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1 Introduction

This extended abstract describes progress in an ongoing project on re�nement
calculus for sequential Java. Predicate transformer semantics is being used to
validate correctness-preserving transformations for use in program development,
veri�cation, design refactoring, and compilation. We focus here on the seman-
tics and its application in showing soundness of forward simulation for class
re�nement, the foundation of behavioral subclassing.

This section is an overview of project objectives and recent progress. Section 2
addresses the language and its semantics. Section 3 discusses class re�nement,
Section 4 presents our ideas for future work.

Our work is being done in the context of a collaboration involving others
at UFPE (P. Borba and A. Sampaio) and Birmingham (U. Reddy), and our
research assistants.1 Our long-term goal is development of tools and methods for
speci�cation, construction, modular veri�cation, restructuring, and compilation
of Java programs. Current work uses an idealized language rool based on the
sequential part of Java.

Re�nement calculus is the unifying framework for the work. In re�nement
calculi, the speci�cation statement x : [pre; post ] is treated as an \imaginary
command". For commands c and c

0, the algorithmic re�nement c v c
0 means

that c0 satis�es any speci�cation that c does. Ordinary correctness is expressed
using speci�cation statements: we have that x : [�;  ] v c holds just if c meets
the speci�cation \modi�es x , requires �, ensures  ". Re�nement laws formalize
development by stepwise re�nement from speci�cations [Mor94].

One of our objectives is to extend this method to encompass object-oriented
programs, and in particular design patterns and refactoring transformations
[Fow99], including those that involve several classes at once. In a case study
applying our results, we restructure an object-oriented application to follow a
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layered architecture [VB99]. Borba and his students are developing a tool to
automate the application of design transformations.

Speci�cation statements, including the special cases known as assertions and
assumptions, provide 
exible annotation of program fragments. This is useful not
only for veri�cation but also for static checking [DLNS98] and program trans-
formation. Sampaio, Cavalcanti, and their students are developing a compiler
based on the normal-form approach [HHS93,Sam97], which exploits speci�ca-
tion statements in transformation of code fragments. In the past year, a normal
form has been devised for a virtual machine based on JVM. Compilation is based
on normal-form laws, and some of these have been proved using our semantics.

A major objective is to derive design and compilation laws from basic laws
proved sound in predicate transformer semantics [BS00]. Weakest precondition
semantics is of direct use in veri�cation tools and it is well suited to proving
re�nement laws. Eventually we plan to prove soundness of this semantics with
respect to an operational semantics, hopefully one already developed by another
research group.

To this end, and in order to check proofs of laws and of results discussed in
the sequel, we are using PVS to encode the typing system and semantics of our
language. The encoding is purely de�nitional. We are using a deep embedding of
program expressions including predicate in speci�cation statements. In accord
with the new semantics described in Section 2, commands act on state sets in
PVS so this part is a shallow embedding.

Many design laws involve data re�nement, for which we use an intrinsic def-
inition [HHS86,dRE98], and behavioral subclassing, which is similar to a data
re�nement of coexisting classes. The primary means for establishing data re�ne-
ment and behavioral subclassing is (forward) simulation. The existing literature
falls short of the simulation results we need. Our new results on soundness and
preservation of simulation are the main topic in the sequel.

2 Syntax and semantics

A program in our language is a sequence cds of Java-like class declarations
followed by a main program c whose free variables may include objects of classes
in cds . Attributes can be private, protected, or public, like in Java, and they can
be mutually recursive. Methods are regarded as public. Mutual recursion between
methods is not allowed, to simplify the semantics of method calls and the proof
of laws. Methods are de�ned as parameterized commands [Bac87,CSW99] using
call by value, result, and value-result (with copy semantics).

In [CN99,CN00a] we de�ned a weakest precondition semantics for rool. In
that work, we regarded a predicate transformer as a function on formulae. We
extended traditional weakest precondition semantics and gave an account of
method calls that is both abstract and operationally intuitive. This semantics is
appropriate for the proof of re�nement laws, a work that is well under way [BS00].

For the proof of the soundness of simulation for data re�nement, however,
we �nd the syntactic approach to predicates to be a problem. In this context, it
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is natural to consider the coupling invariant (or rather, a simulation relation) to
be a formula relating the private attributes of the abstract and concrete classes.
The proof of soundness of simulation requires a comparison of programs that
di�er only by the fact that the concrete class is substituted for the abstract one.
We cannot, however, say that the semantics of the �xed client classes is equal
in both programs. Since their semantics depends on the semantics of methods
de�ned in the simulated classes, the proper relation between them is that of a
simulation as well. To de�ne this simulation, we need what we call a generalized
coupling invariant to relate states of client classes.

We �nd it diÆcult to give a de�nition for this generalized invariant syntacti-
cally, but on the other hand, its de�nition as a relation on states is very intuitive
and straightforward [CN00b]. Also, a data re�nement proof technique should
involve the de�nition of the coupling invariant by the developer, but not the
de�nition of the generalized coupling invariant. So there is not really a justi�-
cation to have it as a formula. For this reason, we have given a new semantics
to our language where predicates are regarded as sets of states, and predicate
transformers as functions on these sets.

The de�nitions in this new semantics are very similar to those of our previous
work. We use type-theoretic techniques to organize the semantic de�nitions. If
a command c can occur in the methods of a class N , we use a typing judgement
�;�;N B c. The typing environment � records the classes in context, including
N , and the signature � includes the variables in scope for c: attributes of N , pa-
rameters, and local variables. The typing rules re
ect Java's restrictions on scope
and subsumption. The semantics is de�ned by induction on typing derivations.

As expected, the challenge was the de�nition of the semantics of method calls.
As before, we have an environment that records the semantics of methods and
that is de�ned by a �xpoint construction. The semantics recorded is that of the
behaviour of the method when called from inside the class where it is available.
We use this semantics directly to de�ne the meaning of calls self :m(e). For a
call of the form x :m(e), it must be adapted.

At the point where the call x :m(e) occurs, the state space includes x as
well as attributes of the calling object, parameters of the calling method, and
locals of the calling method. In a state where the dynamic type of x is N

0, the
environment � gives a meaning �N 0

m for the called method, but that meaning
acts on the state space consisting of attributes of N 0 and parameters of m. So we
have to adjust the postcondition at the point of call so that �N 0

m is applicable.
Roughly, this adjustment extracts the attributes of x to get a state of the right
kind and ensures that state variables other than x are unchanged. The de�nition
for a pre-state � and a postcondition  is as follows.

� 2 [[�;�;N B x :m(e) : com]]�  , fxg [ rvrargs C � 2 pt (adapt �  )

The environment � provides the transformer pt determined as pt = � N
0
m arglist ,

where N 0 is the class of x de�ned by �, and arglist is the list of arguments result-
ing from evaluating the expressions e in �. The predicate transformer pt is for a
local signature that contains only the attributes of N 0 and the parameters. On
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the other hand, the predicate  is on �;�;N , where � is the state space of the
caller. As already said, we need to reconcile these di�erences before applying pt .
This is the role of the function adapt . The method call can only a�ect the value
of x and of the result and value-result arguments rvrargs . We require that the
state resulting from the domain restriction (C) of � to x and rvrargs satis�es the
precondition. The function adapt considers the conjunction of  with the pred-
icate that requires that the value of all variables, except x and those in rvrargs ,
are the same as in �. Moreover, it transforms the resulting predicate into another
one on the attributes of N 0 and on the result and value-result parameters, by
extracting the attributes of N 0 (or one of its subclasses) from � x and the value
of the parameters from the arguments. This new semantics combines elements
from [CN00a] and [Nau00].

3 Class Re�nement

Algorithmic re�nement of programs and commands is de�ned in the usual way
as the pointwise order on predicate transformers. In [CN00a], we de�ne two rela-
tions of class re�nement. Here, we are focusing on the relation cds B cda 4= cdc

that captures the situation in which the abstract class cda is data re�ned by the
concrete class cdc in the context of the sequence of class declarations cds . They
both introduce the same class Ns with the same superclass.

De�nition 1 (Class Re�nement). For a sequence of class declarations cds,

and class declarations cda, and cdc, that introduce a class called Ns, for instance,

we de�ne cds B cda 4= cdc if and only if

{ the sequences of class declarations cds cda and cds cdc are both well-formed;

{ for all commands c that use only methods in cds and cda and whose global

components have types that are Ns-free, if c is a well-typed main program

for cds cda, then

� c is well-typed for cds cdc; and

� (cds cda � c) v (cds cdc � c).

A sequence of class declarations is well-formed if all methods, or rather, the
commands in their bodies, are well-typed and there is no mutual recursion.
The global components are the free variables, and, inductively, components of
attributes of the object-valued free-variables. Intuitively, a type is N -free if any
variable declared to have such a type cannot have attributes of the class N .

If c has global components that are not N -free, then the program re�nement
(cdscda � c) v (cdscdc � c) is not even well-de�ned because the programs act
in di�erent state spaces. For this reason, no global variables of object types are
allowed in the result of [Nau01b], which is the closest result in the literature to
what we need. There, structural subtyping is used, so there is no way to de�ne
a notion like N -free.

Forward simulation (including abstraction functions) is the standard proof
technique for class re�nement. We de�ne class simulation in the context of private
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attributes avs and cvs of cda and cdc, respectively, and of a coupling invariant
ci de�ned as a relation from states of cda to states of cdc. The classes cda and
cdc are assumed to provide exactly the same methods.

Coupling invariants have to satisfy certain healthiness conditions. For in-
stance, only states for the same class can be related. Also, the initial states of
the classes are related. More stringent conditions are motivated by the proof of
soundness of simulation and are discussed later on.

Simulation for predicate transformers is de�ned in the usual way [GM91],
but in terms of a generalized coupling invariant. First, if the class declarations
cda and cdc, or rather, the states of these classes, are related by the coupling
invariant ci , we de�ne a relation ogci T , coupling values of a type T . If the type
T is primitive, then ogci T is the identity: the values of such a type are the
same in both contexts. If T is either Ns or one of its subclasses, then ogci T is
the coupling invariant itself. Finally, if T is a class N that does not inherit from
Ns , then it has the same attributes in both contexts. In this case, we relate an
object o of N in the context of cda to an object o0 in the context of cdc, if the
values of the corresponding attributes of o and o

0 are related themselves.

The de�nition of the generalized coupling invariant for states is shown below.

De�nition 2 (Generalized Coupling Invariant). For a class N and local

variables in scope vs, we de�ne gci N vs to relate states � for N and vs in the

context of cda with states �
0
for the same class and local variables, but in the

context of cdc.

(�; �0) 2 gci N vs , (�(vs)�C �; �(vs) �C �0) 2 ci ^

8 x : �(vs) � (� x ; �
0
x ) 2 ogci T if N is a subclass ofNs

(�; �0) 2 gci N vs , dom � = dom �
0 ^ � myclass = �

0
myclass ^

8 x : dom � n fmyclassg � (� x ; �
0
x ) 2 ogci T otherwise

where T is the type of x in the context of N .

If N is a subclass of Ns we cannot simply de�ne gci N vs to be ci because
of the extra local variables vs . If we disregard them, by considering the states
�(vs)�C � and �(vs)�C �0, then we can require the resulting states to be related
by ci . The set �(vs) contains the local variables, as opposed to vs which is
their declaration. We use the operator �C (domain subtraction) to remove those
variables from the states. The values assigned to the variables of vs have to be
related by ogci . For the case in which N is not a subclass of Ns , we require the
states to give values to the same variables (dom � = dom �

0), to be for the same
class (� myclass = �

0
myclass), and �nally give related values to corresponding

attributes. Besides declared attributes, a state � has a special attribute myclass

that designates its class. The states for a class include all the states for its
subclasses.

To de�ne simulation for the classes cda and cdc we consider the method
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environments � and �0 determined by cds cda and cds cdc.

De�nition 3 (Class Simulation). We de�ne

cds ; avs ; cvs ; ci B cda 4 cdc

if and only if for each method m of cda and cdc, we have that

cds ; cda; cdc; avs ; cvs ; ci ;Ns B (� Ns m) 4 (�0
Ns m)

We require that the meaning recorded in � for each method of cda and cdc is
simulated by the meaning recorded in �0.

The meaning of a method recorded in the environment is a curried function
from argument values to predicate transformers. Simulation for these functions
is de�ned in terms of simulation of predicate transformers. We require that if the
corresponding arguments are related by simulation, the resulting predicate trans-
formers are as well. Simulation of arguments amounts to simulation of values, for
value arguments, and the identity, for variables passed by result or value-result.

Our main theorem is stated below.

Theorem 1 (Soundness of Simulation). If cds ; avs ; cvs ; ci B cda 4 cdc,

then cds B cda 4= cdc.

The proof of this theorem relies mainly on two facts. The �rst is preservation: the
semantics of the commands of the client classes of cda and cdc are related by
simulation. This implies simulation for any main program. The second is an
identity extension lemma: the generalized coupling invariant is the identity when
the global components in context are Ns-free. Therefore, simulation of a main
program implies algorithmic re�nement, as required by De�nition 1.

The identity extension result is simple and rather straightforward. The proof
of preservation, on the other hand, brought to light a few surprises. The syn-
tactic approach to the semantics requires the inclusion of equality on objects
as a primitive function. We need that to de�ne, for instance, the semantics of
assignment. Such an expression, however, does not preserve data-re�nement as
it relies on equality of private attributes. Luckily it is not needed in the present
semantics and it was eliminated from the language.

For variable blocks, result and value-result parameterization, and speci�ca-
tion statements, the coupling invariant has to be surjective. The representation
of an object value has to include values of private attributes, even though they
are hidden. The semantics of a variable block, for instance, considers all initial
values that a local object variable can have, including the di�erent values for
its private attributes. If a variable block declares a variable whose type is that
being re�ned, then to relate the concrete block to the abstract block, we have to
relate every possible concrete value of the variable to a corresponding abstract
value. This requires the coupling relation to be surjective. This requirement is
unnecessary, and incomplete, for simple imperative programs [HHS86,dRE98].

A way around this problem is to consider that variables are initialized. In
that case, the semantics has to consider only those initial values, and the cou-
pling invariant only needs to be surjective for values that can be expressed in
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the language. The visibility restrictions and the simulation properties ensure
that di�erences in values of hidden attributes are not relevant. This approach,
however, does not work for speci�cation statements.

We are going to investigate a solution in which each class has an invariant and
the semantics quanti�es over objects satisfying this invariant only. The coupling
invariant is de�ned as a relation on states that satisfy the invariant and the
surjectivity restriction is weaker. The user has to provide class invariants and
discharge the corresponding proof obligations. Nevertheless, class invariants are
normal practice and have independent justi�cation. Another alternative is to
change the semantics to quantify over object values obtained by applying the
methods of its class to the initial values de�ned by the constructor. In other
words, we use the weakest invariant determined by the program, rather than
requiring an explicitly declared invariant.

Angelic variable (logical constant) blocks only preserve data re�nement if the
coupling invariant is total. If the coupling invariant is not total, in the concrete
counterpart of the block, the angelic choice is restricted. As an example, consider
the block (avar x : T � : [x = v ; true]) using a speci�cation with empty frame. In
the abstract context, the block behaves like skip as the angelic choice can succeed
in establishing the precondition of the speci�cation statement by choosing x to
be v . If v does not have a concrete counterpart, however, the concrete block is
(avar x : T � : [false; true]), which behaves like abort. The approaches above
can also be used to avoid the totality restriction on coupling invariants.

In summary, forward simulation is sound for all the program constructs. To
extend soundness to speci�cation statements, uninitialized variable blocks, result
and value-result parameters, and angelic variables, however, we need surjectivity
and totality with respect to some form of class invariant.

4 Future Work

An immediate topic for further work is the investigation of the alternatives
pointed out in the previous Section to generalize our results to arbitrary cou-
pling invariants. Besides pursuing these approaches, we are going to adapt our
results for the relation cds B cd 46= cd

0. This is the second class re�nement
relation introduced in [CN00a], which captures the situation in which cd and cd

0

introduce classes of di�erent names. This subsumes the relation of behavioural
subclassing.

Besides the speci�c goals of our project, we believe that our work comple-
ments the work of others in various ways. In particular, we are using a semantic
model to justify simulation techniques that are often postulated as means to
achieve behavioral subclassing. As a speci�c example, we plan to work with
Gary Leavens to interpret the core constructs of JML using our semantics. On
this basis, we expect to justify JML rules for behavioral subclassing.

In the �rst phase of our project we decided that the scope of the lan-
guage would include core features of sequential Java, including visibility controls
and recursion, but excluding concurrency, exceptions, and most contentiously,
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pointers. Meanwhile, Reddy and his student Hongseok Yang have worked on
modular reasoning for pointer programs, extending recent work of Reynolds
[Rey01,RO01,IO01,Yan00,ROY01].

This work is based on a non-standard logic, but we have recently shown how a
form of spatial conjunction can be used in the setting of standard logic and pred-
icate transformers [Nau01a]. This work focuses on reasoning about �ne-grained
manipulation of pointers. In particular, it localizes reasoning using partitions of
the heap that can have two-way interlinking, unlike disciplines such as Universe
Types [MPH00] which focus on modular reasoning at the level of classes. In the
next phase of our project we plan to deal with pointers using Universe Types
together with spatial conjunction.

Variations of the speci�cation statement are used in JML [LLP+00] as \model
programs" which are particularly useful in specifying calling patterns of methods,
including callbacks [BW99,RL00]. Up to now, our speci�cation constructs include
only the speci�cation statements and \angelic variables" (logical constants) of
Morgan's re�nement calculus [Mor94]. In the next phase, we plan to add abstract
attributes and dependencies for modular speci�cation [LN00,M�ul01].
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