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ABSTRACT. This paper uses elementary categorical techniques to systematically describe the se-
mantics of context-free grammars and of attribute evaluation for such grammars. The novelty lies in
capturing inherited attributes and their evaluation via exponents and naturality.

1. INTRODUCTION

Context free grammars form a fundamental topic in computer science, as the basis for compiler
construction and language processing. The meaning of parsetrees of such grammars is usually
captured via attributes and semantic equations. They definethe attribute values at any node of any
given parse tree.

Knuth [7] is a classical paper on such semantics of context-free languages. A later paper [1],
speaking of “Knuthian semantics” rephrases the material interms of multi-sorted algebras and uses
initiality for interpretation, following Goguenet al. [2, 3]. A complicating factor in this setting is
that attributes come in two flavours, namely ‘synthesised’ (bottom-up) and ‘inherited’ (top-down),
which may lead to circular dependencies. Much research has been devoted to avoiding such circu-
larities via syntactic criteria. The problem is side-stepped in [1] by working in a domain-theoretic
setting [3] in which the necessary fixed points always exist.

Here we ‘modernise’ the multi-sorted algebra approach of [1] by generalising it to the categor-
ical theory of algebras of functors (see [6] for an introduction). This allows us to:

(1) see an attribute grammar built on a context-free grammarsimply as an algebra of the functor
associated with the context-free grammar;

(2) describe attribute evaluation systematically as a special form of tree relabeling.

Most of this ‘modernisation’ is straightforward. Nevertheless we spell it out in detail in order to
make it accessible to readers who are less familiar with categorical techniques. The main (novel)
contribution of the paper comes at the end, where a combination of exponents and naturality is used
to capture inherited attributes. This is our way of side-stepping syntactic criteria.
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2. FROM CONTEXT FREE GRAMMARS TO FUNCTORS

A context free grammar (CFG) is a standard notion in languageprocessing. It consists of a set
of production rules, likev → a1v1v2a2v3, telling how non-terminalsv ∈ V can be replaced by a
string of both non-terminalsvi ∈ V and terminalsaj ∈ Σ. The right hand side is thus an element
of the set(V + Σ)⋆ of words built from letters from eitherV or Σ. Here we write+ for the disjoint
union of the two setsV,Σ. The grammar as a whole can thus be described by a single function of
the form

V
f

// P
(

(V + Σ)⋆
)

(2.1)

It maps a non-terminalv ∈ V to a set of right hand sidesw ∈ f(v), written asv → w. This
description casts CFGs in “coalgebraic” form, following [4], with V as set of states. It allows for
easy generalisations to stochastic CFGs by taking the distribution monadD instead of the powerset
monadP in (2.1), or to weighted CFGs by taking the multiset monadM instead ofP. The coal-
gebraic representation leads to a trace semantics for such CFGs in the Kleisli category associated
with the monad. It can be used to describe the associated skeleton parse trees and generated strings,
see [4] for details.

Here we go in a different direction. We show how to associate with a CFGf as in (2.1)
an endofunctorF : SetsV → SetsV on the categorySetsV of V -indexed families(Xv)v∈V of
setsXv . A morphism(Xv)v∈V → (Yv)v∈V in this category consists of a collection of functions
ϕv : Xv → Yv for v ∈ V . Composition and identities are obtained “componentwise”.

In order to define the functorF associated withf we need some notation. For a wordw ∈
(V + Σ)⋆ of both non-terminals and terminals we writew ∈ V ⋆ for the word obtained fromw by
removing all terminals. Further, for aV -indexed collection(Xv)v∈V and a word〈v1, . . . , vn〉 ∈ V ⋆

we writeX〈v1,...,vn〉 = Xv1
× · · · × Xvn . This Cartesian product is a singleton1 = {∗} in case the

sequence is empty. Now we can define the functorF : SetsV → SetsV associated withf as:

F
(

(Xv)v∈V

)

=
(

∐

w∈f(v) Xw

)

v∈V
. (2.2)

The notation
∐

is used for indexed disjoint union, as generalisation of thebinary+. It is easy to see
what the functorF does on morphismsϕ =

(

ϕv : Xv → Yv

)

v∈V
, namelyF (ϕ)(〈w, x1, . . . , xn〉) =

〈w,ϕv1
(x1), . . . , ϕvn(xn)〉, wherew = 〈v1, . . . , vn〉.

The essence of this definition is already contained in [2, 1] where a multi-sorted signature is
associated with a CFG. We shall illustrate this functor definition in our two leading examples below.
The next section will show how such functors between categories of indexed sets will be used for
providing semantics for languages.

S → e1 | e2 | . . .

S → SS

2.1. Binary tree grammar. A simple grammar for binary trees is stan-
dardly described via productions as on the right, say withE = {e1, e2, . . .}.
The associated trees have labels from the setE at the leaves. We can
describe this grammar in coalgebraic form (2.1) as follows.The state space is a singleton{S},
since this grammar is “single-sorted”. The associated mapg : {S} → P(({S} + E)⋆) is given as
g(S) = {〈e〉 | e ∈ E} ∪ {〈S, S〉}, in which the above two productions are recognisable. Sincethe
categorySets{S} is isomorphic toSets we get an associated functorG : Sets → Sets given by:

G(X) = E + (X × X).

Again, it reflects the productions in obvious manner.
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B → 0 | 1

L → B | LB

N → L | L.L

2.2. Binary number grammar. Our next example from [7] is slightly less
trivial. It describes, on the right, a grammar for numbers ofthe formβ or β.γ,
whereβ, γ ∈ {0, 1}⋆ are bit strings. Now we have a “many-sorted” gram-
mar with set of non-terminals{B,L,N} and coalgebra maph : {B,L,N} →
P(({B,L,N} + {0, 1, .})⋆) given by three equations:h(B) = {〈0〉, 〈1〉}, h(L) = {〈B〉, 〈L,B〉}
andh(N) = {〈L〉, 〈L, ., L〉}. Notice the role of the dot (.) as terminal. There is an associated
endofunctorH on the categorySets{B,L,N} ∼= Sets3. It is given, according to (2.2) by:

H(XB ,XL,XN ) = (1 + 1,XB + (XL × XB),XL + (XL × XL)).

We shall illustrate how for instance the last componentXL + (XL × XL) on the right hand side
of this definition arises. According to the general description (2.2) we have as third component,
indicated by subscript(−)N :

H(XB ,XL,XN )N =
∐

σ∈h(N)(XB ,XL,XN )σ

= (XB ,XL,XN )
〈L〉

+ (XB ,XL,XN )
〈L,.,L〉

= (XB ,XL,XN )〈L〉 + (XB ,XL,XN )〈L,L〉

= XL + (XL × XL).

Notice how the overline mapping(−) removes the dot. since it is terminal.
It is not hard to see that categories of the formSetsV have arbitrary products

∏

and coproducts
∐

given by pointwise constructions. Also, exponents(Xv)v∈V ⇒ (Yv)v∈V are obtained pointwise,
namely as(Xv ⇒ Yv)v∈V .

3. PARSE TREES AS INITIAL ALGEBRAS

For an arbitrary endofunctorF : C → C on a categoryC an algebra is a map inC of the form

a : F (A) → A. A homomorphism (or map) of algebras, fromF (A)
a
→ A to F (B)

b
→ B is a

morphismf : A → B in C with f ◦ a = b ◦ F (f). This yields a categoryAlg(F ), with obvious
forgetful functorAlg(F ) → C which maps an algebraF (A) → A to its carrierA ∈ C.

An initial algebra of an endofunctorF is an initial object in its categoryAlg(F ) of algebras. It
is an algebra(FA → A) with the special property that for each algebra(FB → B) there is a unique
homomorphism of algebras(FA → A) −→ (FB → B). We shall often write this homomorphism
via “Scott” or “interpretation” bracketsJ− K : A → B, as in the diagram:

FA
∼= ��

F (J− K)
// FB

��
A

J− K
// B

(3.1)

We have labeled the initial algebra map with the isomorphismsymbol∼= since it is by general
reasoning an isomorphism. This fact is often called Lambek’s lemma, see for instance [6].

Initial algebras are typically term algebras, formed by iteratively applying the rules for term
formation. The mapJ− K obtained by initiality then provides the interpretation ofterms in some
other domain in a “compositional” manner. It corresponds todefinition by induction, see [6] for
details. Later on we shall extensively use this homomorphism property (3.1) of the mappingJ− K
for computing interpretations. Commutation of the diagramcaptures semantic equations.
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The initial algebra of a functorF , if it exists, is sometimes written asµX.F (X), or simply as
µF . There are general criteria that guarantee existence of initial algebras, but they do not matter
here. Fundamental for what follows is the following observation.

Fact 3.1. The initial algebra of the functorF : SetsV → SetsV associated as in (2.2) with a CFG
V → P((V + Σ)⋆) is given by the indexed collection(Pv)v∈V of setsPv of v-rooted parse trees of
the grammar.

We shall illustrate this result, and its application to attribute grammars, for our leading exam-
ples. These attribute grammars will be identified as algebras of the associated functor.

G(BT) = E + (BT × BT)
∼= // BT

e � //
(

S

e

)

(t1, t2)
� //

(

S

t1 t2

)

3.1. Binary trees. Recall the functor
G(X) = E + (X × X) associated with
the grammar for binary trees in Subsec-
tion 2.1. We shall write its initial algebra
as set of binary (S-rooted) treesBT with
algebra map as on the right. This says
that ane-label goes to anS-rooted tree
with just this label at its leaf, and that a pair of trees is combined to a singleS-rooted tree. Clearly
this is an isomorphism, because an arbitraryS-rooted treet ∈ BT has either such a direct leaf or a
binary node with two subtrees.

An attribute grammar extends a CFG with attributes and so-called semantic equations for com-
puting certain values for parse trees. We introduce this concept informally in examples. The at-
tribute grammars of this section will only have what are called synthesised attributes. Inherited
attributes will be considered later. Purely synthesized attribute grammars can be specified as alge-
bras and initiality is then used to compute the attribute values of the root node.

A first example, from [8], is about the AVL property of binary trees. Recall that a tree is called
AVL when it is balanced in the sense that the heights of each pair of (adjacent) subtrees differ at
most by one. The AVL attribute grammar is based on the binary tree CFG. The only nonterminalS
has two attributesavl andht taking values from 2 andN where2 = {0, 1} is the set of Booleans.
The semantic equations associated to the production rules are

avl(S) = 1 for S → e, e ∈ E
ht(S) = 0

avl(S) = avl(Sℓ) ∧ avl(Sr) ∧ |ht(Sℓ) − ht(Sr)| ≤ 1 for S → SℓSr

ht(S) = max(ht(Sℓ), ht(Sr)) + 1

Here, subscripts are used for telling apart different occurrences of one nonterminal in one production
(S occurs three times in the second production of the binary tree grammar).

For us, this grammar is an algebra of the functorG. The carrier set is2 × N, where the first
component is for values ofavl and the second for values ofht. The algebra structure is this:

G(2 × N) = E + ((2 × N) × (2 × N)) // 2 × N

e � // (1, 0)

〈(bℓ, hℓ), (br, hr)〉
� // (bℓ ∧ br ∧ |hℓ − hr| ≤ 1, max(hℓ, hr) + 1)

(3.2)

How to read this? The value(1, 0) for a leafe says that such a tree is AVL (value 1) and has height 0.
The second assignment is more complicated: suppose for a left subtree we already have a Boolean
valuebℓ ∈ 2 for AVL-ness and heighthℓ ∈ N, and similarlybr ∈ 2 andhr ∈ N for a right subtree.
For the tree combined from these subtrees we can then compute:
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• the Boolean value for AVL-ness as:bℓ ∧ br ∧ |hℓ − hr| ≤ 1. Indeed the combined tree is
AVL requires a conjunction of tree things: the left subtree is AVL (bℓ), the right subtree is
AVL ( br) and the difference of heights of the two subtrees is at most one: |hℓ − hr| ≤ 1.

• the height as the maximum of the heights of the subtrees plus one: max(hℓ, hr) + 1.

Initiality of BT gives an interpretation mapJ− K : BT → 2 × N as in (3.1). It consists of a pair of
mapsJ− K1 : BT → 2 andJ− K2 : BT → N, whereJ− K1 computes whether a tree is AVL andJ− K2

computes the height. Commutation of the initiality diagramamounts to two “semantic” equations:
s

S

e

{
= (1, 0)

s
S

tℓ tr

{
= (J tℓ K1 ∧ J tr K1 ∧ |J tℓ K2 − J tr K2| ≤ 1, max(J tℓ K2, J tr K2) + 1).

Here is a simple illustration. For convenience we write indicesi on tree nodesSi (simply to
distinguish them) and show during the computation only the relevant part of the tree at that point.

u
wwwv

S1

S2

e1

S3

S4

e2

S5

e3

}
���~

1

=

s
S2

e1

{

1

∧

s
S3

· ·

{

1

∧

∣

∣

∣

∣

∣

s
S2

e1

{

2

−

s
S3

· ·

{∣
∣

∣

∣

∣

≤ 1

= 1 ∧

s
S4

e2

{

1

∧

s
S5

e3

{

1

∧

∣

∣

∣

∣

∣

s
S4

e2

{

2

−

s
S5

e3

{

2

∣

∣

∣

∣

∣

≤ 1 ∧

∣

∣

∣

∣

∣

0 − (max

(s
S4

e2

{

2

,

s
S5

e3

{

2

)

+ 1)

∣

∣

∣

∣

∣

≤ 1

= 1 ∧ 1 ∧ |0 − 0| ≤ 1 ∧ |0 − (max(0, 0) + 1)| ≤ 1

= 1.

Hence this tree is indeed AVL. Notice how the computation proceeds “bottom-up” in the sense that
values computed at subtrees are needed for values higher up in the tree.

3.2. Binary numbers. We will now show that the initial algebra of the functorH : Sets3 → Sets3

for the binary number grammar from Subsection 2.2 has the triple BN = (BNB , BNL, BNN ) of
B-, L-, andN -rooted trees as initial algebra. Such an initial algebra consists of an isomorphism
H(BN)

∼=→ BN in the categorySets3, and thus of a triple of isomorphismsH(BN)i
∼=→ BNi for

i ∈ {B,L,N}. They are given in the “obvious” manner by constructing trees, see Figure 1.
The following attribute grammar is from [7]. It gives a way toassign numerical meaning to

parse trees of the binary numbers CFG. All nonterminals havean attributeval and the nonterminal
L (for bitstrings) has a further attributelen; the val attributes ofB andL and thelen attribute are
N-valued, theval attribute forN takes values fromQ. The semantic equations are:

val(B) = b for B → b, b ∈ {0, 1}
val(L) = val(B) for L → B
len(L) = 1
val(L) = 2val(L′) + val(B) for L → L′B
len(L) = len(L′) + 1
val(N) = val(L) for N → L

val(N) = val(L1) + val(L2)/2
len(L2) for N → L1.L2
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1 + 1
∼= // BNB

b
� //

(

B

b

)

1
� //

(

B

1

)

BNB + (BNL × BNB)
∼= // BNL

tB
� //

(

L

tB

)

(tL, tB) � //
(

L

tL tB

)

BNL + (BNL × BNL)
∼= // BNN

tL
� //

(

N

tL

)

(tL1, tL2)
� //

(

N

tL1 . tL2

)

Figure 1: The initial algebra structure inSets3 of binary numbers

The presentation as an algebra uses a carrier inSets3 given by the triple of sets(N, N2, Q),
with algebra/attribute structureH(N, N2, Q) → (N, N2, Q) given by the three maps in:

1 + 1 // N

0
� // 0

1
� // 1

N + (N2 × N) // N2

b
� // (b, 1)

((n,m), b) � // (2n + b,m + 1)

N2 + (N2 × N2) // Q

(n,m) � // n

((n,m), (p, q)) � // n + p
2q .

These mappings show that:

• theB-value inN gives the value of a bit;
• theL-value inN2 consists of a value of a bit string together with its length;
• theN -value inQ gives the ordinary bit string value, possibly with a quotient for the string

after the dot.

By initiality of H(BN)
∼=→ BN we obtain an interpretation mapJ− K : (BNB, BNL, BNN ) →

(N, N2, Q) in Sets3. We can write it as three separate mapsJ− KB : BNB → N, J− KL : BNL → N2

andJ− KN : BNN → Q. The mapJ− KL can then be split into two separate mapsJ− KL,i : BNL →
N, for i = 1, 2. Commutation of the initiality diagram amounts to the following equations.

s
N

b

{

B

= b, for b ∈ {0, 1}
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s
L

t

{

L

= (J t KB, 1)

s
L

tL tB

{

L

= (2J tL KL,1 + J tB KB, J tL KL,2 + 1)

s
N

t

{

N

= J t KL,1

s
N

t1 · t2

{

N

= J t1 KL,1 +
J t2 KL,1

2J t2 KL,2
.

These homomorphism equations are the basis of value calculations, for instance for the word
1101.01. For convenience the nodes in the parse tree below are labeled with subscripts in order to
distinguish them; also, the “sort” subscriptsB,N,L on the interpretation functionJ− K are omitted.
In order to avoid complicated superscripts we write exp(2, n) for 2n.





















































N

L1

L2

L3

L4

B4

1

B3

1

B2

0

B1

1

· L5

L6

B5

0

B6

1





















































=

s
L1

· ·

{

1

+

s
L5

· ·

{

1

/ exp(2,

s
L5

· ·

{

2

)

= 2

s
L2

· ·

{

1

+

s
B1

1

{
+

(

2

s
L6

·

{

1

+

s
B6

1

{)
/ exp(2,

s
L6

·

{

2

+ 1)

= 4

s
L3

· ·

{

1

+ 2

s
B2

0

{
+ 1 +

(

2

s
B5

0

{

1

+ 1

)

/ exp(2, 2)

= 8

s
L4

·

{

1

+ 4

s
B3

1

{
+ 1 + 1

4 = 8

s
B4

1

{

1

+ 5 + 1
4 = 13.25.

So far we have not said what attribute grammars are in general, but have described them as algebras
for the functor associated with a grammar, as in (2.2). This semantical approach will be continued.

4. ATTRIBUTE EVALUATION : THE PURELY SYNTHESISED CASE

Attribute grammars are not only used for computing values for the root nodes of trees, as in
the previous section, but also for computing values for the inner nodes—which were calculated im-
plicitly in the earlier examples. In this section we show howto do such calculations explicitly. The
attribute grammars that we considered so far are so-called purely synthesised ones, in which calcu-
lations on parse trees are performed “bottom-up”, from children to parents. The general situation,
also involving “top-down” calculations will be studied in Section 6.

The first step is to describe labeled trees abstractly.

Definition 4.1. For an arbitrary functorF : C → C and an objectA ∈ C we write

F@(A) = µX.A × F (X).

Assuming that these initial algebras exist, we obtain a new functorF@ : C → C.
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A × F (F@(A))
αA ∼=��

idA × F (J− K)
// A × F (Y )

��
F@(A)

J− K
// Y

An arbitrary valueF@(A) can be under-
stood asA-labeled F -trees, as the examples
below will illustrate. In general, a function
F@(A) → F@(B) between such labeled trees
may be called a relabeling function when it suit-
ably preserves the tree structure (see below). We shall be especially interested in the case where
A = 1. The valueF@(1) at the final object 1 is the initial algebraµX.F (X) of F -trees. Then
it makes sense to talk of ‘tree labeling’ instead of ‘relabeling’. Such labelings are also known as
attribute evaluations. The initiality involved inF@(A) amounts to the following. For an arbitrary
algebraA×F (Y ) → Y there is a unique mapJ− K as on the right. It can be shown that the functor
F@ is actually a comonad, but that is not very relevant here. We do however need the counit of this
comonad structure. It is a special mapF@(A) → A, namely:

εA =
(

F@(A) ∼=

α−1
A // A × F (F@(A))

π1 // A
)

This counit maps anA-labeled tree to theA-value at its root. The other (second) projection yields a
mapπ2 ◦ α−1

A : F@(A) → F (F@(A)) that forms a coalgebra of the functorF . It is used in [5] to
define the property “bottom-up-ness” for tree transformers, namely as “coalgebra homomorphism”.
This property holds for the relabeling functionL− M that we are about to define.

Attribute evaluation as tree (re)labeling is based on the following easy result.

Proposition 4.2. In the above situation with functors F and F@, an algebra F (B) → B induces an
attribute evaluation function L− M : F@(1) → F@(B) such that the following diagram commutes.

F@(1)
L− M

//

J− K **UUU
UUUUUUU

UUUU
F@(B)

εB��
B

Proof. The attribute evaluation functionL− M is obtained by initiality, in the square on the left below.

F (F@(1))
α1 ∼=��

F (L− M)
// F (F@(B))

β′
��

F (εB)
// F (B)

β
��

F@(1)
L− M

//

J− K

33F@(B)
εB // B

The algebraβ : F (B) → B is assumed, andβ′ : F (F@(B)) → F@(B) is obtained as:

β′ =
(

F (F@(B))
〈β ◦ F (εB), id〉

// B × F (F@(B))
αB

∼=
// F@(B)

)

.

The square on the right then commutes by construction. By (the uniqueness part of) initiality ofα1

we obtain thatεB ◦ L− M = J− K.
In terms of the comonad structure onF@, the functionL− M is the coKleisli extension ofJ− K.
The attribute grammar for AVL-trees from Subsection 3.1 wasoriginally described as an alge-

braG(2×N) → 2×N in (3.2). The associated functorG@ maps a setA to the initial algebra of the
functorX 7→ A×G(X) = A× (E + (X ×X)) ∼= (A×E) + (A×X ×X). It consists of binary
trees with labels fromA×E at the leaves and fromA at the nodes. Proposition 4.2 associates with
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the attribute grammarG(2 × N) → 2 × N a relabeling functionL− M : G@(1) → G@(2 × N). It
does so via a mapG(G@(2 × N)) → G@(2 × N), written asβ′ in the above proof. Explicitly:

G(G@(2 × N)) = E + (G@(2 × N) × G@(2 × N)) // G@(2 × N)

e � //

(

S(1, 0)

e

)

(tℓ, tr)
� //

(

S(b, h)

tℓ tr

)

with, as in (3.2),
{

b = bℓ ∧ br ∧ |hℓ − hr| ≤ 1
h = max(hℓ, hr) + 1

where

{

(bℓ, hℓ) = ε(tℓ)
(br, hr) = ε(tr)

In the description of this mapping we use the convention to write the attribute values between
brackets after the non-terminal at a node, as inS(1, 0). This yields, as example attribute evaluation:
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∣


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


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






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S(1, 0)

e1

S(1, 1)

S(1, 0)

e2

S(1, 0)

e3











In a similar way one may check that the attribute grammarH(N, N2, Q) → (N, N2, Q) from
Subsection 3.2 gives rise to a labeling (like in [7, (1.4)]):
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


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∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

N
L

L
L

L
B
1

B
1

B
0

B
1

· L
L
B
0

B
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





















=



























N(13.25)

L(13, 4)

L(6, 3)

L(3, 2)

L(1, 1)

B(1)

1

B(1)

1

B(0)

0

B(1)

1

· L(1, 2)

L(0, 1)

B(0)

0

B(1)

1



























TheJ− K-calculation that we have done in Subsection 3.2 indeed yields the root value 13.25 of this
labeled tree, obtained viaε, as formulated generally in the triangle in Proposition 4.2.

5. INHERITED ATTRIBUTES

So far we have only given a limited view on attribute grammars, namely one in which only
so-called synthesised attributes occur. Their values are obtained in bottom-up computations, out of
values of the subtrees. There are also “inherited” attributes whose values depend on other values
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higher up in the tree. Much research in the literature on attribute grammars is concerned with (syn-
tactic) criteria for avoiding circularity between synthesised and inherited attributes. Here we only
look at semantics, and simply claim (without proof) that non-circular attribute grammars with both
synthesised and inherited attributes can be formulated as algebras (like in Section 3), but with ex-
ponentsBA as carriers, where the positive partB corresponds to the combined types of synthesised
attributes, and the negative partA to the inherited ones.

In this section the claim will be illustrated for our leadingexamples of binary trees and binary
numbers. How to do attribute evaluation in these cases will be described in the next section.

5.1. Binary trees. Our example comes again from [8] and involves pre-order numbering of the
nodes of trees. It is described there via twoN-valued attributesnumin, numout of the nonterminal
S, which are given via the following semantic equations.

(a) numout(S) = numin(S) for S → e, e ∈ E
(b) numin(Sℓ) = numin(S) + 1 for S → SℓSr

(c) numin(Sr) = numout(Sℓ) + 1
(d) numout(S) = numout(Sr)

The attributenumout is auxiliary, and only used to compute the valuenumin that we are interested in.
The inherited aspect appears in equation (b), making thenumin-value of the left subtree dependent
on thenumin value of its parent. This will be made explicit in an algebraic description.

Indeed, we claim that we can capture this attribute grammar as an algebra of the functor
G(X) = E + (X × X), introduced in Subsection 3.1 for binary trees. As carrier we take the
exponentNN of inherited-to-synthesised attribute types. The algebrastructureG(NN) → NN is:

G(NN) = E + (NN × NN) // NN

e � // λn ∈ N. n

〈fℓ, fr〉
� // λn ∈ N. fr(fℓ(n + 1) + 1)

(5.1)

A function inNN is seen as a mapping that takes thenumin value of a node to itsnumout value. On
leaves it must be the identity, by equation (a). If we alreadyhave two such functionsfℓ, fr for the
left and right subtrees, then the resulting functionf for their parent computes anumout value from
a numin valuen as:

• the outputfr of the right subtree—by equation (d), . . .
• . . . applied to the thenumin value of the right subtree, which is thenumout valuefℓ of the

left subtree plus one—by equation (c), . . .
• . . . applied to thenumin valuen + 1 of the parent plus one—by equation (b).

Hence we havef(n) = fr(fℓ(n + 1) + 1) as described in (5.1).
So what does this algebraG(NN) → NN give us? By initiality it leads to an interpretation map

J− K : BT → NN. The latter yields for a treet ∈ BT a functionJ t K ∈ NN that computes thenumout
value of the root node from a givennumin value of the root. For instance,
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


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




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








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




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s
S3

· ·

{
(

s
S2

e1

{
(n + 1) + 1

)

=

s
S3

· ·

{
(n + 2)

=

s
S5

e3

{
(

s
S4

e2

{
(n + 3) + 1

)

= n + 4.
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Section 6 describes how to do attribute evaluation also for the inner nodes.

val(B) = 0 for B → 0

val(B) = 2scale(B) for B → 1

scale(L) = scale(B) for L → B
val(L) = val(B)
len(L) = 1

scale(L′) = scale(L) + 1 for L → L′B
scale(B) = scale(L)

val(L) = val(L′) + val(B)
len(L) = len(L′) + 1

scale(L) = 0 for N → L
val(N) = val(L)

scale(L1) = 0 for N → L1.L2

scale(L2) = −len(L2)
val(N) = val(L1) + val(L2)

5.2. Binary numbers. Knuth [7] describes
a second semantics for binary numbers,
which is “more close to the manner in
which we usually think of the notation”. It
involves additional integer-valuedscale at-
tributes for bitsB and bitstringsL, which
are inherited. Thisscale attribute is used
for a different interpretation for bits (B),
namely not as0, 1 values, but as rationals
depending on their position, given by the
scale. Theval andlen attributes from Sub-
section 3.2 remain, butval is now rational-
valued. The semantic equations are given
on the right, in standard style.

As objects of the categorySets3 in
which we work for this example the types of the inherited attributes of the non-terminals(B,L,N)
are given as(Z, Z, 1). Those of the synthesized ones are given as(Q, Q × N, Q). According to
the claim mentioned in the beginning of this section we should be able to express Knuth’s attribute
grammar as anH-algebra with as carrier the exponent in the categorySets3:

(Q, Q × N, Q)(Z,Z,1) = (QZ, (Q × N)Z, Q1) ∼= (QZ, QZ × NZ, Q).

TheH-algebra structure on this exponent is given as follows.

1 + 1 // QZ

0
� // λs. 0

1
� // λs. 2s

QZ + (QZ × NZ) × QZ // QZ × NZ

b
� // (b, λs. 1)

(〈f, g〉, b) � // (λs. f(s + 1) + b(s), λs. g(s + 1) + 1)

QZ × NZ + (QZ × NZ) × (QZ × NZ) // Q

(f, g) � // f(0)

〈(f, g), (h, k)〉 � // f(0) + h(−k(0)).

By initiality we then get an interpretation mapJ− K : BN → (QZ, QZ × NZ, Q) in Sets3. It allows
us to compute the root value of a tree using the algebra homomorphism properties ofJ− K, as in
Figure 2.

In [1] a slightly simplified version of this algebra is described, namely with carrier(QZ, QZ ×
N, Q). The difference lies in the second component: they useQZ×N instead of ourQZ×NZ because
they notice that the (synthesised)len attribute with typeN does not depend on the (inherited)scale
with type Z. Here we stick with the general exponent form, which means that we have to pick
an arbitrary value as input for the functionk in the last line of our algebra description. The point
here is that the attribute dependency analysis has to happenin the formulation itself of an attribute
grammar as an algebra of a functor: the framework enforces it(which we see as advantage).
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s
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· ·

{

1
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=

s
L4

·

{

1

(3) +

s
B3

1

{
(2) + 0 + 1 +

s
L6

·

{

1

(−1) +

s
B6

1

{
(−2)

=

s
B4

1

{

1

(3) + 22 + 1 +

s
B5

0

{

1

(−1) + 2−2 = 23 + 5 + 0 + 1
4 = 13.25.

Figure 2: Sample calculation for the algebra from Subsection 5.2.

6. ATTRIBUTE EVALUATION : THE GENERAL CASE

We have described general attribute grammars with both synthesised and inherited attributes as
algebras with an exponent as carrier. Here we describe attribute evaluation for such grammars, via
an extension of Proposition 4.2 given below. It requires that the algebraγ : F (BA) → BA involved
arises from a more general structure, namely a natural transformation with components of the form:

F
(

(B × X)A
) ΓX // (B × F (X)

)A (6.1)

Such a natural transformationΓ is a collection of maps(ΓX), indexed by objectsX, which work
“naturally” or “uniformly” in X. This means that for any functionf : X → Y one has(idB ×
F (f))A ◦ ΓX = ΓY ◦ F ((idB × f)A).

We then assume that the algebraγ : F (BA) → BA arises by takingX = 1. To be precise as:

γ =
(

F (BA)
F (〈id, !〉A)

// F
(

(B × 1)A
) Γ1 // (B × F (1)

)A
πA

1 // BA
)

(6.2)

The extra generality given byΓ is needed to lead the values of the inherited attributes appropriately
down the subtrees. If the functorF is “strong” and we already have an algebraF (BA) → BA then
one can construct a trivial natural transformationΓ as in (6.1) by passing on the same argument
downwards. But as the examples below will illustrate,Γ typically adapts the arguments.

We assume that the category in which we work is cartesian closed, so that we have exponent
objectsBA, for arbitrary objectsA,B, with evaluation mapsev : BA × A → B and abstractions
Λ(f) : C → BA for f : C × A → B, satisfying the standard equationsev ◦ (Λ(f) × id) = f ,
Λ(f) ◦ g = Λ(f ◦ (g × id)) andΛ(ev) = id, see any basic text on category theory. Maps of the
form fA, as already used above, are defined asfA = Λ(f ◦ ev) : XA → Y A, wheref : X → Y .
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Proposition 6.1. Assume an endofunctor F : C → C on a cartesian closed category C with associ-
ated labeled tree functor F@ as in the beginning of Section 4. A natural transformation Γ: F ((B ×
−)A) ⇒ (B × F (−))A as in (6.1) induces an attribute evaluation function L− M : F@(1) →
F@(A × B)A such that the following diagram commutes.

AA

F@(1)
L− M

//

J− K ++VVVVVVVVVVVVVVVVV

⌈idA⌉
33hhhhhhhhhhhhhhhhh

F@(A × B)A
(π1 ◦ εA×B)A

OO

(π2 ◦ εA×B)A��
BA

where ⌈idA⌉ is the constant map yielding the identity function on A.

The attribute evaluation mapL− M : F@(1) → F@(A × B)A takes a parse treet ∈ F@(1) and
an initial “inherited” valuea ∈ A to a labeled treeL t M(a) ∈ F@(A × B) with combined inherited
and synthesised labels fromA × B. Of course we can concentrate on theA-labels or theB-labels
alone, by composing with a suitable projectionF@(πi).

Proof. Assuming the natural transformationΓ with associated algebraγ as in (6.2) we constructΓ′

in the middle of the diagram below.

F (F@(1))
α1 ∼=��

F (L− M)
// F (F@(A × B)A)

Γ′
��

F ((π2 ◦ εA×B)A)
// F (BA)

γ
��

F@(1)
L− M

//

J− K

22F@(A × B)A
(π2 ◦ εA×B)A

// BA

The mapΓ′ is obtained as composite:

F
(

F@(A × B)A
)

F (〈π2 ◦ ε, id〉A)��
F
(

(B × F@(A × B))A
)

Γ
// (B × F (F@(A × B))

)A

Λ(〈〈π2, π1 ◦ ev〉, π2 ◦ ev〉)��
(

(A × B) × F (F@(A × B))
)A

αA
// F@(A × B)A

We show that the right-hand-square above commutes, via a tedious but elementary calculation.

(π2 ◦ ε)A ◦ Γ′ = Λ(π2 ◦ π1 ◦ α−1 ◦ ev) ◦ Λ(α ◦ 〈〈π2, π1 ◦ ev〉, π2 ◦ ev〉) ◦

Γ ◦ F (〈π2 ◦ ε, id〉A)

= Λ(π2 ◦ π1 ◦ α−1 ◦ α ◦ 〈〈π2, π1 ◦ ev〉, π2 ◦ ev〉) ◦

Γ ◦ F (〈π2 ◦ ε, id〉A)

= Λ(π1 ◦ ev) ◦ Γ ◦ F (〈π2 ◦ ε, id〉A)

= πA
1 ◦ (id × F (!))A ◦ Γ ◦ F (〈π2 ◦ ε, id〉A)

= πA
1 ◦ Γ ◦ F ((id× !)A) ◦ F (〈π2 ◦ ε, id〉A) by naturality ofΓ

= πA
1 ◦ Γ ◦ F ((〈id, !〉 ◦ π2 ◦ ε)A)

= γ ◦ F ((π2 ◦ ε)A).
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In a similar, but easier, way one checks that(π1 ◦ ε)A ◦ Γ′ = Λ(π2) = ⌈id⌉.

We shall make the general recipe for attribute evaluation from Proposition 6.1 more concrete
by demonstrating it for our two running examples.

6.1. Binary trees. We first show how the attribute grammarG(NN) → NN from Subsection 5.1
arises in fact from a natural transformation with components G((N×X)N) → (N×G(X))N given
as follows.

E + (N × X)N × (N × X)N // (N × (E + X × X))N

e � // λn ∈ N. 〈n, e〉

〈fℓ, fr〉
� // λn ∈ N. 〈π1fr(m + 1), 〈π2fℓ(n + 1), π2fr(m + 1)〉〉

wherem = π1fℓ(n + 1)

This definition clearly contains the one for the algebraG(NN) → NN from (5.1). But it does
a bit more: the argumentn is also passed on to the subtrees via theX-component, in a similar
manner. The arguments are thus not only needed for computinga value at a particular point in
the tree, but also for attribute evaluation in the subtrees.According to Proposition 6.1 this natural
transformation yields an attribute evaluation mapL− M : G@(1) → G@(N × N)N via the algebra
G(G@(N × N)N) → G@(N × N)N, calledΓ′ in the above proof. In this case it is:

E + G@(N2)N × G@(N2)N // G@(N2)N

e � // λn.

(

S(n, n)

e

)

〈fℓ, fr〉
� // λn.

(

S(n, pr)

fℓ(n + 1) fr(pℓ + 1)

)

with

{

pℓ = π2ε(fℓ(n + 1))

pr = π2ε(fr(pℓ + 1))

Thesepℓ andpr are the second components of the root values of the subtrees.
Then we can also compute the(numin, numout)-values also for the inner nodes in the example

calculation at the end of Subsection 5.1: the pre-order numbering starting atn ∈ N is:
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6.2. Binary numbers. As before we first notice that theH-algebra structure on the exponent
(Q, Q × N, Q)(Z,Z,1) ∼= (QZ, QZ × NZ, Q) from Subsection 5.2 arises in fact from a natural trans-
formation

H
(

((Q, Q × N, Q) × X)(Z,Z,1)
)

//
(

(Q, Q × N, Q) × H(X)
)(Z,Z,1)

By unravelling the definition ofH for X = (XB ,XL,XN ) and using the componentwise descrip-
tion of exponents inSets3 we see that this natural transformation consists of three maps of the
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form:

1 + 1 // (Q×(1 + 1)
)Z

(

Q×XB

)Z
+
(

Q×N×XL

)Z
×
(

Q×XB

)Z // ((Q×N×(XB + XL×XB)
)Z

(

Q×N×XL

)Z
+
(

Q×N×XL

)Z
×
(

Q×N×XL

)Z // Q×(XL + XL × XL).

It is given along the lines of the algebra definition in Subsection 5.2:
{

0 7−→ λs. 〈0, 0〉

1 7−→ λs. 〈2s, 1〉
{

b 7−→ λs. 〈b1(s), 1, b2(s)〉

〈f, b〉 7−→ λs. 〈f1(s + 1) + b1(s), f2(s + 1) + 1, 〈f3(s + 1), b2(s)〉〉
{

f 7−→ 〈f1(0), f3(0)〉

〈f, g〉 7−→ 〈f1(0) + g1(−g2(0)), 〈f3(0), g3(−g2(0))〉〉.

In the proof of Proposition 6.1 we then see how we get anH-algebra on

H@((Z, Z, 1) × (Q, Q × N, Q))(Z,Z,1) ∼= H@(Z × Q, Z × Q × N, Q)(Z,Z,1),

which we can describe explicitly as:


























0 7−→ λs.

(

B(s, 0)

0

)

1 7−→ λs.

(

B(s, 2s)

1

)



























b 7−→ λs.

(

L(s, v, 1)

b(s)

)

where

{

v = π2ε(b(s)), the second component of

the root value of the subtreeb(s)

〈f, b〉 7−→ λs.

(

L(s, v, l)

f(s + 1) b(s)

)

where

{

v = π2ε(f(s + 1)) + π2ε(b(s))

l = π3ε(f(s + 1)) + 1


























f 7−→

(

N(v)

f(0)

)

wherev = π2ε(f(0))

〈f, g〉 7−→

(

N(v)

f(0) . g(−s)

)

where

{

s = π3ε(g(0))

v = π2ε(f(0)) + π2ε(g(−s))

Figure 3 illustrates the attribute evaluation functionL− M resulting from this algebra for our running
example. It reconstructs equation (1.6) from [7] in a systematic manner via initiality.

7. FUTURE WORK

After these first steps in a categorical reformulation of classical work in computer science many
issues remain, among which we are particularly interested in the following three.
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Figure 3: Attribute evaluation for the binary number example from Subsection 5.2

• Investigation of the generality obtained by a natural transformationΓ: F ((B × −)A) ⇒
(B × F (−))A as in the beginning of Section 6. In this paper, we required noconditions on
suchΓ. Is this appropriate, also in examples?

• Formulation of a natural transformation from a given set of semantical equations: is there a
canonical way to do so?

• Implementation, for instance in the programming language Haskell, of attribute evaluation
as described above.
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