BISLs at the Research Group Software Development Methodology

Jan Dockx

Katholieke Universiteit Leuven, Department of Computer Science
Celestijnenlaan 200A, 3001 Leuven, Belgium
Jan.Dockx @cs.kuleuven.ac.be; http://www.cs.kuleuven.ac.be/

Presentation

Our research group is active in the domain of BISLs through education and research. We teach a second
programming course [Dockx, Steegmans a, b] since 1997 in several academic programs and for the in-
dustry, using the contract paradigm [Meyer 1991, 1997] and behavioral subtyping [Liskov, Wing 1994]
as the guiding paradigms, with formal specification in an Eiffel-like BISL. To support further research,
we are developing an open source Java meta-model in the jnome project [Dockx, Mertens, Smeets, et al.
a, b] we intend to use for BISL documentation and static verification. In [Dockx, van Dooren, Steegmans]
we showed that internal iterators are the last step in the shift to object-oriented programming from proce-
dural, structured programming, and dearly missed in Java. We offer a form of internal iterators for the
Java Collection API in the jutil.org project [Blakeley, Dockx, et al.], which requires submissions to be
specified formally using a BISL.

One of the topics we are researching currently is the definition of a clear semantics of non-public
members. Below we report some initial findings of this research.

Accessibility & Helper Types

Users with more access, such as protected users, users in the same package, or users in the same compila-
tion unit (private users), have access to more members. From experience we know that it is often desir-
able to extend public specifications of public members for users that have more access, so that they in-
corporate the effect on less accessible properties. Even more pressing is the need for the users with more
access to know the preconditions that apply to more restricted properties. In other words, we would like
to add a protected, package accessible, and private specification to public methods, next to the existing
public specification; and make similar extensions to protected and package accessible methods.

The less accessible postcondi- [ClassDefinfion | > [PUbIcType
tions need to be extensions of the [pubicMethod* NS publicMethod *
. .. B NN
more accessible postconditions, | ProectedMetnod AN
. . packageMethod \\ o
and less accessible preconditions | privateMethod * VNN i
. \\ \ * PublicSubtype
cannot contradict the more acces- VN ProtectedType > S
. o, . . - ry publiciViethodSul
sible preconditions. This sounds Y _h_————77 publicMstiiod publicMethod”
. . SubClassDefinition ===\ N protectedMethod *
very much like behavioral R N RN
. . . publicMethodSub* S~ N
subtyping [Liskov, Wing 1994]. | pusicmetnos- N \T ~~~~~ > [FroteciodSubT
. N ~ > rotectedSu e
It suggests that we should look at | protectedMetnodsub RS * P
. protectedMethod * N blicMethodSub *
the more restricted parts of a | packagemetnodsuo® AN “3| PackageType Z:b/:'ZM:mZd'u
A\ i *
class as subtypes of the less re- | packageMetrod: N\ publichtethod™ protectedMethodSub *
. privateMethodSub * NS protectedMethod protectedMethod *
stricted parts. A Java class would \N. | packageMetnod*
. g \ N
introduce not 1, but 4 types implicitly, 1 per accessibility \ . o lﬁ
level. The accessibility types are related through subtyping, as T\ ["PackageSubType
. . \ \
shown in the figure. ‘* = \t - publichethodSub ™
.. rivateType) .
We are examining where such an approach leads us. We _ publicMethiod
N . publicMethod * protectedMethodSub *
want to report 2 partial results here, concerning helper methods protectedMethod * protectedMethod *
and protected users. A more extensive description of the work so | packageMethod packageMethodSub*
f b f d . [D k] privateMethod * packageMethod *
ar can be found in [Dockx].
N
N
N
\ PrivateSubType
Helper Methods PUblicMethodSub *
In general the contract paradigm [Meyer 1991, 1997] states that methods should | publicMethod-

. . . o . tectedMethodSub *
respect all type invariants when they hand over control of execution. This is clear for | b coeavemod -
public methods. In practice however, we often introduce less accessible helper methods | packageMethodsub*

. . . . packageMethod*
to encapsulate parts of an algorithm, which do not comply with more accessible type | "0

invariants. Should this be allowed or not? Working with accessibility and implementation types strongly
suggests that all methods should respect all possible type invariants. Type invariants can be introduced in
PublicType, ProtectedType, PackageType and PrivateType. If these types are required to
be behavioral subtyping compliant, type invariants in more accessible subtypes can only strengthen type
invariants introduced in less accessible types. As a solution we propose not to consider such helper meth-
ods to be part of the type introduced by the class. We propose to add helper types next to the accessibility
types. Helper methods can be defined there, together with the data structures they work on. A helper type
instance can be used via delegation.

Subclasses

The figure shows how the accessibility types would behave when a subclass is defined outside the
package. The package and private accessibility types are not related through inheritance. Method imple-
mentations in the subclass cannot see package accessible or private type invariants. They won’t depend
on them, but they also cannot be required to uphold them. In other words, the package and private imple-
mentation of the super class needs to take care of them once and for all.

Protected specifications of the superclass are presented to implementers of the subclass in 2 roles.
They can call the public and protected methods defined in the superclass in their own implementations,
depending on the contract specified for these methods in Pub1licType and ProtectedType and they
can also strengthen their specification in PublicSubType and ProtectedSubType. Although the
basis of the contract paradigm is that these 2 roles are separated, here they come together in 1 entity. This
gives rise to interesting conflicts, which have surfaced often in our work in object-oriented frameworks.

When the specification in PublicType is not deterministic, often the superclass offers a default im-
plementation that can be used by a subclass, or overwritten, as desired. The implementer of the subclass
needs to know what the default implementation does to be able to make this choice. This postcondition
can strengthen the original, non-deterministic postcondition of PublicType in ProtectedType.
But, because this protected specification also is inherited into ProtectedSubType, the implementa-
tion in the subclass also needs to uphold it, making the default effect the only one allowed. This result is
not what we hoped for.

Another kind of default implementation is a public method in an abstract superclass, which has an im-
plementation that only partially reaches its contract. The intention is for subclasses to call the super-
method, and do whatever else is needed to complete the contract before or after that call. When we use
the accessibility types approach, this practice is forbidden, and rightfully so.

References

[Blakeley, Dockx, et al.] P. Blakeley, J. Dockx, M. van Dooren, E Steegmans: jutil.org; SourceForge; Labrador,
Leuven; 2001; http://org-jutil.sourceforge.net/, http://www.sourceforge.net/projects/org-jutil/

[Dockx] J. Dockx:Accessibility & Helper Types; K.U.Leuven, Dept. of Computer Science; Leuven; 2002; CW 341;
http://www.cs.kuleuven.ac.be/publicaties/rapporten/

[Dockx, Mertens, Smeets, et al. a] J. Dockx, K. Mertens, N. Smeets, M. van Dooren, E. Steegmans:jnome;
http://www.jnome.org/

[Dockx, Mertens, Smeets, et al. b] J. Dockx, K. Mertens, N. Smeets, .E Steegmans:A Java Meta Model in Detail;
K.U.Leuven, Dept. of Computer Science; Leuven; 2001; CW 323;
http://www.cs.kuleuven.ac.be/publicaties/rapporten/

[Dockx, van Dooren, Steegmans] J. Dockx, M. van Dooren & E. Steegmans: Dijkstra’s Dream; Internal Iterators
as Software Theorems; Katholieke Universiteit Leuven, Dept. of Computer Science; Leuven; 2001; CW340;
http://www.cs.kuleuven.ac.be/publicaties/rapporten/

[Dockx, Steegmans a] E. Steegmans & J. Dockx: Objectgericht programmeren met Java; Acco; Leuven; 2002?;
ISBN 90-334-4535-2; in publication

[Dockx, Steegmans b] J. Dockx & E. Steegmans: A New Pedagogy for Programming; Sixth Workshop on
Pedagogies and Tools for Learning Object Oriented Concepts, ECOOP 2002, June 11, 2002, Malaga, Spain; also
avaible as CW Report: K.U.Leuven, Dept. of Computer Science; Leuven; 2002; CW 339;
http://www.cs.kuleuven.ac.be/publicaties/rapporten/

[Liskov, Wing 1994] B. H. Liskov & J. M. Wing: A Behavioral Notion of Subtyping; ACM Transactions on
Programming Languages and Systems, Vol. 16, Nr. 6; November 1994; p. 1811-1841

[Meyer 1991] B. Meyer: Design by Contract; Advances in Object-Oriented Software Engineering, Ed. D. Mandrioli,
B. Meyer; Prentice Hall; Englewood Cliffs, N.J.; 1991; p. 1-50

[Meyer 1997] B. Meyer: Object Oriented Software Construction; 2™ Edition; Prentice Hall; Upper Saddle River,
NJ; 1997; 1254 pages; ISBN 0-13-629155-4

