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Abstract. With the advent of modern, multithreaded programming languages, it
has become vitally important to describe in a clear and understandable way how
threads interact through memory. The existing Java Memory Model is fundamen-
tally broken; the process of creating an appropriate replacement has demonstrated
exactly how deeply complex these issues can be.

A formal specification [MP01a] of a replacement memory model is being de-
veloped as part of the Java Community Process. As part of that effort, we have
developed a simulator that reflects the current version of this model. This simulator
has proved invaluable in this effort and will be an important tool for those trying
to understand the final model.

1 Introduction

Two of the main advantages of the Java programming language are its built
in multithreading support and its portability. Unfortunately, these features
clash: threading and synchronization do not work the same way on every sys-
tem, hampering portability. To account for this, the designers of Java had to
create a document that would tell Java Virtual Machine (JVM) implementors
and Java programmers what behaviors could be expected in all JVMs. This
document is usually referred to as the Java Memory Model [GJS96, §17].

The concept of a formalized memory model for a programming language
is a relatively recent one. Previous work in memory models has focused al-
most exclusively on hardware architectures. For a good discussion of issues
related to memory models in modern processors, see [AG96]. However, mem-
ory models for architectures have different goals from those of programming
languages. In particular, programming language memory models need to ac-
count for the analysis and transformations that might be applied by a com-
piler.

The current Java Memory Model is fatally flawed [Pug99,Pug00]. A for-
mal specification [MP01a] of a proposed replacement memory model is being
developed as part of the Java Community Process. However, understanding
the full implications of this model is not easy. In this paper, we present a
simulator that can test some of the properties of the model. This simulator
can be fed small concurrent programs in a restricted Java-like language; it
then reports all possible results of those programs according to the memory
model.

The simulator can be used in a number of ways. For example, you could
feed a program P into the simulator to obtain a set of results R. Then, you



can apply by hand a compiler transformation to convert P into P ′, and feed
P ′ into the simulator, giving a set of results R′. The transformation from P
to P ′ is legal if and only if R′ ⊆ R. The insight here is that while a com-
piler can do transformations that eliminate possible behaviors (e.g., perform-
ing forward substitution or moving memory references inside a synchronized
block), transformations must not introduce new behaviors.

We have two different implementations of the simulator; one in Haskell
and one in Java. We have a growing collection of more than 50 litmus tests,
and we check that the results of the simulators are in line with our expecta-
tions and each other.

The simulator provides three important benefits:

– It gives us confidence that the formal model means what we believe, and
that we believe what it means.

– As we fine tune and modify the formal model, we gain confidence that
we are changing just the things we intend to change.

– The formal model is not easy to understand; it is likely that only a sub-
set of the people who need to understand the Java memory model will
understand the formal description of model. Many people, like JVM im-
plementors and authors of books and articles on thread programming, will
find this simulator a useful tool for understanding the memory model.

2 The Replacement Java Memory Model

The formal specification is presented in [MP01a]. Space limitations prevent
a substantial description of the semantics in this paper, and the reader is
referred to the paper that presents the formal semantics. We will just present
a small portion of the semantics here to give a flavor of their behavior.

The model is a global system that atomically executes one operation from
one thread in each step. This creates a total order over the execution of
all operations. Each of these total orders is a possible program order. Some
operations, such as reads, can non-deterministically perform one of several
possible actions. The result of a program run on the model is the combined
results over every possible program order and non-deterministic choice.

Within each thread, operations are usually done in their original order.
The exception is that writes may be done presciently, i.e., executed early.

2.1 Operations

In this semantics, each operation corresponds to one JVM opcode. A getfield,
getstatic or array load corresponds to a Read. A putfield, putstatic or array
store corresponds to a Write. A monitorenter opcode corresponds to a lock,
and a monitorexit corresponds to an unlock.

The semantics uses sets to model memory behavior. Each thread has a
previous and overwritten set associated with it. Each write takes place in



performWrite(Write 〈v, w, g〉)
Assert 〈v, w, g〉 6∈ previousReadst

overwrittent∪ = previoust(v)
previoust+ = 〈v, w, g〉
uncommittedt− = 〈v, w, g〉

Fig. 1. Semantics of a Write

two stages: initWrite and performWrite. The initWrite places the value being
written into a set previoust (where t is the thread that performed the write).
This set contains all of the writes known by the thread to have occurred
previously. When a thread overwrites a variable v, all the writes to v that
were known to have occurred previously get added to a set overwrittent of
writes that can no longer been seen by reads within that thread. The full rule,
including some changes for prescient writes, but excluding treatment of final
fields, can be seen in Figure 1. Due to space constraints, it is impossible to
give complete details of the formal rules for the memory model. For further
details, the reader is referred to the full paper on the memory model [MP01a].

Each monitor m also has a previous and overwritten set associated with
it. When an unlock is performed, the values in the sets overwrittent and
previoust are added to the sets overwrittenm and previousm. When a lock
is performed, the values in the sets overwrittenm and previousm are added
to the sets overwrittent and previoust. This allows for one thread to com-
municate the values of its overwritten and previous sets to another. When
a read occurs, the value read must be in the allWrites set, but not in the
overwrittent set.

3 Formulation of the Simulator

The primary goal in creating a simulator for the memory model was to ensure
that the model fulfilled some of the requirements of a new model without
having unintended consequences. In addition, we wished to find an effective
way of simulating programming language memory models. To this end, we
wrote two simulators, using different approaches. One simulator was written
in Java, and the other in the programming language Haskell [PH99]. The
implementation decisions reported in this paper apply to both simulators.

The transfer from the model to the simulator is fairly straightforward. The
simulator should generate every possible program order. To get the possible
results of a program, we simply feed that program into the simulator.

To simulate all of these orderings, the verifier starts with an initial pro-
gram state. This state consists of initial values for all the sets in the memory
model, plus values for the threads’ program counters, local variables and
monitor states.



For each instruction that can be executed, the simulator creates a copy of
the current state, executes the instruction on it, and removes that instruction
from the list of actions that can be performed on that state. This process
repeats until no states have any instructions left that can be executed.

This raises another question: how are the contents of memory modeled?
In contrast to simulators for hardware-based memory models, we represent
the contents of memory as a higher level abstraction. Instead of a flat memory
space, we represent memory locations as objects and fields. This is a much
more intuitive way of representing the memory state of an object oriented
environment.

3.1 Control Flow

In order for a programming language to be modeled effectively, it is necessary
to provide a mechanism for control flow. Our simulator provides two: a syntax
for decision statements, and a syntax for iteration. The decision statements
are easy; for these, we simply use an if ... else ... endif construction.

Looping adds much more complexity. Instructions must be handled dif-
ferently if they might be executed more than once. In addition, if a program
loops forever, a simulation of it will also loop forever. Since this cannot be
reliably detected, our simulator might not terminate. This is an undesirable
behavior. For these reasons, universal looping is not currently included in the
simulator.

We must therefore limit looping to simple behavior that is known to ter-
minate. Since we are modeling thread interaction issues, we can focus on the
use of looping in interthread communication. This generally takes the form
of one thread “waiting” for another to complete a task. To effect this, we in-
cluded a spin wait statement. A spin wait statement simply causes a thread
to wait until a condition is fulfilled. We model spin waits as never terminat-
ing unless they succeed on their first attempt. Since Java provides no fairness
guarantees, spin waits that never terminate are legal results. We report exe-
cutions with threads in non-terminating spin waits as possible results of an
execution.

3.2 Prescient Writes and Guaranteed Reads

The verifier does not completely simulate the model. The model allows for
automatic placement of prescient writes and replacement of reads with guar-
anteed reads. For the full details of and justification behind this automatic
placement, see the paper on the model [MP01a].

Unfortunately, the legal placement of guaranteed reads and prescient
writes depends on global properties of the simulation itself. For example,
a prescient write is handled by breaking the write into an initial write (or
initWrite) and a placeholder for the original write (or performWrite). For



the initWrite to be placed before program execution, we must know stati-
cally that the corresponding performWrite will always occur if the initWrite
does. This is not always possible.

A guaranteed read is similar. A guaranteed read is a read that is guaran-
teed to return the same value as another read, or a value stored by a particular
write. For a guaranteed read to be placed correctly, it must be true that the
read or write with which it was associated has occurred. This is not always
possible to determine statically.

The simulator does not place any guaranteed reads, and only places some
of the legal prescient writes. To produce the appropriate behavior, these in-
structions can be placed by hand.

4 Implementing the Simulator

In order to provide better understanding of the model, we wrote two simu-
lators. By ensuring that the results of each were in line with the other, we
provided an important check on the correctness of the model.

performWrite globalState

(threadNum, (value, destVarName, destPtr, guid))

| elem guid (retrievePreviousRead threadNum globalState) = []

| otherwise

= [(replaceUncommitted threadNum uncommitted_t’

(replaceOverwrittenT threadNum overwritten_t’

(replacePreviousT threadNum previous_t’ globalState)))]

where uncommitted_t’ = (filter (notSameGUID guid) uncommitted_t)

overwritten_t’ = overwritten_t ‘union‘ previous_t

previous_t’

= previous_t ‘plus‘

(destPtr, destVarName, value, False, False, guid)

Fig. 2. Semantics of a Write in Haskell

4.1 Haskell and Java

The Haskell simulator was written first. This was because of the ease of ex-
pressing the actions in Haskell. A slightly simplified example of this can be
seen in Figure 2 (the lines of code where previous t, uncommitted t and over-
written t are defined are omitted for brevity). The correspondence between
the original rule and the Haskell rule is fairly straightforward.

In contrast, Figure 3 shows a simplified version of the write action in
Java. The Java simulator is optimized for speed, not comprehensibility, and



void execute(State state, NormalVariable v) {

Known k = newState.known.get(thread);

if (k.previousReads.contains(w))

throw new IllegalProgram(newState, "prescient write was seen");

State newState = state.advancePC();

Write vwg = constructWrite(newState, v);

Known newKnown = newState.known.get(thread);

newKnown.overwrittenWrites.addAll

( State.intersection( state.allWrites.get(v), k.previousWrites));

newKnown.previousWrites.add(vwg);

newState.uncommittedWrites.get(thread).remove(g);

State.addState(newState);

}

Fig. 3. Semantics of a Write in Java

is therefore slightly more difficult to read. The additional simplicity of the
Haskell simulator can be seen with another metric: the Haskell simulator is
only 1887 lines of code, and the Java one is 3807 lines of code.

As a trade-off for its simplicity, the Haskell simulator is much slower than
the Java one. As a result, the Haskell and Java simulators really do serve
different purposes. The Haskell verifier provides an easily modified base from
which changes to the model can be quickly implemented and tested. The
Java verifier provides a platform for rapid turnaround when testing multiple
or lengthy programs. Many of the implementation decisions reported in this
paper apply to both simulators.

4.2 Non-deterministic Choice and Reducing the Search Space

The simulator approximates the non-deterministic behavior of the model; at
each step of the execution, there are choices to be made. One choice is which
thread should be selected for execution. Within a thread, barring spin wait
failure, the next statement is always executed.

In the presence of data races, one of several possible values for a read is
chosen non-deterministically. We do not model reordering by general state-
ment reordering rules; instead, much of the effect of reordering within a thread
is handled by these non-deterministic reads. Some of the effects of statement
reordering cannot be handled by non-deterministic reads, and are instead
handled by prescient writes (i.e., initWrite instructions), as described in Sec-
tion 3.2.

Even without data races, the number of possible execution orderings grows
very quickly. For t threads of n statements each, the number of possible



execution orders is (tn)!
n!t . Thus, a number of techniques are needed to reduce

the size of the search space.
Within the Haskell simulator, we simply enumerate over all the possible

choices at each step and explore each. The fact that Haskell is a functional
language and none of the data structures are modified makes this particularly
easy.

Implementing non-deterministic choice in Java is not as easy. When a new
state is generated, care must be taken to ensure that neither the current state
nor any other state is modified.

Initially, i = j = k = 0, p = q.
Thread 1

1: p.x = 1;

2: i = q.x;

Thread 2

3: q.x = 1;

4: j = p.x;

Fig. 4. An Example of a Small Program

The Java implementation performs a number of optimizations designed
to allow it to scale to larger simulators. The Java simulator uses a work list of
states to be explored, as well as a set of all states seen so far. Each step in the
simulator consists of removing a state from the work list, and enumerating all
possible next states. Each possible next state is added to the work list unless
it has already been seen (for example, in Figure 4, executing statement 1
followed by statement 3 will result in the same state as executing statement
3 followed by statement 1). Maintaining a list of all previously seen states
does require us to maintain all previously seen states in memory; however, it
does allow for a substantial reduction in the number of states explored.

5 Running the Simulator

We ran 54 programs through the simulator; these ranged in length from 2 to
5 threads, with each thread having anything from 2 to 17 instructions. The
results we obtained did not deviate from our expectations from the model.

The model has been in flux for the time we have been developing the
simulator. The simulator has helped this process by giving us a systematic
way to compare between different versions of the model.

5.1 Performance Results

A precise analysis of the exact number of states these optimizations save the
simulator from analyzing is lengthy and of little use in determining how much
real savings these optimizations afford us. This is because of the wide variety



Optimized Unoptimized

Test Name States CPU Total Time States CPU Total Time

coherence 23 0:02 0:02 67 0:02 0:02

alpha-3 77 0:03 0:03 364 0:04 0:02

final-2 77 0:04 0:04 379 0:05 0:04

non-atomic-volatiles 209 0:11 0:10 2720 1:01 0:51

PC-5 2277 2:25 1:42 dnf dnf dnf

Total 6148 6:19 5:23 dnf dnf dnf

Fig. 5. Comparison of Simulator Results

of variables that impact such an analysis; the number of threads, length of
threads, number of writes, number of reads that correspond to each of those
writes, and the order in which those reads and writes occur in their respective
threads all vary widely from program to program.

In this case, the proof of the pudding is in the eating. How much wall clock
time were we saved by not examining every state? To answer this question,
we ran the Java version of the simulator both with and without the major
optimization. The experiments were performed under Sun JDK 1.4.0 on dual
350 MHz Pentium II processors with 1 GB of RAM.

The total results and a small sampling of individual results are summa-
rized in Figure 5. Times are given in (MM:SS) format. CPU time is different
from total time because the states were examined concurrently. Any test that
ran for more than 24 hours was deemed not to have completed. The programs
are generally named after properties for which they test; to get further in-
formation, the reader is referred to the test programs themselves, which are
available on-line [JMMb].

The results indicate that although the second optimization does not help
much for very small programs, the help that it gives for larger examples
makes the difference between a feasible and infeasible test. To give a sense
of the scale of these programs, the outlier, PC-5, has 4 threads: 2 with 3
instructions and 2 with 6 instructions. final-2 has two threads with 9 and 11
instructions.

6 Related Work

There has been a great deal of work on memory models for computer architec-
tures. The most famous model is probably Sequential Consistency [Lam79].
Our model more closely resembles Location Consistency [GS98]. A discussion
of the differences between various memory models can be found in [AG96].

An alternate proposal for a replacement Java Memory Model was pre-
sented in [AMS00]. It is described in the Commit/Reconcile/Fence frame-
work, which was designed for addressing memory model issues on hardware.



A simulator for the CRF model was described in [YGL01]. This work ap-
plies the Murϕ verification system [Dil96] to the CRF JMM proposal. As with
our work, a suite of litmus tests was used to verify properties of the model.
However, the CRF model is different enough from ours that comparisons
between the challenges in simulating them are somewhat moot.

[MKLP01] and [MP01b] use ACL2 to verify bytecode. Their aim is to
demonstrate the validity of using an operational semantics to specify Java.
In doing so, they demonstrate their ability to detect some data races in small
programs. However, they make no attempt to simulate the memory model;
their verifier assumes sequential consistency, and is therefore not complete.

7 Conclusion

A verifier can provide much needed assurances as to the properties of a mem-
ory model. Many useful simulators, based on model checking techniques, exist
for architecture level memory models. These techniques do not, however, take
advantage of programming level abstractions. The simulator described in this
paper treats programming level constructs as such: objects are treated like
objects, final and volatile fields are treated with their own semantics.

Our simulator has been valuable both in helping to further the under-
standing of the Java memory model and in developing changes to it. As our
suite of sample programs grows, so does our understanding of the necessary
final form of the model.
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