
From FGJ to Java according to LM translator

Mirko Viroli
DEIS – Università di Bologna

via Rasi e Spinelli 176
47023 Cesena (FC), Italy

mviroli@deis.unibo.it

ABSTRACT
In this paper we present a formalization of LM translator [11], a
proposal for adding parametric polymorphism to Java by means of
a logical extension of Generic Java [6]. LM translator overcomes
the type-integration lacks of Generic Java thanks to several distinc-
tive features: run-time information on parametric types is carried
into type descriptors created at load-time, reflective features of Java
are exploited for dealing with legacy classes, hashtables are used to
tackle performance issues, and special method descriptors tables
support dynamic dispatching of method calls. Because of all these
tricks LM translator turns out to be a complex system, whose de-
scription and understanding are often quite complicated, whereas
translation approaches were typically used also because of their
simplicity.

So, the declared goal of the formalization is to help reasoning about
LM, reaching a good trade-off between compactness of its descrip-
tion and completeness in treating its features. Technically, this is
done by modeling LM translator as a compilation of FGJ [3], a core
calculus for Generic Java, into full Java. This choice for the source
and target languages allows to directly focus on the key issues re-
lated to parametric polymorphism, thanks to the minimality of FGJ,
and not to constrain in any way the power and features of LM trans-
lator, as the target language is full Java. The formalization obtained
is satisfactorily compact; the only significant issues left out are the
management of legacy classes and the internal details of the library
classes supporting the translation.

In this paper we also argue that this kind of formalization is the
most suitable support for the development of an actual prototype of
the translator. This is motivated by outlining our current work on
this direction, in which the formalization here introduced plays a
crucial role. The key property of our methodology is the separation
between the peculiar aspects of the translation and the details not
strictly related to parametric polymorphism. This is meant to speed
up the tuning of the translation towards an optimized implementa-
tion for the Java programming language.

1. INTRODUCTION AND MOTIVATION
In the context of the proposals for adding generics to the Java pro-
gramming language as a response to Sun’s call [1], Generic Java
(GJ) [6] is going to be the basis for the first actual release of Java
providing this extension [8]. Its basic idea is to fully rely on the so-
callederasure technique, that is translating a parametric class into
the Java class one would have written without having parametric
polymorphism and exploiting the homogeneous generic idiom [5].
All the information on the type parameters of a given parametric
class or method is completely lost in the translated code, as para-

metric classes and methods are translated into their monomorphic
version, e.g.List<String> is translated toList, and each type
variable is translated to its bound (Object by default). This tech-
nique allows GJ to enjoy full upward compatibility properties and
also avoids almost any translation overhead [6].

However, GJ has also a well recognized limitation. Due to type
erasure, those operations involving run-time inspection of the type
of an object, basically type-casts and instance tests (Java operator
instanceof), cannot be supported for parametric types. Being
unable to do this may be a serious constraint. On the one hand,
even though one adds parametric polymorphism to the language,
the need for using heterogeneous collections of elements remains,
therefore, the problem of accessing objects previously up-casted
still exists. Type-casts and instance tests are the only way to safely
recover the proper type of such objects. On the other hand, these
type-dependent operations are the basis for supporting successful
Java mechanisms related to persistence such as Java Serialization,
Java Remote Method Invocation and JavaBeans. Adding paramet-
ric polymorphism to the language but then disabling its integration
with these important mechanisms clearly leads to a somewhat in-
complete extension. As discussed in [8], however, there is some
lack of experience with constructs supporting generic types at run-
time, and it is unclear whether the current proposals supporting this
mechanism addresses performance and compatibility in the proper
way. So, the choice was to rely on GJ anyway, at least until fu-
ture studies may lead to solutions effectively supporting parametric
types at run-time.

Currently, the proposal that seems the most reasonable starting point
for this research is LM translator [11]. It extends the behaviour of
GJ translator so as to make the code produced carrying the nec-
essary information about the instantiation of the type parameters,
into Java objects calledtype descriptorsandmethod descriptors.
These descriptors are created avoiding unnecessary space overhead
and run-time overhead, and are exploited to implement those oper-
ations requiring run-time information on the parametric type of an
object.

An implementation based on LM translator is likely to be a good
compromise between the performance overhead introduced and the
expressiveness power gained by the language. However, the de-
scription and the understanding of the effects of LM translator on
the code are not as simple as for GJ. In fact, LM translator puts
together a lot of heterogeneous ingredients. First of all, the type
and method descriptors supporting generics at run-time are entirely
created at load-time, and Java Reflection is used to integrate this
management with legacy classes. Then, special data structures ex-

ploiting hashtables are automatically built by the translator in order
to reduce the performance overhead of accessing descriptors. Fi-
nally, dynamic dispatching of method calls is supported through
the simulation of the management of Virtual Method Tables, ex-
ploiting structures of method descriptors called Virtual Parametric
Methods Tables [10].

In this situation, a formalization would be a necessary tool for har-
nessing this complexity. It may allow to focus on the relevant issues
abstracting away from unimportant ones, and to describe in a com-
prehensive way the important ideas so as to avoid risks of incom-
plete specifications. Among all these aspects, the formalization is
usually the key tool for leading to robust implementations.

In principle, we may follow the approach of [3], where the seman-
tics of GJ is given in terms of a translation from a source core
language, which is a subset of the language accepted by GJ, to a
target core language, which is a subset of Java. In particular, these
core languages are called, respectively, Featherweight Generic Java
(FGJ) and Featherweight Java (FJ), and they include only those few
language features directly involved in the translation of generics.
This approach has a number of flavors: (i) it keeps the specification
as compact as possible, (ii) it completely defines the features of in-
terest discarding secondary ones, (iii) it allows to capture the core
concepts of the translation, and (iv) it allows for proving important
correctness results, such as type-preservation. However, all these
properties hold together because the ideas behind the correspond-
ing system are few and relatively simple.

For LM translator this would not be possible. The basic problem
in fact is to isolate as target language a subset of Java having all
the features needed to describe the effects of LM translator on the
code. Such a language would not be as small as one would like
it to be. Suppose we want to proceed by using as target language
an extension of FJ. We should add to FJ (i) reflection, in order to
deal with legacy Java classes and to support the management of
descriptors, (ii) side-effects and class loading, to model the funda-
mental idea that descriptors are not created each time by need, but
once and for all at the application boot-strap, (iii) static fields of
client classes, containing the descriptors they use, and (iv) static
methods of parametric classes, storing important facilities for cre-
ating their descriptors. Then, it must be also considered that an
important role is played by some library class of Java, such as ar-
rays, vectors and hashtables. With such a complex target language
it would be basically impossible to prove properties in a paper of
reasonable space.

Clearly, one may think of dropping some of the features of LM
trying to focus on just few issues, so as to rely on a smaller tar-
get language. For instance, we may discard the idea of load-time
creation of descriptors, and dropping class-loading and side-effects
from the target language. However, doing this will made our de-
scription of LM lacking one of the main reasons that motivated its
introduction. In general, dropping relevant features simplifies the
proof of properties but leads to incomplete specifications.

So, in this paper our goal is to define a compact formalization al-
lowing for a complete description of the features of LM translation.
This is done by means of a translation from the source language
FGJ (with some minimal extension), which is a subset of the lan-
guage accepted by LM, to a large language, which is Java itself.
This choice will turn out to be the best one to our end, as the com-
plexity of LM translator is mostly harnessed in a couple of pages

of rules.

Then, we describe our development of an actual implementation of
LM translator, highlighting that the formalization here introduced
plays a crucial role in supporting it. Basically, it allows to directly
write a core prototype of the system containing all the relevant
features of LM translator. This prototype can be gradually turned
into the final implementation by just adding the programming con-
structs left out by FGJ, without the need of dealing with further
issues strictly related to parametric polymorphism. Our goal is not
to produce a fully-featured implementation for Java, but to have a
tool allowing fast prototyping and tuning of LM.

The remainder of the paper is as follows. Section 2 overviews LM
translator, and Section 3 depicts FGJ focusing on the notation and
on the functions introduced in [3] which will be helpful to our for-
malization. Section 4 provides the actual compilation of FGJ into
Java, and Section 5 a comprehensive example, which helps under-
standing the key concepts of the formalization. Section 6 discusses
how we meant to fill the gap between this formalization and the
actual implementation of the translator.

2. LM TRANSLATOR
In the code produced by LM translator [11], each class that needs
to perform some operation on parametric types, such as type-casts,
instance tests, and object allocations, will handle type descriptors
for these types, which are objects of the library class$TD. In par-
ticular, these type descriptors are stored into static fields created
by the translator, and are initialized at load-time. When allocating
an object from a parametric type (new expression), the correspond-
ing descriptor is passed as first argument in the constructor, and
will then be used to make that object keeping information on its
type. Then, these descriptors are exploited to implement type-casts
and instance tests, using the methodscast andisInstance of the
class of descriptors$TD. See the signature of class$TD in Figure 1.

Similar management is supported for parametric methods, with anal-
ogous method descriptors of class$MDwhich are passed at invocation-
time. However, here the problem is complicated due to the need of
dealing with dynamic dispatching. In [10] we proposed a solu-
tion exploiting a data structure called Virtual Parametric Method
Table (VPMT). Each descriptor carries its own VPMT, which anal-
ogously to a Virtual Methods Table (VMT) [4], allows the proper
method descriptor to be bound to the body at invocation-time. The
VPMT is an array with one entry for each virtual method (i.e., a
public or protected method of Java); each entry contains a vector of
method descriptors. The position of a given instantiation of a para-
metric method is invariant through VPMTs of different subclasses,
so by just using this position the actual receiver of the invocation
can access the right descriptor [10].

Another key aspect of LM translator is that descriptors are kept by
descriptors managers living at run-time, respectively in the class
$TDM (Type Descriptors Manager) and$MDM (Method Descriptors
Manager). Their basic goal is to prevent descriptors from being
created twice. This is obtained by registering descriptors in their
manager each time they are created. Finally, LM translator also re-
lies on a special technique for treating those parametric types that
exploit type variables of the scope within their parameters [11].
As the actual instantiation of these types is unknown until the type
variables get actually instantiated, we let each type descriptor and
method descriptor carrying those type/method descriptors using its
parameters, called friend types/methods. Then, when we register a

public class $TD {

public Class c;
public $TD[] params;
public $TD[] friendTs;
public int[] friendMs;
public $TD father;
public Vector[] VPMT;

public $TD(Class c, $TD[] p) { ... }

public boolean checkNew() { ... }

boolean isInstance(Object o){
return (o instanceof $Parametric)

?(($Parametric)o).getTD().isSubType(this)
:c.isInstance(o);

}
Object cast(Object o){

if (isInstance(o)) return o;
throw new ClassCastException(...);

}
}

public class $MD {

public int mID;
public int lPos;
public $TD tR;
public $TD[] params;
public $TD[] friendTs;
public int[] friendMs;

public $MD($TD t, int mID, $TD[] p) { ... }
public boolean checkNew() { ... }

}

public class $TDM{
public static $TD register(Class c) { ... }
public static $TD register(Class c,$TD[] p) { ... }
public static void initVPMT($TD t){ ... }

}

public class $MDM {
public static $MD register($TD tR,int mID,$TD[] p) { ... }
public static void propagate($TD tR,int mID,$TD[] p){ ... }

}

Figure 1: Some detail on the structure of the library classes

descriptor we are able to automatically register its friend descrip-
tors. This is the main task accomplished by the methodscreateTD

andcreateMD, built by the translator in each parametric class. See
some detail on the implementation of the library classes supporting
the translation in Figure 1.

In general, we will assume that the source language for LM trans-
lator is the same as that of GJ, even though at this point of our
research we haven’t faced yet the implementation of issues such as
inner parametric classes, parametric exceptions, and so on, which
are all managed by GJ. However, we are confident they can be im-
plemented in a satisfactory way in our framework.

Some of the core ideas of LM translator have been borrowed from
NextGen, a code-expansion technique for translating generics in
Java proposed in [2]. There, type-passing style is exploited for
implementing parametric methods, as objects calledsnippetenvi-
ronments are passed at invocation-time in an analogous way of our
method descriptors. These environments are created at load-time as
well, leading to very small run-time overhead. However, the code-
expansion technique leads to high memory and code footprint, so
the approaches exploiting this technique will not be used for the
actual implementation of the Java programming language, as moti-
vated in [8].

The general idea of LM translator seems not to be strictly related
to Java, but of a somewhat general appealing. In fact, the proposal
for extending Microsoft’s .NET Common Language Runtime with
generics shown in [9] uses a similar technique. The main difference
is that in this proposal the necessary information on the parametric
types is not built eagerly, at load-time, but only once on a by-need
basis. This style can be used in LM as well. Basically it implies
that type descriptors are not created in the initialization code of the
client classes, but the first time they are accessed. We are currently
working on this variation of LM, which we believe may lead to a
better implementation.

3. FEATHERWEIGHT GENERIC JAVA
The source language for our formalization is Featherweight Generic
Java (FGJ) [3], a core-calculus for GJ focusing on parametric classes,
parametric methods and fields, and in which expressions can be
only type-casts, object allocations, field accessing and method in-
vocations. Language constructs remaining out from FGJ, and from
the formalization we are going to introduce as well, are interfaces,
inner classes and arrays.

To the end of introducing the syntax of FGJ, we let the metavari-
ablesC andD range over class names;S, T, andU range over types;
X andY range over type variables;N andP range over non-variable
types;CL ranges over class declarations,K over constructors,M over
method declarations,f over field names,m over method names,x
over variables, ande over expressions. We denote bya a list of
elementsa1,a2,.., and the empty list byε. Then, we abuse the
notation of function application, as a functionf(a) = b can be
used inf(a) = b to denote the application on all the elements of
the lista, returning the list of resultsb. Substituting the sub-term
a by b into the termc is denoted by[b/a]c, while [a 7→ b]f is
the function mappinga to b and any other elementc to f(c). The
grammar of FGJ is the following:

CL ::= class C<X / N> / N{T f; K M}

K ::= C(T f){super(f); this.f=f;}

M ::= <X / N> T m (T x){ ↑ e;}
e ::= x | e.f | e.m<T>(e)

| new N(e) | (T)e

T ::= X | N

N ::= C<T>

The environments∆ andΓ are used to model the type system of
FGJ.∆ = X / N maps type variables into their bounds, which are
non-variable types.Γ = y : T maps variables into types, that is for-
mal parameters to their declared type. Then, we have the following
judgements (see [3] for their actual semantics):

• The subtyping judgement∆ ` T <: U, stating that the type
T is a subtype ofU under the environment∆.

• Expression typing judgement∆; Γ ` e ∈ T, that under a
∆ environment and aΓ environment, gives the typeT to the
expressione.

• Class typing judgementCL OK, stating whether a class defi-
nition is well-formed and well-typed.

We suppose the existence of a class tableCT, taking class names
and returning class definitions. Among other usual properties, we
suppose that the root typeObject is in the dominion ofCT, and
that all the class definitions areOK.

Our version of FGJ is actually slightly different from the one pre-
sented in [3]. In order to stress the fact that LM translator allows for
implementing type-operations without any limitation we changed
the syntax of type-casts, allowing to cast an object not only to a
non-variable typeN as in [3], but to a parametric typeT in general.
The corresponding change on the type system and on the relative
proofs should be minimal. In particular, now we don’t need any
rule for checking valid down-casts as in [3], as all type-casts are
compilable by LM translation. To the end of defining our transla-
tion we need the following look-up functions defined in [3]:

• mtypemax(m, C) = D 7→ D, returning the erased argument
typesD and return typeD of the methodm in C. In particular,
this is done by finding the method in the highest superclass
in which it is defined.

• fieldsmax(C) = D f, returning couples - erased type, field
name - of the classC, finding field types in the highest super-
class in which they are defined.

Looking for members in the highest class and comparing the result
with standard lookup functions permits to determine whether some
type variable has been instantiated due to an extend clause. In such
a case in fact, the so-calledstupid castsshould be automatically
inserted by the translator [3].

4. THE FORMALIZATION
This section presents the core of the paper, that is the compilation of
FGJ into Java according to the translation schema of LM introduced
in [11, 10]. As already mentioned our version of FGJ provides full
type-cast ability. [11] highlights that translating type-casts is much
the same than translating instance tests. So, the translation of type-
casts is a mean for the translation of type-dependent operations in
general.

This compilation abstracts away from the actual translation of non-
parametric classes and methods. For instance, in an actual imple-
mentation the classes that do not have type parameters will not keep
a local type descriptor, and methods without type parameters will
not need to receive the method descriptor as first argument, and so
on. In general the final translator should be able to translate pure
Java sources to themselves. Then, here we also abstract from the
details on the implementation of library classes$TD, $MD, $TDM and
$MDM. An interested reader can refer to [11, 10].

The whole translation resembles the one shown in [3], both on nota-
tion and on semantics. The two basic differences are that LM trans-

lator provides special translation for operations involving paramet-
ric types and/or instantiating type parameters, and that the proper
code to create descriptors and to keep track of them should be added
to each class.

4.1 Auxiliary functions
The basic idea behind LM translator is to handle Java objects called
type descriptors and methods descriptors, containing the neces-
sary information to translate casts, object allocations and method
invocations, included in the corresponding class or method, re-
spectively. While a type descriptor is completely identified by the
corresponding non variable typeN, for method descriptors we use
method signaturesL, whereL ::= T.m<T>.

The information on what type descriptors and method descriptors
have to be created is statically gathered at translation-time, and are
modeled by means of the functionsgetT andgetM. In particular,
getT is used to get the parametric types used in casts, allocations
and as receivers of method calls. This can be done either (i) from an
expressione in the environments∆ andΓ (getT∆,Γ(e)), (ii) from
the body of a methodM defined in classC (getT(C, M)) or (iii) from
all the expressions contained in classC (getT(C)). Analogously,
getMgets the signature of the parametric methods invoked (i) from
an expressione in the environments∆ andΓ (getM∆,Γ(e)), (ii)
from the body of a methodM defined in classC (getM(C, M)) and
(iii) from all the expressions contained in a classC (getM(C)). Their
semantics is shown in Figure 2. The operator• is meant to join two
lists or an element and a list, discarding duplicates and preserving
order. For instance we havea,b,c•a,d,c,f = a,b,c,d,f. Basi-
cally, the functiongetT gathers the types used in casts, allocations
and as receivers of method calls, while the functiongetM gathers
the signatures of the methods invoked.

We divide parametric types and method signatures into those hav-
ing fully-instantiated type parameters, calledbound typesandbound
methods, and those that instead contain some type variable, called
free typesandfree methods, respectively. In the former case their
descriptors are completely known, so they can be registered at the
load-time of the classes which use them. In the latter case, in-
stead, they are registered only when the descriptor of the enclos-
ing class/method is registered, as only at this time the instantia-
tion of the type parameters is known. We introduce the predicates
boundT∆(N), freeT∆(N), boundM∆(L) and freeM∆(L) to check
if under the environment∆, specifying the type variables of the
scope, the typeN and the signatureL are, respectively, bound or
free. The notation for these predicates will be abused, so that when
applying them to a list the result is the sublist of the elements satis-
fying the predicate. We have:

freeT∆(N) ⇔ ∃X ∈ dom(∆),∃O : [O/X]N 6= N

freeM∆(L) ⇔ ∃X ∈ dom(∆),∃O : [O/X]L 6= L

boundT∆(N) ⇔ not freeT∆(L)
boundM∆(L) ⇔ not freeM∆(L)

We provide facilities for accessing the type descriptor of a given
type and the method descriptor of a given method signature. We
introduce two environments for types and signatures, denoted by
symbolsΘ andΠ, respectively.Θ = T 7→ eJ associates types to
Java expressions representing the corresponding descriptor,ΠΘ =
L 7→ eJ binds method signatures to Java expressions representing
the corresponding descriptors, the latter possibly exploiting theΘ
environment to resolve some type descriptor. We access the de-

getT∆,Γ(x) = ε

getT∆,Γ(e.f) = getT∆,Γ(e)

∆; Γ ` e ∈ C<T>

getT∆,Γ(e.m<T>(e)) = C<T> • getT∆,Γ(e)

getT∆,Γ(new C<T>(e)) = C<T> • getT∆,Γ(e)

getT∆,Γ((T)e) = T • getT∆,Γ(e)

CT[C]=class C<X / N> / N{T f; K M}

M=<Y / P> T m(S x){ ↑ e;}
∆ = X / N, Y / P Γ = x:S

getT(C, M) = getT∆,Γ(e)

CT[C]=class C<X / N> / N{T f; K M}

getT(C) = getT(C, M)

getM∆,Γ(x) = ε

getM∆,Γ(e.f) = getM∆,Γ(e)

∆; Γ ` e ∈ C<T>

getM∆,Γ(e.m<S>(e)) = C<T>.m<S> • getM∆,Γ(e)

getM∆,Γ(new C<T>(e)) = getM∆,Γ(e)

getM∆,Γ((T)e) = getM∆,Γ(e)

CT[C]=class C<X / N> / N{T f; K M}

M=<Y / P> T m(S x){ ↑ e;}
∆ = X / N, Y / P Γ = x:S

getM(C, M) = getM∆,Γ(e)

CT[C]=class C<X / N> / N{T f; K M}

getM(C) = getM(C, M)

Figure 2: Gathering functions for type and method descriptors

scriptor for a typeT by the notation|T|Θ and that of a method sig-
natureL by |L|Π,Θ. Then, we introduce a standardΘ environment
denoted byΘs, implementing the registration of bound types, de-
fined as:

Θs = C<T> 7→ C.createTD(new $TD[]{|T|Θs})

that is, exploiting the static methodcreateTD of the class, which
accepts the array of type descriptors for the parameters. When aΘ
environment has to deal with free types as well, we should add the
specification on how to resolve type variables, and this can be done
exploiting the environment[X 7→ eJ]Θ, according to our notation
for function substitution. Then, we also introduce a standardΠ
environmentΠs as follows:

CT[C]=class C<X / N> / N{T f; K M}

Mi=<Y / P> T m(S x){ ↑ e;} pos(C, Mi) = j

ΠsΘ = C<T>.m<U> 7→
C.createMD(|C<T>|Θ, j, new $TD[]{|U|Θ})

The static methodcreateMD is created by the translator, and ac-
cepts the type descriptor of the receiver, the position ofm in C,
and an array containing the descriptors for the parameters. The
semantics of functionpos(C, M) is described in Figure 3. It re-
turns the position ofM in the VPMT of C. Basically, a method
adds a new element to the VPMT only if it does not override a
method in the super-class, otherwise its position isinherited from
that method. The content of the methodscreateTD andcreateMD
will be shown in the next sections.

4.2 Erasing types
The erasure of types is mostly the same as that of FGJ. We have the
function returning the bound of a type as:

bound∆(X) := ∆(X) bound∆(N) := N

and then the erasure function from FGJ types to Java classes:

|T|∆ := C if bound∆(T) = C<T>, T 6= Object<>

|Object<>|∆ := LMObj

In this formalizationObject is translated into a special library class
LMObj, as shown in top of Figure 3.

4.3 Translating Classes
For the rules defining translation of classes refer to Figure 3. FGJ
classes are erased to Java classes: (i) by providing the proper trans-
lation of fields (erasing their types), methods (|M|C) and constructor
(|K|), (ii) by adding the static methodscreateTD andcreateMD
handling the creation of free types and methods (obtained by|C|CTD
and|C|CMD, respectively), and (iii) by adding static fields meant to
contain bound descriptors, according to the functionsbuildSTD()
andbuildSMD(). The translation of the root classObject is simi-
lar, but we don’t have methods,createMD and static fields.

4.4 Static Type and Method Descriptors
Bound type descriptors and method descriptors are completely known
at compile-time, so they can be created once and for all at the class
load-time, i.e., in the initialization code of newly-created static
fields, exploiting standard environmentsΘs andΠs. In particular,
when registering a parametric type the actual descriptor is yielded,
while registering a method returns the position of the method de-
scriptor in the VPMT (for details on this, see [10]). Then, be-
cause of the special management of VPMTs, instead of creating
the descriptors for the free method signatureL, we create its version
topM∆(L) in the highest super-class defining it. In fact, registering
a method descriptors will cause a down-propagation of registrations
on all the sub-types, so starting from the top version guarantees all
the VPMTs to be properly completed.1

4.5 Translating the Constructor
The translation of a constructorK provides for the extra-argument,
containing the type descriptor of the current instance. The field

1These are details of the library classes supporting the translation,
which are mostly unimportant here.

Translation for classes:

|class Object<> extends Object<>{}| =
class LMObj extends Object {

$TD td; $TD getTD(){return td;}

LMObj($TD td){this.td=td;}

|C|CTD
}

∆ = X / N buildSTD(C) = fST eST
buildSMD(C) = fSM eSM C 6= Object

|class C<X / N> / N{T f; K M}| =
class C extends |N|∆ {

static TD fST =eST ;

static int fSM=eSM;

|T|∆ f; |C|CTD |C|CMD |K| |M|C
}

Static descriptors initilization:

CT[C]=class C<X / N> / N{...}
∆ = X / N NB=boundT∆(getT(C))

buildSTD(C) = fST |NB |Θs

CT[C]=class C<X / N> / N {...}

∆ = X / N LB=topM∆(boundM∆(getM(C)))

buildSMD(C) = fSM |LB |Πs,Θs

Translating the constructor:

CT[C]=class C<X / N> / N{T f;K M}

∆ = X / N

|C(T′ f′,T f){...}| =
$TD td; $TD getTD(){return td;}

C($TD td,|T′|∆ f′, |T|∆ f){

super(td.father,f′);

this.td=td;this.f=f;

}

Implementing createTD:

CT[C]=class C<X / N> / N{T f; K M}

NF =freeT∆(getT(C)) Θp = [Xi 7→ p[i]]Θs

LF =topM∆(freeM∆(getM(C))) ∆=X / N

|C|CTD =

static $TD createTD($TD[] p){

$TD t=$TDM.register(C.class,p);

if (t.checkNew()){

t.father=|N|Θp;
t.friendTs=new $TD[]{|NF |Θp};
t.friendMs=new int[]{|LF |Πs,Θp};
t.initVPMT(); }

return t;

}

Auxiliary functions:

meths(Object) = ε

CT[C]=class C<X / N> / D<U>{T f; K M}

Mi=<Yi / Pi> Ti mi(Si xi){ ↑ ei;}
meths(C) = meths(D) • m

meths(C) = m M = <Y / P> T mi(T x){ ↑ e;}
pos(C, M) = i

CT[C] = class C<X / N> / N{T f; K M}

Mi=<Y / P> T m(U x){return e;} ∆ = Y / P

pMeth(C, Mi) = topM∆(freeM∆(getM(C, m))) ;
freeT∆(getT(C, m)) ; [Yj 7→ p[j]][Xk 7→ td.p[k]]Θs

CT[C] = class C<X / N> / N {T f; K M} f : i 7→ ε; ε;�
mEnv(C) = [pos(C, Mi) 7→ pMeth(C, Mi)]f

Implementation of createMD:

CT[C]=class C<X / N> / N {T f; K M}

mEnv(C, Mi) = i 7→ Li; Ni; Θi

|C|CMD =

static int createMD($TD t,int pos,$TD[] p){

$MD m=$MDM.register(t,pos,p);

if (m.checkNew()){

t.VPMT[pos].addElement(m);

m.lPos=t.VPMT[pos].size()-1;

if (pos==i){
t.friendTs=new $TD[]{|Ni|Θi};

t.friendMs=new int[]{|Li|Πs,Θi};

}

$MDM.propagate(m); }

return m.lPos;

}

Environments for a method:

CT[C]=class C<X / N> / N{T f; K M} ∆ = X / N
pMeth(C, Mj) = LM ; NM ; ΘM pos(C, Mj) = l

buildSTD(C) = fST |NB |Θs; freeT∆(getT(C)) = NF
em = (($MD)(td.VPMT[l].elementAt(md)))

ΘC,Mj = [C<X> 7→ td]NF i 7→ td.friendTs[i],
NMk 7→ em.friendTs[k], NB 7→ fST

CT[C]=class C<X / N> / N{T f; K M} ∆ = X / N
pMeth(C, Mj) = LM ; NM ; ΘM pos(C, Mj) = l

Mj=<Y / P> T m(U x){return e;}

buildSMD(C) = fSM |LB |Πs,Θs;
topM∆(freeM∆(getM(C))) = LF

em = (($MD)(td.VPMT[l].elementAt(md)))

ΠC,Mj = [C<X>.m<Y> 7→ md]LF i 7→ td.friendMs[i],
LMk 7→ em.friendMs[k], LB 7→ fSM

Translation for methods:

CT[C]=class C<X / N> / N {T f;K M}

∆ = X / N Γ = x:T, this:C<X>
mtypemax(m, C) = D 7→ D

ei =

{
x′i if Di = |Ti|∆
(|Ti|∆)x′i otherwise

|M=T m(T x){return e0;}|C = D m(int md,D x′){

return [e/x]|e0|∆,Γ,ΘC,M,ΠC,M

}

Figure 3: Main translation functions

|x|∆,Γ,Θ,Π = x

∆; Γ ` e.f ∈ T ∆; Γ ` e0 ∈ T0

fieldsmax(|T0|∆)(f) = |T|∆
|e.f|∆,Γ,Θ,Π = |e0|∆,Γ,Θ,Π.f

∆; Γ ` e.f ∈ T ∆; Γ ` e0 ∈ T0

fieldsmax(|T0|∆)(f) 6= |T|∆
|e.f|∆,Γ,Θ,Π = (|T|∆)|e0|∆,Γ,Θ,Π.f

|(T)e|∆,Γ,Θ,Π = (|T|∆)|T|Θ.cast(|e|∆,Γ,Θ,Π)

|new C<T>(e)|∆,Γ,Θ,Π = new C(|C<T>|Θ, |e|∆,Γ,Θ,Π)

∆; Γ ` e0.m<R>(e) ∈ T ∆; Γ ` e0 ∈ T0

mtypemax(m, |T0|∆) = C 7→ D D = |T|∆
|e0.m<R>(e)|∆,Γ,Θ,Π =

|e0|∆,Γ,Θ,Π.m(|topM∆(T0.m<R>)|Θ,Π,|e|∆,Γ,Θ,Π)

∆; Γ ` e0.m<R>(e) ∈ T ∆; Γ ` e0 ∈ T0

mtypemax(m, |T0|∆) = C 7→ D D 6= |T|∆
|e0.m<R>(e)|∆,Γ,Θ,Π =

(|T|∆)|e0|∆,Γ,Θ,Π.m(|topM∆(T0.m<R>)|Θ,Π,|e|∆,Γ,Θ,Π)

Figure 4: Translating expressions

$TD.father is used to pass to the super-class its descriptor. Then,
the descriptor is stored into an instance fieldtd, inserted by the
translation in each class, and yielded by a methodgetTD 2.

4.6 Creating type and method descriptors
The methodcreateTD accepts the descriptors of the type parame-
ters, and registers the descriptor of the type into$TDM. Then, if this
is the first time this was registered (controlled withcheckNew), in
createTD we also fill the content of the fields (i)father, with the
descriptor of the direct super-typeN, (ii) friendTs, with the de-
scriptor for the free types of the class, and (iii)friendMs with the
descriptor for the free methods of the class. This is supported by
the Θp environment mapping the type variables to the arguments
of the methodcreateTD.

For method descriptors, first of all we build an auxiliary function
pMeth(C, M) taking a classC and a methodM, and returning a triplet
of elementsL; N; Θ containing respectively: (i) the free method sig-
natures inM exploiting some of its type variablesY, (ii) the free
types inM exploiting some of its type variablesY, and (iii) aΘ en-
vironment bindingC’s type variablesX andM’s type variablesY to
the corresponding descriptors. In particular variablesY are associ-
ated to the argumentsp of createMD, while variablesX are associ-
ated to the fieldp of the descriptort, representing the receiver for
the invocation. Then, the functionmEnv(C) maps positions in the
VPMT to such triplets, leaving blanks (ε; ε;�) the triplets for those
methods which are not redefined inC, but are just inherited from
the super-class. In fact, the functionf , which maps each position
to ε, is filled only with the triplets for the methods actually defined
in C.

The methodcreateMD accepts the receiver descriptort, the unique
identifierpos of the method, and the descriptors of the parameters
p. It registers the method descriptors, and in the case this was the
first time, it proceeds by filling the rest of the objectm. In particular,
it addsm in the VPMT oft, it registers its position inm.lPos and
then, depending oni, it stores the fieldsfriendTs andfriendMs,
by exploiting the result of the auxiliary functionpMeth(C, Mi). The
presence ofi in theif statement is meant to model a sequence of
if statements on all the values assumed byi.

4.7 Translating methods
First of all, we build theΘC,M andΠC,M environments that will be
used to translate the body of a methodM in C. They associate (i)
2Such a method supports the inspection of the descriptor of an ob-
ject.

bound descriptors to the static fields of the class, (ii) descriptors
using only type variables of the class to friend types/methods of
the instance fieldtd, and (iii) descriptors using type variables of
the method to friend types/methods of the method descriptorem of
the current VPMT. Then, the type ofthis is associated to the the
local type descriptortd, and the signature of the current descriptor
is associated to the formal argumentmd.

The translation for a method follows the pattern of FGJ. The only
difference here, is that we have to add an extra argument that will
contain the position of the method descriptor in the VPMT. The
environmentsΘC,M andΠC,M created in this way will then be used
to properly translate the expressions contained in the methodM of
classC.

4.8 Translating expressions
The rules defining translation of expressions are shown in Figure
4. The translation for a variablex and for a field accessinge.f is
the same as in FGJ. A cast(T)e is translated so as to invoke the
methodcast on the descriptor forT, passing the translation ofe.
The allocation expressionnew N(e) is translated by passing as first
argument the descriptor forN. Analogously, in method invocation
we pass as first argument the position of the method descriptor in
its VPMT.

5. AN EXAMPLE
In order to allow a better understanding of our formalization, here
we provide a comprehensive example of translation. Our source
code is shown in Figure 5. It contains a FGJ classPair with
two type parameters, two corresponding fields, and five methods
doing several things. The corresponding translation according to
our formalization is provided in Figure 6; The classPair has the
bound typePair<Object,Object> and no bound methods, so the
translated class will just have the static fieldfST 0. The trans-
lation of the constructor directly follows from the definition. The
classPair<R,S> has the free typePair<S,R> (used by the method
reverse) and the free method signaturePair<R,S>.reverse<>()
(used in the methodchgSecond), from which follows the method
createTD in the translated code.

Then, each method has its own free types and free method signa-
tures. In particular,Pair<R,S>.chgFirst<T> has the friend type
Pair<T,S>, whilePair<R,S>.chgSecond<T> has the friend type
Pair<T,R> (receiver of the latter invocation ofreverse), and the
friend methodsPair<S,R>.chgFirst<T> andPair<T,R>.reverse().
Correspondingly, in the translated class we have the methodcreateMD

class Pair<R extends Object,S extends Object> extends Object{
R r;
S s;
Pair(R r,S s){ super();this.r=r;this.s=s;}
<> Pair<S,R> reverse(){ return new Pair<S,R>(this.s,this.r);}
<> Pair<Object,Object> getOO(){return new Pair<Object,Object>(new Object(),new Object());}
<T> Pair<T,S> chgFirst(T t){ return new Pair<T,S>(t,this.s);}
<T> Pair<R,T> chgSecond(T t){ return this.reverse<>().chgFirst<T>(t).reverse<>();}
<> R castToFirst(Object o){ return (R)o;}

}

Figure 5: Example of source code

class Pair extends LMObj{

static TD fST_0=Pair.createTD(new $TD[]{LMObj.createTD[]{},LMObj.createTD[]{}});

Object r; Object s;

$TD td; $TD getTD(){ return td;}
Pair($TD td,Object r,Object s){ super(td.father);this.r=r;this.s=s;}

static $TD createTD($TD[] p){
$TD t=$TDM.register(Pair.class,p);
if (t.checkNew()){

t.father=LMObj.createTD(new $TD[]{});
t.friendTs=new $TD[]{ Pair.createTD(new $TD[]{p[1],p[0]}) };
t.friendMs=new int[]{ Pair.createMD(new $TD[]{p[0],p[1]},0,new $TD[]{})};
t.initVPMT();

}
return t;

}

static int createMD($TD t,int pos,$TD[] p){
$MD m=$MDM.register(t,pos,p);
if (m.checkNew()){

t.VPMT[pos].addElement(m);
m.lPos=t.VPMT[pos].size()-1;
if (pos==0) { t.friendTs=new $TD[]{};

t.friendMs=new int[]{}; }
if (pos==1) { t.friendTs=new $TD[]{};

t.friendMs=new int[]{}; }
if (pos==2) { t.friendTs=new $TD[]{ Pair.createTD(new $TD[]{p[0],td.friendTs[1]})};

t.friendMs=new int[]{}; }
if (pos==3) { t.friendTs=new $TD[]{ Pair.createTD(new $TD[]{p[0],td.param[0]})};

t.friendMs=new int[]{ Pair.createMD(td.friendTs[0],2,new $TD[]{p[0]}),
Pair.createMD(t.friendTs[0],0,new $TD[]{}) }; }

if (pos==4) { t.friendTs=new $TD[]{};
t.friendMs=new int[]{}; }

$MDM.propagate(m);
}
return m;

}

Pair reverse(int md){ return new Pair(td.friendTs[0],this.s,this.r);}

Pair getOO(int md){return new Pair(fST_0,new Object(),new Object());}

Pair chgFirst(int md,Object t){
return new Pair((($MD)(td.VPMT[2].elementAt(md))).friendTs[0],t,this.s);}

Pair chgSecond(int md,Object t){
return this.reverse(td.friendMs[0])

.chgFirst((($MD)(td.VPMT[2].elementAt(md))).friendMs[0],t)

.reverse((($MD)(td.VPMT[2].elementAt(md))).friendMs[1]);}

Object castToFirst(Object o){ return td.p[0].cast(o);}
}

Figure 6: Translation of the source code

as shown in Figure 6.

Finally, the translation of methods simply proceeds as follows. In
the signature, argument types and return type are erased, and one
argument of typeint is added. Then, the translation of the re-
turning expression extends the one done for FGJ, but we pass the
type descriptor in thenew expressions, the position of method de-
scriptor in method calls, and we exploit the method$TD.cast for
implementing casts. Bound type descriptors and method descrip-
tors are accessed through the static fields of the class, free types and
methods of the class through the friends of the local type descriptor
td, and free types and methods of the methods through friends of
the current method descriptor. The latter is obtained accessing the
VPMT of td and exploiting the formal parametermd, by the ex-
pression(($MD)(td.VPMT[l].elementAt(md))) wherel is the
(static) position of the method in the VPMT, say 0 forreverse, 1
for getOO, 2 for chgFirst, and so on.

6. FROM FORMALIZATION TO
IMPLEMENTATION

We think it is interesting to discuss how we are going to develop
an implementation of LM out from the formalization here intro-
duced. First of all, we rely on a free tool that builds parsers and/or
tree generators from source specification files containing BNF-like
grammars, which is Sun’s JavaCC product [7]. The main features
of this tool is that it produces Java code, and permits to insert pieces
of Java code in the source specification, allowing to have a fine-
grained control on the parsing process and on the shape of the gen-
erated tree. Then, the JavaCC distribution also includes the source
for creating a parser for Java 1.2.

Our goal here is not to produce an actual implementation suitable
for a large-scale release. Instead, the objective is to obtain a pro-
totype of LM translator, which can be used as a tool supporting
the measurements of the performance of the translated code. In
fact, since relevant performance issues concerns memory footprint
and load-time overhead, we need to translate medium-large bench-
marks, so we can’t just rely on small applications translated by-
hand.

Also, we would like to obtain an implementation allowing for the
fast prototyping of new versions of the translation. In fact, we be-
lieve that the process of measuring performance will give feedbacks
motivating an appropriate tuning of the translation. Basically, we
intend to address this issue by clearly encapsulating the part of the
translator dealing with the key concepts related to parametric poly-
morphism, i.e., the part implementing the formalization provided
in this paper.

As our target is a prototype, we don’t need it to be fully-featured.
The language accepted is broadly similar to the one accepted by
GJ. The two basic differences are (i) that we won’t allow to omit
type parameters specification from method invocation3, and (ii) we
won’t deal with raw types (see [6] for details on these issues). Pro-
ducing a fast translation process is not a primary goal. Then, we
don’t need our translator to intercept all the kinds of error due to
an incorrect program. We accept that errors can be caught by either
the translator or by the successive actual compilation of the result-
ing Java file. As a result, we won’t issue any constraint on how the
errors intercepted by the translator are notified to the user.

3Type parameter inference is not possible, in general, in the imple-
mentations supporting parametric types at run-time

The need for carefully studying a methodology for building the
translator comes in from the fact that the complete syntax of Java
is huge, so the translator will be a very complex system. Two ar-
guments suffice in emphasizing this: the tree generator for Java, as
created by JavaCC, is about 9000 lines of Java code, and the num-
ber of different nodes of the tree, which is basically the number of
cases we have to consider during the translation, is bigger than 50.

It worth noting that the methodology we will discuss here is not
strongly tested, and it should basically considered a proposal for
addressing the specification here discussed. When the implementa-
tion will be finished we expect to have gathered feedbacks and ex-
perience for improving the methodology and describing its details.
The important thing here, is our claim that the way we formalized
the translation in this paper is the most suitable approach for sup-
porting the actual implementation of the prototype. Basically, it
plays a crucial role in encapsulating the core of the translation, al-
lowing changes to be limited to this part, and allowing to build the
actual translator on top of it in an incremental way.

1. The first step of the process is to obtain a trivial translator
for the source language, translating a source code written
in Java with parametric polymorphism in itself. Thanks to
the JavaCC tool and the JavaCC specification file of Java 1.2
provided with the distribution, this can be simply done as
follows:

• Creating a suitable tree generator from the JavaCC spec-
ification file of Java 1.2, bydecoratingit with the ap-
propriate insertion of Java code.

• Adding the syntax needed to support parametric poly-
morphism.

• Defining a simple visitor for the tree, re-producing the
source code given as input.

The basic goal of this step is to immediately produce the
JavaCC specification file of the full source language, which
helps in understanding the complexity of the domain and in
enumerating all the language constructs we will have to deal
with. Later, this will help in deciding what is the better or-
der for incrementally building the translator on the top of its
core.

2. The second step is to produce the formalization of the trans-
lation. In particular it is important that doing this we focus
on all the important issues of the translation, and abstract
away from details that are conceptually unnecessary. The
one given in the paper fulfills both the requirements, but left
out, mostly for space reasons, important aspects such as para-
metric interfaces and inner classes.

3. The third step is to implement a one-to-one translator tak-
ing a source file containing a closed set of FGJ classes and
producing a valid Java file. This turns out to be a mere pro-
gramming exercise, as the source language is very simple and
its translation behaviour has been precisely described in the
formalization. What we obtain from this step, is the core of
the translator.

At the current time, our development process reached this
point, that is, we already have a translator for FGJ to Java,
which for instance, can be used to translate our example of
Section 5. So, the next steps actually describe what we meant
to do for obtaining the full prototype.

4. The following step, is to adapt this translation so as to pro-
duce a somewhat fully-featured translator for FGJ into Java,
comprehending the management of multiple source files, and
dealing with packages and package-qualified class names.
The only difference between the result of this step and the
final prototype is on the “size” of the source language.

5. The translator produced so far has to be carried from accept-
ing FGJ files to full Java files providing parametric polymor-
phism, by adding one language constructs at a time. Doing
this we exploit the specification file obtained in Step 1, basi-
cally adding one BNF rule each time. The most appropriate
way of doing this is, orderly:

• adding the management of class members left-out by
FGJ, such as inner classes and constructors, as well as
the management of interfaces and static members;

• adding primitive types and arrays;

• adding the remaining constructs about expressions;

• adding the remaining constructs about statements;

• adding the management of other issues, such as field
shadowing and method overriding.

Where possible, each addition should be tested and debugged
alone.

6. Finally, remaining orthogonal issues can be addressed, such
as dealing with the inspection of external classes that are used
by the code we are translating, but whose source code is not
available. These can be either legacy Java classes or LM-
generated classes.

7. CONCLUSIONS
The contribution of this paper is twofold. On the one hand, it pro-
vides for a compact yet comprehensive formalization of LM trans-
lator, a proposal for extending Java with parametric polymorphism
by means of a translation. As the LM translator is a complex sys-
tem, whose informal description tends to be long and typically re-
quires to provide many low level details, the formalization here
introduced is an unavoidable tool for its complete and precise un-
derstanding. On the other hand, we described how such a formal-
ization can help in quickly building a core prototype which later can
be incrementally extended so as to lead to the final implementation.

Our current and future work is devoted on applying our method-
ology for implementing LM translator, and to go further with its
formalization. In fact, the one given in this paper cannot be applied
for directly proving properties such as type preservation. By reduc-
ing the scope of the target language we should be able to follow
the same approach taken in [3]. In particular, it should be possible
to define a translation covering a sufficiently large subset of LM
behaviour by means of a compilation of FGJ into an extension of
FJ with side-effects (field assignment) and a minimal support of
reflection.

8. REFERENCES
[1] G. Bracha.Adding Generic Types to the JavaTM

Programming Language. Java Specification Request,
JSR-000014, http://java.sun.com, 1998.

[2] C. Cartwright and G. Steele. Compatible genericity with
run-time types for the Java programming language. In
Conference on Object-Oriented Programming, Systems,

Languages and Applications, pages 201–215. ACM, October
1998.

[3] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java, a
minimal core calculus for Java and GJ. InConference on
Object-Oriented Programming, Systems, Languages and
Applications, pages 132–146. ACM, October 1999.

[4] M.Ellis and B.Stroustroup.The Annotated C++.
Addison-Wesley, 1990.

[5] M. Odersky and P. Wadler. Pizza into Java: Translating
theory into practice. InSymposium on Principles of
Programming Languages, pages 146–159. ACM, 1997.

[6] M. Odersky, P. Wadler, G. Bracha, and D. Stoutamire.
Making the future safe for the past: Adding Genericity to the
Java programming language. InConference on
Object-Oriented Programming, Systems, Languages and
Applications, pages 183–200. ACM, October 1998.

[7] Sun Microsystem. JavaCC 2.0. Distributed by Metamata,
http://www.webgain.com/products/metamata/javadoc.html.

[8] Sun Microsystems.JSR-14 Public Draft. http://java.sun.com,
2001.

[9] D. Syme and A. Kennedy. Design and implementation of
generics for the .NET Common Language Runtime. In
proceedings of Programmin Languages Design and
Implementation (PLDI2001). ACM, June 2001.

[10] M. Viroli. Parametric polymorphism in Java: an efficient
implementation for parametric methods. InSymposium on
Applied Computing (SAC), pages 610–619. ACM, March
2001.

[11] M. Viroli and A. Natali. Parametric Polymorphism in Java:
an approach to translation based on reflective features. In
Conference on Object-Oriented Programming, Systems,
Languages and Applications, pages 146–165. ACM, Oct
2000.

