
Stronger Typings for Separate Compilation of
Java-like Languages (Extended Abstract)?

Davide Ancona and Giovanni Lagorio

DISI - Università di Genova
Via Dodecaneso, 35, 16146 Genova (Italy)
email: {davide,lagorio}@disi.unige.it

Abstract. We define a formal system supporting separate compilation
for a small but significant Java-like language.
This system is proved to be stronger than the standard compilation of
both Java and C#, in the sense that it better supports software reuse by
avoiding unnecessary recompilation steps after code modification which
are usually performed by using the standard compilers.
This is achieved by introducing the notion of local type assumption al-
lowing the user to specify weaker requirements on the source fragments
which need to be compiled in isolation.
Another important property satisfied by our system is compositionality,
which corresponds to the intuition that if a set of fragments can be sep-
arately compiled and such fragments are compatible, then it is possible
to compile all the fragments together as a unique program and obtain
the same result.

1 Introduction

Separate compilation of statically typed languages is an important feature of
modern systems, since it promotes software reuse while retaining type safety
and semantic consistency of programs.
As pointed out by Cardelli [7], separate compilation essentially corresponds to
a typing judgment which has the general form Γ ` S:τ , where Γ is a type envi-
ronment containing all necessary information needed for compiling in isolation
the source fragment S, and τ is the inferred type of S. Using the terminology
introduced in [7], we say that fragment S intrachecks in Γ and has type τ .
For instance, in the SDK systems, that is, those specifying the SDK Java1 com-
piler [3, 9, 12], S corresponds to the declaration of a class C, Γs is a standard
type environment containing all the information on the classes needed by C and
having the general form C1:τ1, . . . , Cn:τn, and τ and τi, for i = 1..n, are class
? Partially supported by Dynamic Assembly, Reconfiguration Type-checking - EC

project IST-2001-33477, APPSEM II - Thematic network IST-2001-38957, and
Murst NAPOLI - Network Aware Programming: Oggetti, Linguaggi, Implemen-
tazioni.

1 Throughout this paper we will only mention Java for brevity, but all claims about
Java can be replaced with analogous claims about C#.



types obtained by extracting all type annotations in the code, that is, the direct
superclass, the headers of methods and so forth.
Another crucial notion for separate compilation is interchecking [7]; in general,
the fact that two fragments S1 and S2, named C1 and C2, respectively, intracheck
does not guarantee that the program obtained by merging S1 with S2 is statically
correct. To ensure this we need to either recompile S1 and S2 as a whole2 (but
this solution obviously contradicts separate compilation), or just verify that S1

and S2 intercheck by proving that the type environment Γs = C1:τ1, C2:τ2 is
stronger than both the environments Γ1 and Γ2 used for intrachecking S1 and
S2, respectively.
In order to have an effective interchecking process, the notion of “stronger type
environment” need to be syntactically captured by an entailment relation `
between type environments, which must be at least sound: Γ1 ` Γ2 implies that
Γ1 is stronger than Γ2, that is, for all S and τ , if Γ2 ` S:τ then Γ1 ` S:τ . In
the simplest cases the entailment relation reduces to type environment inclusion,
but is not so simple in the system presented here.
The notion of interchecking can be fruitfully used for enhancing selective recom-
pilation [1], which is the ability of avoiding unnecessary recompilation steps after
code modification, while retaining both type safety and semantic consistency of
programs. As an example, let us consider the following two classes, assuming
that they are defined in separate fragments:

class H extends P { class P extends Object{

int g(P p) {return p.f(new H());} int f(Object o){return 1;}

} }

Classes H and P both intracheck and intercheck. Now let us change the definition
of P; obviously P needs to be recompiled (let us assume that such a recompilation
is successful), but what about H? In Java three different cases may occur:

Case 1. The modification of P invalidates neither the type safety nor the
semantic consistency of H: if we recompile H, then we get no error and the
same bytecode. This happens, for instance, if we add to P a new method
int h().
Case 2. The modification of P does not invalidate the type safety, but does
compromise the semantic consistency of H: if we recompile H we get no error
but we obtain a different bytecode. For instance, if the parameter type of f
becomes P, then the bytecode for H must change correspondingly, since in the
Java bytecode method calls are annotated with the types of the parameters
of the resolved method.
Case 3. The modification of P compromises the type safety of H: if we recom-
pile H we get an error; for instance, this happens if we change into int the
parameter type of f.

In case 1 we would like to avoid an unnecessary recompilation of class H, while
in case 2 we do want to force recompilation of H; however, this is not possi-
2 For simplicity, we only consider interchecking of closed programs, even though this

notion could be easily extended to open programs.



ble with the SDK compiler3, where the user can choose either to recompile all
classes (avoiding type unsafety and semantic inconsistency, but not unneces-
sary recompilation), or to recompile only modified classes (avoiding unnecessary
recompilation, but not type unsafety and semantic inconsistency). For what con-
cerns case 3, the best solution would consist in detecting the problem without
reinspecting the source code for H, but since this task turns out to be quite hard,
in the system presented in this paper cases 2 and 3 cannot be distinguished.
From the example above we can draw the following important conclusions:

– Case 2 shows that some class modification can affect the bytecode of other
unchanged classes, because of the type annotations in the bytecode needed
for run-time resolution of methods and verification of classes [14, 10]. There-
fore, in order to capture case 2, the intrachecking judgment needs to be
extended to take into account the generated code. In this paper we use an
intrachecking judgment of the form Γ ` S : τ ; B with the meaning “in
the type environment Γ the source fragment S intrachecks, has type τ , and
compiles to the binary fragment B”.

– In order to avoid an unnecessary recompilation in case 1, we can just redo
interchecking for class H by using the entailment relation between type en-
vironments. Let ΓH denote the type environment used for intrachecking
class H before P was modified, so that ΓH ` SH : τH ; BH (for the ap-
propriate SH , τH and BH), and let τ ′P denote the new type of P after its
modification. If we can prove H:τH , P:τ ′P ` ΓH , then we can conclude that
H:τH , P:τ ′P ` SH : τH ; BH holds, and, therefore, recompilation of H is
unnecessary.

– In order to minimize the number of unnecessary recompilations, intracheck-
ing typings should be as strong as possible. Adapting the formal definitions
given by Wells [18] to our intrachecking judgments, a typing t is a pair<Γ, τ>
and Terms(t) denotes the set of all pairs <S, B> s.t. Γ ` S : τ ; B is provable
in the system. Then, a typing t1 is stronger than a typing t2 if and only if
Terms(t1) ⊆ Terms(t2) (strictly stronger when the inclusion is proper). Intu-
itively, if t1 is stronger than t2 and S ∈ Terms(t1), then t1 approximates S
better than t2 and, therefore, t1 is preferable to t2 since it enlarges the set
of contexts where S can be used in a type safe and semantically consistent
way without recompiling it.

Ideally, the best situation would be a type system with principal typings, where
for each correct fragment there would exist the strongest typing [18]. However,
in this paper we do not propose to solve the problem of principality for Java-like
languages. Instead, we formally investigate a system where typings are strictly
stronger than those of the SDK systems. The proof that our system has principal
typings can be found in [5].
Indeed, as already argued in a previous paper [4], the intrachecking typings
<Γ, τ> in the SDK systems are too weak. For instance, in order to successfully
compile class H, the SDK compiler retrieves all the type information on class P,
3 Throughout the paper we refer to the compiler of Java 2 SDK, version 1.4.1.



including its direct superclass, its method headers, and so on; therefore, class H
is intrachecked under the assumptions that class P extends Object and its body
exactly contains just one method, named f, with one parameter of type Object,
and return type int. However, these type assumptions for intrachecking H are far
from minimal. We would like to be able to express less restrictive assumptions
like, for instance, “the invocation p.f(new H()) can be resolved to a method f,
with parameter type Object, and return type int”.

While in functional programming, typings are made stronger by extending sys-
tems with more accurate types (for instance, intersection types) [18], here we
take a dual approach by extending the SDK systems with “more accurate” type
environments, that is, type environments able to express weaker requirements on
classes. This is due to the fact that some Java features, like method overloading,
require global analysis and thus conflict with modularity [7], therefore standard
type environments assigning types to single classes are not expressive enough.

We extend standard type environments with local type assumptions [4], e.g.,
C1 ≤ C2, which requires class C1 to be a subtype of C2, but says nothing, for
instance, about the methods of C1; however, for Java other kinds of local type
assumptions are needed.

In this paper we focus on two related issues. First, the system presented here is
an evolution of the system defined in a previous paper [4], where two important
properties are proved: compositionality , which does not hold for our previous
system, and the fact that typings are strictly stronger than those of the SDK
systems. Second, we show how this system can be effectively used for enhancing
Java selective recompilation [8].

Compositionality is an expected property of separate compilation defined by
Cardelli [7] as follows: “The linked program should have the same effect as a
program obtained by merging all the sources together and compiling the result
in a single step”. In our system this amounts to requiring that if Γ1 ` S1 : τ1 ;
B1, Γ2 ` S2 : τ2 ; B2 and S1 and S2 intercheck, then the program <S1 S2>
obtained by putting together the two fragments compiles successfully in the
empty environment and produces the pair of binaries <B1 B2>.

Another interesting property is that our system is effectively “stronger” than
the SDK ones: we prove that if Γs is a standard type environment, and Γs ` S :
τ ; B, then there exists a strictly weaker type environment Γ which yields a
stronger typing <Γ, τ> for S and B, and, more interestingly, can be effectively
constructed by collecting all local assumptions needed to prove Γs ` S : τ ; B.

This last result shows that, during the compilation of a closed program P (that
is, a self-contained set of code fragments) it is possible to infer for each fragment
of P the set of local type assumptions (that is, a type environment) which is
really needed by the compiler for that particular fragment; the compiler can take
advantage of these automatically generated type environments for enhancing
Java selective recompilation. In particular, we show how this idea can be used
for enhancing Javamake, the only Java-specific make technology we are aware of
(at least in form of a publication) [8, 13].



The rest of the paper is structured as follows. Section 2 is a gentle introduction
to the system, whereas Section 3 discusses the most important related work [8]
and shows how our system can be used in practice for enhancing Javamake.
Finally, Section 4 contains pointers to other related work and some conclusions.
All the formal definitions and results can be found in the extended version of
this paper [2].

2 An Informal Presentation

This section is a gentle introduction to the system formally defined in the ex-
tended version of this paper [2]. More precisely, the two basic notions of local type
assumption and entailment relation between type environments are informally
presented and motivated.

Local Type Assumptions Let us consider a little bit more involved version of the
class H mentioned in the Introduction:

class H extends P {

int g(P p) {return p.f(new H());}

int m() {return new H().g(new P());}

U id(U u){return u;}

X em(Y y){return y;}

}

and let us analyze under which assumptions class H can be successfully compiled.
If we take the approach of the SDK compiler, then we would need to impose
rather strong requirements on the classes used by H, by asking for the most
detailed type information about such classes.
In our system this corresponds to compile H in a type environment Γs which
contains standard type assumptions on the classes P, U, X and Y. For instance, if
Γs is defined by:

Γs = P:<Object, int f(Object)>, U:<Object, >, Y:<X, >, X:<Object, >

then we are assuming that class P extends Object and declares only int f(Object),
classes U and X both extend Object and are empty, and class Y extends X and
is empty. An environment like Γs containing standard type assumptions only is
called a standard type environment .
Under the assumptions contained in Γs class H can be successfully compiled to
the following binary fragment Bh:

class H extends P {

int g(P p) {return p.<<P.f(Object)int>>(new H());}

int m() {return new H().<<H.g(P)int>>(new P());}

U id(U u){return u;}

X em(Y y){return y;}

}



Note that in our system a binary fragment is just like a source fragment except
that invocations contain a symbolic reference � C.m(T1 . . . Tn)T� to a method,
giving the name m, the parameter types T1 . . . Tn and the return type T of the
method, as well as the class C in which the method is to be found (see [14]
5.1). Indeed, from our perspective the most critical difference between source
and binary fragments is type annotations in the method invocations, since it
makes the problem of separate compilation (that is, separate typechecking plus
code generation) substantially different from that of separate typechecking, as
already pointed out in the Introduction.
Let us now try to relax the strong assumptions in Γs by seeking an environment
Γl containing other kinds of type assumptions which still guarantee that H com-
piles to the same binary fragment Bh, but impose fairly weaker requirements on
classes P, U, X and Y.
A first basic request is that the compilation environment containing H must
provide a definition for the four classes which H depends on. In our system this
is expressed by a local assumption of the form ∃ C, therefore Γl will contain at
least the assumptions ∃ P,∃ U,∃ X,∃ Y.
Let us now focus on each single class used by H.
Class P: in order to correctly compile class H (into Bh) the following additional
assumptions on class P must be added to Γl:

– P 6≤ H: P cannot be a subtype of H since inheritance cannot be cyclic.
– P,int g(P): P can be correctly extended with method int g(P); indeed,

according to Java rules on method overriding, if P has a method g(P), then g
must have the same return type int as declared in H. Analogous requirements
are needed for the other methods declared in H.

– P.f(H) res→ <Object, int>: invocation of method f, for an object of type P
and with an argument of type H, is successfully resolved to a method with
a parameter of type Object and return type int. This assumption ensures
that the body of g in H is successfully compiled to the same bytecode of
method g in Bh (in other words, the same symbolic reference to the method
is generated). Note that we do not need to know the class where the method
is declared, since the bytecode is annotated with the type of the receiver.

Class U: no additional requirements on U are needed, since the static correctness
of method id in H only requires the existence of U.
Classes X and Y: in order to correctly compile class H, class Y must be a subtype
of class X, otherwise method em in H would not be statically correct. Therefore
we need to add the assumption Y ≤ X.
In conclusion, class H can be successfully compiled and produce Bh in the envi-
ronment Γl defined by:

Γl = ∃ P,∃ U,∃ X,∃ Y, P 6≤ H, Y ≤ X, P,int g(P),
P,int m(), P,U id(U), P,X em(Y), P.f(H) res→ <Object, int>

Furthermore, Γl is weaker than Γs; for instance, class U must extend Object and
be empty in Γs, while in Γl it can extend any class and declare any method. The



notion of stronger type environment is syntactically captured by an entailment
relation on type environments.

Entailment of Type Environments Referring to the previous example, in our
system the fact that Γl is weaker than Γs is formalized by the following property:
for all S, τ, B if Γl ` S : τ ; B is provable, then Γs ` S : τ ; B is provable as well.
However, since the definition above cannot be directly checked in an effective way,
the notion of stronger type environment needs to be captured by an entailment
relation (that is, a computable relation) between type environments.
For instance, in our system Γs ` Γl can be proved. Furthermore, the entailment
relation is proved to be sound, that is, if Γ1 ` Γ2 can be proved and Γ1 is
consistent (in the sense that it does not contain contradictory assumptions4),
then Γ1 is stronger than Γ2. In the particular example, we can go further, by
showing that Γl is actually strictly weaker than Γs.
Let us add in H the new method int one(){return 1;}. After this change, the
new code for class H still intrachecks in Γs, whereas intrachecking of the same
code in Γl fails, otherwise the system would not be compositional. To see this,
let us consider the following new declaration for class P:

class P extends Object{

int f(Object o){return 1;}

P one(){return new P();}

}

The reader can easily verify that each type assumption in Γl about P is satisfied
by the new version of P above, however if we put all classes together we obtain a
statically incorrect program, since method one is redefined in H with a different
return type. Therefore Γs is strictly stronger than Γl; from this last claim and
from the soundness of the entailment we can deduce Γl 6` Γs.
Finally, we end this section with another example of provable entailment, by
showing that Γl contains redundant assumptions which, in fact, can be removed
without affecting the outcome of the compilation of class H.
Let us consider the type environment Γ ′l obtained from Γl by removing the two
assumptions ∃ P and ∃ Y. Then, both the entailments Γl ` Γ ′l and Γ ′l ` Γl can be
proved, hence Γl and Γ ′l are equivalent. The first entailment is trivial to prove,
since Γ ′l is included in Γl; the proof of the second entailment relies on the validity
of the following two entailments:

P,int g(P) ` ∃ P Y ≤ X ` ∃ Y

Intuitively, these two entailments must be provable because assumptions P,int g(P)
and Y ≤ X can be verified only in presence of a definition for P and Y, respec-
tively. On the other hand, ∃ X cannot be entailed from Y ≤ X; to see this, let us
consider, for instance, the program fragment class Y extends X {}: it verifies
Y ≤ X and ∃ Y, but not ∃ X.

4 Consistency can be checked by a polynomial time algorithm [2].



3 Selective Recompilation

While several papers have been written on the subject of selective recompilation
(see Section 4), to our best knowledge only Dmitriev [8] and Lagorio [13] has
focused on Java. Dmitriev’s paper describes a make technology, based on smart
dependency checking, that aims to keep a project (that is, a set of source and
binary fragments) consistent while reducing the number of files to be recompiled.
A project is said to be consistent when all its sources can be recompiled produc-
ing the same binaries as before. The main idea is to catalog all possible changes
to a source code (as, for instance, adding/removing methods) establishing a cri-
terion for finding a subset of dependent classes that have to be recompiled. A
freely downloadable tool, Javamake, is based on such a paper and implements
the selective recompilation for Java upon any Java compiler. This tool stores
some type information for each project in database files which are used to deter-
mine which changes have been made to the sources with respect to the previous
(consistent) version. Unfortunately, as pointed out by the author too, the ap-
proach is not based on a theoretical foundation, and therefore there is no proof of
soundness. So, it might happen that Javamake fails to force the recompilation of
some classes which is actually needed for ensuring the consistency of the project.
Furthermore, Javamake cannot avoid a considerable amount of unnecessary re-
compilations. The main advantages of Javamake are that it is well documented
and in practice its implementation can work upon any Java compiler.
Our system can be exploited for extending Javamake in order to sensibly decrease
the number of unnecessary recompilations: a set of local type assumptions for a
source fragment C can be automatically inferred when compiling C starting from
a standard environment. These local type assumptions describe in a precise way
what C needs in order to be recompiled into the same binary. These assumptions
can be used to decide whether an unchanged class needs to be recompiled. In fact,
if a new global environment still entails the local assumptions for a fragment S,
then there is no need to recompile S. From the complexity point of view, checking
whether a local assumption is entailed by a standard environment requires a
polynomial algorithm that can be implemented efficiently [2]. Without going
into the details, let us show the idea on the the example already discussed in
Section 2:

class P extends Object { class H extends P {

int f(Object o) { return 0 ; } int g(P p) {return p.f(new(H));}

// int f(int i) { return i ; } int m() {return new H().g(new P());}

} U id(U u){return u;}

class U extends Object {} X em(Y y){return y;}

class Y extends X {} }

class X extends Object {}

These classes compile successfully, and they form our example project. The com-
piler would generate the following type assumption for H:

Γl = ∃ P,∃ U,∃ X,∃ Y, P 6≤ H, P,int g(P), P,int m(),
P,U id(U), P,X em(Y), P.f(H) res→ <Object, int>, Y ≤ X



If we add a method f(int) in P (that is, if we remove the comment in the
previous listing), then class H would still call the same method as before, because
the new method is not even applicable to the call with an argument of type P.
These considerations are formally captured by the entailment relation: the new
standard environment (that can be extracted from the new source for P and the
old binaries of the other classes) still entails Γl therefore there is no need to
recompile H. For instance, the reader can verify that P.f(H) res→ <Object, int>
can still be entailed. On the other hand, whereas Javamake5 is able to detect
that classes U, X and Y need not to be recompiled, since they do not use P at all,
it cannot distinguish between changes to a set of overloaded methods that alter
the resolution of a particular call and changes that do not. So, Javamake would
unnecessarily recompile class H, because it contains a call to P.f, producing the
same binary as before.

4 Conclusion and Other Related Work

We have presented a new system for Java-like languages for better supporting
separate compilation; the system relies on the notions of local type environment
and entailment of type environments. In comparison with the standard type en-
vironments adopted by SDK systems, local type environments allow specification
of weaker type assumptions for compiling in isolation a code fragment.
The system has been proved to be compositional and strictly stronger (and,
therefore, more accurate) than SDK systems [2], and to have principal typings
[5]. Furthermore, local type assumptions can be automatically generated the
first time a program is compiled and can be used later to avoid unnecessary
recompilations; based on these last considerations, in Section 3 we have sketched
an algorithm for improving the Java-specific make technology Javamake [8].
Separate compilation is an issue that has been deeply studied for programming
languages, especially in the context of selective recompilation [1] which seeks to
reduce rebuilding time due to source modifications.
Besides the paper on Javamake [8] already discussed in Section 3, there is a num-
ber of papers on selective recompilation for several languages. According to the
classification given in [1], [11] adopts for ML an approach which involves both
cut-off elimination and smart recompilation, while [16] investigates smartest re-
compilation, by employing type inference to derive the type assumptions needed
for compiling an ML code fragment in isolation. Smart and smarter recompila-
tions have been considered as well for C-like languages [17, 15].
Unfortunately, very little has been done on this side for Java-like languages. This
paper, together with [6, 3, 4, 8, 13], is a step towards a better understanding of
separate compilation of Java-like languages.
The solution presented here is similar to attribute recompilation, according to the
classification given in [1]. Here attributes correspond to local type assumptions
which can be automatically inferred when compiling a closed set of fragments;
these assumptions can be used later for selective recompilation.
5 Version 1.3.1, the latest available at the moment of writing this paper.



Acknowledgements We warmly thank Sophia Drossopoulou and Elena Zucca for
their useful suggestions and corrections to previous versions of this paper.

References

1. Rolf Adams, Walter Tichy, and Annette Weinert. The cost of selective recompi-
lation and environment processing. ACM Transactions on Software Engineering
and Methodology, 3(1):3–28, January 1994.

2. D. Ancona and G. Lagorio. Stronger typings for separate compilation of Java-like
languages. Technical report, DISI, March 2003.

3. D. Ancona, G. Lagorio, and E. Zucca. A formal framework for Java separate com-
pilation. In B. Magnusson, editor, ECOOP 2002 - Object-Oriented Programming,
number 2374 in Lecture Notes in Computer Science, pages 609–635. Springer, 2002.

4. D. Ancona, G. Lagorio, and E. Zucca. True separate compilation of Java classes.
In ACM SIGPLAN Conference on Principles and Practice of Declarative Program-
ming (PPDP’02), pages 189–200. ACM Press, 2002.

5. D. Ancona and E. Zucca. Principal typings for Java-like languages. To appear as
DISI technical report.

6. D. Ancona and E. Zucca. True modules for Java-like languages. In J.L. Knud-
sen, editor, ECOOP’01 - European Conference on Object-Oriented Programming,
number 2072 in Lecture Notes in Computer Science, pages 354–380. Springer, 2001.

7. L. Cardelli. Program fragments, linking, and modularization. In ACM Symp. on
Principles of Programming Languages 1997, pages 266–277. ACM Press, 1997.

8. M. Dmitriev. Language-specific make technology for the Java programming lan-
guage. ACM SIGPLAN Notices, 37(11):373–385, 2002.

9. S. Drossopoulou and S. Eisenbach. Describing the semantics of Java and proving
type soundness. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java,
number 1523 in Lecture Notes in Computer Science, pages 41–82. Springer, 1999.

10. S. Drossopoulou, G. Lagorio, and S. Eisenbach. Flexible models for dynamic link-
ing. In European Symposium on Programming 2003, 2003.

11. R. Harper, P. Lee, F. Pfenning, and E. Rollins. A compilation manager for stan-
dard ML of New Jersey. In ACM SIGPLAN Workshop on Standard ML and its
Applications, July 94.

12. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calcu-
lus for Java and GJ. In ACM Symp. on Object-Oriented Programming: Systems,
Languages and Applications 1999, pages 132–146, November 1999.

13. G. Lagorio. Towards a smart compilation manager for Java. In Italian Conf. on
Theoretical Computer Science 2003, Lecture Notes in Computer Science. Springer,
2003. To appear.

14. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java
Series. Addison-Wesley, Second edition, 1999.

15. Robert W. Schwanke and Gail E. Kaiser. Smarter recompilation. ACM Transac-
tions on Programming Languages and Systems, 10(4):627–632, October 1988.

16. Z. Shao and A.W. Appel. Smartest recompilation. In ACM Symp. on Principles
of Programming Languages 1993, pages 439–450. ACM Press, 1993.

17. Walter F. Tichy. Smart recompilation. ACM Transactions on Programming Lan-
guages and Systems, 8(3):273–291, July 1986.

18. J.B. Wells. The essence of principal typings. In Proc. 29th Int’l Coll. Automata,
Languages, and Programming (ICALP’02), number 2380 in Lecture Notes in Com-
puter Science, pages 913–925. Springer, 2002.


