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Abstract. Jensen et al. present a simple and elegant program model,

within a speci�cation and veri�cation framework for checking control

�ow based security properties by model checking techniques. We gener-

alise this model and framework to allow for compositional speci�cation

and veri�cation of security properties of multi-application programs. The

framework contains a program model for multi-application programs,

and a temporal logic to specify security properties about such programs.

1 Introduction

Formal veri�cation of security properties becomes more and more important.
An important and interesting class of security properties are control �ow based
security properties. Jensen et al. [7] present a simple and elegant program model
which is used to check these kind of properties (using �nite-state model check-
ing). This program model is language independent, but it can easily be instanti-
ated for Java or JavaCard. With the program model, also a language to specify
security properties is presented. A drawback of this approach is that to check
�real world� programs, the state space can become very large.

Veri�cation of security properties is in particular important for the new gen-
eration multi-application smart cards. Typical for such multi-application smart
cards is that applets can be loaded post-issuance, i.e. after initialisation of the
card. Therefore, one would like to do the veri�cations in a compositional way,
stating which properties should be satis�ed by the components of the system, to
ensure the global correctness of the system. When issuing a new applet on the
card, one has to check that this new applet satis�es these required properties,
in order to know that other applets can safely cooperate with it.

In this paper, we present a framework for compositional veri�cation of multi-
application programs, which is a generalisation of the model presented by Jensen
et al. The framework, which consists of a program model and a speci�cation lan-
guage, is language-independent, but can easily be instantiated for JavaCard (as
in [7]). The framework enables speci�cation and reasoning in a compositional
style, and is thus more suited to verify security properties for multi-application
smart cards. The program model is designed to be as abstract as possible, while



it still accurately describes the method call behaviour. Further we propose a set
of temporal logic patterns which can be used to specify properties over these
programs. The temporal logic patterns can be translated into di�erent logics,
including the modal �-calculus [8]. For this logic, a proof system is under de-
velopment which will allow one to decompose system properties into properties
over the individual applets. This veri�cation method �ts in well with the nature
of smart cards, where applets can be loaded post-issuance, and it makes ver-
i�cation more manageable by reducing the state space. This paper focuses on
appropriate speci�cations of multi-application programs, and on how to specify
properties over such programs in such a way that compositional veri�cation can
be achieved.

The model and the logic enable us to reason about smart cards at a behav-
ioural level, i.e. at the level of method calls. We feel that this is the right level
to talk about applet interaction: for the global correctness of the system it is
important to know that the components have a certain interface behaviour, and
it does not matter how this behaviour is achieved. Only when showing that an
applet satis�es the required properties, one has to look at its implementation.

Example: electronic purse To illustrate our approach we discuss an example
from [1], which presents a typical veri�cation problem for smart cards. An elec-
tronic purse is presented, which contains three applets: a Purse applet P, and two
loyalty applets: AirFrance AF, and RentACar RaC. The owner of an electronic
purse smart card can decide to join a loyalty program of some company, and
load the appropriate applet on his card. The loyalty applets need to be informed
about the purchases done with the card, in order to compute the loyalty points.

For e�ciency reasons, the electronic purse keeps a log table of bounded size
of all credit and debit transactions, and the loyalty applets can request the
information stored in this table. For example, if the user wishes to know how
many loyalty points he/she has, the loyalty applet will update its local balance
�rst, before returning an answer. Updating the local balance of a loyalty applet
consists of two phases: asking the entries of the log table of the purse, and asking

the balances of loyalty partners (to compute an extended balance).

In order to ensure that loyalties do not miss any of the logged transactions
(if the log table is full, entries will be replaced by new transactions), they can
subscribe to the so-called logFull service. This service signals all subscribed
applets that the log will be emptied soon, and that they should thus update
their local balance. In the example, the AirFrance applet is subscribed to this
service, but the RentACar applet is not. However, RentACar might be able to
implicitly deduce that the log is full, from the fact that AirFrance asks RentACar
for its balance information, every time AirFrance gets the logFull message. A
malicious implementation of the RentACar loyalty applet might therefore request
the information stored in the log table, before returning the value of its local
balance to AirFrance. This is unwanted, because it might be the case that applets
pay for the logFull service, and the owner of the purse applet would not want
other applets to get this information for free.

2



Thus, one would like to specify and verify that only applets that are sub-
scribed to the logFull service update their balance, until the log is emptied; in
particular one would like to specify that the bad scenario, depicted as a message
sequence chart in Fig. 1 (where the solid lines indicate method invocations and
the dashed lines indicate method returns) can not happen.

The property depicted in Fig 1 can be formulated
RentACar

logFull

getTrs

getTrs

getTrs

getTrs

logFull

getBalance

getBalance

Purse AirFrance

Fig. 1. Electronic
purse: bad scenario

as: an invocation of AF.logFull in the AirFrance ap-

plet should not trigger an invocation of P.getTrs in

the Purse applet by the RentACar applet RaC. Below,

in Section 2, we will specify this property formally,
and we will also show that to establish that this prop-
erty holds for the system, it is su�cient to show that
AF.logFull only calls P.getTrs and RaC.getBalance,
while these methods do not call other methods (hence
RaC never calls P.getTrs when AF.logFull is called).

The remainder of this paper is organised as fol-
lows. Section 2 introduces the temporal logic patterns
and show how these are used to specify properties. It
also discusses the decomposition theorem. Section 3

discusses the compositional program model, which ex-
tends the model of Jensen et al. Finally, Section 4 con-
cludes and discusses future work. Throughout the paper, the case study described
above will serve as a motivating example.

2 Specifying properties for multi-application programs

Typical properties that are of interest for multi-application programs can often
be expressed as temporal logic formulae, stating e.g. that a particular event only
occurs after some other event has happened. We take the following approach to
speci�cation. First we specify the global property (as a temporal logic formula)
that should be satis�ed by the program. Then we specify which properties should
hold for the individual applets (or components) of the program, and we prove
formally that if the components satisfy these properties, the global program
satis�es the global speci�cation.

The speci�cations of the global system and the applets are described using
temporal speci�cations patterns, following the approach taken for the Bandera
speci�cation language [3]. These patterns have proven useful to specify prop-
erties, and can easily be translated into formulae in a particular logic. Typical
example patterns that we use are ALWAYS �,WITHIN m �, wherem is a method,
and A CALLS M, where A is an applet, and M a set of methods. The temporal
logic framework is rich enough to express security properties like the absence of
bad scenarios as illustrated above, and it allows a wide range of other important
behavioural correctness properties of multi-application programs to be speci�ed.

Using these temporal logic patterns we can specify correctness properties
for the electronic purse. As mentioned above we want that an invocation of
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AF.logFull in the purse does not trigger a call from RaC to P.getTrs. Formally,
we can specify this as SPECEP(P; AF; RaC), where:

SPECEP(X;Y; Z)
def
=

ALWAYS .

WITHIN Y:logFull :

NOT(Z CALLS fX:getTrsg)

where X , Y , Z are variables ranging over applets. This speci�cation states that
for any (reachable) state in which the method Y:logFull has been invoked, but
not been �nished, there should be no call from the Z applet to X:getTrs.

Based on this speci�cation, we give speci�cations per applet in such a way
that it is su�cient to prove for each applet that it satis�es its local speci�ca-
tion, in order to deduce that the global system satis�es the global speci�cation.
Finding the local speci�cation requires insight into the system. We specify the
purse applet as SPECP(P), the AirFrance applet as SPECAF(AF; P; RaC), and the
RentACar applet as SPECRaC(RaC), where SPECP, SPECAF, and SPECRaC are de-
�ned as follows.

SPECP(X)
def
=

ALWAYS .

WITHIN (X:getTrs) :
X CALLS fg

SPECAF(Y;X;Z)
def
=

ALWAYS .

WITHIN (Y:logFull) :
Y CALLS fX:getTrs; Z:getBalanceg

SPECRaC(Z)
def
=

ALWAYS .

WITHIN (Z:getBalance) :
Z CALLS fg

The speci�cation for the purse applet states that the method X:getTrs does
not invoke any other method. The speci�cation for AirFrance speci�es which
methods are invoked by Y:logFull. The speci�cation for RentACar speci�es
that Z:getBalance should not invoke any other method. Notice that these spec-
i�cations do not fully specify the behaviour of the applets, they only describe
the necessary behaviour in order to satisfy the global property.

Given the global speci�cation SPECEP for the electronic purse, and given
the speci�cations for the individual applets P, AF and RaC, we establish the
following theorem, presented as a Gentzen-style sequent, where free variables
are (implicitly) universally quanti�ed (where X : � is an assertion meaning that
applet X satis�es property �).

X : SPECP(X); Y : SPECAF(Y;X; Z); Z : SPECRaC(Z) ` X j Y j Z : SPECEP(X;Y; Z)
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P.debit.Med

AF.logFull.Med1

AF.buyTicket AF.logFull

AF.buyTicket.Ret AF.logFull.Ret

P.getTrs

P.getTrs.Ret

RentACar

RaC.rentCar

User.RaC

RaC.getBalance.Med

RaC.rentCar.Ret RaC.getBalance.Ret

RaC.getBalance

P.debit.Ret

P.debit

Purse

User.P User.AF

AirFrance

Fig. 2. Compositional model for the purse

Using this theorem one can reduce the proof of the global correctness asser-
tion P j AF j RaC : SPECEP(P; AF; RaC) to proving the local correctness assertions

P : SPECP(P; AF), AF : SPECAF(AF; P; RaC) and RaC : SPECRaC(RaC) of the individ-
ual applets. Notice that we thus have two di�erent kind of veri�cation tasks
in our framework, namely model-checking the local properties of the individ-
ual applets, and proving property decompositions correct. The use of general
temporal logic patterns allows us to use di�erent veri�cation techniques. For
example, we can model check the �local� applet properties, by translating the
speci�cations into CTL (e.g. as input for NuSMV [2]) or LTL (e.g. as input for
SPIN [6]), while we can use the modal �-calculus [8] to prove the correctness of
the property decomposition.

3 A program model for multi-application programs

To verify the properties as described above, we need a formal model, representing
multi-application programs, with a formal (operational) semantics. This model
is designed in such a way that it is suited for compositional veri�cation. Based on
the approach taken by Jensen et al. [7], we model a program as a transfer graph,
modelling intra-procedural control �ow, and a call graph, modelling method
calls. A special set of vertices is identi�ed, which are the return vertices, where
a method hands back control to the caller. A function � : V * A exists, which
attributes vertices to applets. This is a partial function, as we allow vertices
that do not belong to applets; these are the external vertices that model the
environment. To illustrate the model, Fig. 2 shows the electronic purse formalised
in this way. A suggestive naming and notation is used, to attribute vertices to
applets (the function �), and to suggest the control �ow in the methods. For
clarity of presentation, in the picture we did not name all the intermediate
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vertices. The dashed arrows are edges in the transfer graph, the solid arrows are
edges in the call graph.

Every applet has a local state, which is a list of pairs of vertices, representing
the control stack in the current program point. For example, given an applet
a with local vertices v2 and v5, its local state (v1; v2) � (v2; v3) � (v4; v5) can be
interpreted as: vertex v1 (which is external to a) invoked a vertex in a, during
whose execution v2 is reached. Next, v2 invoked the vertex v3 in some other
applet. Execution continued in this other applet, but eventually somewhere in
some applet a vertex v4 is reached, which invoked a vertex in a again, and during
the execution of this vertex, the vertex v5 is reached.

The operational semantics of individual applets as well as of sets of applets
is given compositionally, in terms of labelled transition systems induced by a set
of transition rules. The latter are grouped in two parts: transition rules de�ning
the behaviour of individual applets (that is, singleton applet sets), and transition
rules for combining behaviours of applet sets.

The transition labels are denoting method invocations and returns. We dis-
tinguish between perfect and imperfect actions, the former being either intra-
procedural control �ow actions (left unlabelled) or method invocations/returns
internal to a given applet set (labelled with call and ret, respectively), and the lat-
ter being method invocations/returns involving vertices external to the applet set
(labelled with call?/ret? for input and call!/ret! for output action, respectively).
Imperfect actions can form the corresponding perfect actions by synchronisation
in the global trace of the system (thus leaving only the labels call and ret).

Applet transition rules Figure 3 gives the transition rules per applet. In this

�gure the applet name a is �xed, and � denotes the local state of applet a. We
use v1 !

T
v2 to denote edges in the transfer graph, modelling intra-procedural

control �ow, and v1 !
C
v2 to denote edges in the call graph, respectively.

We use an applet-state predicate activea and vertex predicates locala and
returna, which are de�ned as follows.

activea(�)
def
= 9�0; v; v0: (� = �

0 � (v; v0)) ^ locala(v
0)

locala(v)
def
= �(v) 2 dom(�) ^ �(v) = a

returna(v)
def
= v 2 V

R ^ locala(v)

Thus, an applet is active if the second vertex in the last pair of � is local to this
applet.

The �rst three rules describe transitions local to the applet. The rules send
call and receive call describe the state transitions when a call to a di�erent applet
is made (either from an external vertex, or from applet to applet). Similarly, the
rules send return and receive return describe the state transitions if a call over
method borders is completed. The receive return transition is enabled if the return
is sent by the same applet as the one the corresponding call was send to, there
are no requirements on the local state of this applet. This is in accordance with
the restrictions on compositional reasoning.
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[local call]
v1 !

C
v2 locala(v1) locala(v2)

� � (v; v1)
v1 call v2�����! � � (v; v1) � (v1; v2)

[local return]
v1 !

T

a v2 returna(v3)

� � (v; v1) � (v1; v3)
v3 ret v1
�����! � � (v; v2)

[local transfer]
v1 !

T

a v2 v1 6!C

� � (v; v1) �! � � (v; v2)

[send call]
v1 !

C
v2 locala(v1) :locala(v2)

� � (v; v1)
v1 call! v2������! � � (v; v1) � (v1; v2)

[receive call]
v1 !

C
v2 :locala(v1) locala(v2) :activea(�)

�
v1 call? v2
������! � � (v1; v2)

[send return]
returna(v2) :locala(v1)

� � (v1; v2)
v2 ret! v1
�����! �

[receive return]
v1 !

T

a v2 :locala(v3) �(v3) = �(v4)

� � (v; v1) � (v1; v3)
v4 ret? v1������! � � (v; v2)

Fig. 3. Applet transition rules

In all rules except receive call it is implicit whether applet a is active or not.
The two receive rules are the only two rules that can apply when applet a is
not active. Notice how the active applet changes when methods are called and
returned: the applet that sends a call has to be active to be able to make the call,
and as a result becomes inactive, while the applet that receives the call becomes
active. A similar thing applies to the return transitions.

Using these transition rules, one can derive for example the trace fragment
in Fig. 4 for the AirFrance applet.

Composing applets Applets can be composed into larger system components.
Composite states are sets of local states, with the following restrictions:

� at most one applet is active,

� at most one external vertex is mentioned in the trace, and in this case this
vertex occurs as the �rst component of the �rst pair of the trace.

The last condition ensures that we can only get single execution threads (which
is for the time being appropriate for JavaCard). Computations are always started
by the environment, they do not begin spontaneously. External vertices can only
invoke methods, and wait for their return. By requiring that external vertices
only occur at the beginning of the trace, we enforce that the environment only
invokes a method in an applet, if there is no active applet. If necessary this
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AirFrance:

�
P.debit.Med call? AF.logFull
����������������!

(P.debit.Med; AF.logFull) �������!

(P.debit.Med; AF.logFull.Med1)
AF.logFull.Med1 call! P.getTrs
�����������������!

(P.debit.Med; AF.logFull.Med1) �

(AF.logFull.Med1; P.getTrs)

P.getTrs.Ret ret? AF.logFull.Med1
�������������������!

(P.debit.Med; AF.logFull.Med2)
AF.logFull.Med2 call! RaC.getBalance
���������������������!

: : :

Fig. 4. Local trace AirFrance applet

[synchro]
A1

v1 `? v2
�����! A

0

1 A2

v1 `! v2
����! A

0

2

` 2 call; ret
A1 j A2

v1 ` v2
����! A

0

1 j A
0

2

[propagation]
A1

`
�! A

0

1

perfect(`) or :involvedA2
(`)

A1 j A2

`
�! A

0

1 j A2

Fig. 5. Transition rules for composite states

restriction can be relaxed to allow multi-threading. For the global state, i.e. the
set of all applets, we strengthen the last restriction and require that the �rst
component in the �rst pair of the trace is an external vertex. In this way, we
ensure that it is always an external vertex that triggers the global execution.

The way the labelled transitions of composite states are induced by the la-
belled transitions of its subsets is de�ned through the rules given in Fig. 5. In
these rules A1 and A2 denote disjoint sets of applet states. Symmetric counter-
parts exist for both rules. The transition rule synchro applies when both sets of
applets can do a transition, labelled with an imperfect action, and when these
imperfect actions can synchronise into one perfect action (a perfect action is
labelled with call or ret only, it does not contain tags ? or !). This results in a
single transition in the composite system, labelled with the corresponding per-
fect action. The propagation transition rule applies when one set of applets can
do a transition, labelled with `, such that ` is a perfect action, or ` does not
involve vertices from applets in the other set. The notion of being involved is
de�ned as follows (where A is a set of applets).

involvedA(�)
def
= 9v1; v2 2 V:9` 2 fcall; retg: (� = v1 `? v2 _ � = v1 `! v2) ^

(�(v1) 2 A _ �(v2) 2 A)

Using these transition rules, one can �nd e.g. the global trace fragment for the
electronic purse, depicted in Fig. 6.
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P:� j AF:� j RaC:�
User.P call? P.debit
�����������!

P:(User.P; P.debit) j AF:� j RaC:� �������!

P:(User.P; P.debit.Med) j AF:� j RaC:�
P.debit.Med call AF.logFull
���������������!

P:(User.P; P.debit.Med) � (P.debit.Med; AF.logFull) j

AF:(P.debit.Med; AF.logFull) j

RaC:�

�������!

: : :
P.debit.Ret ret! User.P
�������������!

P:� j AF:� j RaC:�

Fig. 6. Fragment of the global trace

4 Conclusions & future work

We have outlined a compositional program model, which will help us to verify
security properties over multi-application smart cards. Further we have shown
how typical properties of multi-application programs can be speci�ed, and de-
composed into speci�cations over the applets. The program model and logic are
language-independent, but can easily be instantiated for JavaCard applications,
as is illustrated by the purse example.

Future work The work presented here is only a �rst step towards a speci�cation
and veri�cation framework for (security) properties of multi-application smart
cards. Future work will concentrate on the following topics.

� Based on [4, 5] a proof system will be developed (and proven sound and
complete) which will allow one to prove the correctness of the decomposition.

� At the moment the program model only deals with the control �ow structure
of the program. To be able to express integrity properties as the balance of

the purse is not changed by any action in the loyalty applet one also needs
to be able to talk about data. To this end, the program model has to be
extended with data. Every applet will contain several variables (or �elds),
and for each program step it has to be described how these variables might
be a�ected.

� After decomposing the global property, it remains to be shown that the
individual applets satisfy the required properties. When dealing with control
�ow based security properties only, we can fall back on the model checking
techniques developed by Jensen et al. [7], but after extending the model with
data, more sophisticated techniques will be required. Abstraction techniques
will be used to simplify the applets and the properties in such a way that
they can be checked by model checking.
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