
Verification of Object-Oriented Programs with
Invariants

Mike Barnett, Robert DeLine, Manuel F¨ahndrich, K. Rustan M. Leino, and Wolfram
Schulte

Microsoft Research, Redmond, WA, USA
{mbarnett,rdeline,maf,leino,schulte}@microsoft.com

Manuscript KRML 122a, 2 May 2003.

Abstract. This extended abstract outlines a system for the modular verification
of an object-oriented programming language. While simplified, the language has
object and array references, single-inheritance subclassing, and single-dispatch
methods. Programs are verified against specifications consisting ofpre- and post-
conditions for methods, andobject invariants stating the consistency of data. The
meaning of a program is given by its translation intoverification conditions: log-
ical formulas that are valid if and only if the program is consistent with its speci-
fication. The technique issound and is expressive enough to allow many interest-
ing object-oriented programs to be specified and verified. The key idea is to keep
track of, for each object, which invariants the object satisfies and whether or not
the object can be mutated.

0 Introduction

Writing correct programs is difficult, and useful modern programming-language fea-
tures like information hiding and object orientation provide several challenges in rea-
soning about programs. In this extended abstract, we consider a programming method-
ology based on method specifications and object invariants and define the correctness
criteria for programs specified in that way. The key idea is to keep track of which object
invariants each object satisfies at each program point (which we do by introducing for
each object a special fieldinv) and whether or not the object is in a state where it can
be mutated (which we do by introducing for each object a special fieldexposed).

The main characteristics of this work are:

– Ease of use. Our verification system needs only a relatively small repertoire of pro-
gramming concepts. This makes it simpler than previous verification approaches.
For instance, alias confinement and readonly modifiers are not first-class concepts
in our methodology. Also, our technique does not require as much foresight on be-
half of the program designers as does thevalid/state paradigm in ESC/Modula-3 [5,
10]. Perhaps surprisingly, our technique does not even use features of abstraction to
specify which variables a method is allowed to modify (like abstract variables and
abstraction dependencies [10] or data groups [11]).

– Simple foundation. The meaning of programs is given by a translation from pro-
grams toverification conditions, thus following the approach ESC/Modula-3. Ver-
ification conditions are expressed in first-order predicate calculus. Thus, we do not
need any special logics, like separation logics (e.g., [1]), or coalgebras as used in
the LOOP project [9], to reason about pointer structures and updates. This makes
our approach more amenable to further studies on heap strutures and confinement.

– Modularity. The proposed technique is modular in that one can verify software
units (say, methods, classes, or small sets of classes) separately and independently
from the rest of the program. In constrast to whole-program analysis, this supports
scalability and fast response times.

– Soundness. We claim our technique to bemodularly sound: if the technique detects
no violations in the independently verified software units, then there are no viola-
tions in the program as a whole. Modular soundness was a goal in ESC/Modula-3,
but it was achieved only for the most basic forms of its specification language.
Using a different encoding of similar specifications, M¨uller and Poetzsch-Heffter’s
technique [14, 13] achieves modular soundness.

Other related static-checking systems are Vault [3, 7] and Fugue [4], which incor-
porate some modern alias confinement techniques likecapabilities [17]. Our approach
has a similar methodology, but aims at analyzing the programs at a more detailed level.

1 Methodology

As a first part of our programming methodology, each object can either beexposed or
not. A program can only write the fields on an object when it is exposed. When an
object is not exposed, it exists as an integralcomponent of some other object and is said
to beowned by that other object.

Although a program cannot write the fields of an owned object, the program can
read its fields. The idea is that an owned object is encapsulated; other objects should
not care or depend upon its details and should not be surprised if its details change as
the result of any method call.

In an object-oriented language, an object can have multiple declared types due to
inheritance. We allow the programmer to specify an invariant in each class declaration,
which means that an object’s complete invariant consists of the invariants of all the in-
herited classes. As a second part of our methodology, we allow a method to specify
which subset of an object’s total invariant holds in the method’s pre- and postconditon.
For simplicity, this extended abstract considers an object-oriented language with sin-
gle inheritance, like C� or Java, but without theinterface feature of these languages.
As part of our methodology, we restrict the invariant subset to be aprefix of an ob-
ject’s invariants, from those declared in the root classobject toward those declared in
the allocated type of the object. We represent this invariant prefix using a single type,
namely, the most derived type whose invariant holds.

The two parts of the methodology are related by the following two properties:

0. If, for an object, the invariants declared in a classT are known to hold, then all of
thecomponents of the object declared in classT areowned by the object.

1. If an object is owned, then all its object invariants are known to hold.

We now make these notions more precise. Every object is extended by two instance
fields, exposed and inv . The field exposed holds a boolean that represents whether
the object’s fields can be written. The fieldinv holds a type that records the most
derived class whose declared invariants are known to hold for the object. If no invariants
are known to hold for the object,inv holds the special value⊥ .

The fields exposed and inv are special in that they can be mentioned in method
specifications but not directly read or written in method bodies. To update these special
fields, we introduce two statementspack and unpack , which delineate the scope in
which invariants hold. The statementunpack o from T changeso.inv from T to
the superclass ofT . Statements afterunpack can update fields and sub-components
declared inT and violateT ’s declared invariant. The statementpack o as T checks
that T ’s declared invariant holds and changeso.inv from the superclass ofT back
to T . This description should be sufficient to study a small example, in which the
meaning ofpack and unpack is explained in greater detail.

2 Example

We consider a classBag , whose instances represent multisets (bags) of integers. The
implementation has two fields: an integern that stores the cardinality of the bag, and
an arraya whose firstn elements are the elements of the bag. The class is declared
(in our simple object-oriented language) as follows:

class Bag extends object {
field a: array of int ;
field n: int ;
invariant self .a �= null ∧ 0 6 self .n ∧ self .n 6 length(self .a) ;
component self .a ;
...

}

We write self for the implicit receiver parameter. Our arrays are like those in C� and
Java: they are references to sequences of elements. Thecomponent declaration spec-
ifies a set of references that, in the steady state of a bag object, are owned by the bag (the
reason for this particular declaration is explained below). Theinvariant declaration
specifies a part of the internal consistency of theBag representation.

Let’s consider an instance method that inspects a bag without modifying it:

method Contains(x : int) returns (b:bool)
requires self .inv = Bag
modifies
ensures true

{
var i : int in

b := false ; i := 0 ;
while i < self .n do

b := b ∨ (self .a[i] = x) ;
i := i + 1

end
end

}

The method requires the bag’s invariant to hold on entry, claims that nothing is modi-
fied, and allows an arbitrary return value (reflecting the fact that we are aiming only for
a partial specification, like in ESC [5], not a full functional-correctness specification).
According to our methodology, the conditionself .inv = Bag implies that the invari-
ant declared inBag (and also any invariant declared in the superclassobject) holds.
The body of the method can therefore rely on the conditionself .n 6 length(self .a) ,
which together with the guardi < self .n ensures that the array referenceself .a[i]
does not overstep the array index bounds.

In our simple language, the constructors in C� and Java are broken up into an allo-
cation operation (new , which produces a new exposed object) and an explicit call to
an initialization routine. The latter is just anobject procedure (which in C� would be
called anon-virtual method). The classBag provides the following initializing routine,
which establishesBag ’s invariant:

proc FromArrayElements(e: array of int)
requires self .exposed ∧ self .inv = ⊥ ∧ e �= null
modifies self .{Bag}, self .inv
ensures self .inv = Bag

{
self .ObjectInit() ;
self .n := length(e) ;
self .a := new int[self .n] ;
self .a.CopyFrom(e, 0, self .n) ;
pack self as Bag

}

The precondition essentially says thatself is a just-allocated object. The termself .{Bag}
in the modifies clause grants the license to modify all fields declared inBag or in its
superclasses (not counting the special fieldsexposed or inv). The modifies clause and
postcondition also state that the object procedure returns after having established all of
self ’s invariants down toBag .

The body of the initialization routine starts by calling an initialization routine of the
superclass (here calledObjectInit). The pack statement at the end of the body has the
effect of the following pseudo-code, here described more generally forpack o as T :

assert o �= null ∧ o.exposed ∧ o.inv = super(T) ;
assert Inv(T , o) ;
foreach p ∈ Comp(T , o) do

if p �= null then
assert p.exposed ∧ p.inv = type(p) ;
p.exposed := false

end
end
o.inv := T

where the assert statements indicate conditions that are checked,super(T) de-
notes the immediate superclass ofT (or ⊥ if T is object), and Inv(T , o) and
Comp(T , o) denote the invariants and components, respectively, declared in classT
for the objecto , and functiontype gives the dynamic type of an object.

Next, let’s consider a method that updates a bag:

method Add(x : int)
requires self .exposed ∧ self .inv = Bag
modifies self .n, self .a
ensures true

{
unpack self from Bag ;
if self .n = length(self .a) then

var t : array of int in
t := new int[2 · self .n + 1] ;
t .CopyFrom(self .a, 0, self .n) ;
self .a := t

end
end ;
self .a[self .n] := x ;
self .n := self .n + 1 ;
pack self as Bag

}

Typical of an update method, this method body is bracketed byunpack and pack ,
where a statementunpack o from T has the effect of the following pseudo-code:

assert o �= null ∧ o.exposed ∧ o.inv = T ;
o.inv := super(T) ;
foreach p ∈ Comp(T ,o) do

if p �= null then p.exposed := true end
end

Note that methodAdd has the preconditionself .exposed , which allows its imple-
mentation to performunpack and pack operations onself and to modify the
fields of self . The implementation also modifies the state ofself .a (namely, its ar-
ray elements). This modification requiresself .a.exposed , but it would not be good
information-hiding practice explicitly to giveself .a.exposed in the precondition of
Add . It is for this reason thatself .a is listed in acomponent declaration, for then
the unpack statement establishesself .a.exposed . Being a component also means
that, in the steady state of the bagself , the arrayself .a is owned byself . In other
words, the array underlying a bag is not used as a component by any other object.

Our methodology and specifications are powerful enough to indicate whether or not
a parameter iscaptured by a method, that is, if the method takes over the ownership of
the parameter. This is illustrated by the following initialization routine:

proc FromArray(e: array of int)
requires self .exposed ∧ self .inv = ⊥ ∧

e �= null ∧ e.exposed ∧ e.inv = type(e)
modifies self .{Bag}, self .inv , e.exposed
ensures self .inv = Bag

{
self .ObjectInit() ;
self .n := length(e) ;
self .a := e ;
pack self as Bag

}

The pack statement at the end of the routine body requires all components, which
includesself .a to be exposed, so that they can be changed into being owned by the bag
self . The precondition of the object procedure facilitates this, and the modifies clause
gives the license to return from the routine having changed the value ofe.exposed .
The modifies clause tells callers that, although they can retain the referencee , they are
no longer able to owne . Note also that our methodology detects the error of trying
to implement routineFromArrayElements by the body ofFromArray (because the
precondition ofpack would fail).

Of course, this example gives only the gist of the specification methodolgy. We do
not yet have enough experience to say how powerful our approach is, but look forward
to a fruitful discussion at the workshop.

3 Technical Approach

To define the semantics of our object-oriented language in the full paper, we translate
it into a more primitive language (cf. [12]), which has a semantics defined byweakest
preconditions [6, 16]. An object-oriented program is deemed correct if and only if the
resulting primitive program is correct. In this section, we make a few remarks about the
full system.

We require a kind ofprefix closure property of declared components: for any subex-
pressionp.f occurring in Comp(T , self) or Inv(T , self) , either p is the literal
self or p occurs in Comp(T , self) . Due to space limitations in this extended ab-
stract, we omit here our treatment of array elements ininvariant and component .

Our programming language guarantees the following twosystem invariants (stated
informally in Section 1):

0. (∀ o,T ,S • o.inv = T ∧ T <: S ⇒
Inv(S , o) ∧ (∀ c • c ∈ Comp(S , o) ∧ c 	= null ⇒ ¬c.exposed))

1. (∀ o • ¬o.exposed ⇒ o.inv = type(o))

where o ranges over non-null allocated objects,T and S range over object types
(which does not include⊥), and c ranges over expressions. These system invariants
always hold, because:

– any newly allocated objecto satisfieso.exposed ∧ o.inv = ⊥ ,
– the only statements that directly modifyinv and exposed arepack andunpack ,

which maintain the system invariant,
– the value ofInv(T , o) can be changed only by changing the value of some subex-

pressionp.f in Inv(T , o) ; note that if p is o , then p.f can be changed only
if o.exposed ; and note that ifp is not o , then p.f is in Comp(T , o) , so
p.exposed only if o.inv is a proper superclass ofT .

The notion of objects being, at any moment, either exposed or owned gives us a
way to interpret modifies clauses without the need for other abstraction features. We
interpret a modifies clauseM of any method as giving the license to modify the heap,
subject to the following constraint, relating the pre-state and post-state of the method:

(∀ o, f • o.f = old(o.f) ∨ o ∈ old(M) ∨ ¬old(o.exposed))

whereo ranges over non-null objects allocated in the pre-state andf ranges over field
names. The first two disjuncts are standard, and say that eithero.f is not changed or
o.f is allowed to be modified according to the modifies clause (as interpreted in the
pre-state). The third disjunct is new, and says that fields of owned objects may change
during the method call.

4 Discussion

We are embarking on a project to write an invariant checker for the .NET platform and
are considering the presented methodology as the foundation of the checker. Our full
paper describes more details, but more needs to be done:

– Expressive power of the language. So far, we have only made a rudimentary inves-
tigation to see what kind of object-oriented programs we can verify. We expect our
invariant declarations to be as easy to use as those in ESC/Java [8], but here one
needs to explicitly give preconditions about invariants. Being explicit about that
seems to help our system (unlike ESC/Java) to be sound. Constrained by sound-
ness, our system is still flexible, in part due to the fact that one can express that
only certain invariants hold (a feature not present in ESC/Java). Also, as we for-
mulated it, packing succeeds only if the component graph (meaning the graph with
objects as vertices and declared components as edges) from the object being packed
is a tree. However, we think that useful relaxations of this rule exist.

– Interdependence of effects and uniqueness. Our system allows the reading of arbi-
trary objects, but allows updates only to exposed objects. One obtains thisexposed
bit from preconditions, newly allocated object, or, most frequently, by declaring
objects to be components. This restriction is similar to proposals that allow updates
on objects reachable from unique pointers, but there are interesting differences.
Several other techniques also forbid reading or have to account in their analysis for
reading, as done, for example, in Fugue [4] and in work by Boyland [2]. It would
be interesting to further understand any relation between our allowing reading and
the readonly references in universe types [15]. We expect that our technique can be
extended to deal with richer heap structures as well.

– Theory and practice. We intend to implement the system, and may have a system
running before the workshop starts. We also hope to do a formal proof of soundness.

– Inference. We believe that a practical system can only be realized if it suppports
some inference of specification fragments. Given class invariants, the existing ap-
proach seems well suited to infer some components, preconditions, and inductive
invariants.

References

1. Amal Ahmed and David Walker. The logical approach to stack typing, March 2003.
2. John Boyland. Alias burying: Unique variables without destructive reads. 31(1):533–553,

January 2001.
3. Robert DeLine and Manuel F¨ahndrich. Enforcing high-level protocols in low-level software,

May 2001.

4. Robert DeLine and Manuel F¨ahndrich. The Fugue protocol checker: Is your software
baroque? Submitted manuscript, 2003.

5. David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static
checking. Research Report 159, December 1998.

6. Edsger W. Dijkstra.A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ,
1976.

7. Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear types for imper-
ative programming, May 2002.

8. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java, May 2002.

9. Bart Jacobs. Objects and classes, co-algebraically. In B. Freitag, C. B. Jones, C. Lengauer,
and H.-J. Schek, editors,Object-Orientation with Parallelism and Persistence, pages 83–103.
Kluwer Academic Publications, 1996.

10. K. Rustan M. Leino and Greg Nelson. Data abstraction and information hiding.ACM Trans-
actions on Programming Languages and Systems, 24(5):491–553, September 2002.

11. K. Rustan M. Leino, Arnd Poetzsch-Heffter, and Yunhong Zhou. Using data groups to spec-
ify and check side effects, May 2002.

12. K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java programs via guarded
commands. In Bart Jacobs, Gary T. Leavens, Peter M¨uller, and Arnd Poetzsch-Heffter, ed-
itors, Formal Techniques for Java Programs, Technical Report 251. Fernuniversit¨at Hagen,
May 1999. Also available as Technical Note 1999-002, Compaq Systems Research Center.

13. Peter M¨uller. Modular Specification and Verification of Object-Oriented Programs, volume
2262. Springer-Verlag, 2002. PhD thesis, FernUniversit¨at Hagen.

14. Peter M¨uller and Arnd Poetzsch-Heffter. Modular specification and verification techniques
for object-oriented software components. In Gary T. Leavens and Murali Sitaraman, editors,
Foundations of Component-Based Systems, chapter 7, pages 137–159. Cambridge University
Press, 2000.

15. Peter M¨uller and Arnd Poetzsch-Heffter. Universes: A type system for alias and dependency
control. Technical Report 279, FernUniversit¨at Hagen, 2001.

16. Greg Nelson. A generalization of Dijkstra’s calculus.ACM Transactions on Programming
Languages and Systems, 11(4):517–561, October 1989.

17. David Walker, Karl Crary, and Greg Morrisett. Typed memory management via static capa-
bilities. ACM Transactions on Programming Languages and Systems, 22(4):701–771, July
2000.

