NEW FIXED POINT COMBINATORS FROM OLD

JAN WILLEM KLOP

Vrije Universiteit Amsterdam
e-mail address: jwk@cs.vu.nl

ABSTRACT. There are two themes in this note. The first is how to derive new fixed
point combinators from given ones. Here we extend the derivation principle leading to the
Bohm sequence of fpc’s. The second is the question how to prove that the new fpc’s are
indeed new. More general, we tentatively present a method to discriminate terms as to
[-convertibility that goes beyond the classical Bohm-out technique, and exploits the clock
behaviour that is inherent in a A-term.

Dedicated to Henk Barendregt, in celebration of his 60th anniversary

The theory of sage birds (technically called
fixed point combinators) is a fascinating and
basic part of combinatory logic; we have only
scratched the surface.

R. Smullyan, To Mock a Mockingbird, 1985.

1. HOw TO MAKE FIXED POINT COMBINATORS

Let’s start with reviewing some old recipe’s to construct fixed point combinators, or in
abbreviation, fpc’s.

1.1. Curry’s fixed point combinator. The simplest fpc is the one known as Curry’s fpc.
It is constructed as follows (See Figure 1). Let F' be a A-term. We want to have a fixed
point’ of F', i.e., a term X such that FX = X. We try to construct a term Y satisfying
YF = F(YF). For, then YF is a fixed point as desired. Our construction will even be
'uniform’ for every F. We try to find a term Qp depending on F' (as suggested by the
subscript) such that Qp — F(Qp). Now suppose that Qp = wpwp, with the first wp meant
for the 'control’ and the second wpr meant for the replication of the original wr. So we are
led to requiring wpx — F(xzx), and this is obtained by putting wp = Az.F(zz). Summing
up we can put Y = Af.wrwr = Af.(Ax.f(zx))(Az. f(zx)), and this is Curry’s fpc, that we
will call Yy henceforth.

Definition 1.1. A fpc Y is reducing, if VF : YF— F(YF). So Curry’s fpc Yy is not
reducing. But the next one is reducing.

2000 ACM Subject Classification: F.4.1 [Mathematical logic and formal languages|: Lambda calculus and

related systems.
Key words and phrases: fixed point combinators, lambda calculus, looping combinators, head reduction.

REFLECTIONS ON TYPE THEORY, Essays Dedicated to Henk Barendregt Copyright © 2007 by
A-CALCULUS, AND THE MIND on the Occasion of his 60th Birthday Jan Willem Klop

197

198 JAN WILLEM KLOP

00F —»» FOOF)

Figure 1: The making of fpc Yy and Y.

1.2. Turing’s fixed point combinator. A slightly different construction yields Turing’s
fpc Y7 having the advantage over Curry’s fpc that it is a reducing one. The construction
now proceeds as follows. Just as in the construction of Curry’s fpc we split the task in two:
Y1 = nm. So we want Y1 F' = qmmF — F(mmF'). Here the first 7 is the one for the control
and the second 7 is for the replication. So we want nxf — f(xxf). This is simple: put
n=Xef.f(zxf) and finally Y1 = (A\af.f(zzf))(Azf.f(xxf)), which is Turing’s fpc.

Proposition 1.2. The fpc’s Yy and Yy are not 3-convertible. Equivalently, —(Yy | Y1), that
18, they have no common reduct.

Proof. We give the simple proof in a coinductive fashion, that actually leads to an interesting
question, formulated after this proof. In the following lines ... < — — —/ means: we can
prove ... only if we can prove —— —. Now we have (Yp | Y1) = (Af.wpwy | nm) <X fwpwy |
Af-fmf) < wpwp L fmf) <flwgwr | fmf) < wpwp Lonf < flwgwr) | fimf) <
wywy | nmf and we have the same task as two steps before. Therefore (!7) —~(Yy | Y7). [

Problem 1.3. Intuitively, the 'principle’ employed at (!7) in the proof of this proposition
seems clear, but how can we make it explicit and justify it? It is certainly reminiscent
to coinductive methods used in proving equations between recursively defined objects over
a first order signature; but there one proves positive facts, namely equations, while here
we conclude a negative fact of a more complicated nature than an equation. Anyway, one
can easily give a proof using less questionable or more established principles. Moreover, in
the sequel we give another proof along a very different line. Yet it seems that something
interesting is at stake at this point, which we would like to understand better.

1.3. One’s own fixed point combinator. A general recipe to construct one’s own fpc is
now emerging. Put I'= vv---~ (n > 2 times). Then for v = Aajaz...an—1f. f(wf) where
w is an arbitrary word of length n over the alphabet {aj,as,...,a,—1}, we have a fpc. For
instance one that proclaims its own identity:

Yipe = (LLLLLLLLLLLLLLLLLLLLLLLLLLLL) where

L = Xabede f ghijklmnopgstuvwzyzr.(r(thisisa fizedpointcombinator))

1.4. Fpc’s with dummy parameters. Fpc’s can be equipped with parameters P, ..., Py,:
take Y1 Pm = ¢CPy.. P, where ¢ = Azp1..pmf.f(xxp1..omf).

One of these fpc’s is the following, with Q = (Az.xzx)(Azx.zz), convenient for counterex-
amples and explanations in the sequel: Y = ¢¢Q, where ¢ = Azpf.f(zzpf). In infinitary
lambda calculus A*° it has the property W N (infinitary weak normalisation) but not the
property SN (infinitary strong normalisation) (see Klop & de Vrijer [05]).

NEW FIXED POINT COMBINATORS FROM OLD 199

1.5. Fpc’s found by mechanical search. In the computation below, as well as in the rest
of these notes, we have gratefully made use of Freek Wiedijk’s calculator for A- and C' L-terms.
This tool can be obtained via the entrance page of http://web.mac.com/janwillemklop /iWeb.

The next fpc is due to McCune and Wos, and was found by mechanical search. De-
fine H = \xyz.axyzy and P = H(B(H(HB)B)B)(HH). Actually, the combinator H also
appears in Smullyan [1985], as the "THummingbird’.

We compute using FLC (Freek’s Lambda Calculator):

Pz —

HH(B(Bx))(HH) = C[z] —

(Ayz.Hyzy)(B(Bz))(HH) —

(A\2.H(B(Bx))z(B(Bx)))(HH) —

H(B(Bx))(HH)(B(Bx)) —

(Ayz.B(Bx)yzy)(HH)(B(Bxz)) —

(A\z.B(Bx)(HH)z(HH))(B(Bx)) —

B(Bz)(HH)(B(Bzx))(HH) —

(yz.Ba(y=))(HH)(B(Ba))(HH) —

(A\2.Bx(HHz))(B(Bz))(HH) —

Bx(HH(B(Bz)))(HH) —

(yz.a(y2))(HH (B(Ba)))(HH) —

(A\z.x(HH(B(Bx))z2))(HH) —

x(HH(B(Bz))(HH)) = «C|x].

1.6. Weak fixed point combinators. It makes sense to extend the class of fpc’s to the
weak fpc’s, that happen to be known in foundational studies of type systems as looping
combinators. (See e.g. Coquand & Herbelin [94], Geuvers & Werner [94].) One definition is
that a wfpc is a term having the same BT as a fpc, namely Az.z*. An amusing coinductive
definition is: Z is a wipc if Zz = x(Z'x) where Z' is a wipc. So a wipce Z is just like a fpc
Y, delivering when applied on z an infinite iteration %, but the generator that performs
this process may change along the way.

Example 1.4. Define by double recursion, Z, Z" such that Zx = x(Z'x),Z'z = x(Zx).
Then Z,Z' are both wfpc’s, and Zx = 2%(Zz). So Z delivers its output twice as fast as
an ordinary fpc, but the generator flipflops. We will come back to this issue of "production
velocity’ in the final section. By the way, how do we obtain double recursion? That can be
done as follows:

1.7. Multiple recursion. Barendregt [84] gives two proofs of the double fixed point theo-
rem. We are especially interested in the one for AI-calculus, since there it is easier to prove
non-equations, a theme that will be pursued later in this note.

Theorem 1.5. VF,G3A, B (A FAB & B— GAB).

Proof. We give four proofs, all for A\l-calculus. (NB: this does not mean that they work
only for Al-calculus and not for AK-calculus! It means that the constructions work also for
A -calculus.) The terms in those proofs will serve later as examples for methods to prove
non-equations.

200 JAN WILLEM KLOP

First proof. (Barendregt [84], p.141. Take A, = Y (A\a.Fab), By = Y (Ab.GAub),
and Ag = Ap,. Then Ay = Ap, = Y(Ma.FaBy) — (Aa.FaBy)Ay — FAyBpand By —
()\b.GAbb)BO — GABOBO = GA()B().

Second proof, a slightly different and prima facie simpler variant of the preceding one.
Start with the second objective B - GAB and take B = Y (GA), then the first objective
becomes A — FA(Y(GA)). Now take A = Y(Aa.Fa(Y(Ga))). In what respect is this
solution simpler than the first? Writing out abbreviations, it turns out that the first solution
in A, B respectively uses 3+ 2 times Y, and the second solution 2+ 3 times Y. However, the
first solution uses 5 abstractions, the second only 2. Is there a 'sensible’ measure deciding
which solution is simpler? Below we will discuss such a measure.

Third proof (Smullyan [85], Exercise 6, p.196 and 198; also mentioned in Barendregt
[90]), Theorem 2.2.17, p.334. A beautiful solution indeed: Take N such that Ndfg —
d(Nffg)(Ngfg). Further, take A = NFFG and B = NGFG. Then A = NFFG =
F(NFFG)(NGFG = FAB, and B= NGFG = G(NFFG)(NGFG) = GAB.

Fourth proof. The previous proof is ingenious, but how does one come to such a con-
struction? We give a proof starting from the heuristics as used above in the construc-
tion of Turing’s fpc. It leads to a solution much resembling Smullyan’s, yet presumably
different. (The resemblance is only manifest if the fixed point definition of N is writ-
ten out in full, using, e.g., Yy or Y;.) Take A = aafFG — F(aafFG)(BBaFG) and
B = pBaFG — G(aafFG)(BBaFG). To that end, take o = Aabfg.f(aabfg)(bbafg) and

B = Xabfg.g(aabfg)(bbafg).]

Remark 1.6. The second and fourth solution seem to lend themselves best for a general-
ization to arbitrary n-fold recursion.

2. DERIVED FIXED POINT COMBINATORS

2.1. The B6hm sequence. It is well-known, as observed by C. Béhm and others, that
the class of fpc’s coincides exactly with the class of fixed points of the peculiar term § =
Aab.b(ab), convertible with SI. The notation ¢ is convenient for calculations and stems from
B. Intrigila [97]. This term also attracted the attention of R. Smullyan [85], in his beautiful
fable about fpc’s figuring as birds in an enchanted forest: “An extremely interesting bird is
the owl O defined by the following condition: Ozy = y(zy).” (p.133, 134). It follows that
starting with Y, we have an infinite sequence of fpc’s Yy, Yo9, Y49, ..., Yo0™", ... where we
will indicate Ypd™" by Y,,. Note that indeed Y7, the notation that we had given to Turing’s
fpc, is correct in this naming convention. Now the question is whether all these 'derived’
fpc’s are really new, in other words, whether the sequence is free of duplicates. This is
*Exercise 6.8.9 in Barendregt [84]. Note that we could also have started the sequence from
another fpc than Curry’s. Now for the sequence starting from an arbitrary fpc Y, it is
actually an open problem whether that sequence of fpc’s Y, Y d,Y 66, ..., Y™™, ... is free of
repetitions. All we know, applying Intrigila’s theorem below, is that no two consecutive
fpc’s in this sequence are convertible. But let us first consider the Béhm sequence.

Theorem 2.1. The Bohm sequence contains no duplicates.

Proof. For the first two elements of the sequence we already have seen that they are unequal.
Experimenting with the next one, Yo = nnd, we see that the reduction graph is easy to
determine in full. But for Y3 = nndd, we soon find that its full reduction graph is very

NEW FIXED POINT COMBINATORS FROM OLD 201

7
Y888 ——» ha.a(wswsdda)

* Aa.al]

T/
ws0sdda) ———W a(wymwsdda)
b - |

Figure 2: Head reduction of Ys.

complicated. The head reduction of this term Y3 is displayed in Figure 2.1, but this is by
no means the whole reduction graph. For future reference we note that the head reduction
diagram suggests a ‘clock behaviour’. In order to facilitate the calculations to determine an
initial part of the reduction graph of these fpc’s, we remove the A’s in favour of the following
applicative rules:

ox — yx

yry — y(ry)

T

ar = x

~x = xa (only at the root)

Here v is an auxiliary constant; yz can be seen as abbreviating Aa.a(xa). Here the last
two rules correspond to the removal of a hnf context; either a variable a as appearing in
Aa.a(xza) is removed (4th rule), or an abstraction is removed (5th rule). In the figure we
have displayed the initial part of the reduction graph. Moreover, we indicated the passive
occurrences of § by the color red, in the color version of this paper. (An occurrence of § is
passive if it occurs as (Pd) for some P.) This yields the following invariant for the reducts
of Y3 = nndd:

(1) every reduct has exactly 2 passive §’s;

(2) 7 has as first argument an 7, as second and following arguments either a § or an a,

e.g. see Mo, nndda;

(3) ~ has as 2nd, 3rd and following argument always § or a. The 1st may have various

forms, as in v"(nn).

(4) for 0 the same clause.
Analogously for Y,, = 77775N(”_1); then every reduct has exactly n — 1 passive d’s; the other
clauses of the invariant are the same as above.

Note: in the invariant above clauses 2-4 cannot be omitted; they are induction loading,
necessary to obtain clause 1. Establishing these invariants completes the proof that the
Bohm sequence is free of duplicates. L]

Smullyan [85] notes that not only does postfixing a § to a fpc yields again a fpc, and
likewise for a wipc, prefixing it before a wfpc yields again a wfpc.

Proposition 2.2. (Smullyan [85].) Let Z be a wfpc. Then both §Z and Z§ are wfpc’s.

The term § looks fairly innocent, and one might think (as did the present author at some
time) that all applicative combinations of this term, let’s call them d0-terms, are SN. However,
the term ¢ is a highly ’explosive’ term (personal communication from Hans Zantema and

202 JAN WILLEM KLOP

Y3

nMod

y(Mm)dd

d(Mmd)d

Y(Mo)d

d(mMMdd)

¥(MMd)

mmdoda

y(mm)dda ————» | y(y(1n))doa
d(mmo)oa ——» | 6(y(mn)d)da
y(mmod)oa ——» ¥ y(y(nn)d)da
d(Mmod)a ——— >y d(y(mn)dd)a
Y(Mdd)a ————B ¢ y(y(Mn)dd)a
a(mmdda) —» | a(y(nn)oda)
mmdda — > ¥ y(nn)dda

Figure 3: Initial part of reduction graph of Y.

Figure 4: §-term with three centers.

Johannes Waldmann.) Putting ¢, = 6" 16 we have t,t,, = tp(tp_1tm), hence tot) =
tre(tity) = tk(5tk) = txtrr1. Now we have for k > 3 : ty_1t = tk(tkfgtk) = tk(tk(tkfgtk)) =
o = th(taty) = 8 (tgtis1)) = Cltgtrs1), which implies that ¢x_1t), for all k > 3 has an infinite
reduction, or in other words, is not SN. From this we obtain by induction on n+m that t,t,,
is not SN, for all n,m > 2. Here is the start of the ’explosion’ of §6(38) = §6(529) = tat3,
writing a for §4:

aa = dda — yéa — a(da) — vo(da) — da(d(da))
— ya(6%a) — (%) (a(6%a)) — y(da)(a(8®a)) — a(8%a)(bala(f®a)) — ...
Proposition 2.2 provides us with the following idea. The proposition states that for a
wfpc Z, any term §§9...06290...006, with brackets not associated as usual to the left or the
right, but centered around 7Z, is again a wfpc. So although ¢ is highly explosive material, if

we apply it centering around a wfpc, it is innocent. What if we take applicative combinations
of §, centered around a ¢ itself? Would that also be innocent? Surprisingly it is:

Proposition 2.3. Let t be a nontrivial §-term, i.e. not a single 6. Then: t is SN <t
contains ezactly one occurrence of (89), a ‘center’.

NEW FIXED POINT COMBINATORS FROM OLD 203

Furthermore, if 6-terms t,t' are SN, then they are convertible iff t,t' have the same
length.

Problem 2.4. Is convertibility decidable for all §-terms?

A very interesting theorem involving § was proved by B. Intrigila, settling a conjecture
by R. Statman in the negative. We will put it in a wider (conjectured) perspective at the
end of this note.

Theorem 2.5. (Intrigila [97].)
There is no ’double’ fixed point combinator.
Le. For no fpc Ywe have Yo =g Y.

Problem 2.6. Is Intrigila’s theorem also valid for wfpc’s: for no wfpc Z we have Z§ = Z7

Remark 2.7. (Infinitary fized point combinators.) For a fpc Y, Y is again a fpc. Now
we can compute in infinitary A-calculus: Y6 —, (Af.f*)d — §“. The infinite term 0“ is
also remarkable. Indeed it is a fpc: 6“z = §(0*)r —— x(6¥x). It can also be normalized
again: 0“ —, Af.f¥. There are many more infinitary fpc’s, e.g. for every n, the infinite
term (SS5)¥S~"I is one. Why this is so, will be clear from the sequel.

Remark 2.8. The postfix Bdd turns every fpc Y into a wipc delivering its output twice as
fast as Y: Y(B6&d)x — x2(Y (B&d)x).

Conjecture 2.9. The term ¢ is the only A -term that uniformly transforms a given fpc into
a new fpc by postfizing.

Remark 2.10. (i) Hans Zantema (personal communication) obtained some further inter-
esting information about d-terms. Above we saw that §(40) has an infinite head reduction,
which makes it unsolvable in Barendregt’s classical definition. Its BT therefore is trivial,
namely . But the Berarducci tree BeT of §§(d0) is not trivial: Zantema proved that J-
terms are ’top-terminating’. (Strictly speaking, this does not yet imply that BeT(dd(d0))
is non-trivial, since Zantema restricted himself to the applicative rule for §; we expect that
Zantema’s observation remains valid for the full Ad-version.) The same top-termination holds
according to Zantema for infinite J-terms, of which an interesting example is 6“(§%). Cf.
also the discussion of Y'Y in the setting of BeT’s in Dezani et al [03]). Zantema’s results
are reminiscent of the situation of S-terms, analysed by J. Waldmann. In particular Wald-
mann [98] showed that normalisation of S-terms is decidable, just as for d-terms; we wonder
whether there is a connection. Both for S-terms and for §-terms the word problem is open.
For S-terms, Waldmann also showed top-termination.

2.2. The Scott sequence.
Definition 2.11. (Arithmetical sequence of A-terms)

(1) Let A,B,C,D, FE,... be an arbitrary sequence of terms. Then we will call the se-
quence A, AB,ABC,ABCD,ABCDE, ... an applicative sequence of terms.

(2) A particular case is a sequence of the form M, M P, MPP, MPPP, ... ,that we will
call an arithmetical sequence.

So the B6hm sequence of fpc’s is an arithmetical sequence.

204 JAN WILLEM KLOP

2.3. The equation BY = BY'S. In Scott [75] the equation BY = BY S, with B and S as
the usual combinators and Y a fpc, is mentioned as an interesting example of an equation
not provable in A3, while easily provable with Scott’s Induction Rule.'Scott mentions that
he expects that using ‘'methods of B6hm’ the non-convertibility in A3 can be established, but
that he did not attempt a proof. On the other hand, with the induction rule the equality
is easily established. Our first remark is that indeed the equation holds in the infinitary
lambda calculus A3%°, which seems to have Scott’s Induction Rule (SIR) incorporated.
(The relation of SIR versus infinitary lambda calculus A3°° should be determined more
carefully, eventually.) Indeed, a straightforward calculation shows that in A3°°, we have
BY = BYS = M\ab.(ab)*. How does one encounter this equation BY = BYS? Henk
Barendregt mentioned in personal communication how the equation may originate: Suppose
we want a term M satisfying, for given P,Q: M P = QP(MP). There are two solutions.
One is to take M P = Y (QP) = BYQP, which is obtained by taking M = BY Q. The other
solution is, first writing M P = SQM P, and taking M = Y (SQ) = BY SQ. The question
whether these solutions are the same, then amounts to the question whether the equation
BY = BY S holds. That the equation is not provable in A{3, is a nice one-line proof. Here
we take for the fpc Y, Curry’s fpc Yy, just as in Scott [75].

Proposition 2.12. BY; #3 BY;S.

Proof. Postfixing the combinator [yields BYyl and BYpSI. Now BYyl =g Yy and BY(S1 =4
Yo(SI) = Yi. Because (Proposition 1.2) Yy #3 Y7, the result follows. In the same breath
we can strengthen this non-equation to all fpc’s Y, by the same calculation followed by an
application of Theorem 2.5 stating that for no fpc Ywe have Y =Y = Y (SI).]

Remark 2.13. The idea of postfixing an [is suggested by the BT Aab.(ab)* of BY and
BY'S. Namely, in A3 we calculate: (Aab.(ab)*)I= Ab.(Ib)* = Xb.b* which is the BT of a
fpc.

2.4. A plethora of derived fixed point combinators. Actually, the comparison between
the terms BY and BYS has more in store for us than just providing an example that
the extension from finitary lambda calculus AG to infinitary lambda calculus AG* is not
conservative. The BT-equality of BY and BY S suggests looking at the whole arithmetical
sequence BY, BY S, BYSS, BYSSS, ..., BYS™, ..., that we will indicate as the Scott
sequence. By the congruence property of BT-equality, they all have the same BT Aab.(ab)¥;
so the terms in the Scott sequence are not fpc’s. But they are close to being fpc’s, for the
first two terms in the sequence we already saw above that postfixing an I turns them into
fpc’s Yy, Y1. How about postfixing an I to all the terms in the Scott sequence, yielding the
sequence BY I, BY SI,BY SSI,BY SSSI, ..., BY S~ ...7 Surprisingly, all these terms are
fpc’s, the sequence concurs with the Bohm sequence of fpc’s only for the first two elements,
and then splits off with different fpc’s. But there is a second surprise. In the proof that
BY SSIT (and following) terms are indeed fpc’s, we find a new derivation principle for fpc’s,
turning an old fpc into a new one. Let’s call the derivation principle from Béhm, stating that
postfixing a § yields a new fpc: principle (§). Now we have a second derivation principle,
let’s call it (o), stating that postfixing a vector of terms (55)S~"I yields a new fpc. We
can arbitrarily apply derivation principles (§) and (o), and so obtain starting from a given
fpc, a whole rooted tree of new fpc’s.

IThis equation is also discussed in Dezani et al. [03].

NEW FIXED POINT COMBINATORS FROM OLD 205

Theorem 2.14. (i) If Y is a fpc, then Y is a fpc.
(1) If Y is a fpe, then Y (SS)S™I is a fpc.

Example 2.15. Y (SS)SIz —
(Ax.SS(zx))(Ax.SS(zx))SIx —
SS((Ax.SS(xx))A\x.SS(xx))SIx —
(Ax.Sz(yz))(Ax.SS(xx))A\z.SS(zx))STx —
(Az2.Sz((Az.SS(zx))(Ax.SS(xx))2)) ST —
SS((Ax.SS(xx))(Ax.SS(xx))S) [z —
(Ayz.Sz(yz))(A\z.SS(xx))(Az.SS(xx))S)[x —
(Az.Sz((Ax.SS(xx))(Ax.SS(xx))S2)) [x —
SI(Ax.SS(xx))(Ax.SS(xx))ST)r —
(Ayz.Iz(yz))(Ax.SS(zx))(Ax.SS(xx))ST)r —
Az lz((Ax.SS(xx))(Ax.SS(xx))S1z))r —
Ix((Ax.SS(xx))(A\x.SS(zx))SIz) —
x((Ax.SS(xx))(Ax.SS(xx))SIx).

Remark 2.16. Another fpc 'generating vector’ is obtained as follows. Start with the equa-
tion Mab = ab(Mab); solutions all have the BT seen above, Aab.(ab)*. For every M
satisfying this equation, we have that M1 is a fpc. For: MIx = [x(MIz) = x(MIz). Now
we can solve the equation in different ways. The first is: Mab = Y (ab), so M = Aab.Y (ab) =
(Ayab.y(ab))Y = BY, as found before. The second is Mab = ab(Mab) = Sa(Ma)b, which is
obtained by solving Ma = Sa(Ma), leading to Ma = Y (Sa) = BY Sa, so M = BY S. Also
this solution was considered before. The third is M = Aab.(Mab) = (Amab.(mab))M, yield-
ing M = Ye with € = Aabe.bc(abe). And this yields a new fpc generating vector, because
for every fpc Y, Yel is a fpc: Yelx =e(Ye)lo = Ix(Yelx) = x(Yelx).

These three schemes for generating new fixed points from old, are by no means the only
ones. There are in fact infinitely many of such schemes. They can be obtained analogously
to the ones that we extracted above from the equation BY = BYS = Aab.(ab)*, or the
equation Mab = ab(Mab). We only treat the case for n = 3: consider the equation Nabc =
abc(Nabe). Then every solution N is again a ’pre-fpc’, namely NII is a fpc: Nllx) =
IIz(NIlz) = x(NIlz). The first solution is N = Y¢ with £ = Anabc.abc(nabe), yielding
the fpc generating vector ... 1. The second solution is Nabc = Y (abc), which yields N =
(Ayabe.y(abc)))Y = (Ayabc.BBByabc)Y. We obtain N = BBBY. A different calculation
gives Nabc = abe(Nabe) = S(ab)(Nab)e. So we take Nab = S(ab)(Nab), which yields
Nab = Y (S(ab)) = BBBY (BS)ab. So N = BBBY(BS), and thus we find the equation
BBBY = BBBY(BS), in analogy with the equation above BY = BY' S. Also this equation
spawns lots of fpc’s as well as fpc generating vectors. Let’s abbreviate (BS) by A. First one
forms the arithmetical sequence BBBY, BBBY A,BBBY AA,BBBY AAA, ... These terms
all have the BT Aabc.abc(abc)®. They are not yet fpc’s , but only 'pre-fpc’s’. But after
postfixing ...II we do again obtain a sequence of fpc’s: BBBY II, BBBY AIl, BBBY AAII,
BBBY AAAII, Again the first two coincide with Y, Y7, but the the series deviates not
only from the Béhm sequence but also from the Scott sequence above. As above, the proof
that a term in this sequence is indeed a fpc, yields a fpc generating vector. Thus we find
e.g. the following new fpc generating schemes, which we render in a self-explaining notation:

(1) Y = Y(S(AI)I

(2) Y = Y(AAA)II

(3) Y = Y(AII)

206 JAN WILLEM KLOP

(4) Y = Y(AAD)I

(5) Y = Y(AAA)A~"IT
(Note: scheme 3 came up out of the general search; one may recognize that it is not a new
scheme, because the term AIT is actually the Owl §). We can derive many more of these
schemes by proceeding with solving the general equation Najas...a, = ajas...ap(Najas...a,)
in different ways as explained above, from which we will refrain here. One final fpc generating
scheme we can’t resist mentioning, since it ties up with the notion of a fpc with dummy
parameters mentioned in 1.4:

Y = YPP,...P, where Pi = Aypa..ppz.x(yps ...ppx) and Ps, ..., P, are arbitrary
(dummy) terms.

This concludes our fabrication of building blocks for fpc’s.

3. CLLOCK BEHAVIOUR OF LAMBDA TERMS

As we saw, there is vast space of fpc’s and there are many ways to derive new fpc’s.
The question is whether all these fpc’s are indeed new. So we have to prove that they are
not (-convertible. For the Bohm sequence we did this by an ad hoc argument based on a
syntactic invariant; and this method works fine to establish lots of non-equations between
the alleged 'new’ fpc’s that we constructed above. Still, the question remains whether there
are not more 'strategic’ ways of proving such inequalities. In this final section we propose a
more strategic way to discriminate terms with respect to 3-conversion. The idea is to extract
from a A-term more than just its BT, but also how the BT was formed; one could say, in
what tempo, or in what rhythm. A BT is formed from static pieces of information, but these
are rendered in a clock-wise fashion, where the ticks of the internal clock are head reduction
steps, that we will indicate as 7-steps henceforth. They are coexisting with another kind
of internal steps, that we will call ¢-steps; these are defined to be non-head reduction steps.
Third, we employ ~v-steps, indicating an observation in the BT, i.e. the removal of a head
normal form context. First we make a notational remark.

Notation 3.1. (i). (Applicative notation.) In rendering BT’s there are two notations
suggesting themselves. The first is the 'applicative notation’, where a BT is a unary-binary
tree with unary abstraction nodes and binary application nodes.This notation is suitable
when we apply infinite trees on each other, or an infinite tree to a finite (term) tree, e.g. as
in (Aabc.abe(abe)?)I1.

(ii) (Head normal form or hnf notation.) This is the notation favoured in Barendregt
[84], and it is especially suitable for BT’s, which are 'stand-alone objects’ when one is not
concerned with infinitary lambda calculus. We also adopt this for rendering BT’s below with
one minor adaptation: in a hnf such as Aabc.abcM, the abstractions are three separate unary
nodes in the BT and the variable of the a-vector abcM is a ternary node in the BT, splitting
off to b,c, BT (M). See for example the BT’s of BY and BY'S displayed in Figure 6. In
Barendregt [84] there would be just one ternary node Aabc.alJOJO. The reason that in this
section we employ the hnf notation is that we will consider ’enriched’” BT’s, with a natural
number along the edges of the BT leading from one BT-node to a next BT-node; and these
edges are not explicitly visible in the applicative notation.

Definition 3.2. (Clock reduction) (i) For fpc’s Y and wipc’s Z. The clock reduction of Y
consists of an infinite sequence of head reduction steps (7-steps) and when no head step is
possible because the term is in hnf Az.Y’or 2(Y'z), a y-step that removes the head context

NEW FIXED POINT COMBINATORS FROM OLD 207

Az.00 or 0O respectively. Example: the clock reduction of Yj is (y7)%. And for Y1 = nn we
have nn — y(nm) —~ Mz —- y(mm)x —- z(nnz) —~ NNz so the clock is Ty(T77)~.

(ii) For general terms with BT’s that are branching, we have the same definition, but
now the y-steps also choose a direction in which to proceed. The clocks, or clocked BT’s of
the terms BY and BY S are as displayed in Figure 6. Here between the nodes of the tree,
the number of necessary 7-steps have been indicated by the red numbers.

(iii) We are only interested in the tail of the clock reduction; the beginning does not
count. More precisely: we consider clock sequences to be the same if they are eventually
concurrent. Thus they may consist of different arbitrary long finite prefixes, followed by a
common infinite tail. E.g. 7y(77v)“=(y77)“.

Proposition 3.3. Clocks are accelerated under reduction, slowing down under expansion.

Proof. By a straightforward parallel moves diagram construction. Put the clock reduction of
the term M horizontally against a vertical reduction step M — M’. If this is a 7-step (head
reduction step), it will be absorbed by the upper reduction, and the projected reduction will
soon coincide with the upper reduction. If it is a t-step (non-head reduction step), it will
propagate to the right as a complete development of ¢-steps; some of these may absorb some
of the horizontal 7-steps in the upper reduction, and this entails that the clock given by the
lower projected reduction sequence is faster. The ~-steps in the upper reduction commute
with both 7- and ¢-steps. O]

Definition 3.4. (Simple terms) A term M is simple, if in no reduction of M a redex is
multiplied. So every redex (Az.A)B contracted in a reduct of M, has the property that x
occurs at most once in A, or B is in normal form. An equivalent and useful reformulation
is that in reduction diagrams involving reducts of M, no splitting in elementary diagrams
occurs. Example: Y{6 is not simple; it reduces to wsws and this term may duplicate the
redex in the second wgs. But the reduct nmp = Y; is simple, and likewise all nndé™~". This
example illustrates that although sometimes the terms in consideration are not simple, with
some luck they can be simplified by some reductions. Another example is Y1(SS)ST as in
the Example above. Due to the presence of the redex (SS) this term is not simple. But it
can easily be simplified, by reducing SS to its normal form (S.S). (But there are also terms

that have no simple reduct, i.e. cannot be simplified in this sense.)
Theorem 3.5. For simple terms, clocks are invariant under reduction.

Proof. (Sketch.) See Figure 5. The proof consists of an easy diagram chasing argument, just
as in the proof of Proposition 3.3 about clock acceleration under reduction. The diagram
consists of displaying M and its clock reduction vertically as in Figure 5; (-steps are to
the right. Now every reduct M’ of M can be reached by descending a finite ’staircase’ of
the form, e.g., 777iyTeTLe. By repeated projection, starting from the initial vertical clock
reduction of M, we obtain the vertically displayed clock reduction of M’. The point is now
that in taking these projections, the t-steps don’t split. Now either they turn at some time
into 7-steps and we are done, because then the projected sequence coincides henceforth with
the previous one; or that never happens, e.g. because that redex is in a ’dark corner’ of the
term such as formed by a dummy parameter in a fpc Y, thus never coming up to the front;
in that case the previous clock reduction is copied by the projection process in its entirety.

L]
Corollary 3.6. Let M, N be simple terms with different clocks. Then M #g N .

208 JAN WILLEM KLOP

clock(M) = clock(M’)

Figure 5: Clock-invariance

Proof. Let M, N be simple and have different clocks. Suppose M =g N. Then these terms
have a common reduct L. Now L must have two different clocks, which is impossible. Hence
M #3 N. Note that if M, N are simple fpc’s, then L is again so.]

Example 3.7. (1) The Bohm sequence of fpc’s contains no duplicates. The proof consists
first of noting that nnd™~" is a simple term, and second computing the clock of this term.
Above we did this already for nn; with every subsequent J, two more head steps are in-
troduced, so clock(nné™~") =(72"27)% 5o all the clocks of fpc’s in the Bshm sequence are
different, so the sequence contains no duplicates.

(2) The Scott sequence of terms contains no duplicates, and likewise the sequence of
fpc’s derived from this sequence: first simplify the redex (SS) present, then the terms are
simple, then compute their clocks, which turn out to be all different.

(3) The four double fixed point solutions for AI-calculus are different. Now we can state
in what sense the first solution there is less efficient than the second: its clock is slower than
that of the second.

(4) We also have at present an alternative proof that BY #g BYS: the clock on
the main branch of their BT, the only infinite branch, is different (Figure 6) for BY it is
022222..., while for BY S it is 404444... Also, these terms are simple.

Conjecture 3.8. (For AI). Let MP =pp M. Then MP has a slower clock than M. (In
AK the clock can remain the same: Y(KY)=Y.)

Problem 3.9. We mention some problems. (i) First, to prove that a term is simple may
amount to just the sort of tediously establishing an invariant that we saw in the ad hoc
proof for the Bohm sequence. So we would like to have techniques for proving terms simple.
(ii) The speeding up of clocks under reduction, suggests for fpc’s that they might be reduced

NEW FIXED POINT COMBINATORS FROM OLD 209

Ab Ab
o -
AC AC
- o

e 7N
SN SN
7N\ 7N\

C C

clocked BT of BY clocked BT of BYS

Figure 6: BY and BYS.

to a fpc with a fastest clock, i.e. minimal time between the «’s. This 'clock-minimalisation’
would be very helpful; but we encounter a curious problem, namely that we do not know
how to prove that the reduct of a fpc is again a fpc. For wfpc’s it is easy to prove this
‘'subject-reduction’ property.

Conjecture 3.10. We conclude with a conjecture that gives a common perspective to all the
non-equations that we have found or have endeavoured to find; including Intrigila’s theorem.
Namely,

(1) that the space of fpc’s is a free space, in the sense that no non-trivial equations hold.
Furthermore,

(2) that fpc’s enjoy a unique factorization property, in terms of a prime fpc as start,
and building blocks as above as factors’. An fpc is called prime, if it is not the derivation
(by postfizing a vector) of any other fpc. (Here we work in X\ -calculus, otherwise the notion
trivializes, by the equation Y (KY') =Y'.) Finally,

(8) we conjecture that the derivation relation is well-founded, i.e. there is no backward
infinite sequence of derivations between fpc’s.

Remark 3.11. As said, the notion of derivation is not interesting for AK-calculus without
a further stipulation, which we will now make. That is, that we only are interested in
derivation vectors that yield, after postfixing at a fpc, ever new fpc’s. They must never
loose their strength, as it were.

Acknowledgement. This paper has greatly benefitted from stimulating discussions with Henk
Barendregt, so there is some 'reflection’ in the dedication of this paper to him. He taught me
lambda calculus and more. I also thank all members of the VU/CWI/UU-Infinity project,
to wit, Jorg Endrullis, Clemens Grabmayer, Helle Hansen, Dimitri Hendriks, Ariya Isihara,
Clemens Kupke, Vincent van Qostrom, Femke van Raamsdonk, Jan Rutten, Roel de Vrijer.
Finally, thanks to Johannes Waldmann and Hans Zantema, for pointing out that J-terms
are not SN, contrary to my earlier conjecture.

210

1]
2]

3]

[4]
[5]
[6]
7]

18]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

JAN WILLEM KLOP

REFERENCES

Barendregt, H.P. [1984], The Lambda Calculus, its Syntax and Semantics (North-Holland, Amsterdam,
1984).

Barendregt, H.P. [1990], Functional Programming and Lambda Calculus, Chapter 7 in Handbook of
Theoretical Computer Science, Volume B, Formal Models and Semantics, p.321-365, editor J. van
Leeuwen. Elsevier 1990.Terese [2003], Term Rewriting Systems, Cambridge University Press.

A. Berarducci, B. Intrigila. Church-Rosser-theories, infinite A-terms and consistency problems. In W.
Hodges, M. Hyland, C. Steinhorn, and J. Truss, eds., Logic Colloquium ’'93. Oxford University Press,
1996.

B. Intrigila [1997]. Non-existent Statman’s Double Fixed Point Combinator Does Not Exist, Indeed. In:
Information and Computation 137, 35-40, (1997).

Coquand, T., and Herbelin, H.[1994], A-translation and Looping Combinators in Pure Type Systems.
Journal of Functional Programming, 1994, Vol.4, Nr.1, p.77-88.

M. Dezani-Ciancaglini, P. Severi, F.-J. de Vries [2003], Infinitary lambda calculus and discrimination of
Berarducci trees, Theoretical Computer Science 298(2):275-302, 2003.

Geuvers, H.; Werner, B., [1994], On the Church-Rosser property for expressive type systems and its
consequences for their metatheoretic study. In: Proceedings Logic in Computer Science, 1994. LICS ’94.
1994 p.320 - 329.

J. R. Kennaway, J.W. Klop, M. R. Sleep, F.J. de Vries, [1997]. Infinitary lambda calculus, Theo-
ret.Comput. Sci. 175, 93-125.

J.R. Kennaway, F.-J. de Vries, Infinitary rewriting. Chapter 12 in Term rewriting systems, Terese [2003].
J. R. Kennaway, J.W. Klop, M. R. Sleep, F.J. de Vries, Infinitary lambda calculus and B6hm models.
In Proc. Conference on Rewriting Techniques and Applications, p.257-270, Springer LNCS 914, 1995.

J. R. Kennaway, J.W. Klop, M. R. Sleep, F.J. de Vries, Transfinite reductions in Orthogonal Term
rewriting Systems. Inf. and Comp. 119, Nr.1, 18-38 (1995)

Klop, JW. [1980] Combinatory Reduction Systems, Mathematical Cen-
tre Tracts 127, Mathematisch Centrum Amsterdam. Also available via

http://web.mac.com/janwillemklop /iWeb/Site/Bibliography.html.

J.W. Klop and R.C. de Vrijer [2005]. Infinitary Normalization. In: We Will Show Them: Essays in
Homnour of Dov Gabbay, volume 2, editors S. Artemov, H. Barringer, A.S. d’Avila Garcez, L.C. Lamb
and J. Woods, pages 169-192, College Publications, 2005.

[McCune1991] McCune, W., and Wos, L., "The Absence and the Presence of Fixed Point Combinators".
Theoretical Computer Science 87:221-228, 1991.

D.S. Scott [1975], Some philosophical issues concerning theories of combinators. In: A-Calculus and
Computer Science Theory. Proceedings of the Symposium Held in Rome, March 25-27, 1975, ed. C.
B6hm, .346-366. Springer LNCS 37.

Smullyan, R. [1985], To Mock a Mockingbird, And Other Logic Puzzles Including an Amazing Adventure
in Combinatory Logic. Alfred A. Knopf, New York 1985.

Terese [2003], Term Rewriting Systems, Cambridge University Press.

J. Waldmann [1998|. Normalisation of S-Terms is Decidable, in: 9th Conf. Rewriting Techniques and
Applications (RTA), Tsukuba 1998, ed. T. Nipkow, LNCS 1379, pp 138-150.

F. Wiedijk [2005]. Lambda and CL calculator. Obtainable via
http://web.mac.com/janwillemklop /iWeb /Site/.

[Wos1993] Wos, L., "The Kernel Strategy and Its Use for the Study of Combinatory Logic". Journal of
Automated Reasoning 10(3):287-343, 1993.

