
NEW FIXED POINT COMBINATORS FROM OLDJAN WILLEM KLOPVrije Universiteit Amsterdame-mail address: jwk�s.vu.nlAbstrat. There are two themes in this note. The �rst is how to derive new �xedpoint ombinators from given ones. Here we extend the derivation priniple leading to theBöhm sequene of fp's. The seond is the question how to prove that the new fp's areindeed new. More general, we tentatively present a method to disriminate terms as to
β-onvertibility that goes beyond the lassial Böhm-out tehnique, and exploits the lokbehaviour that is inherent in a λ-term.Dediated to Henk Barendregt, in elebration of his 60th anniversaryThe theory of sage birds (tehnially alled�xed point ombinators) is a fasinating andbasi part of ombinatory logi; we have onlysrathed the surfae.R. Smullyan, To Mok a Mokingbird, 1985.1. How to make fixed point ombinatorsLet's start with reviewing some old reipe's to onstrut �xed point ombinators, or inabbreviation, fp's.1.1. Curry's �xed point ombinator. The simplest fp is the one known as Curry's fp.It is onstruted as follows (See Figure 1). Let F be a λ-term. We want to have a '�xedpoint' of F , i.e., a term X suh that FX = X. We try to onstrut a term Y satisfying

Y F = F (Y F ). For, then Y F is a �xed point as desired. Our onstrution will even be'uniform' for every F . We try to �nd a term ΩF depending on F (as suggested by thesubsript) suh that ΩF ։ F (ΩF ). Now suppose that ΩF = ωF ωF , with the �rst ωF meantfor the 'ontrol' and the seond ωF meant for the repliation of the original ωF . So we areled to requiring ωF x ։ F (xx), and this is obtained by putting ωF = λx.F (xx). Summingup we an put Y = λf.ωfωf = λf.(λx.f(xx))(λx.f(xx)), and this is Curry's fp, that wewill all Y0 heneforth.De�nition 1.1. A fp Y is reduing, if ∀F : Y F։ F (Y F ). So Curry's fp Y0 is notreduing. But the next one is reduing.2000 ACM Subjet Classi�ation: F.4.1 [Mathematial logi and formal languages℄: Lambda alulus andrelated systems.Key words and phrases: �xed point ombinators, lambda alulus, looping ombinators, head redution.
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F(" " F)" " F Figure 1: The making of fp Y0 and Y1.1.2. Turing's �xed point ombinator. A slightly di�erent onstrution yields Turing'sfp Y1 having the advantage over Curry's fp that it is a reduing one. The onstrutionnow proeeds as follows. Just as in the onstrution of Curry's fp we split the task in two:
Y1 = ηη. So we want Y1F = ηηF ։ F (ηηF ). Here the �rst η is the one for the ontroland the seond η is for the repliation. So we want ηxf ։ f(xxf). This is simple: put
η = λxf.f(xxf) and �nally Y1 = (λxf.f(xxf))(λxf.f(xxf)), whih is Turing's fp.Proposition 1.2. The fp's Y0 and Y1 are not β-onvertible. Equivalently, ¬(Y0 ↓ Y1), thatis, they have no ommon redut.Proof. We give the simple proof in a oindutive fashion, that atually leads to an interestingquestion, formulated after this proof. In the following lines ′ . . . ⇐ −− −′ means: we anprove . . . only if we an prove −−−. Now we have (Y0 ↓ Y1) = (λf.ωfωf ↓ ηη) ⇐λf.ωfωf ↓
λf.f(ηηf) ⇐ ωfωf ↓ f(ηηf) ⇐f(ωfωf ↓ f(ηηf) ⇐ ωfωf ↓ ηηf ⇐ f(ωfωf ) ↓ f(ηηf) ⇐
ωfωf ↓ ηηf and we have the same task as two steps before. Therefore (!?) ¬(Y0 ↓ Y1).Problem 1.3. Intuitively, the 'priniple' employed at (!?) in the proof of this propositionseems lear, but how an we make it expliit and justify it? It is ertainly reminisentto oindutive methods used in proving equations between reursively de�ned objets overa �rst order signature; but there one proves positive fats, namely equations, while herewe onlude a negative fat of a more ompliated nature than an equation. Anyway, onean easily give a proof using less questionable or more established priniples. Moreover, inthe sequel we give another proof along a very di�erent line. Yet it seems that somethinginteresting is at stake at this point, whih we would like to understand better.1.3. One's own �xed point ombinator. A general reipe to onstrut one's own fp isnow emerging. Put Γ= γγ · · · γ (n ≥ 2 times). Then for γ = λa1a2 . . . an−1f. f(wf) where
w is an arbitrary word of length n over the alphabet {a1, a2, . . . , an−1}, we have a fp. Forinstane one that prolaims its own identity:

Yfpc = (LLLLLLLLLLLLLLLLLLLLLLLLLLLL) where
L = λabcdefghijklmnopqstuvwxyzr.(r(thisisafixedpointcombinator))1.4. Fp's with dummy parameters. Fp's an be equipped with parameters P1, ..., Pm:take Y P1...,Pm = ζζP1...Pm, where ζ = λxp1...pmf.f(xxp1...pmf).One of these fp's is the following, with Ω = (λx.xx)(λx.xx), onvenient for ounterex-amples and explanations in the sequel: Y Ω = ζζΩ, where ζ = λxpf.f(xxpf). In in�nitarylambda alulus λ∞ it has the property WN∞ (in�nitary weak normalisation) but not theproperty SN∞ (in�nitary strong normalisation) (see Klop & de Vrijer [05℄).



NEW FIXED POINT COMBINATORS FROM OLD 1991.5. Fp's found by mehanial searh. In the omputation below, as well as in the restof these notes, we have gratefully made use of Freek Wiedijk's alulator for λ- and CL-terms.This tool an be obtained via the entrane page of http://web.ma.om/janwillemklop/iWeb.The next fp is due to MCune and Wos, and was found by mehanial searh. De-�ne H = λxyz.xyzy and P = H(B(H(HB)B)B)(HH). Atually, the ombinator H alsoappears in Smullyan [1985℄, as the 'Hummingbird'.We ompute using FLC (Freek's Lambda Calulator):
Px ։

HH(B(Bx))(HH) ≡ C[x] →(λyz.Hyzy)(B(Bx))(HH) →(λz.H(B(Bx))z(B(Bx)))(HH) →
H(B(Bx))(HH)(B(Bx)) →(λyz.B(Bx)yzy)(HH)(B(Bx)) →(λz.B(Bx)(HH)z(HH))(B(Bx)) →
B(Bx)(HH)(B(Bx))(HH) →(λyz.Bx(yz))(HH)(B(Bx))(HH) →(λz.Bx(HHz))(B(Bx))(HH) →
Bx(HH(B(Bx)))(HH) →(λyz.x(yz))(HH(B(Bx)))(HH) →(λz.x(HH(B(Bx))z))(HH) →
x(HH(B(Bx))(HH)) ≡ xC[x].1.6. Weak �xed point ombinators. It makes sense to extend the lass of fp's to theweak fp's, that happen to be known in foundational studies of type systems as loopingombinators. (See e.g. Coquand & Herbelin [94℄, Geuvers & Werner [94℄.) One de�nition isthat a wfp is a term having the same BT as a fp, namely λx.xω. An amusing oindutivede�nition is: Z is a wfp if Zx = x(Z ′x) where Z ′ is a wfp. So a wfp Z is just like a fp

Y , delivering when applied on x an in�nite iteration xω, but the generator that performsthis proess may hange along the way.Example 1.4. De�ne by double reursion, Z,Z ′ suh that Zx = x(Z ′x),Z ′x = x(Zx).Then Z,Z ′ are both wfp's, and Zx = x2(Zx). So Z delivers its output twie as fast asan ordinary fp, but the generator �ip�ops. We will ome bak to this issue of 'produtionveloity' in the �nal setion. By the way, how do we obtain double reursion? That an bedone as follows:1.7. Multiple reursion. Barendregt [84℄ gives two proofs of the double �xed point theo-rem. We are espeially interested in the one for λI-alulus, sine there it is easier to provenon-equations, a theme that will be pursued later in this note.Theorem 1.5. ∀F,G∃A,B (A։ FAB & B։ GAB).Proof. We give four proofs, all for λI-alulus. (NB: this does not mean that they workonly for λI-alulus and not for λK-alulus! It means that the onstrutions work also for
λI-alulus.) The terms in those proofs will serve later as examples for methods to provenon-equations.



200 JAN WILLEM KLOPFirst proof. (Barendregt [84℄, p.141. Take Ab = Y (λa.Fab), B0 = Y (λb.GAbb),and A0 = AB0
. Then A0 ≡ AB0

≡ Y (λa.FaB0) ։ (λa.FaB0)A0 → FA0B0and B0 ։

(λb.GAbb)B0 → GAB0
B0 ≡ GA0B0.Seond proof, a slightly di�erent and prima faie simpler variant of the preeding one.Start with the seond objetive B ։ GAB and take B = Y (GA), then the �rst objetivebeomes A ։ FA(Y (GA)). Now take A = Y (λa.Fa(Y (Ga))). In what respet is thissolution simpler than the �rst? Writing out abbreviations, it turns out that the �rst solutionin A,B respetively uses 3+2 times Y , and the seond solution 2+3 times Y . However, the�rst solution uses 5 abstrations, the seond only 2. Is there a 'sensible' measure deidingwhih solution is simpler? Below we will disuss suh a measure.Third proof (Smullyan [85℄, Exerise 6, p.196 and 198; also mentioned in Barendregt[90℄), Theorem 2.2.17, p.334. A beautiful solution indeed: Take N suh that Ndfg ։

d(Nffg)(Ngfg). Further, take A = NFFG and B = NGFG. Then A = NFFG =
F (NFFG)(NGFG = FAB, and B = NGFG = G(NFFG)(NGFG) = GAB.Fourth proof. The previous proof is ingenious, but how does one ome to suh a on-strution? We give a proof starting from the heuristis as used above in the onstru-tion of Turing's fp. It leads to a solution muh resembling Smullyan's, yet presumablydi�erent. (The resemblane is only manifest if the �xed point de�nition of N is writ-ten out in full, using, e.g., Y0 or Y1.) Take A = ααβFG ։ F (ααβFG)(ββαFG) and
B = ββαFG ։ G(ααβFG)(ββαFG). To that end, take α = λabfg.f(aabfg)(bbafg) and
β = λabfg.g(aabfg)(bbafg).Remark 1.6. The seond and fourth solution seem to lend themselves best for a general-ization to arbitrary n-fold reursion.2. Derived fixed point ombinators2.1. The Böhm sequene. It is well-known, as observed by C. Böhm and others, thatthe lass of fp's oinides exatly with the lass of �xed points of the peuliar term δ =
λab.b(ab), onvertible with SI. The notation δ is onvenient for alulations and stems fromB. Intrigila [97℄. This term also attrated the attention of R. Smullyan [85℄, in his beautifulfable about fp's �guring as birds in an enhanted forest: �An extremely interesting bird isthe owl O de�ned by the following ondition: Oxy = y(xy).� (p.133, 134). It follows thatstarting with Y0, we have an in�nite sequene of fp's Y0, Y0δ, Y0δδ, ..., Y0δ

∼n, ... where wewill indiate Y0δ
∼n by Yn. Note that indeed Y1, the notation that we had given to Turing'sfp, is orret in this naming onvention. Now the question is whether all these 'derived'fp's are really new, in other words, whether the sequene is free of dupliates. This is*Exerise 6.8.9 in Barendregt [84℄. Note that we ould also have started the sequene fromanother fp than Curry's. Now for the sequene starting from an arbitrary fp Y , it isatually an open problem whether that sequene of fp's Y, Y δ, Y δδ, ..., Y δ∼n, ... is free ofrepetitions. All we know, applying Intrigila's theorem below, is that no two onseutivefp's in this sequene are onvertible. But let us �rst onsider the Böhm sequene.Theorem 2.1. The Böhm sequene ontains no dupliates.Proof. For the �rst two elements of the sequene we already have seen that they are unequal.Experimenting with the next one, Y2 ≡ ηηδ, we see that the redution graph is easy todetermine in full. But for Y3 ≡ ηηδδ, we soon �nd that its full redution graph is very
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Figure 2: Head redution of Y3.ompliated. The head redution of this term Y3 is displayed in Figure 2.1, but this is byno means the whole redution graph. For future referene we note that the head redutiondiagram suggests a `lok behaviour'. In order to failitate the alulations to determine aninitial part of the redution graph of these fp's, we remove the λ's in favour of the followingappliative rules:
• δx → γx

• γxy → y(xy)
• ηx → γ(xx)
• ax ⇒ x

• γx ⇒ xa (only at the root)Here γ is an auxiliary onstant; γx an be seen as abbreviating λa.a(xa). Here the lasttwo rules orrespond to the removal of a hnf ontext; either a variable a as appearing in
λa.a(xa) is removed (4th rule), or an abstration is removed (5th rule). In the �gure wehave displayed the initial part of the redution graph. Moreover, we indiated the passiveourrenes of δ by the olor red, in the olor version of this paper. (An ourrene of δ ispassive if it ours as (Pδ) for some P .) This yields the following invariant for the redutsof Y3 = ηηδδ:(1) every redut has exatly 2 passive δ's;(2) η has as �rst argument an η, as seond and following arguments either a δ or an a,e.g. see ηηδδ, ηηδδa;(3) γ has as 2nd, 3rd and following argument always δ or a. The 1st may have variousforms, as in γn(ηη).(4) for δ the same lause.Analogously for Yn = ηηδ∼(n−1); then every redut has exatly n − 1 passive δ's; the otherlauses of the invariant are the same as above.Note: in the invariant above lauses 2-4 annot be omitted; they are indution loading,neessary to obtain lause 1. Establishing these invariants ompletes the proof that theBöhm sequene is free of dupliates.Smullyan [85℄ notes that not only does post�xing a δ to a fp yields again a fp, andlikewise for a wfp, pre�xing it before a wfp yields again a wfp.Proposition 2.2. (Smullyan [85℄.) Let Z be a wfp. Then both δZ and Zδ are wfp's.The term δ looks fairly innoent, and one might think (as did the present author at sometime) that all appliative ombinations of this term, let's all them δ-terms, are SN. However,the term δ is a highly 'explosive' term (personal ommuniation from Hans Zantema and
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Figure 3: Initial part of redution graph of Y3.
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Figure 4: δ-term with three enters.Johannes Waldmann.) Putting tn = δn−1δ we have tntm = tm(tn−1tm), hene t2tk =
tk(t1tk) = tk(δtk) = tktk+1. Now we have for k > 3 : tk−1tk = tk(tk−2tk) = tk(tk(tk−3tk)) =
... = t

p
k(t2tk) = t

p
k(tktk+1)) = C[tktk+1], whih implies that tk−1tk for all k > 3 has an in�niteredution, or in other words, is not SN. From this we obtain by indution on n+m that tntmis not SN, for all n,m ≥ 2. Here is the start of the 'explosion' of δδ(δδ) = δδ(δ2δ) = t2t3,writing α for δδ:

αα = δδα → γδα → α(δα) → γδ(δα) → δα(δ(δα))

→ γα(δ2α) → (δ2α)(α(δ2α)) → γ(δα)(α(δ2α)) → α(δ2α)(δα(α(δ2α)) → . . .Proposition 2.2 provides us with the following idea. The proposition states that for awfp Z, any term δδδ...δδZδδδ...δδδ, with brakets not assoiated as usual to the left or theright, but entered around Z, is again a wfp. So although δ is highly explosive material, ifwe apply it entering around a wfp, it is innoent. What if we take appliative ombinationsof δ, entered around a δ itself? Would that also be innoent? Surprisingly it is:Proposition 2.3. Let t be a nontrivial δ-term, i.e. not a single δ. Then: t is SN ⇔tontains exatly one ourrene of (δδ), a 'enter'.



NEW FIXED POINT COMBINATORS FROM OLD 203Furthermore, if δ-terms t, t′ are SN, then they are onvertible i� t, t′ have the samelength.Problem 2.4. Is onvertibility deidable for all δ-terms?A very interesting theorem involving δ was proved by B. Intrigila, settling a onjetureby R. Statman in the negative. We will put it in a wider (onjetured) perspetive at theend of this note.Theorem 2.5. (Intrigila [97℄.)There is no 'double' �xed point ombinator.I.e. For no fp Y we have Y δ =β Y .Problem 2.6. Is Intrigila's theorem also valid for wfp's: for no wfp Z we have Zδ = Z?Remark 2.7. (In�nitary �xed point ombinators.) For a fp Y , Y δ is again a fp. Nowwe an ompute in in�nitary λ-alulus: Y δ →ω (λf.fω)δ → δω. The in�nite term δω isalso remarkable. Indeed it is a fp: δωx ≡ δ(δω)x →→ x(δωx). It an also be normalizedagain: δω →ω λf.fω. There are many more in�nitary fp's, e.g. for every n, the in�niteterm (SS)ωS∼nI is one. Why this is so, will be lear from the sequel.Remark 2.8. The post�x Bδδ turns every fp Y into a wfp delivering its output twie asfast as Y : Y (Bδδ)x ։ x2(Y (Bδδ)x).Conjeture 2.9. The term δ is the only λI-term that uniformly transforms a given fp intoa new fp by post�xing.Remark 2.10. (i) Hans Zantema (personal ommuniation) obtained some further inter-esting information about δ-terms. Above we saw that δδ(δδ) has an in�nite head redution,whih makes it unsolvable in Barendregt's lassial de�nition. Its BT therefore is trivial,namely Ω. But the Berardui tree BeT of δδ(δδ) is not trivial: Zantema proved that δ-terms are 'top-terminating'. (Stritly speaking, this does not yet imply that BeT(δδ(δδ))is non-trivial, sine Zantema restrited himself to the appliative rule for δ; we expet thatZantema's observation remains valid for the full λ-version.) The same top-termination holdsaording to Zantema for in�nite δ-terms, of whih an interesting example is δω(δω). Cf.also the disussion of Y Y in the setting of BeT's in Dezani et al [03℄). Zantema's resultsare reminisent of the situation of S-terms, analysed by J. Waldmann. In partiular Wald-mann [98℄ showed that normalisation of S-terms is deidable, just as for δ-terms; we wonderwhether there is a onnetion. Both for S-terms and for δ-terms the word problem is open.For S-terms, Waldmann also showed top-termination.2.2. The Sott sequene.De�nition 2.11. (Arithmetial sequene of λ-terms)(1) Let A,B,C,D,E, ... be an arbitrary sequene of terms. Then we will all the se-quene A,AB,ABC,ABCD,ABCDE, ... an appliative sequene of terms.(2) A partiular ase is a sequene of the form M,MP,MPP,MPPP , ... , that we willall an arithmetial sequene.So the Böhm sequene of fp's is an arithmetial sequene.



204 JAN WILLEM KLOP2.3. The equation BY = BY S. In Sott [75℄ the equation BY = BY S, with B and S asthe usual ombinators and Y a fp, is mentioned as an interesting example of an equationnot provable in λβ, while easily provable with Sott's Indution Rule.1Sott mentions thathe expets that using 'methods of Böhm' the non-onvertibility in λβ an be established, butthat he did not attempt a proof. On the other hand, with the indution rule the equalityis easily established. Our �rst remark is that indeed the equation holds in the in�nitarylambda alulus λβ∞, whih seems to have Sott's Indution Rule (SIR) inorporated.(The relation of SIR versus in�nitary lambda alulus λβ∞ should be determined morearefully, eventually.) Indeed, a straightforward alulation shows that in λβ∞, we have
BY = BY S = λab.(ab)ω . How does one enounter this equation BY = BY S? HenkBarendregt mentioned in personal ommuniation how the equation may originate: Supposewe want a term M satisfying, for given P,Q: MP = QP (MP ). There are two solutions.One is to take MP = Y (QP ) = BY QP , whih is obtained by taking M = BY Q. The othersolution is, �rst writing MP = SQMP , and taking M = Y (SQ) = BY SQ. The questionwhether these solutions are the same, then amounts to the question whether the equation
BY = BY S holds. That the equation is not provable in λβ, is a nie one-line proof. Herewe take for the fp Y , Curry's fp Y0, just as in Sott [75℄.Proposition 2.12. BY0 6=β BY0S.Proof. Post�xing the ombinator I yields BY0I and BY0SI. Now BY0I =β Y0 and BY0SI =β

Y0(SI) = Y1. Beause (Proposition 1.2) Y0 6=β Y1, the result follows. In the same breathwe an strengthen this non-equation to all fp's Y , by the same alulation followed by anappliation of Theorem 2.5 stating that for no fp Y we have Y = Y δ = Y (SI).Remark 2.13. The idea of post�xing an I is suggested by the BT λab.(ab)ω of BY and
BY S. Namely, in λβ∞ we alulate: (λab.(ab)ω)I= λb.(Ib)ω = λb.bω whih is the BT of afp.2.4. A plethora of derived �xed point ombinators. Atually, the omparison betweenthe terms BY and BY S has more in store for us than just providing an example thatthe extension from �nitary lambda alulus λβ to in�nitary lambda alulus λβ∞ is notonservative. The BT-equality of BY and BY S suggests looking at the whole arithmetialsequene BY , BY S, BY SS, BY SSS, . . ., BY S∼n, . . ., that we will indiate as the Sottsequene. By the ongruene property of BT-equality, they all have the same BT λab.(ab)ω ;so the terms in the Sott sequene are not fp's. But they are lose to being fp's, for the�rst two terms in the sequene we already saw above that post�xing an I turns them intofp's Y0, Y1. How about post�xing an I to all the terms in the Sott sequene, yielding thesequene BY I,BY SI,BY SSI,BY SSSI, ..., BY S∼nI, ...? Surprisingly, all these terms arefp's, the sequene onurs with the Böhm sequene of fp's only for the �rst two elements,and then splits o� with di�erent fp's. But there is a seond surprise. In the proof that
BY SSI (and following) terms are indeed fp's, we �nd a new derivation priniple for fp's,turning an old fp into a new one. Let's all the derivation priniple from Böhm, stating thatpost�xing a δ yields a new fp: priniple (δ). Now we have a seond derivation priniple,let's all it (σ), stating that post�xing a vetor of terms (SS)S∼nI yields a new fp. Wean arbitrarily apply derivation priniples (δ) and (σ), and so obtain starting from a givenfp, a whole rooted tree of new fp's.1This equation is also disussed in Dezani et al. [03℄.



NEW FIXED POINT COMBINATORS FROM OLD 205Theorem 2.14. (i) If Y is a fp, then Y δ is a fp.(ii) If Y is a fp, then Y (SS)S∼nI is a fp.Example 2.15. Y (SS)SIx →
(λx.SS(xx))(λx.SS(xx))SIx →
SS((λx.SS(xx))λx.SS(xx))SIx →
(λx.Sz(yz))((λx.SS(xx))λx.SS(xx))SIx →
(λz.Sz((λx.SS(xx))(λx.SS(xx))z))SIx →
SS((λx.SS(xx))(λx.SS(xx))S)Ix →
(λyz.Sz(yz))((λx.SS(xx))(λx.SS(xx))S)Ix →
(λz.Sz((λx.SS(xx))(λx.SS(xx))Sz))Ix →
SI((λx.SS(xx))(λx.SS(xx))SI)x →
(λyz.Iz(yz))((λx.SS(xx))(λx.SS(xx))SI)x →
(λz.Iz((λx.SS(xx))(λx.SS(xx))SIz))x →
Ix((λx.SS(xx))(λx.SS(xx))SIx) →
x((λx.SS(xx))(λx.SS(xx))SIx).Remark 2.16. Another fp 'generating vetor' is obtained as follows. Start with the equa-tion Mab = ab(Mab); solutions all have the BT seen above, λab.(ab)ω. For every Msatisfying this equation, we have that MI is a fp. For: MIx = Ix(MIx) = x(MIx). Nowwe an solve the equation in di�erent ways. The �rst is: Mab = Y (ab), so M = λab.Y (ab) =

(λyab.y(ab))Y = BY , as found before. The seond is Mab = ab(Mab) = Sa(Ma)b, whih isobtained by solving Ma = Sa(Ma), leading to Ma = Y (Sa) = BY Sa, so M = BY S. Alsothis solution was onsidered before. The third is M = λab.(Mab) = (λmab.(mab))M , yield-ing M = Y ε with ε = λabc.bc(abc). And this yields a new fp generating vetor, beausefor every fp Y, Y εI is a fp: Y εIx = ε(Y ε)Ix = Ix(Y εIx) = x(Y εIx).These three shemes for generating new �xed points from old, are by no means the onlyones. There are in fat in�nitely many of suh shemes. They an be obtained analogouslyto the ones that we extrated above from the equation BY = BY S = λab.(ab)ω, or theequation Mab = ab(Mab). We only treat the ase for n = 3: onsider the equation Nabc =
abc(Nabc). Then every solution N is again a 'pre-fp', namely NII is a fp: NIIx) =
IIx(NIIx) = x(NIIx). The �rst solution is N = Y ξ with ξ = λnabc.abc(nabc), yieldingthe fp generating vetor ...ξII. The seond solution is Nabc = Y (abc), whih yields N =
(λyabc.y(abc)))Y = (λyabc.BBByabc)Y . We obtain N = BBBY . A di�erent alulationgives Nabc = abc(Nabc) = S(ab)(Nab)c. So we take Nab = S(ab)(Nab), whih yields
Nab = Y (S(ab)) = BBBY (BS)ab. So N = BBBY (BS), and thus we �nd the equation
BBBY = BBBY (BS), in analogy with the equation above BY = BY S. Also this equationspawns lots of fp's as well as fp generating vetors. Let's abbreviate (BS) by A. First oneforms the arithmetial sequene BBBY,BBBY A,BBBY AA,BBBY AAA, ... These termsall have the BT λabc.abc(abc)ω . They are not yet fp's , but only 'pre-fp's'. But afterpost�xing ...II we do again obtain a sequene of fp's: BBBY II, BBBY AII, BBBY AAII,
BBBY AAAII, . . .. Again the �rst two oinide with Y0, Y1, but the the series deviates notonly from the Böhm sequene but also from the Sott sequene above. As above, the proofthat a term in this sequene is indeed a fp, yields a fp generating vetor. Thus we �nde.g. the following new fp generating shemes, whih we render in a self-explaining notation:(1) Y ⇒ Y (S(AI)I(2) Y ⇒ Y (AAA)II(3) Y ⇒ Y (AII)



206 JAN WILLEM KLOP(4) Y ⇒ Y (AAI)I(5) Y ⇒ Y (AAA)A∼nII(Note: sheme 3 ame up out of the general searh; one may reognize that it is not a newsheme, beause the term AII is atually the Owl δ). We an derive many more of theseshemes by proeeding with solving the general equation Na1a2...an = a1a2...an(Na1a2...an)in di�erent ways as explained above, from whih we will refrain here. One �nal fp generatingsheme we an't resist mentioning, sine it ties up with the notion of a fp with dummyparameters mentioned in 1.4:
Y ⇒ Y P1P2...Pn where P1 = λyp2...pnx. x(yp2 . . . pnx) and P2, ..., Pn are arbitrary(dummy) terms.This onludes our fabriation of building bloks for fp's.3. Clok behaviour of lambda termsAs we saw, there is vast spae of fp's and there are many ways to derive new fp's.The question is whether all these fp's are indeed new. So we have to prove that they arenot β-onvertible. For the Böhm sequene we did this by an ad ho argument based on asyntati invariant; and this method works �ne to establish lots of non-equations betweenthe alleged 'new' fp's that we onstruted above. Still, the question remains whether thereare not more 'strategi' ways of proving suh inequalities. In this �nal setion we propose amore strategi way to disriminate terms with respet to β-onversion. The idea is to extratfrom a λ-term more than just its BT, but also how the BT was formed; one ould say, inwhat tempo, or in what rhythm. A BT is formed from stati piees of information, but theseare rendered in a lok-wise fashion, where the tiks of the internal lok are head redutionsteps, that we will indiate as τ -steps heneforth. They are oexisting with another kindof internal steps, that we will all ι-steps; these are de�ned to be non-head redution steps.Third, we employ γ-steps, indiating an observation in the BT, i.e. the removal of a headnormal form ontext. First we make a notational remark.Notation 3.1. (i). (Appliative notation.) In rendering BT's there are two notationssuggesting themselves. The �rst is the 'appliative notation', where a BT is a unary-binarytree with unary abstration nodes and binary appliation nodes.This notation is suitablewhen we apply in�nite trees on eah other, or an in�nite tree to a �nite (term) tree, e.g. asin (λabc.abc(abc)ω)II.(ii) (Head normal form or hnf notation.) This is the notation favoured in Barendregt[84℄, and it is espeially suitable for BT's, whih are 'stand-alone objets' when one is notonerned with in�nitary lambda alulus. We also adopt this for rendering BT's below withone minor adaptation: in a hnf suh as λabc.abcM , the abstrations are three separate unarynodes in the BT and the variable of the a-vetor abcM is a ternary node in the BT, splittingo� to b, c,BT (M). See for example the BT's of BY and BY S displayed in Figure 6. InBarendregt [84℄ there would be just one ternary node λabc.a���. The reason that in thissetion we employ the hnf notation is that we will onsider 'enrihed' BT's, with a naturalnumber along the edges of the BT leading from one BT-node to a next BT-node; and theseedges are not expliitly visible in the appliative notation.De�nition 3.2. (Clok redution) (i) For fp's Y and wfp's Z. The lok redution of Yonsists of an in�nite sequene of head redution steps (τ -steps) and when no head step ispossible beause the term is in hnf λx.Y ′or x(Y x), a γ-step that removes the head ontext
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λx.� or x� respetively. Example: the lok redution of Y0 is (γτ)ω. And for Y1 = ηη wehave ηη →τ γ(ηη) →γ ηηx →τ γ(ηη)x →τ x(ηηx) →γ ηηx so the lok is τγ(ττγ)ω.(ii) For general terms with BT's that are branhing, we have the same de�nition, butnow the γ-steps also hoose a diretion in whih to proeed. The loks, or loked BT's ofthe terms BY and BY S are as displayed in Figure 6. Here between the nodes of the tree,the number of neessary τ -steps have been indiated by the red numbers.(iii) We are only interested in the tail of the lok redution; the beginning does notount. More preisely: we onsider lok sequenes to be the same if they are eventuallyonurrent. Thus they may onsist of di�erent arbitrary long �nite pre�xes, followed by aommon in�nite tail. E.g. τγ(ττγ)ω=(γττ)ω .Proposition 3.3. Cloks are aelerated under redution, slowing down under expansion.Proof. By a straightforward parallel moves diagram onstrution. Put the lok redution ofthe term M horizontally against a vertial redution step M → M ′. If this is a τ -step (headredution step), it will be absorbed by the upper redution, and the projeted redution willsoon oinide with the upper redution. If it is a ι-step (non-head redution step), it willpropagate to the right as a omplete development of ι-steps; some of these may absorb someof the horizontal τ -steps in the upper redution, and this entails that the lok given by thelower projeted redution sequene is faster. The γ-steps in the upper redution ommutewith both τ - and ι-steps.De�nition 3.4. (Simple terms) A term M is simple, if in no redution of M a redex ismultiplied. So every redex (λx.A)B ontrated in a redut of M , has the property that xours at most one in A, or B is in normal form. An equivalent and useful reformulationis that in redution diagrams involving reduts of M , no splitting in elementary diagramsours. Example: Y0δ is not simple; it redues to ωδωδ and this term may dupliate theredex in the seond ωδ. But the redut ηη ≡ Y1 is simple, and likewise all ηηδ∼n. Thisexample illustrates that although sometimes the terms in onsideration are not simple, withsome luk they an be simpli�ed by some redutions. Another example is Y1(SS)SI as inthe Example above. Due to the presene of the redex (SS) this term is not simple. But itan easily be simpli�ed, by reduing SS to its normal form (SS). (But there are also termsthat have no simple redut, i.e. annot be simpli�ed in this sense.)Theorem 3.5. For simple terms, loks are invariant under redution.Proof. (Sketh.) See Figure 5. The proof onsists of an easy diagram hasing argument, justas in the proof of Proposition 3.3 about lok aeleration under redution. The diagramonsists of displaying M and its lok redution vertially as in Figure 5; ι-steps are tothe right. Now every redut M ′ of M an be reahed by desending a �nite 'stairase' ofthe form, e.g., τττιγτιτιι. By repeated projetion, starting from the initial vertial lokredution of M , we obtain the vertially displayed lok redution of M ′. The point is nowthat in taking these projetions, the ι-steps don't split. Now either they turn at some timeinto τ -steps and we are done, beause then the projeted sequene oinides heneforth withthe previous one; or that never happens, e.g. beause that redex is in a 'dark orner' of theterm suh as formed by a dummy parameter in a fp Y Ω, thus never oming up to the front;in that ase the previous lok redution is opied by the projetion proess in its entirety.Corollary 3.6. Let M,N be simple terms with di�erent loks. Then M 6=β N .
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Figure 5: Clok-invarianeProof. Let M,N be simple and have di�erent loks. Suppose M =β N . Then these termshave a ommon redut L. Now L must have two di�erent loks, whih is impossible. Hene
M 6=β N . Note that if M , N are simple fp's, then L is again so.Example 3.7. (1) The Böhm sequene of fp's ontains no dupliates. The proof onsists�rst of noting that ηηδ∼n is a simple term, and seond omputing the lok of this term.Above we did this already for ηη; with every subsequent δ, two more head steps are in-trodued, so lok(ηηδ∼n) =(τ2n+2γ)ω, so all the loks of fp's in the Böhm sequene aredi�erent, so the sequene ontains no dupliates.(2) The Sott sequene of terms ontains no dupliates, and likewise the sequene offp's derived from this sequene: �rst simplify the redex (SS) present, then the terms aresimple, then ompute their loks, whih turn out to be all di�erent.(3) The four double �xed point solutions for λI-alulus are di�erent. Now we an statein what sense the �rst solution there is less e�ient than the seond: its lok is slower thanthat of the seond.(4) We also have at present an alternative proof that BY 6=β BY S: the lok onthe main branh of their BT, the only in�nite branh, is di�erent (Figure 6) for BY it is022222..., while for BY S it is 404444... Also, these terms are simple.Conjeture 3.8. (For λI). Let MP =BT M . Then MP has a slower lok than M . (In
λK the lok an remain the same: Y (KY ) = Y .)Problem 3.9. We mention some problems. (i) First, to prove that a term is simple mayamount to just the sort of tediously establishing an invariant that we saw in the ad hoproof for the Böhm sequene. So we would like to have tehniques for proving terms simple.(ii) The speeding up of loks under redution, suggests for fp's that they might be redued
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Figure 6: BY and BY S.to a fp with a fastest lok, i.e. minimal time between the γ's. This 'lok-minimalisation'would be very helpful; but we enounter a urious problem, namely that we do not knowhow to prove that the redut of a fp is again a fp. For wfp's it is easy to prove this'subjet-redution' property.Conjeture 3.10. We onlude with a onjeture that gives a ommon perspetive to all thenon-equations that we have found or have endeavoured to �nd; inluding Intrigila's theorem.Namely,(1) that the spae of fp's is a free spae, in the sense that no non-trivial equations hold.Furthermore,(2) that fp's enjoy a unique fatorization property, in terms of a prime fp as start,and building bloks as above as 'fators'. An fp is alled prime, if it is not the derivation(by post�xing a vetor) of any other fp. (Here we work in λI-alulus, otherwise the notiontrivializes, by the equation Y (KY ′) = Y ′.) Finally,(3) we onjeture that the derivation relation is well-founded, i.e. there is no bakwardin�nite sequene of derivations between fp's.Remark 3.11. As said, the notion of derivation is not interesting for λK-alulus withouta further stipulation, whih we will now make. That is, that we only are interested inderivation vetors that yield, after post�xing at a fp, ever new fp's. They must neverloose their strength, as it were.Aknowledgement. This paper has greatly bene�tted from stimulating disussions with HenkBarendregt, so there is some 're�etion' in the dediation of this paper to him. He taught melambda alulus and more. I also thank all members of the VU/CWI/UU-In�nity projet,to wit, Jörg Endrullis, Clemens Grabmayer, Helle Hansen, Dimitri Hendriks, Ariya Isihara,Clemens Kupke, Vinent van Oostrom, Femke van Raamsdonk, Jan Rutten, Roel de Vrijer.Finally, thanks to Johannes Waldmann and Hans Zantema, for pointing out that δ-termsare not SN, ontrary to my earlier onjeture.
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