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Abstract The aim of this paper is to clarify the different roles that class
invariants play in the verification of object-oriented programs, namely in
method specifications as proof obligations for method implementations
(assume the precondition and then prove the postcondition) and in spe-
cifications as assumptions on method invocations (prove the precondition,
and then assume the postcondition), in order to prove the correctness of
other methods. The standard proof obligation is that individual methods
preserve the invariant of their class, as part of the method’s specifica-
tion. When trying to prove such an obligation one may have to be careful
about the invariants that are assumed to be part of the precondition, at
least if one wishes to use the same specification in other proofs. This
is what we call the conservative approach. There is an associated more
liberal approach which really makes a distinction between specifications
as obligations and as assumptions. In the latter case the requirement
to prove all invariants in the precondition is dropped. This considerably
simplifies the verification work, but relies on a suitable meta-result about
non-disturbance of invariants.

1 Introduction

Preconditions, postconditions and invariants are universally accepted as the ba-
sic ingredients for specification of OO programs. Invariants for classes play an
important role in object-oriented languages ([11,14]) because they often express
key data integrity properties, such as: this integer field is always non-negative,
or this reference is never null. The idea is that invariants should always hold.
But things are not so simple. Consider for example the invariant i+j==0. It does
not hold in between the two statements i++;j--, even though it will hold after
the composition, assuming it holds before. It is inevitable that some invariants
are temporarily invalidated in a method body, but they should be re-established
at some point.

Our perspective here—unlike for example [4]—is tool-assisted verification of
object-oriented programs. More specifically, proving specifications for method
implementations. The specifications we consider are written in the behavioural
interface specification language JML, developed by Leavens et al. [6]. The im-
plementations are written in Java. We have developed a special compiler, called



the LOOP tool (see [1]) which translates these JML specifications plus Java
implementations into their semantics in the language of the proof tool PVS.
Specifications become special predicates, which we try to prove for the (trans-
lated) implementations. In this context, we are forced to be very systematic and
precise about the meaning of invariants—which is a delicate matter. The pur-
pose of this short note is to make the main problems explicit, and to present the
options that one has.

The verification of a specification for a method proceeds by stepping through
the methods body via applying appropriate Hoare-like rules for JML, see [5],
for each individual statement in this body. These statements may consist of
method calls, like in void m() { ... o.k(); ... }. What we then do is use
the specification given for the method k—which involves in particular showing
that the precondition of this specification of k holds. The first point we wish to
emphasise is that there are thus two different roles for method specifications in
verification, namely as a proof obligation for the method implementation, and
as an assumption about a method invocation. Ideally, specifications have the
same meaning in these two roles, but that is possibly not the most convenient.
Invariants play a key part in making such a distinction.

Method specifications in JML contain several clauses for the various modes
of termination in Java, like divergence, normal termination, and exceptional
termination (see [5] for details). These differences are not so relevant in this
paper, and so we shall simplify this matter and use the standard triple notation
from Hoare logic,

{ pre } m { post } (1)

for partial correctness. Such a triple expresses that if the precondition pre holds
in the pre-state, and if the method m terminates normally, then the postcondition
post holds in the post-state. However, the triple (1) is too simple, because it
does not involve the invariant IA of the class A in which the method m is defined.
Thus the triple (1) should be:

{ IA && pre } m { IA && post } (2)

This is standardly taken as the meaning of a method specification, and is what
should be proved for the method.

2 Invariants and inheritance

The two main requirements1 of the behavioural approach to subtyping [10] are
the following. For a subclass B of a class A,

1. The invariant IB of B is stronger than the invariant IA of A, i.e. IB ⇒ IA.
2. For each method m in class A that is overridden in the subclass B, the spe-

cification of m in B is stronger than the one in A. Usually this is expressed by
the pair of implications:

preA =⇒ preB and postB =⇒ postA. (3)
1 Omitting constraints.



Notice that the second condition does not involve invariants. Simply adding them
in the straightforward way, namely as:

IA && preA =⇒ IB && preB and IB && postB =⇒ IA && postA (4)

is problematic, because the first implication does not hold in general—because
IB can be really stronger than IA.

The practice of actual verification [3,2] has taught us that a slightly different
approach is more appropriate (and effective), in which the above implications (3)
and (4) are not required. In order to explain this alternative we distinguish
notationally between the version mB of m in B, and the (overridden) version mA
in A. The meaning of the specification of mA is as in (2) above. For mB we use a
conjunction of two requirements:

{ IB && preB } mB { IB && postB }
{ IB && preA } mB { IB && postA }

(5)

Notice that the first triple is the analogue of (2) for mB. The second one expresses
that mB should also satisfy the specification of the superclass A, but with the in-
variant of its own class. Indeed, this is what is often needed in practice, typically
when the invariant IB expresses certain safety conditions that are essential for
the correct behaviour of mB. We shall use the second triple in (5) as interpret-
ation of the requirement 2. of behavioural subtyping in the beginning of this
section, namely that an overriding method should also satisfy the specification
of the overridden method.

Several further remarks should be made at this point.

1. The formulations (5) are convenient in verification because they are in a
form that can directly be used in proofs, when specifications are used as
assumptions.

2. The first requirement in (5) follows from the second if we can establish the
following adaptations of (4).

IB && preA =⇒ preB and IB && postB =⇒ postA.

And this is what we of course do, if possible, in order to prevent going
through the method body in another lengthy proof.

3. One distinguishing feature of object-oriented languages (with inheritance) is
that objects have both a static type and a dynamic (run-time) type—where
the latter is a subtype of the former. This raises the question whether the
invariant of an object refers to the invariant of the static or of the dynamic
type of an object. This difference is relevant if Java’s instanceof is used to
get more information about an objects dynamic type. In order not to make
matters more complicated than they already are, we shall ignore the differ-
ence between static and dynamic invariants and shall simply write Inv(o)
for the invariant of an object o.



4. Another question is whether late binding should be used to interpret the
(pure, side-effect free) methods that may occur in invariants. For example,
in

class A {
int i;
//@ invariant i > min();

//@ ensures \result >= 0;
/*@ pure */ int min() { .. }

}

class B extends A {
//@ ensures \result >= 10;
/*@ pure */ int min() { .. }

}

do we know, for an object b of class B, that b.i > 0 or—by late binding—b.i
> 10 ?

3 Invariants for objects (other than this)

Besides the invariant of the class in which the method is defined (the invariant of
this, as it is sometimes called), the correctness of a method’s implementation
may also rely on invariants of other objects used in the method body, such
as parameters and (possibly static) fields. Therefore, these invariants are also
important to prove the correctness of the implementation.

Like the class invariant (of this) that is assumed to hold in the pre-state, in
most cases also the invariants of the parameters and relevant fields are needed in
this state. The proof obligation for a method m with parameters −→a and defined
in class A will then become

{ Inv(this) && Inv(−→a ) && Inv(
−→
f ) && pre } m(−→a ) { Inv(this) && post },

where Inv(this) is what we have written as IA before (with A the class of m),
Inv(−→a ) are the invariants of the reference parameters in −→a , and Inv(−→f ) are the
invariants of all the relevant reference fields. How it is determined which objects
are relevant is not so important at this stage.

It may also be the case that a method returns a reference to an object2. This
result object should also satisfy its invariant. Therefore, the proof obligation is
further strengthened to:

{ Inv(this) && Inv(−→a ) && Inv(
−→
f ) && pre }

m(−→a )
{ Inv(this) && Inv(\result) && post },

2 Also, the method may produce an exception object, which should also satisfy its
invariant. But this case does not occur in our simplified Hoare logic dealing only
with normal termination.



where Inv(\result) denotes the invariant for the return value.
In an object-oriented context, modular verification ([7,12]) is important, be-

cause one wishes correctness results to be robust with respect to addition of
subclasses. Consider the following example in which a method m has a reference
parameter o of class A:

void m (A o) { o.i=1; o.k(); }

One would like the specification of m to be correct for all possible future sub-
classes of class A—objects of which may be passed as actual parameter. In order
to achieve such correctness, it should be assured that each subclass of A be-
haves as A. The assignment o.i=1, however, may cause trouble: it might break
a possibly stronger invariant of a subclass of A.

In general terms, assignments may disturb the invariants of other objects via
exposure of the state of an object, e.g. via access to public fields or aliasing. In
order to control this, a meta-result about non-disturbance of other invariants is
needed. Müller and Poetzsch-Heffter [13,12] propose to use suitable “universes”
of objects that put restrictions on leaking references to the outside world. This
will be needed to make our verifications modular.

4 Invariants in verification

It is common in the literature on object-oriented specification and verification
to assume invariants, whenever needed. Explicitly, in the words of Liskov &
Wing [10, p.13]: “We omit adding the invariant, because if it is needed in doing
a proof it can always be assumed, since it is known to be true for all objects of its
type.” Such a hand-waving approach is not possible in a formalised semantics
for theorem proving, and must be described explicitly. This will be done by
explicitly distinguishing between proving and using method specifications.

For expository reasons we first consider some naive rules for invariants,
mainly to illustrate the subtleties involved.

4.1 The black box approach

In an ideal world, every object would be a black box, that only interacts with its
environment by method invocations. In such a setting, every object would take
care of maintaining its own invariant only. The proof obligation for a method
implementation would be as expected:

{Inv(callee) && pre}
m()
{Inv(callee) && post}

At first sight, one might expect that users of a method may make the following
assumption for method invocations:

{pre}
callee.m()
{post}



Given that the object callee takes care of maintaining its own invariant, the
caller can assume that the invariant of callee will hold.

However, the rule above is not correct, because the caller may have temporar-
ily invalidated its invariant at the moment of the invocation callee.m. This is a
problem because of possible call-backs: the execution of callee.m() may lead to
other method invocations, including method invocations on the object caller,
in which case execution of a method of caller would start in a state in which
its invariant does not hold. The simplest scenario where this problem occurs is
the case that caller and callee are the same object, i.e. if callee.m() is an
invocation of the objects own methods. To prevent such problems, the caller
should ensure that its own invariant holds whenever it invokes other methods:

{Inv(caller) && pre}
callee.m()
{Inv(caller) && post}

This may be seen as formalisation of the (standard) solution for call-backs, see
for example [14, Section 5.8]: “A simple solution would be to require all invariants
of an object to be established before calling any method.”

The big problem with this approach is that the underlying assumption—that
objects are black boxes—is not true for typical object-oriented languages such as
Java. For instance, invariants can be disturbed by assignments to public fields.
More importantly, the invariant of an object typically depends not just on the
states of that object (i.e. its fields), but often also depends on the states of other
objects (in its “universe”).

Another problem with this approach is that, in spite of the drastic simplifying
assumption, insisting that the invariant is maintained whenever another method
is invoked may be too strong a requirement in practice. As noted for instance
in [14, Section 5.8], (re)establishing an invariant might require a sequence of
method invocations. One place where this requirement is often unworkably strong
is in constructors; typically the invariant is not established until the end of a
constructor body, which means that we cannot invoke any methods (or super
constructors) in constructor bodies [9].

4.2 The white box approach

Diametrically opposed to the black box approach discussed above, where every
object is given the responsibility of maintaining only its own invariant, is what
we call the white box approach: here every individual object is given the re-
sponsibility of maintaining all the invariants of all existing objects.

For this approach the proof obligation for a method implementation would
be

{∀i. Inv(oi) && pre}
m()

{∀i. Inv(oi) && post}



and the assumption on method invocations would be

{∀i. Inv(oi) && pre}
callee.m()
{∀i. Inv(oi) && pre}

In this approach we know that at all visible states—all routine borders—all
invariants of all objects hold. This approach has the advantage of being sound, as
the proof obligation for method implementation and the assumption on method
invocation are identical. However, the problem with this approach is that the
proof obligation for method implementations is unworkably strong. In general
there is no way of knowing whether a given assignment to a field does not
invalidate the invariant of some other object. Additionally, we also have the
problem mentioned in the last paragraph of the Subsection 4.1.

4.3 The liberal and conservative approach

In light of the fundamental problems with the two approaches above, we now
consider two more pragmatic approaches to invariants, see Figure 1, called the
liberal and conservative approach. In the conservative approach there is no dis-
tinction between obligation and assumption—although we use a slightly different
formulation to emphasise that there are two objects involved when a specific-
ation is used as assumption. In the liberal approach one adds all invariants to
the precondition in a proof obligation, but one does not need to establish these
invariants when the specification is used as an assumption. The justification for
this omission is like in Liskov & Wing [10], as cited above. More formally, it
should be justified by a meta-result about non-disturbance of invariants, in the
universes setting of Poetzsch-Heffter & Müller [13,12]. This is needed for the
soundness of the liberal approach. But as we saw towards the end of Section 3,
the meta-result is needed anyway to be able to work modularly.

liberal conservative

specification
as obligation

{∀i. Inv(oi) && pre}
m()

{Inv(callee) && post}

{∀relevant i. Inv(oi) && pre}
m()

{Inv(callee) && post}

specification
as assumption

{Inv(caller) &&

Inv(callee) && pre}
callee.m()

{Inv(caller) &&

Inv(callee) && post}

{∀relevant i. Inv(oi) && pre}
callee.m()

{Inv(callee) && post}

Figure1. The proof obligations and assumptions for method specifications in the lib-
eral and the conservative approach.



Some motivations for the rules in Figure 1:

– The reason for including Inv(caller) in the precondition of the liberal
assumption rule is to allow for call-backs, as discussed in Subsection 4.1. In
the conservative assumption rule, Inv(caller) should be included as one of
the relevant objects if there is a call-back to it.

– The reason for including Inv(caller) in the postcondition of the liberal
assumption rule is that it is needed to prove that a method implementation
containing callee.m() preserves the caller’s invariant. However, one could
also rely on the modifiable clause (i.e. frame property) of the called method
m to prove this; this is what has to be done in the conservative approach.

If one wishes to use a specification in the conservative approach one needs
to prove explicitly that the invariants added to the precondition hold. Adding
the invariants of all objects makes proofs unnecessarily difficult—and often im-
possible, when certain, irrelevant, invariants do not hold. This is the reason for
restricting ourselves to what we call the invariants of all relevant objects. Still
this puts a considerable burden on the verifier: in our experience this requirement
gives a lot of work, which is in essence unnecessary. But the great advantage of
this conservative approach is of course its soundness.

By having a weaker specification as obligation than as assumption in the
liberal approach it is not hard to introduce logical inconsistencies in the back-
end theorem prover, namely in cases where an invariant of an other object (than
this) is necessary for a certain result value. Consider for example:

class A {
int i;
//@ invariant i > 0;

//@ requires a != null;
//@ ensures \result == true;
boolean m(A a) { return a.i > 0; }

//@ requires a != null && b != null;
//@ ensures \result == true;
boolean k(A a, A b) { b.i = 0; return a.m(b); }

}

Notice that k does not meet its specification. But it can be proven “correct”
with the liberal approach: the specification of m as assumption does not require
that the invariant for the parameters hold.

In the universe approach [13] certain constraints will have to be imposed, in
order to prevent that the integer field i can become non-positive, e.g. by making
it private or read-only. This disables invariant-disturbing assignments to i.

As mentioned, in the conservative approach only invariants of relevant objects
are added to the precondition, whereas all invariants are added when proving a
specification in the liberal approach. During such a “liberal” proof one quickly



restricts the invariants added to the precondition to only the relevant objects,
because otherwise one pushes too strong a formula through the method body
(via the rules for Hoare logic).

5 LOOP project

As stated in the introduction, the LOOP compiler translates Java classes plus
JML annotations into PVS. The translation covers almost all of sequential Java,
and this part is reasonably stable. The translation of JML is still under construc-
tion, but already covers a core part of JML: class invariants and constraints,
method specifications including modifiable clauses, but, for instance, not yet
model variables. The JML translation is being used for several case studies (not-
ably for JavaCard), and is optimised on the basis of the resulting experiences.

Originally, the approach we used was to explicitly include invariants of objects
other than this in pre- and postconditions, which is possible in JML using the
\invariant_for keyword. For example, the method m in the example above
could be specified as follows

//@ requires a != null && \invariant_for(a);
//@ ensures \result == true;
boolean m(A a) { return a.i > 0; }

to make it explicit that m relies on the invariant of its argument. The problem
with this approach is that it quickly becomes cumbersome to have to explicitly
include all these invariants in pre- and postconditions.

We then considered the conservative approach, mainly because this seemed
to be the safest. It has given rise to several difficulties.

– How to determine which objects are relevant? Adding invariants for reference
parameters is not problematic, but finding all other relevant objects in a
method body is beyond static analysis. This is a problem in generating the
semantics of a specification. ESC/Java uses some heuristic to choose the set
of relevant objects [8, Sect. 2.4.1]. One way to tackle this problem might be
to include a model variable relevantObjects,

//@ public model JMLObjectSet relevantObjects;

for every object, that keeps track of the set of relevant objects, i.e. o.rele-
vantObjects is the set of objects on whose invariants the methods of the
object o rely.

– Proving the invariants of all relevant objects when a method specification
is used is very time consuming, and does not yield very much in terms of
confidence because these invariants typically hold anyway.



On the basis of these experiences we are now moving to the liberal approach3,
also because there are now concrete plans to extend JML with the universe type
system of Poetzsch-Heffter & Müller. The liberal approach makes verification
easier, but it may lead to inconsistencies because the required meta-result about
non-disturbance of invariants is not formalised in PVS. This possibly unsound
approach goes very much against the very idea of formal verification, but seems
to be the most pragmatic: we have assumptions which are strong enough for
verifying non-trivial program properties, but which should not be abused.

6 Conclusion

Our work on tool-assisted verification of object-oriented programs forces us to
be very explicit and precise about the meaning of all the constructs involved.
This short note focuses on the role of invariants in this setting, and tries to
clarify several issues that occur in various places in the literature, but are still
confusing when it comes down to detailed formalisation.
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