
b (b, 1)
((n,m),b) H—— > (2n+bm+1)
N2 + (N% x N?) Q
(n,m) n
((n,m), (p,q)) nt g

These mappings show that:

¢ the B-value inN gives the value of a bit;

e the L-value inN? consists of a value of a bit string together with its length;

¢ the N-value inQ gives the ordinary bit string value, possibly with a quatitar the string
after the dot.

By initiality of H(BN) = BN we obtain an interpretation mdp-]: (BNg, BNz, BNy) —
(N,N2,Q) in Sets®. We can write it as three separate m@ps]z: BNg — N, [ —]z: BNy, — N?
and][ —[n: BNy — Q. The map[ — ], can then be split into two separate m@ps], ;: BN, —
N, for i = 1,2. Commutation of the initiality diagram amounts to the fallog equations.

[[]YH = b, forbe {0,1}
b 1B



SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 187

[HHL = ([tIn1) | ]]L = Cltel +[ts s [t + 1)

t tr, tm

H ]Y H = [t]ra [[ /]Y\ H = [t]ea+ 2[[[[?2]]]%12-
t In t1 : ta Iy ’

These homomorphism equations are the basis of value cadnidafor instance for the word
1101.01. For convenience the nodes in the parse tree below are thivitle subscripts in order to
distinguish them; also, the “sort” subscrigés N, L on the interpretation functioh— ] are omitted.

In order to avoid complicated superscripts we write(@xp) for 2™.

_ /\\

/ \ N
B L
PN & o e
Ls Bo 1 Bs 1
/N | I
114 ng 0 0
By 1

- [[./“\.Hﬁ[{./“\.ﬂ/ew[[/ <
- + Bﬁ >/exp(2, [[L!6ﬂ2+1)

= 4 /L3\ H +2 HBFH +1+ (2 HBFH +1>/exp(2,2)
|- -1 0 011
= 8 Lﬁﬂ +4HB3H +1+1 = S[ﬁ“ﬂ +5+1 = 13.25.
L - 11 1 1
So far we have not said what attribute grammars are in gererahave described them as algebras
for the functor associated with a grammar, as in (2.2). Téisantical approach will be continued.

4, ATTRIBUTE EVALUATION: THE PURELY SYNTHESISED CASE

Attribute grammars are not only used for computing valueghe root nodes of trees, as in
the previous section, but also for computing values for timei nodes—which were calculated im-
plicitly in the earlier examples. In this section we show hovado such calculations explicitly. The
attribute grammars that we considered so far are so-calleglypsynthesised ones, in which calcu-
lations on parse trees are performed “bottom-up”, fromdehih to parents. The general situation,
also involving “top-down” calculations will be studied ire&ion 6.

The first step is to describe labeled trees abstractly.

Definition 4.1. For an arbitrary functoF': C — C and an objecd € C we write
FeA) = uX.AxF(X).

Assuming that these initial algebras exist, we obtain a newtbr F¢: C — C.



188 BART JACOBS AND TARMO UUSTALU

An arbitrary valueF®(A) can be under- ida x F([=])
stood asA-labeled F-trees, as the examples A x F(F¢(A)) AxF(Y)
below will illustrate. In general, a function gl i
F®(A) — F®(B) between such labeled trees [-]

@
may be called a relabeling function when it suit- F2(4) Y

ably preserves the tree structure (see below). We shall feciedly interested in the case where
A = 1. The valueF®(1) at the final object 1 is the initial algebyaX.F(X) of F-trees. Then

it makes sense to talk of ‘tree labeling’ instead of ‘relaigl Such labelings are also known as
attribute evaluations. The initiality involved iR (A) amounts to the following. For an arbitrary

algebrad x F(Y) — Y there is a uniqgue map— ] as on the right. It can be shown that the functor
F© is actually a comonad, but that is not very relevant here. BMeaivever need the counit of this

comonad structure. It is a special mAfF(A) — A, namely:

-1
e = (FO(a) a—§>A x F(F®(4)) —> A)

This counit maps arl-labeled tree to thel-value at its root. The other (second) projection yields a
mapms o a " : F®(A) — F(F®(A)) that forms a coalgebra of the functér. It is used in [5] to
define the property “bottom-up-ness” for tree transformeasnely as “coalgebra homomorphism?”.
This property holds for the relabeling functigr- ) that we are about to define.

Attribute evaluation as tree (re)labeling is based on tHeviing easy result.

Proposition 4.2. In the above situation with functors F and F©, an algebra F'(B) — B induces an
attribute evaluation function (—)): F®(1) — F©(B) such that the following diagram commutes.

(=)

Fe(1) F®(B)
T4
Proof. The attribute evaluation functidj ) is obtained by initiality, in the square on the left below.
F(ro (1) — Y b ) 2L )
i o R N

©

S —
[-1
The algebra3: F(B) — Bis assumed, and': F(F®(B)) — F®(B) is obtained as:
(6o F(ep),id)

g = (Fre(B))

The square on the right then commutes by construction. Byuthqueness part of) initiality af,
we obtain thatg o (—) = [—]. L]

In terms of the comonad structure &1, the function( — ) is the coKleisli extension df — |.

The attribute grammar for AVL-trees from Subsection 3.1 waginally described as an alge-
braG(2 x N) — 2 x Nin (3.2). The associated funct6f® maps a set to the initial algebra of the
functorX — Ax G(X)=Ax (F+ (X x X)) = (Ax E)+ (A x X x X). It consists of binary
trees with labels fromd x FE at the leaves and from at the nodes. Proposition 4.2 associates with

B x F(FO(B)) —2 F@(B)).

~



SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 189

the attribute gramma(2 x N) — 2 x N a relabeling functior{ —): G®(1) — G®(2 x N). It
does so via a ma@(G®(2 x N)) — G®(2 x N), written as#’ in the above proof. Explicitly:

G(G®(2xN))=E+ (G2 x N) x G%(2 x N)) G®(2 x N)

(S(l,O))
e I
e
S(b, h)
(t&tr) ! tg/ \tr
with, as in (3.2),
b = by ANb. Nlhy—he| <1 (beyhe) = e(te)
{h — maxthy, hy) +1 where (behy) = e(b)

In the description of this mapping we use the convention tilewthe attribute values between
brackets after the non-terminal at a node, aS(ih, 0). This yields, as example attribute evaluation:

s S(1,2)
57 s S(1,0)  3(L1)
| VRN = | s N
€1 ? ? €1 5(1,0) (1,0)
() es 6'2 6|3

In a similar way one may check that the attribute gramiigN, N2, Q) — (N, N2, Q) from
Subsection 3.2 gives rise to a labeling (like in [7, (1.4)]):

N
— \ T~
N /7N
/L\ 5 ] ?
L B 1 B 1
VRS 1 I
B0 0
B 1
1
N(13.25)
L(13,4) T2
L(6,3) B(1) L(0,1) B(1)
_ L(3,3)  B(O) 1 B(0) 1
Ve N | |
L(1,1) B(1) 0 0
B(1) 1
1

The[ — ]-calculation that we have done in Subsection 3.2 indeedyigle root value 13.25 of this
labeled tree, obtained via as formulated generally in the triangle in Proposition 4.2

5. INHERITED ATTRIBUTES

So far we have only given a limited view on attribute grammaeamely one in which only
so-called synthesised attributes occur. Their valuesatigreed in bottom-up computations, out of
values of the subtrees. There are also “inherited” atetbuthose values depend on other values



190 BART JACOBS AND TARMO UUSTALU

higher up in the tree. Much research in the literature oibate grammars is concerned with (syn-
tactic) criteria for avoiding circularity between syntieesi and inherited attributes. Here we only
look at semantics, and simply claim (without proof) that fuircular attribute grammars with both
synthesised and inherited attributes can be formulatedhabras (like in Section 3), but with ex-
ponentsB4 as carriers, where the positive p&icorresponds to the combined types of synthesised
attributes, and the negative pattto the inherited ones.

In this section the claim will be illustrated for our leadiagamples of binary trees and binary
numbers. How to do attribute evaluation in these cases witldscribed in the next section.

5.1. Binary trees. Our example comes again from [8] and involves pre-order rarmg of the
nodes of trees. It is described there via tWevalued attributesiumin, numout of the nonterminal
S, which are given via the following semantic equations.

(@ numout(S) = numin(S) forS —e, eckE
(b) numin(S;) = numin(S)+1  forS — S.S,

(¢) numin(S,) = numout(Sy) + 1

(d) numout(S) = numout(sS,)

The attributenumout is auxiliary, and only used to compute the vatuenin that we are interested in.
The inherited aspect appears in equation (b), makinguhen-value of the left subtree dependent
on thenumin value of its parent. This will be made explicit in an algebradéscription.

Indeed, we claim that we can capture this attribute grammaaraalgebra of the functor
G(X) = F + (X x X), introduced in Subsection 3.1 for binary trees. As carriertake the
exponentNY of inherited-to-synthesised attribute types. The algebactureG(NY) — NN is:

G(NY) = E + (NN x NV) NN
e i An € N.n (5.1)
<f€>f7’> P )\TLENfT(fg(TL+1)+1)

A function inNY is seen as a mapping that takes tiagnin value of a node to itaumout value. On
leaves it must be the identity, by equation (a). If we alrehaye two such functiong,, f,. for the
left and right subtrees, then the resulting functjofor their parent computesramout value from
anumin valuen as:

e the outputf, of the right subtree—by equation (d), ...
e ...applied to the thaumin value of the right subtree, which is tmemout value f, of the
left subtree plus one—by equation (c), ...

e ...applied to thewumin valuen + 1 of the parent plus one—by equation (b).

Hence we havg (n) = f.(f¢(n + 1) + 1) as described in (5.1).
So what does this algebta(N"Y) — NN give us? By initiality it leads to an interpretation map

[—1: BT — NY. The latter yields for a treec BT a function[¢] € NN that computes theumout
value of the root node from a givelmin value of the root. For instance,

S1
VRN

Yo = LA e = Ao

€1

- H%H([[Sﬁﬂ(nJr?,)Jrl) — n44.

€3 €2



SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 191

Section 6 describes how to do attribute evaluation alsdi®iriner nodes.

5.2. Binary numbers. Knuth [7]describes g (B) = 0 for B — 0
a seco'nd“semantlcs for binary numbe_rs, val(B) — osae(B) for B — 1
which is “more close to the manner in
which we usually think of the notation”. It SCAl&(L) = scale(B) forL — B
involves additional integer-valuestale at- ~ V&(£) = val(B)
tributes for bitsB and bitstringsL, which len(Z) = 1
are inherited. Thiscale attribute is used Scale(L’) = scale(L) +1 for L — L'B
for a different interpretation for bitsg), Scale(B) = scale(L)
namely not a%), 1 values, but as rationals Val(L) = val(L') +val(B)
depending on their position, given by the 1en(L) = len(L’) +1
scale. Theval andlen attributes from Sub- scale(L) = 0 forN — L
section 3.2 remain, bwal is now rational-  val(N) = val(L)
valued. The semantic equations are givestale(L;) = 0 for N — Ly.Lo
on the right, in standard style. scale(Ly) = —len(Lo)

)

As objects of the categorets® in val(N) = val(L;)+val(Ls)
which we work for this example the types of the inheritedilagtes of the non-terminald3, L, N)
are given agZ,7Z,1). Those of the synthesized ones are giverf@sQ x N, Q). According to
the claim mentioned in the beginning of this section we sthéwa able to express Knuth’s attribute
grammar as aif-algebra with as carrier the exponent in the categrys®:

(Q,Q xN,Q)®%Z) = (Q%(QxN)%,Q!) = (Q%Q*x N2 Q).

The H-algebra structure on this exponent is given as follows.

141 QZ
0 As.0
1 As. 28
Q% + (Q% x N2) x Q7 QZ x NZ
o (b, As. 1)
({(f,9),b) (As. f(s+1)+b(s),As.g(s +1)+1)
Q% x N + (@ x N%) x (@ x N?) Q
(f,9) f(0)
((f,9), (h. k) f(0) + h(=k(0)).

By initiality we then get an interpretation mdp- ]: BN — (Q%, Q% x NZ, Q) in Sets®. It allows
us to compute the root value of a tree using the algebra hompinison properties of — |, as in
Figure 2.

In [1] a slightly simplified version of this algebra is desed, namely with carriefQ%, Q% x
N, Q). The difference lies in the second component: they@se N instead of ouQ” x N* because
they notice that the (synthesisdéh attribute with typeN does not depend on the (inheritexdale
with type Z. Here we stick with the general exponent form, which meaas We have to pick
an arbitrary value as input for the functiénin the last line of our algebra description. The point
here is that the attribute dependency analysis has to happke formulation itself of an attribute
grammar as an algebra of a functor: the framework enfordeghich we see as advantage).



192 BART JACOBS AND TARMO UUSTALU

_ Ll/]\<-\L5
/L2\/ \31 Llﬁl Bg
Ls By 1 Bs 1
Ly By 0 0
B
i
_ /Ll\ _1(0)+ /L5\ Hl (_ H '/L5\ H (0))
o [3]oe [ AR
[T [floee A Lo
- [l [ esese o o[ ]
= :?4H1(3)+22+1+ﬁf’ﬂl(—l)+22 = 22 4+540+; = 1325

Figure 2: Sample calculation for the algebra from Subsedia.

6. ATTRIBUTE EVALUATION: THE GENERAL CASE

We have described general attribute grammars with botthegisted and inherited attributes as
algebras with an exponent as carrier. Here we describbuwtrevaluation for such grammars, via
an extension of Proposition 4.2 given below. It requires the algebray: F(B4) — B involved
arises from a more general structure, namely a naturalftnanation with components of the form:

I'x

F((B x X)4) (B x F(x))" (6.1)

Such a natural transformatidnis a collection of maps$l'x ), indexed by objects(, which work
“naturally” or “uniformly” in X. This means that for any functiofi: X — Y one has(idp x

F(f)*oTx =Ty o F((idp x f)4).
We then assume that the algebraF (B4) — B arises by taking{ = 1. To be precise as:

F({id,4)

A
v = (F(BA) F((B x 1)4) — ! (B x F(1))* — BA) 6.2)
The extra generality given Hdy is needed to lead the values of the inherited attributesogpiately
down the subtrees. If the functét is “strong” and we already have an algeti#6B“) — B“ then
one can construct a trivial natural transformatioras in (6.1) by passing on the same argument
downwards. But as the examples below will illustrdtaypically adapts the arguments.

We assume that the category in which we work is cartesiared|aso that we have exponent
objects B4, for arbitrary objectsA, B, with evaluation mapsv: B4 x A — B and abstractions
A(f): C — BAfor f: C x A — B, satisfying the standard equatioas o (A(f) x id) = f,
A(f)og=A(f o (g xid)) andA(ev) = id, see any basic text on category theory. Maps of the
form f4, as already used above, are definedés= A(f o ev): X4 — Y4, wheref: X — Y.



SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 193

Proposition 6.1. Assume an endofunctor F': C — C on a cartesian closed category C with associ-
ated |abeled tree functor F'® asin the beginning of Section 4. A natural transformation T': F((B x
—)4) = (B x F(-))4 asin (6.1) induces an attribute evaluation function (—): F¢(1) —
F®(A x B)* such that the following diagram commutes.

id AA
! E‘ID ¢(771 o EAXB)A
Fe(1) F9 A x B)4
[[_]] l/(7T2 o 5A><B)A
BA

where [id4 ] isthe constant map yielding the identity function on A.

The attribute evaluation map-)): F©(1) — F®(A x B)4 takes a parse trdec (1) and
an initial “inherited” valuea € A to a labeled tredt|)(a) € F¢(A x B) with combined inherited
and synthesised labels froh x B. Of course we can concentrate on thdabels or theB-labels
alone, by composing with a suitable projectibi? (;).

Proof. Assuming the natural transformatidhwith associated algebraas in (6.2) we construdt’
in the middle of the diagram below.

F(-=D) F((m2 0 eaxp)?)

F(F®(1)) F(F®(Ax B)%) F(B4)
Oéll/% B ¢F/ o © A ¢7
Fe(1) ) FO(A x B)A (72 2 St BA

[-1
The mapl” is obtained as composite:
F(F®(Ax B)*4)
VF((my 0 ,id)4)
F((B x F®(A x B))4)

(B x F(F®(Ax B)))"
VA ({2, 71 0 ev), 3 o ev))
(A x B) x F(F®(A x B)))" — F®(A x B)A

We show that the right-hand-square above commutes, vid@utedut elementary calculation.
(mpoe) oI’ = A(mpomoatoev)oA(ao ({(m,m oev),moev))o

I o F({my o g,id)?)

= A(momoatoao((
I o F((my o &,id)4)

= A(m oev)oT o F((m o¢,id)?)

= 7o (idx F())4 oT o F({m o ¢,id)*)

= a0l o F((idx N4) o F((my 0 &,id)?) by naturality ofl

= afoT o F(((id, ) o m 0 )4)
A)‘

2,1 © eV>,7T2 o e\/>) °

= vyoF((moe)



194 BART JACOBS AND TARMO UUSTALU

In a similar, but easier, way one checks that o £)* o T = A(my) = [id]. O

We shall make the general recipe for attribute evaluatiomfProposition 6.1 more concrete
by demonstrating it for our two running examples.

6.1. Binary trees. We first show how the attribute gramm@(N") — NY from Subsection 5.1
arises in fact from a natural transformation with compos€ri(N x X)N) — (N x G(X))N given
as follows.
E+ (Nx X)Nx (Nxx)N (Nx (E+ X x X))N
e An € N.(n,e)
<ff7 fr> > An€eN. <7T1f7‘(m + 1)7 <7T2f£(n + 1)>W2fr(m + 1)>>
wherem = 71 fo(n + 1)

This definition clearly contains the one for the algel¥éN") — NN from (5.1). But it does

a bit more: the argument is also passed on to the subtrees via #yeomponent, in a similar

manner. The arguments are thus not only needed for compativajue at a particular point in
the tree, but also for attribute evaluation in the subtréesording to Proposition 6.1 this natural
transformation yields an attribute evaluation nfap): G°(1) — G°(N x N)Y via the algebra

G(G°(N x N)N) — G®(N x N)N, calledI” in the above proof. In this case it is:

E+ G@(NQ)N % G@(NZ)N G@(NZ)N

e | An. (S(né,n))

S(n,pr) )) with { pe = mae(fr(n + 1))

sJr AN
<f€ f> — An (f[(n +/1) fkpz-i-l pr:WQE(fr(pf+1))

Thesep, andp, are the second components of the root values of the subtrees.
Then we can also compute tfreumin, numout)-values also for the inner nodes in the example
calculation at the end of Subsection 5.1: the pre-order ruimdp starting at € N is:

/S\ /S(n,n—l—4)\
S S Sn+1,n+1) S(n+2,n+4)
| 7\ (n) = | — ~
€1 ng ? el Sn+3,n+3) Sn+4,n+4)
€92 €3 e|2 6'3

6.2. Binary numbers. As before we first notice that thél-algebra structure on the exponent
(Q,Q x N, Q)(Z’Z’l) >~ (Q%,Q7% x N%,Q) from Subsection 5.2 arises in fact from a natural trans-
formation

H(((Qy(@ x N,Q) x X)(Z,Z,1)>

(@@ x N xa(x) "™

By unravelling the definition off for X = (Xp, X1, X) and using the componentwise descrip-
tion of exponents irBets® we see that this natural transformation consists of threpsnoé the



SEMANTICS OF GRAMMARS AND ATTRIBUTES VIA INITIALITY 195

form:

1+1 (@x(1+1))”
(QXXB)Z—I— (QXNXXL)Z X (QXXB)Z

(@QxNx(Xp + X x Xp))”

(QXNXXL)Z—I—(QXNXXL)ZX(QXNXXL)Z Qx (X + X1 x X1).
It is given along the lines of the algebra definition in Sultisecs.2:

0 — Xs.(0,0)
1 — As.(2°%,1)

{ b — As. (bi(s),1,ba(s))
(f.b) — As. (fi(s+ 1) +b1(s), fa(s + 1) + 1, (f3(s + 1), ba(s)))
{ fo— (Al

0), f3(0))
(fr9) — (f1(0) + 91(=92(0)), (f3(0), g3(—92(0))))-
In the proof of Proposition 6.1 we then see how we getfaalgebra on
H®((Z,2,1) x (Q,Q x N,Q))##V = H®ZxQ,ZxQxN,Q®%V,
which we can describe explicitly as:

B(s,0)
0 — As.( (l) >
1 — As. (B(S{ 25))

(s, v, 1) v = mae(b(s)), the second component of
b — where
the root value of the subtrégs)

4 — f(sf“ ) Where{j = (/s + 1) + me(b(s)

m3e(f(s+1)) +1

N\ 7~

Fo— ( (%;) wherev = moe(f(0))

_N(@)_ s = me(g(0)
(f.9) — (f(O) | g(—s> W“ere{v = me(f(0) +me(g(~5))

Figure 3 illustrates the attribute evaluation funct{on) resulting from this algebra for our running
example. It reconstructs equation (1.6) from [7] in a systéormanner via initiality.

7. FUTURE WORK

After these first steps in a categorical reformulation ofsieal work in computer science many
issues remain, among which we are particularly interestélda following three.



196 BART JACOBS AND TARMO UUSTALU

N
L L
/ \ /N
P 7 o B
L B 1 B 1
/7 N I I
B0 0
B 1
i
N(13.25)
L(0,13,4) ! L(-2,1,2)
— P N
L(1,12,3) B(0,1) L(-1,0,1) B(-2,1)
-~ ~N
_ L(2,122) B0 1 B(-1,0) i
7 N
L(3,871) B(2,4) 0 0
B(3,8) 1
|
1

Figure 3: Attribute evaluation for the binary number exagnipbm Subsection 5.2

e Investigation of the generality obtained by a natural ttemsationT': F'((B x —)4) =
(B x F(-))# as in the beginning of Section 6. In this paper, we requiredamalitions on
suchl’. Is this appropriate, also in examples?

e Formulation of a natural transformation from a given setavhantical equations: is there a

canonical way to do so?
e Implementation, for instance in the programming languagekdll, of attribute evaluation

as described above.

REFERENCES

[1] L.M. Chirica and D.F. Martin. An order-algebraic defioi of knuthian semanticdath. Syst. Theory, 13:1-27,
1979.

[2] J.A. Goguen and J. Thatcher. Initial algebra semantit$Symposium on Switching and Automata Theory, pages
63-77. IEEE, 1974.

[3] J.A. Goguen, J. Thatcher, E. Wagner, and J. Wright.dhélgebra semantics and continuous algekl@sn. ACM,
24(1):68-95, 1977.

[4] I. Hasuo and B. Jacobs. Context-free languages via ebadic trace semantics. In J.L. Fiadeiro, N. Harman,
M. Roggenbach, and J. Rutten, eddgebra and Coalgebra in Computer Science, CALCO 2005, v. 3629 inLect.
Notes in Comput. Sci., pages 213-231. Springer, 2005.

[5] I.Hasuo, B. Jacobs, and T. Uustalu. Categorical viewsanputations on trees. In L. Arge, C. Cachin, T. Jurdzinski,
and A. Tarlecki, eds.int. Coll. on Automata, Languages and Programming, |CALP 2007, v. 4596 inLect. Notes in
Comput. <ci., pp. 619-630. Springer, 2007.

[6] B. Jacobs and J. Rutten. A tutorial on (co)algebras anjiriduction.EATCSBulletin, 62:222-259, 1997.

[7] D.E. Knuth. Semantics of context-free languaddsth. Syst. Theory, 2:127—-145, 1968.

[8] T. Uustalu and V. Vene. Comonadic functional attributleation. In M. van Eekelen, edTrends in Functional
Programming 6, pp. 145-162. Intellect, 2007.



