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s.vu.nlAbstra
t. There are two themes in this note. The �rst is how to derive new �xedpoint 
ombinators from given ones. Here we extend the derivation prin
iple leading to theBöhm sequen
e of fp
's. The se
ond is the question how to prove that the new fp
's areindeed new. More general, we tentatively present a method to dis
riminate terms as to
β-
onvertibility that goes beyond the 
lassi
al Böhm-out te
hnique, and exploits the 
lo
kbehaviour that is inherent in a λ-term.Dedi
ated to Henk Barendregt, in 
elebration of his 60th anniversaryThe theory of sage birds (te
hni
ally 
alled�xed point 
ombinators) is a fas
inating andbasi
 part of 
ombinatory logi
; we have onlys
rat
hed the surfa
e.R. Smullyan, To Mo
k a Mo
kingbird, 1985.1. How to make fixed point 
ombinatorsLet's start with reviewing some old re
ipe's to 
onstru
t �xed point 
ombinators, or inabbreviation, fp
's.1.1. Curry's �xed point 
ombinator. The simplest fp
 is the one known as Curry's fp
.It is 
onstru
ted as follows (See Figure 1). Let F be a λ-term. We want to have a '�xedpoint' of F , i.e., a term X su
h that FX = X. We try to 
onstru
t a term Y satisfying

Y F = F (Y F ). For, then Y F is a �xed point as desired. Our 
onstru
tion will even be'uniform' for every F . We try to �nd a term ΩF depending on F (as suggested by thesubs
ript) su
h that ΩF ։ F (ΩF ). Now suppose that ΩF = ωF ωF , with the �rst ωF meantfor the '
ontrol' and the se
ond ωF meant for the repli
ation of the original ωF . So we areled to requiring ωF x ։ F (xx), and this is obtained by putting ωF = λx.F (xx). Summingup we 
an put Y = λf.ωfωf = λf.(λx.f(xx))(λx.f(xx)), and this is Curry's fp
, that wewill 
all Y0 hen
eforth.De�nition 1.1. A fp
 Y is redu
ing, if ∀F : Y F։ F (Y F ). So Curry's fp
 Y0 is notredu
ing. But the next one is redu
ing.2000 ACM Subje
t Classi�
ation: F.4.1 [Mathemati
al logi
 and formal languages℄: Lambda 
al
ulus andrelated systems.Key words and phrases: �xed point 
ombinators, lambda 
al
ulus, looping 
ombinators, head redu
tion.
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F(" " F)" " F Figure 1: The making of fp
 Y0 and Y1.1.2. Turing's �xed point 
ombinator. A slightly di�erent 
onstru
tion yields Turing'sfp
 Y1 having the advantage over Curry's fp
 that it is a redu
ing one. The 
onstru
tionnow pro
eeds as follows. Just as in the 
onstru
tion of Curry's fp
 we split the task in two:
Y1 = ηη. So we want Y1F = ηηF ։ F (ηηF ). Here the �rst η is the one for the 
ontroland the se
ond η is for the repli
ation. So we want ηxf ։ f(xxf). This is simple: put
η = λxf.f(xxf) and �nally Y1 = (λxf.f(xxf))(λxf.f(xxf)), whi
h is Turing's fp
.Proposition 1.2. The fp
's Y0 and Y1 are not β-
onvertible. Equivalently, ¬(Y0 ↓ Y1), thatis, they have no 
ommon redu
t.Proof. We give the simple proof in a 
oindu
tive fashion, that a
tually leads to an interestingquestion, formulated after this proof. In the following lines ′ . . . ⇐ −− −′ means: we 
anprove . . . only if we 
an prove −−−. Now we have (Y0 ↓ Y1) = (λf.ωfωf ↓ ηη) ⇐λf.ωfωf ↓
λf.f(ηηf) ⇐ ωfωf ↓ f(ηηf) ⇐f(ωfωf ↓ f(ηηf) ⇐ ωfωf ↓ ηηf ⇐ f(ωfωf ) ↓ f(ηηf) ⇐
ωfωf ↓ ηηf and we have the same task as two steps before. Therefore (!?) ¬(Y0 ↓ Y1).Problem 1.3. Intuitively, the 'prin
iple' employed at (!?) in the proof of this propositionseems 
lear, but how 
an we make it expli
it and justify it? It is 
ertainly reminis
entto 
oindu
tive methods used in proving equations between re
ursively de�ned obje
ts overa �rst order signature; but there one proves positive fa
ts, namely equations, while herewe 
on
lude a negative fa
t of a more 
ompli
ated nature than an equation. Anyway, one
an easily give a proof using less questionable or more established prin
iples. Moreover, inthe sequel we give another proof along a very di�erent line. Yet it seems that somethinginteresting is at stake at this point, whi
h we would like to understand better.1.3. One's own �xed point 
ombinator. A general re
ipe to 
onstru
t one's own fp
 isnow emerging. Put Γ= γγ · · · γ (n ≥ 2 times). Then for γ = λa1a2 . . . an−1f. f(wf) where
w is an arbitrary word of length n over the alphabet {a1, a2, . . . , an−1}, we have a fp
. Forinstan
e one that pro
laims its own identity:

Yfpc = (LLLLLLLLLLLLLLLLLLLLLLLLLLLL) where
L = λabcdefghijklmnopqstuvwxyzr.(r(thisisafixedpointcombinator))1.4. Fp
's with dummy parameters. Fp
's 
an be equipped with parameters P1, ..., Pm:take Y P1...,Pm = ζζP1...Pm, where ζ = λxp1...pmf.f(xxp1...pmf).One of these fp
's is the following, with Ω = (λx.xx)(λx.xx), 
onvenient for 
ounterex-amples and explanations in the sequel: Y Ω = ζζΩ, where ζ = λxpf.f(xxpf). In in�nitarylambda 
al
ulus λ∞ it has the property WN∞ (in�nitary weak normalisation) but not theproperty SN∞ (in�nitary strong normalisation) (see Klop & de Vrijer [05℄).
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's found by me
hani
al sear
h. In the 
omputation below, as well as in the restof these notes, we have gratefully made use of Freek Wiedijk's 
al
ulator for λ- and CL-terms.This tool 
an be obtained via the entran
e page of http://web.ma
.
om/janwillemklop/iWeb.The next fp
 is due to M
Cune and Wos, and was found by me
hani
al sear
h. De-�ne H = λxyz.xyzy and P = H(B(H(HB)B)B)(HH). A
tually, the 
ombinator H alsoappears in Smullyan [1985℄, as the 'Hummingbird'.We 
ompute using FLC (Freek's Lambda Cal
ulator):
Px ։

HH(B(Bx))(HH) ≡ C[x] →(λyz.Hyzy)(B(Bx))(HH) →(λz.H(B(Bx))z(B(Bx)))(HH) →
H(B(Bx))(HH)(B(Bx)) →(λyz.B(Bx)yzy)(HH)(B(Bx)) →(λz.B(Bx)(HH)z(HH))(B(Bx)) →
B(Bx)(HH)(B(Bx))(HH) →(λyz.Bx(yz))(HH)(B(Bx))(HH) →(λz.Bx(HHz))(B(Bx))(HH) →
Bx(HH(B(Bx)))(HH) →(λyz.x(yz))(HH(B(Bx)))(HH) →(λz.x(HH(B(Bx))z))(HH) →
x(HH(B(Bx))(HH)) ≡ xC[x].1.6. Weak �xed point 
ombinators. It makes sense to extend the 
lass of fp
's to theweak fp
's, that happen to be known in foundational studies of type systems as looping
ombinators. (See e.g. Coquand & Herbelin [94℄, Geuvers & Werner [94℄.) One de�nition isthat a wfp
 is a term having the same BT as a fp
, namely λx.xω. An amusing 
oindu
tivede�nition is: Z is a wfp
 if Zx = x(Z ′x) where Z ′ is a wfp
. So a wfp
 Z is just like a fp


Y , delivering when applied on x an in�nite iteration xω, but the generator that performsthis pro
ess may 
hange along the way.Example 1.4. De�ne by double re
ursion, Z,Z ′ su
h that Zx = x(Z ′x),Z ′x = x(Zx).Then Z,Z ′ are both wfp
's, and Zx = x2(Zx). So Z delivers its output twi
e as fast asan ordinary fp
, but the generator �ip�ops. We will 
ome ba
k to this issue of 'produ
tionvelo
ity' in the �nal se
tion. By the way, how do we obtain double re
ursion? That 
an bedone as follows:1.7. Multiple re
ursion. Barendregt [84℄ gives two proofs of the double �xed point theo-rem. We are espe
ially interested in the one for λI-
al
ulus, sin
e there it is easier to provenon-equations, a theme that will be pursued later in this note.Theorem 1.5. ∀F,G∃A,B (A։ FAB & B։ GAB).Proof. We give four proofs, all for λI-
al
ulus. (NB: this does not mean that they workonly for λI-
al
ulus and not for λK-
al
ulus! It means that the 
onstru
tions work also for
λI-
al
ulus.) The terms in those proofs will serve later as examples for methods to provenon-equations.



200 JAN WILLEM KLOPFirst proof. (Barendregt [84℄, p.141. Take Ab = Y (λa.Fab), B0 = Y (λb.GAbb),and A0 = AB0
. Then A0 ≡ AB0

≡ Y (λa.FaB0) ։ (λa.FaB0)A0 → FA0B0and B0 ։

(λb.GAbb)B0 → GAB0
B0 ≡ GA0B0.Se
ond proof, a slightly di�erent and prima fa
ie simpler variant of the pre
eding one.Start with the se
ond obje
tive B ։ GAB and take B = Y (GA), then the �rst obje
tivebe
omes A ։ FA(Y (GA)). Now take A = Y (λa.Fa(Y (Ga))). In what respe
t is thissolution simpler than the �rst? Writing out abbreviations, it turns out that the �rst solutionin A,B respe
tively uses 3+2 times Y , and the se
ond solution 2+3 times Y . However, the�rst solution uses 5 abstra
tions, the se
ond only 2. Is there a 'sensible' measure de
idingwhi
h solution is simpler? Below we will dis
uss su
h a measure.Third proof (Smullyan [85℄, Exer
ise 6, p.196 and 198; also mentioned in Barendregt[90℄), Theorem 2.2.17, p.334. A beautiful solution indeed: Take N su
h that Ndfg ։

d(Nffg)(Ngfg). Further, take A = NFFG and B = NGFG. Then A = NFFG =
F (NFFG)(NGFG = FAB, and B = NGFG = G(NFFG)(NGFG) = GAB.Fourth proof. The previous proof is ingenious, but how does one 
ome to su
h a 
on-stru
tion? We give a proof starting from the heuristi
s as used above in the 
onstru
-tion of Turing's fp
. It leads to a solution mu
h resembling Smullyan's, yet presumablydi�erent. (The resemblan
e is only manifest if the �xed point de�nition of N is writ-ten out in full, using, e.g., Y0 or Y1.) Take A = ααβFG ։ F (ααβFG)(ββαFG) and
B = ββαFG ։ G(ααβFG)(ββαFG). To that end, take α = λabfg.f(aabfg)(bbafg) and
β = λabfg.g(aabfg)(bbafg).Remark 1.6. The se
ond and fourth solution seem to lend themselves best for a general-ization to arbitrary n-fold re
ursion.2. Derived fixed point 
ombinators2.1. The Böhm sequen
e. It is well-known, as observed by C. Böhm and others, thatthe 
lass of fp
's 
oin
ides exa
tly with the 
lass of �xed points of the pe
uliar term δ =
λab.b(ab), 
onvertible with SI. The notation δ is 
onvenient for 
al
ulations and stems fromB. Intrigila [97℄. This term also attra
ted the attention of R. Smullyan [85℄, in his beautifulfable about fp
's �guring as birds in an en
hanted forest: �An extremely interesting bird isthe owl O de�ned by the following 
ondition: Oxy = y(xy).� (p.133, 134). It follows thatstarting with Y0, we have an in�nite sequen
e of fp
's Y0, Y0δ, Y0δδ, ..., Y0δ

∼n, ... where wewill indi
ate Y0δ
∼n by Yn. Note that indeed Y1, the notation that we had given to Turing'sfp
, is 
orre
t in this naming 
onvention. Now the question is whether all these 'derived'fp
's are really new, in other words, whether the sequen
e is free of dupli
ates. This is*Exer
ise 6.8.9 in Barendregt [84℄. Note that we 
ould also have started the sequen
e fromanother fp
 than Curry's. Now for the sequen
e starting from an arbitrary fp
 Y , it isa
tually an open problem whether that sequen
e of fp
's Y, Y δ, Y δδ, ..., Y δ∼n, ... is free ofrepetitions. All we know, applying Intrigila's theorem below, is that no two 
onse
utivefp
's in this sequen
e are 
onvertible. But let us �rst 
onsider the Böhm sequen
e.Theorem 2.1. The Böhm sequen
e 
ontains no dupli
ates.Proof. For the �rst two elements of the sequen
e we already have seen that they are unequal.Experimenting with the next one, Y2 ≡ ηηδ, we see that the redu
tion graph is easy todetermine in full. But for Y3 ≡ ηηδδ, we soon �nd that its full redu
tion graph is very
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Figure 2: Head redu
tion of Y3.
ompli
ated. The head redu
tion of this term Y3 is displayed in Figure 2.1, but this is byno means the whole redu
tion graph. For future referen
e we note that the head redu
tiondiagram suggests a `
lo
k behaviour'. In order to fa
ilitate the 
al
ulations to determine aninitial part of the redu
tion graph of these fp
's, we remove the λ's in favour of the followingappli
ative rules:
• δx → γx

• γxy → y(xy)
• ηx → γ(xx)
• ax ⇒ x

• γx ⇒ xa (only at the root)Here γ is an auxiliary 
onstant; γx 
an be seen as abbreviating λa.a(xa). Here the lasttwo rules 
orrespond to the removal of a hnf 
ontext; either a variable a as appearing in
λa.a(xa) is removed (4th rule), or an abstra
tion is removed (5th rule). In the �gure wehave displayed the initial part of the redu
tion graph. Moreover, we indi
ated the passiveo

urren
es of δ by the 
olor red, in the 
olor version of this paper. (An o

urren
e of δ ispassive if it o

urs as (Pδ) for some P .) This yields the following invariant for the redu
tsof Y3 = ηηδδ:(1) every redu
t has exa
tly 2 passive δ's;(2) η has as �rst argument an η, as se
ond and following arguments either a δ or an a,e.g. see ηηδδ, ηηδδa;(3) γ has as 2nd, 3rd and following argument always δ or a. The 1st may have variousforms, as in γn(ηη).(4) for δ the same 
lause.Analogously for Yn = ηηδ∼(n−1); then every redu
t has exa
tly n − 1 passive δ's; the other
lauses of the invariant are the same as above.Note: in the invariant above 
lauses 2-4 
annot be omitted; they are indu
tion loading,ne
essary to obtain 
lause 1. Establishing these invariants 
ompletes the proof that theBöhm sequen
e is free of dupli
ates.Smullyan [85℄ notes that not only does post�xing a δ to a fp
 yields again a fp
, andlikewise for a wfp
, pre�xing it before a wfp
 yields again a wfp
.Proposition 2.2. (Smullyan [85℄.) Let Z be a wfp
. Then both δZ and Zδ are wfp
's.The term δ looks fairly inno
ent, and one might think (as did the present author at sometime) that all appli
ative 
ombinations of this term, let's 
all them δ-terms, are SN. However,the term δ is a highly 'explosive' term (personal 
ommuni
ation from Hans Zantema and
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Figure 3: Initial part of redu
tion graph of Y3.
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Figure 4: δ-term with three 
enters.Johannes Waldmann.) Putting tn = δn−1δ we have tntm = tm(tn−1tm), hen
e t2tk =
tk(t1tk) = tk(δtk) = tktk+1. Now we have for k > 3 : tk−1tk = tk(tk−2tk) = tk(tk(tk−3tk)) =
... = t

p
k(t2tk) = t

p
k(tktk+1)) = C[tktk+1], whi
h implies that tk−1tk for all k > 3 has an in�niteredu
tion, or in other words, is not SN. From this we obtain by indu
tion on n+m that tntmis not SN, for all n,m ≥ 2. Here is the start of the 'explosion' of δδ(δδ) = δδ(δ2δ) = t2t3,writing α for δδ:

αα = δδα → γδα → α(δα) → γδ(δα) → δα(δ(δα))

→ γα(δ2α) → (δ2α)(α(δ2α)) → γ(δα)(α(δ2α)) → α(δ2α)(δα(α(δ2α)) → . . .Proposition 2.2 provides us with the following idea. The proposition states that for awfp
 Z, any term δδδ...δδZδδδ...δδδ, with bra
kets not asso
iated as usual to the left or theright, but 
entered around Z, is again a wfp
. So although δ is highly explosive material, ifwe apply it 
entering around a wfp
, it is inno
ent. What if we take appli
ative 
ombinationsof δ, 
entered around a δ itself? Would that also be inno
ent? Surprisingly it is:Proposition 2.3. Let t be a nontrivial δ-term, i.e. not a single δ. Then: t is SN ⇔t
ontains exa
tly one o

urren
e of (δδ), a '
enter'.



NEW FIXED POINT COMBINATORS FROM OLD 203Furthermore, if δ-terms t, t′ are SN, then they are 
onvertible i� t, t′ have the samelength.Problem 2.4. Is 
onvertibility de
idable for all δ-terms?A very interesting theorem involving δ was proved by B. Intrigila, settling a 
onje
tureby R. Statman in the negative. We will put it in a wider (
onje
tured) perspe
tive at theend of this note.Theorem 2.5. (Intrigila [97℄.)There is no 'double' �xed point 
ombinator.I.e. For no fp
 Y we have Y δ =β Y .Problem 2.6. Is Intrigila's theorem also valid for wfp
's: for no wfp
 Z we have Zδ = Z?Remark 2.7. (In�nitary �xed point 
ombinators.) For a fp
 Y , Y δ is again a fp
. Nowwe 
an 
ompute in in�nitary λ-
al
ulus: Y δ →ω (λf.fω)δ → δω. The in�nite term δω isalso remarkable. Indeed it is a fp
: δωx ≡ δ(δω)x →→ x(δωx). It 
an also be normalizedagain: δω →ω λf.fω. There are many more in�nitary fp
's, e.g. for every n, the in�niteterm (SS)ωS∼nI is one. Why this is so, will be 
lear from the sequel.Remark 2.8. The post�x Bδδ turns every fp
 Y into a wfp
 delivering its output twi
e asfast as Y : Y (Bδδ)x ։ x2(Y (Bδδ)x).Conje
ture 2.9. The term δ is the only λI-term that uniformly transforms a given fp
 intoa new fp
 by post�xing.Remark 2.10. (i) Hans Zantema (personal 
ommuni
ation) obtained some further inter-esting information about δ-terms. Above we saw that δδ(δδ) has an in�nite head redu
tion,whi
h makes it unsolvable in Barendregt's 
lassi
al de�nition. Its BT therefore is trivial,namely Ω. But the Berardu

i tree BeT of δδ(δδ) is not trivial: Zantema proved that δ-terms are 'top-terminating'. (Stri
tly speaking, this does not yet imply that BeT(δδ(δδ))is non-trivial, sin
e Zantema restri
ted himself to the appli
ative rule for δ; we expe
t thatZantema's observation remains valid for the full λ-version.) The same top-termination holdsa

ording to Zantema for in�nite δ-terms, of whi
h an interesting example is δω(δω). Cf.also the dis
ussion of Y Y in the setting of BeT's in Dezani et al [03℄). Zantema's resultsare reminis
ent of the situation of S-terms, analysed by J. Waldmann. In parti
ular Wald-mann [98℄ showed that normalisation of S-terms is de
idable, just as for δ-terms; we wonderwhether there is a 
onne
tion. Both for S-terms and for δ-terms the word problem is open.For S-terms, Waldmann also showed top-termination.2.2. The S
ott sequen
e.De�nition 2.11. (Arithmeti
al sequen
e of λ-terms)(1) Let A,B,C,D,E, ... be an arbitrary sequen
e of terms. Then we will 
all the se-quen
e A,AB,ABC,ABCD,ABCDE, ... an appli
ative sequen
e of terms.(2) A parti
ular 
ase is a sequen
e of the form M,MP,MPP,MPPP , ... , that we will
all an arithmeti
al sequen
e.So the Böhm sequen
e of fp
's is an arithmeti
al sequen
e.



204 JAN WILLEM KLOP2.3. The equation BY = BY S. In S
ott [75℄ the equation BY = BY S, with B and S asthe usual 
ombinators and Y a fp
, is mentioned as an interesting example of an equationnot provable in λβ, while easily provable with S
ott's Indu
tion Rule.1S
ott mentions thathe expe
ts that using 'methods of Böhm' the non-
onvertibility in λβ 
an be established, butthat he did not attempt a proof. On the other hand, with the indu
tion rule the equalityis easily established. Our �rst remark is that indeed the equation holds in the in�nitarylambda 
al
ulus λβ∞, whi
h seems to have S
ott's Indu
tion Rule (SIR) in
orporated.(The relation of SIR versus in�nitary lambda 
al
ulus λβ∞ should be determined more
arefully, eventually.) Indeed, a straightforward 
al
ulation shows that in λβ∞, we have
BY = BY S = λab.(ab)ω . How does one en
ounter this equation BY = BY S? HenkBarendregt mentioned in personal 
ommuni
ation how the equation may originate: Supposewe want a term M satisfying, for given P,Q: MP = QP (MP ). There are two solutions.One is to take MP = Y (QP ) = BY QP , whi
h is obtained by taking M = BY Q. The othersolution is, �rst writing MP = SQMP , and taking M = Y (SQ) = BY SQ. The questionwhether these solutions are the same, then amounts to the question whether the equation
BY = BY S holds. That the equation is not provable in λβ, is a ni
e one-line proof. Herewe take for the fp
 Y , Curry's fp
 Y0, just as in S
ott [75℄.Proposition 2.12. BY0 6=β BY0S.Proof. Post�xing the 
ombinator I yields BY0I and BY0SI. Now BY0I =β Y0 and BY0SI =β

Y0(SI) = Y1. Be
ause (Proposition 1.2) Y0 6=β Y1, the result follows. In the same breathwe 
an strengthen this non-equation to all fp
's Y , by the same 
al
ulation followed by anappli
ation of Theorem 2.5 stating that for no fp
 Y we have Y = Y δ = Y (SI).Remark 2.13. The idea of post�xing an I is suggested by the BT λab.(ab)ω of BY and
BY S. Namely, in λβ∞ we 
al
ulate: (λab.(ab)ω)I= λb.(Ib)ω = λb.bω whi
h is the BT of afp
.2.4. A plethora of derived �xed point 
ombinators. A
tually, the 
omparison betweenthe terms BY and BY S has more in store for us than just providing an example thatthe extension from �nitary lambda 
al
ulus λβ to in�nitary lambda 
al
ulus λβ∞ is not
onservative. The BT-equality of BY and BY S suggests looking at the whole arithmeti
alsequen
e BY , BY S, BY SS, BY SSS, . . ., BY S∼n, . . ., that we will indi
ate as the S
ottsequen
e. By the 
ongruen
e property of BT-equality, they all have the same BT λab.(ab)ω ;so the terms in the S
ott sequen
e are not fp
's. But they are 
lose to being fp
's, for the�rst two terms in the sequen
e we already saw above that post�xing an I turns them intofp
's Y0, Y1. How about post�xing an I to all the terms in the S
ott sequen
e, yielding thesequen
e BY I,BY SI,BY SSI,BY SSSI, ..., BY S∼nI, ...? Surprisingly, all these terms arefp
's, the sequen
e 
on
urs with the Böhm sequen
e of fp
's only for the �rst two elements,and then splits o� with di�erent fp
's. But there is a se
ond surprise. In the proof that
BY SSI (and following) terms are indeed fp
's, we �nd a new derivation prin
iple for fp
's,turning an old fp
 into a new one. Let's 
all the derivation prin
iple from Böhm, stating thatpost�xing a δ yields a new fp
: prin
iple (δ). Now we have a se
ond derivation prin
iple,let's 
all it (σ), stating that post�xing a ve
tor of terms (SS)S∼nI yields a new fp
. We
an arbitrarily apply derivation prin
iples (δ) and (σ), and so obtain starting from a givenfp
, a whole rooted tree of new fp
's.1This equation is also dis
ussed in Dezani et al. [03℄.



NEW FIXED POINT COMBINATORS FROM OLD 205Theorem 2.14. (i) If Y is a fp
, then Y δ is a fp
.(ii) If Y is a fp
, then Y (SS)S∼nI is a fp
.Example 2.15. Y (SS)SIx →
(λx.SS(xx))(λx.SS(xx))SIx →
SS((λx.SS(xx))λx.SS(xx))SIx →
(λx.Sz(yz))((λx.SS(xx))λx.SS(xx))SIx →
(λz.Sz((λx.SS(xx))(λx.SS(xx))z))SIx →
SS((λx.SS(xx))(λx.SS(xx))S)Ix →
(λyz.Sz(yz))((λx.SS(xx))(λx.SS(xx))S)Ix →
(λz.Sz((λx.SS(xx))(λx.SS(xx))Sz))Ix →
SI((λx.SS(xx))(λx.SS(xx))SI)x →
(λyz.Iz(yz))((λx.SS(xx))(λx.SS(xx))SI)x →
(λz.Iz((λx.SS(xx))(λx.SS(xx))SIz))x →
Ix((λx.SS(xx))(λx.SS(xx))SIx) →
x((λx.SS(xx))(λx.SS(xx))SIx).Remark 2.16. Another fp
 'generating ve
tor' is obtained as follows. Start with the equa-tion Mab = ab(Mab); solutions all have the BT seen above, λab.(ab)ω. For every Msatisfying this equation, we have that MI is a fp
. For: MIx = Ix(MIx) = x(MIx). Nowwe 
an solve the equation in di�erent ways. The �rst is: Mab = Y (ab), so M = λab.Y (ab) =

(λyab.y(ab))Y = BY , as found before. The se
ond is Mab = ab(Mab) = Sa(Ma)b, whi
h isobtained by solving Ma = Sa(Ma), leading to Ma = Y (Sa) = BY Sa, so M = BY S. Alsothis solution was 
onsidered before. The third is M = λab.(Mab) = (λmab.(mab))M , yield-ing M = Y ε with ε = λabc.bc(abc). And this yields a new fp
 generating ve
tor, be
ausefor every fp
 Y, Y εI is a fp
: Y εIx = ε(Y ε)Ix = Ix(Y εIx) = x(Y εIx).These three s
hemes for generating new �xed points from old, are by no means the onlyones. There are in fa
t in�nitely many of su
h s
hemes. They 
an be obtained analogouslyto the ones that we extra
ted above from the equation BY = BY S = λab.(ab)ω, or theequation Mab = ab(Mab). We only treat the 
ase for n = 3: 
onsider the equation Nabc =
abc(Nabc). Then every solution N is again a 'pre-fp
', namely NII is a fp
: NIIx) =
IIx(NIIx) = x(NIIx). The �rst solution is N = Y ξ with ξ = λnabc.abc(nabc), yieldingthe fp
 generating ve
tor ...ξII. The se
ond solution is Nabc = Y (abc), whi
h yields N =
(λyabc.y(abc)))Y = (λyabc.BBByabc)Y . We obtain N = BBBY . A di�erent 
al
ulationgives Nabc = abc(Nabc) = S(ab)(Nab)c. So we take Nab = S(ab)(Nab), whi
h yields
Nab = Y (S(ab)) = BBBY (BS)ab. So N = BBBY (BS), and thus we �nd the equation
BBBY = BBBY (BS), in analogy with the equation above BY = BY S. Also this equationspawns lots of fp
's as well as fp
 generating ve
tors. Let's abbreviate (BS) by A. First oneforms the arithmeti
al sequen
e BBBY,BBBY A,BBBY AA,BBBY AAA, ... These termsall have the BT λabc.abc(abc)ω . They are not yet fp
's , but only 'pre-fp
's'. But afterpost�xing ...II we do again obtain a sequen
e of fp
's: BBBY II, BBBY AII, BBBY AAII,
BBBY AAAII, . . .. Again the �rst two 
oin
ide with Y0, Y1, but the the series deviates notonly from the Böhm sequen
e but also from the S
ott sequen
e above. As above, the proofthat a term in this sequen
e is indeed a fp
, yields a fp
 generating ve
tor. Thus we �nde.g. the following new fp
 generating s
hemes, whi
h we render in a self-explaining notation:(1) Y ⇒ Y (S(AI)I(2) Y ⇒ Y (AAA)II(3) Y ⇒ Y (AII)



206 JAN WILLEM KLOP(4) Y ⇒ Y (AAI)I(5) Y ⇒ Y (AAA)A∼nII(Note: s
heme 3 
ame up out of the general sear
h; one may re
ognize that it is not a news
heme, be
ause the term AII is a
tually the Owl δ). We 
an derive many more of theses
hemes by pro
eeding with solving the general equation Na1a2...an = a1a2...an(Na1a2...an)in di�erent ways as explained above, from whi
h we will refrain here. One �nal fp
 generatings
heme we 
an't resist mentioning, sin
e it ties up with the notion of a fp
 with dummyparameters mentioned in 1.4:
Y ⇒ Y P1P2...Pn where P1 = λyp2...pnx. x(yp2 . . . pnx) and P2, ..., Pn are arbitrary(dummy) terms.This 
on
ludes our fabri
ation of building blo
ks for fp
's.3. Clo
k behaviour of lambda termsAs we saw, there is vast spa
e of fp
's and there are many ways to derive new fp
's.The question is whether all these fp
's are indeed new. So we have to prove that they arenot β-
onvertible. For the Böhm sequen
e we did this by an ad ho
 argument based on asynta
ti
 invariant; and this method works �ne to establish lots of non-equations betweenthe alleged 'new' fp
's that we 
onstru
ted above. Still, the question remains whether thereare not more 'strategi
' ways of proving su
h inequalities. In this �nal se
tion we propose amore strategi
 way to dis
riminate terms with respe
t to β-
onversion. The idea is to extra
tfrom a λ-term more than just its BT, but also how the BT was formed; one 
ould say, inwhat tempo, or in what rhythm. A BT is formed from stati
 pie
es of information, but theseare rendered in a 
lo
k-wise fashion, where the ti
ks of the internal 
lo
k are head redu
tionsteps, that we will indi
ate as τ -steps hen
eforth. They are 
oexisting with another kindof internal steps, that we will 
all ι-steps; these are de�ned to be non-head redu
tion steps.Third, we employ γ-steps, indi
ating an observation in the BT, i.e. the removal of a headnormal form 
ontext. First we make a notational remark.Notation 3.1. (i). (Appli
ative notation.) In rendering BT's there are two notationssuggesting themselves. The �rst is the 'appli
ative notation', where a BT is a unary-binarytree with unary abstra
tion nodes and binary appli
ation nodes.This notation is suitablewhen we apply in�nite trees on ea
h other, or an in�nite tree to a �nite (term) tree, e.g. asin (λabc.abc(abc)ω)II.(ii) (Head normal form or hnf notation.) This is the notation favoured in Barendregt[84℄, and it is espe
ially suitable for BT's, whi
h are 'stand-alone obje
ts' when one is not
on
erned with in�nitary lambda 
al
ulus. We also adopt this for rendering BT's below withone minor adaptation: in a hnf su
h as λabc.abcM , the abstra
tions are three separate unarynodes in the BT and the variable of the a-ve
tor abcM is a ternary node in the BT, splittingo� to b, c,BT (M). See for example the BT's of BY and BY S displayed in Figure 6. InBarendregt [84℄ there would be just one ternary node λabc.a���. The reason that in thisse
tion we employ the hnf notation is that we will 
onsider 'enri
hed' BT's, with a naturalnumber along the edges of the BT leading from one BT-node to a next BT-node; and theseedges are not expli
itly visible in the appli
ative notation.De�nition 3.2. (Clo
k redu
tion) (i) For fp
's Y and wfp
's Z. The 
lo
k redu
tion of Y
onsists of an in�nite sequen
e of head redu
tion steps (τ -steps) and when no head step ispossible be
ause the term is in hnf λx.Y ′or x(Y x), a γ-step that removes the head 
ontext
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λx.� or x� respe
tively. Example: the 
lo
k redu
tion of Y0 is (γτ)ω. And for Y1 = ηη wehave ηη →τ γ(ηη) →γ ηηx →τ γ(ηη)x →τ x(ηηx) →γ ηηx so the 
lo
k is τγ(ττγ)ω.(ii) For general terms with BT's that are bran
hing, we have the same de�nition, butnow the γ-steps also 
hoose a dire
tion in whi
h to pro
eed. The 
lo
ks, or 
lo
ked BT's ofthe terms BY and BY S are as displayed in Figure 6. Here between the nodes of the tree,the number of ne
essary τ -steps have been indi
ated by the red numbers.(iii) We are only interested in the tail of the 
lo
k redu
tion; the beginning does not
ount. More pre
isely: we 
onsider 
lo
k sequen
es to be the same if they are eventually
on
urrent. Thus they may 
onsist of di�erent arbitrary long �nite pre�xes, followed by a
ommon in�nite tail. E.g. τγ(ττγ)ω=(γττ)ω .Proposition 3.3. Clo
ks are a

elerated under redu
tion, slowing down under expansion.Proof. By a straightforward parallel moves diagram 
onstru
tion. Put the 
lo
k redu
tion ofthe term M horizontally against a verti
al redu
tion step M → M ′. If this is a τ -step (headredu
tion step), it will be absorbed by the upper redu
tion, and the proje
ted redu
tion willsoon 
oin
ide with the upper redu
tion. If it is a ι-step (non-head redu
tion step), it willpropagate to the right as a 
omplete development of ι-steps; some of these may absorb someof the horizontal τ -steps in the upper redu
tion, and this entails that the 
lo
k given by thelower proje
ted redu
tion sequen
e is faster. The γ-steps in the upper redu
tion 
ommutewith both τ - and ι-steps.De�nition 3.4. (Simple terms) A term M is simple, if in no redu
tion of M a redex ismultiplied. So every redex (λx.A)B 
ontra
ted in a redu
t of M , has the property that xo

urs at most on
e in A, or B is in normal form. An equivalent and useful reformulationis that in redu
tion diagrams involving redu
ts of M , no splitting in elementary diagramso

urs. Example: Y0δ is not simple; it redu
es to ωδωδ and this term may dupli
ate theredex in the se
ond ωδ. But the redu
t ηη ≡ Y1 is simple, and likewise all ηηδ∼n. Thisexample illustrates that although sometimes the terms in 
onsideration are not simple, withsome lu
k they 
an be simpli�ed by some redu
tions. Another example is Y1(SS)SI as inthe Example above. Due to the presen
e of the redex (SS) this term is not simple. But it
an easily be simpli�ed, by redu
ing SS to its normal form (SS). (But there are also termsthat have no simple redu
t, i.e. 
annot be simpli�ed in this sense.)Theorem 3.5. For simple terms, 
lo
ks are invariant under redu
tion.Proof. (Sket
h.) See Figure 5. The proof 
onsists of an easy diagram 
hasing argument, justas in the proof of Proposition 3.3 about 
lo
k a

eleration under redu
tion. The diagram
onsists of displaying M and its 
lo
k redu
tion verti
ally as in Figure 5; ι-steps are tothe right. Now every redu
t M ′ of M 
an be rea
hed by des
ending a �nite 'stair
ase' ofthe form, e.g., τττιγτιτιι. By repeated proje
tion, starting from the initial verti
al 
lo
kredu
tion of M , we obtain the verti
ally displayed 
lo
k redu
tion of M ′. The point is nowthat in taking these proje
tions, the ι-steps don't split. Now either they turn at some timeinto τ -steps and we are done, be
ause then the proje
ted sequen
e 
oin
ides hen
eforth withthe previous one; or that never happens, e.g. be
ause that redex is in a 'dark 
orner' of theterm su
h as formed by a dummy parameter in a fp
 Y Ω, thus never 
oming up to the front;in that 
ase the previous 
lo
k redu
tion is 
opied by the proje
tion pro
ess in its entirety.Corollary 3.6. Let M,N be simple terms with di�erent 
lo
ks. Then M 6=β N .
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Figure 5: Clo
k-invarian
eProof. Let M,N be simple and have di�erent 
lo
ks. Suppose M =β N . Then these termshave a 
ommon redu
t L. Now L must have two di�erent 
lo
ks, whi
h is impossible. Hen
e
M 6=β N . Note that if M , N are simple fp
's, then L is again so.Example 3.7. (1) The Böhm sequen
e of fp
's 
ontains no dupli
ates. The proof 
onsists�rst of noting that ηηδ∼n is a simple term, and se
ond 
omputing the 
lo
k of this term.Above we did this already for ηη; with every subsequent δ, two more head steps are in-trodu
ed, so 
lo
k(ηηδ∼n) =(τ2n+2γ)ω, so all the 
lo
ks of fp
's in the Böhm sequen
e aredi�erent, so the sequen
e 
ontains no dupli
ates.(2) The S
ott sequen
e of terms 
ontains no dupli
ates, and likewise the sequen
e offp
's derived from this sequen
e: �rst simplify the redex (SS) present, then the terms aresimple, then 
ompute their 
lo
ks, whi
h turn out to be all di�erent.(3) The four double �xed point solutions for λI-
al
ulus are di�erent. Now we 
an statein what sense the �rst solution there is less e�
ient than the se
ond: its 
lo
k is slower thanthat of the se
ond.(4) We also have at present an alternative proof that BY 6=β BY S: the 
lo
k onthe main bran
h of their BT, the only in�nite bran
h, is di�erent (Figure 6) for BY it is022222..., while for BY S it is 404444... Also, these terms are simple.Conje
ture 3.8. (For λI). Let MP =BT M . Then MP has a slower 
lo
k than M . (In
λK the 
lo
k 
an remain the same: Y (KY ) = Y .)Problem 3.9. We mention some problems. (i) First, to prove that a term is simple mayamount to just the sort of tediously establishing an invariant that we saw in the ad ho
proof for the Böhm sequen
e. So we would like to have te
hniques for proving terms simple.(ii) The speeding up of 
lo
ks under redu
tion, suggests for fp
's that they might be redu
ed
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Figure 6: BY and BY S.to a fp
 with a fastest 
lo
k, i.e. minimal time between the γ's. This '
lo
k-minimalisation'would be very helpful; but we en
ounter a 
urious problem, namely that we do not knowhow to prove that the redu
t of a fp
 is again a fp
. For wfp
's it is easy to prove this'subje
t-redu
tion' property.Conje
ture 3.10. We 
on
lude with a 
onje
ture that gives a 
ommon perspe
tive to all thenon-equations that we have found or have endeavoured to �nd; in
luding Intrigila's theorem.Namely,(1) that the spa
e of fp
's is a free spa
e, in the sense that no non-trivial equations hold.Furthermore,(2) that fp
's enjoy a unique fa
torization property, in terms of a prime fp
 as start,and building blo
ks as above as 'fa
tors'. An fp
 is 
alled prime, if it is not the derivation(by post�xing a ve
tor) of any other fp
. (Here we work in λI-
al
ulus, otherwise the notiontrivializes, by the equation Y (KY ′) = Y ′.) Finally,(3) we 
onje
ture that the derivation relation is well-founded, i.e. there is no ba
kwardin�nite sequen
e of derivations between fp
's.Remark 3.11. As said, the notion of derivation is not interesting for λK-
al
ulus withouta further stipulation, whi
h we will now make. That is, that we only are interested inderivation ve
tors that yield, after post�xing at a fp
, ever new fp
's. They must neverloose their strength, as it were.A
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