
Java Separate Type Checking is not Safe

(Extended Abstract)

Davide Ancona, Giovanni Lagorio, and Elena Zucca?

DISI - Universit�a di Genova

Via Dodecaneso, 35, 16146 Genova (Italy)

email: fdavide,lagorio,zuccag@disi.unige.it

Abstract. Java supports separate type-checking in the sense that com-

pilation can be invoked on a single source fragment, and this may en-

force type-checking of other either source or binary fragments existing in

the environment. However, the Java speci�cation does not de�ne precise

rules on how this process should be performed, therefore the outcome

of compilation may strongly depend on the particular compiler imple-

mentation. Furthermore, rules adopted by standard Java compilers, as

SDK and Jikes, can produce binary fragments whose execution throws

linking related errors. We introduce a simple framework which allows

to formally express the process of separate compilation and the related

formal notion of type safety. Moreover, we de�ne, for a small subset of

Java, a type system for separate compilation which we conjecture to be

safe.

1 Introduction

Traditional type systems for programming languages de�ne the well-formedness

of self-contained programs, and are said to be safe if the (result of the compilation

of) a well-typed program is guaranteed to well-behave at run time (see [6, 4, 5]

for the Java case).

However, in languages supporting separate compilation and dynamic linking,

like Java, this simple framework is no longer adequate. Indeed, it is possible

to type-check a single source fragment in a context where other fragments are

present either in source or in binary form. Hence, there are two main new in-

gredients to be considered in typing rules: checks can be performed not only on

source, but also on binary fragments, and, for type-checking a fragment, it can

be necessary to type-check other (source or binary) fragments, following some

strategy.

Moreover, the output of the compilation phase is not a self-contained exe-

cutable program, but a collection of binary fragments which can be linked and

executed in many di�erent ways. Hence, the type safety notion must be expressed

in a more exible form.

? Partially supported by Murst - TOSCA Teoria della Concorrenza, Linguaggi di Or-

dine Superiore e Strutture di Tipi.

In this paper, we introduce a simple framework for separate compilation,

modeled as a function which, given a set of fragment names and a compilation

context consisting of both source and binary fragments, produces a collection of

binary fragments, and we de�ne a related notion of type safety.

Our aim is to face the following problems related to Java separate compila-

tion.

{ There is no speci�cation of separate compilation in [2], hence the outcome

of compilations may strongly depend on the particular compiler implemen-

tation.
{ Rules adopted by existing compilers can be quite complex and cannot be

easily explained informally.

{ As known by Java programmers, rules adopted by standard Java compilers,

as SDK and Jikes, can produce binary fragments whose execution throws

linking related errors. This seems in contradiction with the fact that type

safety results have been proved for the Java language [6, 4, 5]; the explana-

tion, as we will illustrate in more detail in the following, is that these type

systems, and the related type safety results, are only related to a special

case, which is the compilation of a self-contained set of source fragments.

Our framework is a formal basis for de�ning type systems for languages sup-

porting separate compilation, notably Java, and formally reasoning about them

by de�ning and proving good properties. For reasons of space, here we focus on

type safety, however there exist other kinds of good properties one could expect

from separate compilation (see end of Sect.3 and the Conclusion).

In order to illustrate our approach, we de�ne, for a small Java subset, a type

system for separate compilation which we conjecture to be safe (a formal proof

would require the de�nition of a simple execution model, not considered here for

lack of space).

The work presented in this paper is a �rst step towards the formal de�nition

and comparison of di�erent type systems for Java separate compilation, corre-

sponding, e.g., either to standard Java compilers, , or to extended compilers

which perform additional checks. The overall motivation of this research is the

following.

As illustrated in detail in the following, standard compilers perform very

few checks on binary fragments, relying on the fact that these checks can be in

practice delegated to the JVM1, which �nds linking related errors and throws

corresponding exceptions (see examples in Sect.2), thus guaranteeing that exe-

cution does not crash. However, we argue that this is not a good enough moti-

vation. Indeed, the fact that the JVM has a run-time veri�er (hence intercepts

error situations) cannot be used as a justi�cation for not trying to anticipate at

compile-time checks which actually can be performed earlier; otherwise, follow-

ing the same principle, one could also throw away checks on source fragments

since in any case the fact that the execution does not crash is guaranteed by the

bytecode veri�er, hence these checks are in a sense redundant. In our opinion,

1 Java Virtual Machine.

even though the run-time veri�cation cannot, of course, be eliminated in Java2,

it is worthwhile to investigate the possibility of anticipate at compile-time as

many checks as possible, as it is in the long tradition of type systems. The ob-

vious advantage is earlier error detection; then, in principle, the possibility that

execution in a context of \certi�ed" bytecode fragments obtained by a \smart"

compiler could be performed without some run-time checks (as it is already the

case for a context of binary fragments resulting from the compilation of all source

fragments).

The paper is organized as follows. In Sect.2 we present simple examples to

illustrate type-checking rules adopted by the SDK and Jikes compilers and to

show that these rules are not safe. In Sect.3 we introduce our framework and

formally express type safety. In Sect.4 we show, for a small subset of Java, a type

system for separate compilation which we conjecture to be safe. Finally, Sect.5

summarizes the contribution of the paper and outlines further work.

2 Some motivating examples

In this section we illustrate by means of some examples the type-checking rules

adopted by the two Java compilers SDK 1.3 and Jikes 1.11 (which apparently

seem to coincide3), and we show that these rules are not safe.

In the following, we will call compilation context all the source4 and binary

fragments which are available to the compiler (the notion will be formalized in

the next section). If both the source and the corresponding binary fragment are

present for a class, then standard compilers inspect the binary and ignore the

source, while the source is inspected if the binary is obsolete, that is, source has

been changed after last compilation.

The �rst example illustrates non-safe behaviour due to the fact that, when

checking a binary fragment, standard compilers do not enforce checking of all

used fragments.

class A{ static void main(String[] args){new B().m();} }

class B{ int m(){return new C().m();} }

class C{ int m(){return 1;} }

If, in a compilation context cc0 consisting of the three source fragments, we

invoke the compiler on A.java, then compilation of B.java and C.java is en-

forced, so that, after compilation, we obtain a new context cc1 where the binary

fragments of the three classes are available. However, if we re-compile A.java in

the context cc2 obtained by removing from cc1 the binary fragment of C, then

re-compilation of C.java is not enforced5, therefore we obtain again the context

cc2 (hence, no static error has been detected); however, if we try to execute class

A in this context, then error NoClassDefFoundError is thrown.

2 To deal with fragments which are not known to be the result of some compilation.
3 Except that Jikes supports compilation options that enforce more checks.
4 We assume for simplicity a unique �le for each class.
5 In Jikes re-compilation of C.java can be enforced with the option +F or +U.

Indeed, in standard compilers, when a fragment named N is checked, this

always enforces (transitively) checking the parent of N, regardless N is in source

or binary form6, whereas used fragments are (transitively) checked only when N

is in source form. This rule is not safe since it can lead to linking related errors,

as shown above. In the type system in Sect.4, instead, parent and used fragments

are always (transitively) checked.

Next examples illustrates cases in which the non-safe behaviour is not re-

lated to dependencies among checking fragments, but rather to the fact that

some checks which could be in principle performed on binary fragments are not

actually performed.

In the context cc1, as previously de�ned, assume to modify C.java in the

following way:

class C{ C m(){return new C();} }

Let cc0
2
denote the context obtained from cc1 by modifying the source fragment

of C as shown above. If we re-compile both A.java and C.java, then we obtain

a new context cc0
3
(hence, no static error has been detected). However, in this

new context, the execution of class A throws NoSuchMethodError. The problem

is that, when checking B.class, compilers do not check that class C should have

a method int m(), as would be checked if only the source of B were available.
A similar situation arises in the following example:

class A{ static void main(String[] args){new B().m()} }

class B{ D m(){return new C();} }

class C extends D {}

class D {}

Assume, analogously to the example above, to �rst compile all fragments, then

modify C.java as follows:

class C {}

If we re-compile A.java and C.java in this context, then we get no static error,

but the execution of class A throws VerifyError. The problem, again, is that,

when checking B.class, compilers do not check that class C should be a subtype

of D, as would be checked if only the source of B were available.

Finally, consider the following source fragments:

class A{ static void main(String[] args){new B().m()} }

class B{ int m(){return new C().m();} }

class C extends D {}

class D { int m(){return 1;} }

6 Hence in an analogous example where A extends B which extends C re-compilation

of C.java would be enforced even by checking B.class, thus causing no run-time

error.

and the situation in which we start from the context containing the source frag-

ments above, we compile all of them, and then we remove B.java7 and modify

C.java as follows:

class D {}

class C extends D{ int m() { return 1;} }

Again, re-compiling A.java, C.java and D.javawe get no static error and obtain

a context in which the execution of class A throws NoSuchMethodError. Here the

problem is that the call new C().m() in B.class is annotated with the class D

where method m was previously declared and the JVM veri�es that m is actually

declared either in D or in some superclass of D. Note that, as in the preceding

example, in presence of B.java the problem can be �xed by re-compiling it; in

this case, however, no static error is detected, but a new binary fragment for B

where the call is annotated with C is produced.

In summary, these three examples show that standard compilers do not per-

from on binary fragments some checks which could be possibly performed at

compile-time. These are either checks which are performed on source fragments,

or checks related to additional informations stored in the bytecode which make

it less \abstract" w.r.t. to source. In the type system we de�ne in the follow-

ing, on the contrary, these checks on binaries are performed, hence in the three

examples a static error would be raised.

As �nal remark, the examples above also show that rules for Java separate

compilation are not trivial to understand and express and that, therefore, the

behavior of the existing compilers cannot be always easily predicted; other exam-

ples, not related to violating type safety, where the compilers exhibit unexpected

behavior can be found in [1].

3 Framework

We introduce now a simple framework allowing to model separate compilation

and to express the property of type safety in a formal way.

Notations.We denote by [A *�n B] the set of the �nite partial functions from A into

B, that is, functions from A into B which are de�ned on a �nite subset of A. For each

f 2 [A *�n B], we set Def (f) = fa 2 Ajf(a) 2 Bg. 2

Let us denote by C the set of fragment names, ranged over by c, and by S and B

the set of source and binary fragments, respectively. We assume that S\ B = ;.

In the Java case, fragment names will be class/interface names, source fragments

will be .java �les containing (for simplicity) exactly one class/interface declara-

tion, and binary fragments will be .class �les. However, the model we present

is general and can be applied to fragments of di�erent nature.

7 In presence of B.java the counter-example works as well, but the error can be

detected by forcing its re-compilation.

A compilation context cc is a pair hccb; ccsi 2 CC = [C *�n B]� [C *�n S].

In general Def (ccb)\Def (ccs) 6= ;, since for some fragment both the source and

the binary can be available (intuitively, this means that the binary is obsolete).

The results of (successful) compilations are �nite partial functions from class

names into binary fragments. Hence, we can model the compilation process by

a (partial) function:

C : }(C) � CC * [C *�n B]

where C(C ; hccb; ccsi) = cc
0

b
intuitively means that the compilation, invoked

on fragments with names in C , in the compilation context consisting of binary

fragments ccb and source fragments ccs, produces binary fragments cc0
b
.

We introduce now the formal property of type safety for separate compilation.

For our purposes, we can abstract from all detailes of the linking and execution

model and just assume a very general judgment of the form ccb ` c;OK which

is valid if and only if execution of c in the context of binary fragments ccb does

not throw any linking related error. In the Java case, for instance, this judgment

corresponds to start execution from class8 c in a context where all binaries in

ccb are available to the JVM, hence some of them could be dynamically linked

during execution.

De�nition 1. A compilation function C is type safe i� for any compilation

context hccb; ccsi and set of fragment names C , if C(C ; hccb; ccsi) = cc
0

b
, then,

for any c 2 Def (cc0
b
), cc0

b
` c;OK.

Note that type safety requires that execution does not raise linking related errors

only when started from classes that were the product of the compilation. An

error raised by an execution started from a class c present in the original binary

context ccb can be either an error whic was already present (that is, ccb ` c;OK

does not hold), hence not due to compilation, or is due to the fact that some

binary used by c has been modi�ed. In this case we say that the compilation

function does not satisfy contextual binary compatibility [1].

4 A safe type system for separate compilation

In this section, we de�ne a type system (that we conjecture to be safe) which

models separate compilation for a small Java subset .

The language we consider is shown in Fig. 1; metavariables C, m,x and N range

over sets of class, method and parameter names, and integer literals, respectively.

Both source and binary fragments are speci�ed.

A source fragment S is a class declaration consisting of the class name, the

name of the superclass and a set of method declarations. A method declaration

consists of a method header and a method body (an expression). A method

header consists of a (return) type, a method name and a sequence of parameter

8 We also ignore for simplicity the fact that c should have a main method.

types and names. There are four kinds of expressions: instance creation, param-

eter name, integer literal and method invocation. A type is either a class name

or int.

A binary fragment B consists of the name of the superclass, a set of annotated

method headers and a set of type constraints KS. An annotated method header

is a method header pre�xed by an annotation indicating the class which contains

the method declaration. A type constraint K is either a subtype constraint C1 �

C2, or an implementation constraint C� AMHS, stating that class C must provide

annotated methods AMHS.

Note that here, for simplicity, binary fragments contain no code, but only

some type information which can, however, easily retrieved from a regular Java

.class �le.

S ::= class C extends C
0 f MDS g

MDS ::= MD1 : : : MDn (n � 0)

MD ::= MH f return E; g
MH ::= T0 m(T1 x1; : : : ; Tn xn) (n � 0)

E ::= new C j x j N
E0:m(E1; : : : ; En) (n � 0)

T ::= C j int

B ::= hC; AMHS; KSi
KS ::= K1 : : : Kn (n � 0)

K ::= C1 � C2 j C� AMHS

AMHS ::= C1 T1 m(�T1) : : : Cn Tn m(�Tn) (n � 0)
�T ::= T1 : : : Tn (n � 0)

Fig. 1. Syntax and types

The top-level rules of the type system are de�ned in Fig.2.

The main judgment cc ` CS; ccb is valid whenever the compilation invoked on

the class names in CS in compilation context cc successfully produces the binary

context ccb.

The compilation can be split in two distinct phases; �rst, all classes in CS

(and, implicitly, all classes which classes in CS depends on) are type-checked

(hypotheses), then binary fragments are produced for all the type-checked classes

which were not yet in binary form (conclusion).

The side condition CS � Def (ccs) ensures that all classes in CS have a source

fragment in cc; if not so, compilation fails, otherwise classes in CS are sequentially

type-checked (hypotheses).

Judgment cc;� ` C;� 0 is valid whenever class C is well-typed w.r.t. com-

pilation context cc and class environment � ; � 0 is the new class environment

produced during the type-checking of C. A class environment is a �nite map

associating with each class name C a pair hC0; AMHSi, where C0 denotes the super-

class of C, while AMHS is the set of all annotated method headers (either inherited

hccb; ccsi;�0 ` C1;�1
: : :

hccb; ccsi;�n�1 ` Cn;�n

hccb; ccsi ` CS; cc
0

b

CS = fC1; : : : ; Cng � Def (ccs)

Def (�0) = fObjectg; �0(Object) = h?; ;i
Def (cc0

b
) = Def (�n) n Def (ccb)

8 C 2 Def (cc0
b
) cc0

b
(C) = bin(ccs; �n; C)

cc;� ` int;� cc;� ` C;�
C 2 Def (�)

hccb; ccsi;� ` C1;�1
hccb; ccsi;�1[C 7! hC1; AMHSi] ` KS;�2

hccb; ccsi;� ` C;�2

C 62 Def (�)

ccb(C) = hC1; AMHS
0; KSi

�1(C1) = h ; AMHS1i
AMHS1[AMHS

0] = AMHS

hccb; ccsi;� ` C1;�1
hccb; ccsi;�1[C 7! hC1; AMHSi] ` MDS;�2

hccb; ccsi;� ` C;�2

C 62 Def (�) [Def (ccb)

ccs(C) = class C extends C1 f MDS g
AMHS

0 = Amhs(C; MDS)

�1(C1) = h ; AMHS1i
AMHS1[AMHS

0] = AMHS

Fig. 2. Top-level rules

or declared) of C. Class environments model the needed type information about

classes collected by the compiler while inspecting source and binary fragments

in the compilation context.

The initial class environment �0 (see the corresponding side condition) con-

tains only the prede�ned empty class (with no superclass) Object9. Class envi-

ronment �1, produced while type-checking C1, contains (besides �0) type infor-

mation about all classes needed for type-checking C1: all superclasses of C1 and

all classes used (both directly and indirectly) by C1.

The new class environment �1 is used for checking next class C2 and so on,

until producing an environment �n containing which have been type-checked;

from this set we can easily retrieve the set of all classes which need to be compiled

(see the side condition de�ning cc
0

b
).

The remaining rules specify type-checking of primitive types and classes.

Type-checking of primitive types and or classes already collected in the class

environment is trivial.

The other two rules concern classes which have not been inspected yet (the

former deals with binary fragments, whereas the latter with source fragments).

They are almost symmetric, except that when both binary and source fragment

are present, priority is given to the former. First, the direct parent class C1 is

type-checked; then, from the annotated method headers of C1 and those declared

in C, the annotated method headers of C are derived (and rules on overriding are

checked). Finally, either the set of type constraints (in the binary case) or the

set of method declarations (in the source case) of C is type-checked.

9 For simplicity, we ignore all the prede�ned methods of Object.

For lack of space, all other rules and auxiliary functions are de�ned in the

Appendix.

Finally we show how the second example discussed in Sect.2 can be modeled

in the framework de�ned above.

The compilation context cc0 = hcc0
b
; cc0

s
i is de�ned by cc

0

b
= ;, cc0

s
=

fA 7! SA; B 7! SB; C 7! SCg, where SA, SB, and SC are the source code of A, B, and

C as de�ned in the example10.

The compilation context cc1 = hcc1
b
; cc0

s
i (corresponding to the context after

invoking the compiler on A) is obtained by updating the previous binary context

cc
0

b
with the binary context ccb derived from the judgment cc0 ` fAg; ccb.

Since in this case cc
0

b
is empty, we have cc

1

b
= ccb = fA 7! BA; B 7! BB; C 7! BCg,

where

BA = hObject; fA int main()g; fB � B; B� fB int m1()ggi

BB = hObject; fB int m1()g; fC � C; C� fC int m1()ggi

BC = hObject; fC int m1()g; ;i

The subtype constraints B � B and C � C simply require the existence of class

B and C, respectively, otherwise no constructor could be correctly invoked on

them.

The context cc0
2
is obtained from cc1 by changing the source code of C (ac-

cording to the example), therefore cc
0

2
= hcc1

b
; cc2

s
i, where cc

2

s
= cc

0

s
[S0

C
=C] is

obtained from cc
0

s
by updating C with the new source S0

C
.

Finally, A cannot be successfully compiled in context cc2, since there is no

ccb s.t. the judgment cc2 ` fAg; ccb is valid.

5 Conclusion

We have shown that typing rules for Java separate compilation can be quite

complex and cannot easily explained informally. Moreover, they can be be unsafe,

as happens for SDK and Jikes compilers since they perform very few checks on

binary fragments delegating them to the JVM. We argue that a more robust

compiler implementation should perform as much checks as possible at compile

time, delegating to the JVM only those checks that can only be performed at

run time.

We have introduced a simple framework which allows to formally model

separate compilation and the related properties. Within this framework, we have

de�ned, for a small subset of Java, a type system for separate compilation which

we conjecture to be type safe.

In this paper, for lack of space, we have focused on the safety property; how-

ever, there are other interesting properties one can express for separate compi-

lation, like contextual binary compatibility (mentioned at the end of Sect.3) and

monotonicity, that is, the fact that when a subset of the source fragments com-

posing a program is changed, re-compiling only this set gives the same result as

10 Where, however, static has been removed and void replaced with int.

re-compiling the whole program (this property is mentioned as desirable in [3]

and formalized in [1]).

The work presented in this paper is a �rst step towards the formal de�nition

and comparison of di�erent type systems for Java separate compilation, corre-

sponding, e.g., either to standard Java compilers, or to extended compilers which

perform additional checks. A lot of work still has to be done. On the theoretical

side, we plan to de�ne a complete execution and linking model for the toy lan-

guage de�ned in this paper, including a toy bytecode, thus allowing to formally

prove type safety. We also want to study the formal relations between the type

safety property analyzed in this paper and other properties like monotonicity

and contextual binary compatibility [1]. On the practical side, we plan to extend

the safe type system de�ned here to more relevant Java subsets and to develop

extended compilers which satisfy good properties like type safety.

Acknowledgments: We warmly thank Sophia Drossopoulou for her precious con-

tribution to stimulate and enhance this work.

References

1. D. Ancona, G. Lagorio, and E. Zucca. Monotone separate compilation in Java.

Technical Report, DISI. Submitted for publication, April 2001.

2. G. Bracha, J. Gosling, B. Joy, and G. Steele. The Java
TM

Language Speci�cation,

Second Edition. Addison-Wesley, 2000.

3. L. Cardelli. Program fragments, linking, and modularization. In ACM Symp. on

Principles of Programming Languages 1997, pages 266{277. ACM Press, January

1997.

4. S. Drossopoulou and S. Eisenbach. Describing the semantics of Java and proving

type soundness. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java,

number 1523 in Lecture Notes in Computer Science, pages 41{82. Springer Verlag,

Berlin, 1999.

5. D. Syme. Proving Java type sound. In Jim Alves-Foss, editor, Formal Syntax and

Semantics of Java, number 1523 in Lecture Notes in Computer Science, pages 83{

118. Springer Verlag, 1999.

6. D. von Oheimb and T. Nipkow. Machine-checking the Java speci�cation: Proving

type-safety. In Jim Alves-Foss, editor, Formal Syntax and Semantics of Java, num-

ber 1523 in Lecture Notes in Computer Science, pages 119{156. Springer Verlag,

1999.

A Appendix

Class environments

� ::= C1:hC
?

1
; AMHS1i; : : : ; Cn:hC

?

n
; AMHSni (n � 0)

C? ::= ? j C

Binary class generation

bin(ccs; �; C) = hC1; AMHS; KSi if ccs(C) = class C extends C1 f MDS g

AMHS = Amhs(MDS)

� ` MDS;KS

Annotated methods update A set of method headers AMHS is well-formed if it

does not contain overloaded methods.

AMHS0[AMHS] =

�
AMHS! AMHS0 if AMHS! AMHS0 is well-formed

unde�ned otherwise

where AMHS! AMHS0 = AMHS [fC T m(�T) j6 9 C1 s:t: C1 T m(�T) 2 AMHSg

Annotation and extraction of method headers

Amhs(C; MDS) = annotate(C;Mhs(MDS))

annotate(C; MH1 : : : MHn) = C MH1 : : : C MHn

Mhs(MH1f return E1; g : : : MHnf return En; g) = MH1 : : :MHn

Method resolution

RetType(�; C; m; T1 : : : Tn) = T0 if

8<
:

� (C) = AMHS

C1 T0 m(T0
1
x1; : : : ; T

0

n
x0
n
) 2 AMHS

� ` Ti � T0
i
for i = 1::n

cc;�0 ` K1;�1 : : : cc;�n�1 ` Kn;�n

cc;�0 ` K1 : : : Kn;�n

cc;� ` C1;�1 cc;� ` C2;�2 �2 ` C1 � C2

cc;� ` C1 � C2;�2

cc;� ` C;�1 �1 ` AMHS1 � AMHS

cc;� ` C � AMHS;�1
�1(C) = AMHS1

Fig. 3. Type-checking sets of constraints

� ` MD1; KS1 : : : � ` MDn; KSn

� ` MD1 : : : MDn; KS1 : : : KSn

� ; fx1 7! T1; : : : ; xn 7! Tng ` E : T; KS

� ` T0 m(T1 x1; : : : ; Tn xn) f return E; g; KS T0 � T0 : : : Tn � Tn T � T0

� ;� ` new C : C; C � C � ;� ` N : int;� � ;� ` x : T;�
�(x) = T

� ;� ` E0 : C; KS0

� ;� ` E1 : T1; KS1

: : :

�n�1;� ` En : Tn; KSn

� ;� ` E0:m(E1; : : : ; En) : T; KS0 : : : KSn C� fC1 T m(T1 : : : Tn)g
� (C) = AMHS1 C1 T m(T1 : : : Tn) AMHS2

Fig. 4. Code generation

cc;�0 ` MD1;�1 : : : cc;�n�1 ` MDn;�n

cc;�0 ` MD1 : : : MDn;�n

cc;� ` T0;�0 : : : cc;� ` Tn;�n
cc;�n; fx1 7! T1; : : : ; xn 7! Tng ` E : T;� 0

� 0 ` T � T0

cc;� ` T0 m(T1 x1; : : : ; Tn xn) f return E; g;� 0

cc;� ` C;� 0

cc;� ;� ` new C : C;� 0 cc;� ;� ` N : int;�

cc;� ;� ` x : T;�
�(x) = T

cc;� ;� ` E0 : C;�0
cc;�0;� ` E1 : T1;�1
: : :

cc;�n�1;� ` En : Tn;�n

cc;� ;� ` E0:m(E1; : : : ; En) : T;�n
RetType(�; C; m; T1 : : : Tn) = T

Fig. 5. Type-checking of source class bodies

� ` C
0

1 � C1 : : : � ` C
0

n � Cn

� ` fC1 T1 m1(�T1); : : : ; Ck Tk mk(�Tk)g� fC0
1
T1 m1(�T1); : : : ; C0n Tn mn(�Tn)g

n � k

� ` int � int � ` C � C
C 2 Def (�)

� ` C � C0
� (C) = hC0; i

� ` C � C
0 � ` C

0 � C
00

� ` C � C0

Fig. 6. Implementation and widening

