
Defaulting Generic Java to Ownership

Alex Potanin, James Noble, Dave Clarke1, and Robert Biddle2

{alex, kjx }@mcs.vuw.ac.nz , dave@cwi.nl , androbert biddle@carleton.ca

School of Mathematical and Computing Sciences,
Victoria University of Wellington, New Zealand

1 Centrum voor Wiskunde en Informatice, Amsterdam, Netherlands
2 Human-Oriented Technology Laboratory, Carleton University, Canada

Abstract. Generic ownership is a mechanism for seamlessly combining ownership and genericity.
Every class in Ownership Generic Java (OGJ) has an owner parameter as the last type argument. De-
faulting is a way to take any Generic Java (GJ) program and translate it to an OGJ program thus making
it possible to provide full backwards compatibility of OGJ with GJ programs. Since standard Java now
has support for generics, defaulting lays down a path for making vanilla Java programs ownership
parametric with no change to the source code.

1 Introduction

Modern programming languages provide little support for object encapsulation and ownership. Escaped
aliases to private objects can compromise both security and reliability of code in reference-abundant lan-
guages such as Java. Object ownership is a widely accepted approach to controlling aliasing in program-
ming languages. Generic Ownership is a unified approach to providing generics and ownership [10, 11].
Generic Ownership imposes no more syntactic or runtime overheads than traditional generic types. We
have extended Java 1.5 (with generics) to support Generic Ownership. We call the resulting language:
Ownership Generic Java (OGJ). We ground the formal side of this work within the Featherweight Generic
Java framework.

Why would we want ownership and generic types? Consider for example aboxas a kind of object. In
any object-oriented language we are allowed to say: “this is a box” (meaning any box of any things). In a
language with generics, we are allowed to say: “this is a box of books” (denoting a box of books, but not
containing birds). In a language with ownership parameterisation, we are allowed to say: “this is my box”
or “these are library books”. Combining ownership and generics naturally allows us to say: “this is my box
of library books”, not birds and not my personal books. Ownership turns out to work exceptionally well
with genericity, both in theory, practice, and implementation.

The problem with OGJ is that to guarantee object containment, it requires annotation of every class
declaration with an owner parameter and every class type needs an appropriate instantiation of that owner
parameter. This means that programmers must do more work to write OGJ programs than GJ programs and
plain Java programs that don’t use these parameters will not compile with OGJ compiler. Defaulting solves
this problem — allowing programs to leave out explicit ownership parameters, and supply default values
implicitly.

In Java 1.5 a programmer is allowed to say:

List listOfObjects = new List();

As it has been the case for years, this list can storeObject s, but we are also allowed to say:

List<String> listOfStrings = new List<String>();

The compiler will ensure that onlyString s can be put in and taken out of this list. Both examples above
will work with the same, generic, implementation ofList since Java usesraw types[9] to provide full
backwards compatibility with the original Java code.

OGJ allows a programmer to declare:

2

package myPackage;

class Foo {
List<String, Package> listOfStringsConfinedToMyPackage =

new List<String, Package>();
...

}

This makes it possible for the compiler to check not only thatString s are the only elements in our list,
but also that this instance of list isconfinedto packagemyPackage [2]. The contribution ofdefaulting
is that the code above can be written and will work without a single change to the implementation of the
List class provided with Java 1.5. Furthermore, although classFoo above is not parameterised by any
ownership parameters,defaultingwill still allow instances ofFoo to be parameterised to be confined to
either packages, classes, or particular instances, using OGJ.

Outline. Section 2 briefly surveys the Ownership Generic Java and its formalisation that allows the
proof of the confinement invariant1 in FGJ+c (an extension to FGJ [8]). Section 3 describes the defaulting
mechanism itself. Section 4 discusses the implications of our mechanism, and section 5 concludes our
paper.

2 Background

Generic Ownership [11] is a new linguistic mechanism that successfully combines genericity and owner-
ship into a single simple language. Generic Ownership provides the benefits of both type and ownership
parameterisation: catching all the errors and avoiding all the bugs that the generic and ownership languages
do individually. Generic Ownership treats ownership and genericity as one single aspect of language de-
sign, and so code using Generic Ownership is no more complex than code that is either type-parametric or
ownership-parametric.

The key technical contribution of Generic Ownership is that it treats ownership as an additional kind of
generic type information. This means that existing generic type systems can be extended to carry ownership
information with only minimal changes. This paper presents a novel defaulting mechanism which permits
ownership information to be omitted in common circumstances, so that Generic Ownership programs are
almost indistinguishable from their ownership-free counterparts, while gaining the benefits of ownership.

In this section, we overview Generic Ownership in terms of a language that we have implemented
called Ownership Generic Java (OGJ), a seamless extension to Java 1.5 with support for generic types [12].
We also outline the formal basis of our work.

2.1 Ownership Generic Java (OGJ)

Figure 1 presents aSimpleMap class written in Ownership Generic Java. Note that the code in figure 1
is type-generic: definitions of fields inMapNodeand methods everywhere use generic types such asKey
andValue rather than plain class types such asObject or Comparable . But this code also supports
ownership: each class has an extra generic parameter calledOwner which represents its owner. As with
other ownership type systems, it is not possible for owned objects to be exposed.

As you can see from the figure, OGJ is a language that is completely syntactically compatible with GJ
— any valid OGJ program is also a valid GJ program. OGJ provides ownership by requiring every single
class declaration to have at least one type parameter that is declared as a subclass ofWorld . This parameter
should always comelast and we call it theowner parameter. For example, instead of declaring:

public class Foo { ... }

OGJ requires the following declaration:

1 To prove the containment invariant for ownership, a more complete formalism than FGJ is required (for example to
support object identity). This is the topic of our current work.

3

public class SimpleMap<Key extends Comparable, Value, Owner extends World> {
private Vector<MapNode<Key, Value, This>, This> mapNodes;

public void put(Key key, Value value) {
mapNodes.add(new MapNode<Key, Value, This>(key, value));

}

public Value get(Key key) {
Iterator<MapNode<Key, Value, This>, This> i = mapNodes.iterator();
while (i.hasNext()) {

MapNode<Key, Value, This> mn = i.next();
if (mn.key.equals(key)) {

return mn.value;
}

}
return null;

}
}
class MapNode<Key extends Comparable, Value, Owner extends World> {

public Key key;
public Value value;
MapNode(Key key, Value value) {

this.key = key; this.value = value;
}

}

Fig. 1.Ownership Generic Java implementation of aSimpleMap class

public class Foo<Owner extends World> { ... }

Owner parameters are used to record the ownership of individual objects of a particular class. OGJ
provides fourownership domainsthat programmers can use to instantiate owner parameters:World ,
Package , Class , andThis . These domains represent different ownership scopes to which objects can
belong, and were chosen to parallel the existing static access structures in Java. Any instance of a class
whose owner parameter is instantiated withWorld can be referred to by any other object. References to
an object instantiated with aPackage owner are confined within the package where the instance’s type is
instantiated, and an instance marked withClass is confined within that class. Finally, an object marked
with This is encapsulated within the object where the type containingThis is instantiated — that is, it is
owned directly by that object. In this way, OGJ provides both confined types (Package andClass) and
shallow ownership (This).

For example, if aFoo instance is created with its ownership parameter bound toPackage , as in:

public Foo<Package> f = new Foo<Package>();

then the new instance ofFoo can only be accessed via the package containing the instantiation. Similarly,
if it is created usingThis ownership:

public Foo<This> f = new Foo<This>();

then it can only be accessed via the current instance of the class creating the newFoo object.

2.2 Featherweight Generic Java with Confinement (FGJ+c)

Our initial formalisation of OGJ is called FGJ+c [10]. FGJ+c embodies a minimalist confinement scheme
which leverages parametrically polymorphic types to enforce static confinement, that is, for a statically
known collection of protection domains. Our formalism is based on an extension to Featherweight Generic
Java (FGJ), which, with Featherweight Java (FJ), provides simple models of Java and Generic Java’s type
systems [8]. The current implementation of OGJ also implementsshallow ownership, though we have not
treated this in this formalism.

Generic Ownership uses generic type parameters to carry ownership information as well as type infor-
mation. Following the traditional approach of Ownership Types [6] we require every FGJ+c class to have
at least one type parameter to carry this ownership information. We use thelast type parameter to record an

4

object’s owner. All FGJ+c classes descend from a new classCObject (for confinable object) that has just
one parameter calledOwner; all its subclasses must invariantly preserve this parameter to represent their
owner. We are careful to ensure that FGJ+c programs remain FGJ programs. The consequence is that we
can leverage FGJ’s type soundness result, and use it when establishing the desired confinement property.
The syntax of FGJ from Igarashi et al. [8], adapted only slightly for presentation reasons, is given in fig-
ure 2. Note that we do not account for statics, which are not present in FGJ. We have thus omitted manifest
ownership [5] from our formalism.

T ::= X | N
N ::= C< T, O>
L ::= class C<X̄ / N̄, Owner / Domain> / N {T̄ f̄; K M̄}
K ::= C(T f) { super(f); this. f=f; }
M ::= < X / N> T m(T x) { return e; }
e ::= x | e.f | e.m< T>(e) | new N(ē) | (N)e

For presentation reasons, we reserveO to refer to owner-classes,Domain for
concrete owner-classes,Owner for owner variables. (O ::= Domain | Owner .)

Fig. 2.FGJ syntax, adapted from Igarashi et al

Every FGJ+c program must satisfy the FGJ type rules [8], along with some additional constraints
described in detail elsewhere [10, 11]. The rules deal with three concerns: (a) every FGJ+c type has an
owner; (b) the owners are preserved over inheritance/subtyping; and (c) the owners are visible within the
context in which they occur. These rules are recursively propagated through expressions, method and class
declarations to ensure that they hold for a whole FGJ+c program.

3 Defaulting

To further reduce the syntactic overhead of Generic Ownership, owner parameters in OGJ can be elided
from class declarations and instantiations — we call thisownership defaulting. Essentially, if a class dec-
laration does not declare an owner parameter, the OGJ language will provide a defaultOwner extending
World . We chooseWorld so that ordinary Java and GJ code can be used unchanged in OGJ. For example,
the following class declaration:

public class Athlete<Event> { ... }

when compiled using OGJ will be treated as:

public class Athlete<Event, Owner extends World> { ... }

Similarly, if a class has an owner parameter in its declaration (possibly added by defaulting), this pa-
rameter may be omitted and OGJ will instantiate the parameter to its bound by default. For example, code
usingAthlete , such as:

Athlete<Discus> a = new Athlete<Discus>();

will be taken to mean:

Athlete<Discus<World>, World> a =
new Athlete<Discus<World>, World>();

5

The main effect of defaulting is that programmers are able to write Generic Ownership code with very
little syntactic overhead, providing owner parameters only when absolutely required. Because the rules for
defaulting are quite straightforward, they have no effect on the modularity of OGJ code — as with defaults
in other generic type systems, but in contrast to more complex type inference schemes used to support other
ownership types systems [1, 7].

We have implemented this defaulting scheme within OGJ compiler (an extension of Java 1.5 compiler
[12]) and can successfully check Java’scollect.jar, and compile the compiler source itself. The rest of this
section describes the formal defaulting mechanism.

3.1 Defaulting for FGJ+c

Formally, we aim to model defaulting so that we can take any FGJ program (that doesn’t have owner param-
eters) and produce a valid FGJ+c program (that has the appropriate owner parameters). When defaulting
an FGJ program we replace every class declaration with a defaulted version, as well as replacing every
nonvariable type occurrence in all expressions, method and class declarations with defaulted versions.

Defaulting Object (D-FGJ+C-OBJECT):

[[Object]] = CObject<World> O1
Defaulting Types (D-FGJ+C-TYPE):

∆FGJ ` T = C<N> D′ = bound(D)
class C<N, O / D> / N{T f; K M} FGJ+c

[[C<N>]] = C<N, D′>
T1

∆FGJ ` T = C<N> D′ = bound(D)
[[class C<N> / N{T f; K M}]] = class C<N, O / D> / N{T f; K M}

[[C<N>]] = C<N, D′>
T2

Defaulting Class Declarations(D-FGJ+C-CLASS):

class C<X / N, lastX / lastN> / N {T f; K M} OK
[[N]] = CN<TN, OwnerN> ¬ (bound(lastN)/World) Owner free in C

[[class C<X / N, lastX / lastN> / N {T f; K M}]] =
class C<X / N, lastX / lastN, Owner / OwnerN> / CN<TN, Owner> {T f; K M}

C1

class C / N {T f; K M} OK [[N]] = CN<TN, OwnerN> Owner free in C

[[class C / N {T f; K M}]] =
class C<Owner / OwnerN> / CN<TN, Owner> {T f; K M}

C2

Fig. 3.FGJ+c Defaulting Rules

Figure 3 shows2 how to default any occurrence of a nonvariable type (O1, T1, and T2) and class decla-
ration (C1 and C2). Rule O1 defaults every occurrence ofObject type withCObject<World> , since
every class in FGJ+c has to have an owner parameter — even the root of the class hierarchy [10]. Rules T1
and T2 replace the class instantiations that do not have owner parameters. The original class declaration
may come from a valid FGJ+c class (T1) or may be defaulted by our class rules (T2). The class rules C1
and C2 appropriately insert a default owner parameter (that is bound by the owner bound of a superclass
that is going to beWorld in case of plain FGJ programs) into every class declaration that does not already
have one. The presence of the owner parameter is checked by testing the bound of the last type parameter

2 Please note that FGJ and FGJ+c types are marked as valid usingOKand OK+c correspondingly if they meet a
number of type validity requirements [8, 10]. A class declaration is markedFGJ+c if it is a valid FGJ+c class.

6

(C1), unless there are none (C2). The rules for recursively propagating the class declaration and instantia-
tion replacements through expressions, method and class declarations are straightforward and are omitted
from this paper due to space constraints.

For vanilla FGJ programs, our defaulting guarantees that the resulting FGJ+c programs are valid (i.e.
the translation is going to be sound). Indeed, in the resulting FGJ+c programs (see the end of section 2):
(a) every class declaration and every type has an owner; (b) the owners are preserved over the inheritance,
since the C1 and C2 rules explicitly ensure that superclasses have the same owner parameter; and (c) the
owners are visible within the current context since for plain FGJ programs they are going to beWorld
(propagated from the root of the hierarchy:CObject<World>).

For “mixed” FGJ and FGJ+c programs, our defaulting rules can no longer guarantee that the translation
is sound, since the FGJ+c part of the program can use owner parameters in a way that invalidates the
meaning of the program after the defaulting. Consider the following valid FGJ program (whereπp stands
for the owner class of packagep):

class util.List<T, Owner extends World> { ... }

class p1.Foo< πp1> {

p1.Foo() {

util.List<T, πp2> = new util.List<T, πp2>;

}
}

This program is valid in FGJ, but it is invalid in FGJ+c and will be invalid after defaulting (since it accesses
a class confined to package p2 outside package p2). These errors are only going to arise in the FGJ+c part
of the program, not in vanilla FGJ.

FGJ utilises anerasuremechanism to translate FGJ programs to FJ (Featherweight Java without gener-
ics) [8]. Erasure removes the type parameters from type instantiations and adjusts the rest of a program
(expressions, method and class declarations) so that the result preserves typing and reflects the original
execution (unfortunately, the execution is not preserved). We can observe that any FGJ program and a
defaulted version of it will reduce to the same FJ program under the erasure conditions. This means that
typing and execution are not affected by the defaulting.

We have formalised defaulting within the context of static per-package confinement FGJ+c. We expect
that defaulting can be expanded to cover shallow per-object ownership.

4 Discussion

Ownership defaulting is much weaker than the mechanisms provided by inference schemes [1, 3] since
we only useoneowner parameter and default it toWorld . Inferring only one owner parameter is less
restrictive than it may seem, as all generic parameters can carry ownership information in OGJ. On the
other hand, defaulting undeclared owners toWorld provides no encapsulation. However, type inference
schemes can only infer types to describe the implicit encapsulation structures latent in the code. They do not
enforce any particular encapsulation discipline: rather they will infer the equivalent ofWorld ownership
for any type which escapes the unit of analysis. This means that neither inference nor our defaulting can
enforce encapsulation guarantees that the programmer has not specified, rather that inference will attempt
to accurately identify latent encapsulation where defaulting currently will not.

We consider that simple defaulting rules are more appropriate for a general-purpose language such as
OGJ — they are certainly simpler to explain and to understand. Thus, a programmer can easily omit unnec-
essary owner annotations in their code, while knowing exactly the consequences of their action. However,
we plan to pursue ownership inference for OGJ programs as a programming tool outside the language, to
support programmers adding explicit ownership declarations to programs to reflect their intentions.

7

Ownership defaulting described in this paper would also work for other ownership type systems [1,
4, 5]. A minor (but still important) language design feature makes defaulting in OGJ considerably easier
than in the other systems: in OGJ, an object’s primary ownership is carried by thelast parameter, whereas
in most other systems (following Clarke et al. [6]) it is carried by thefirst. Having ownership in the last
position means that owners can be defaulted simply by leaving them off (e.g. “Foo”) while Boyapati et.al.,
for example, require a placeholder (e.g. “Foo<-> ”) which is referred to as ananonymous owner.

Defaulting provides backwards compatibility for OGJ with Generic Java in the same way that raw
types provide backwards compatibility for GJ programs with plain Java. Generic ownership [11] makes
it possible to reuse the formal foundations provided by FGJ, thus allowing to obtain such a compatibility
easily.

Ownership defaulting only guarantees the validity of resulting FGJ+c programs if the original FGJ
program is naked. In practice, not making such a guarantee for mixed programs means that the OGJ will
show the errors in the mixed code that were not detected by the Java 1.5 compiler. But the errors are going
to be in the OGJ part of the code and any vanilla Java 1.5 code will compile correctly if taken on its own.

5 Conclusion

In this paper, we described ownership defaulting mechanism for making any Java 1.5 program fully owner-
ship parametric. Defaulting makes it possible to utilise ownership in day to day programming. A program-
mer can take OGJ, a prototype of which is available, and start using ownership from day one. We hope that
ownership defaulting will be yet another step towards making ownership usable in the practical world of
object-oriented programming.

Acknowledgments

This work is supported in part by the Royal Society of New Zealand Marsden Fund.

References

1. J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program understanding. InACM Conference on
Object-Oriented Programming Languages, Applications, Languages, and Systems (OOPSLA), November 2002.

2. Boris Bokowski and Jan Vitek. Confined types. InProceedings of Conference on Object-Oriented Programming,
Languages, and Applications. ACM Press, 1999.

3. Chandrasekhar Boyapati.SafeJava: A Unified Type System for Safe Programming. PhD thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, February 2004.

4. Chandrasekhar Boyapati and Martin Rinard. A parameterized type system for race-free Java programs. In
ACM Conference on Object-Oriented Programming Languages, Applications, Languages, and Systems (OOP-
SLA), 2001.

5. Dave Clarke. Object ownership and containment. PhD thesis, School of Computer Science and Engineering,
University of New South Wales, Australia, 2002.

6. David Clarke, John Potter, and James Noble. Ownership types for flexible alias protection. InProceedings of
Conference on Object-Oriented Programming, Languages, and Applications. ACM Press, 1998.

7. Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating objects with Confined Types. InProceedings of
Conference on Object-Oriented Programming, Languages, and Applications. ACM Press, 2001.

8. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java
and GJ.ACM Transactions on Programming Languages and Systems (TOPLAS), 23(3):396 – 450, May 2001.

9. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. A recipe for raw types. InWorkshop on Foundations of
Object-Oriented Languages (FOOL), 2001.

10. Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Featherweight generic confinement. InFoundations
of Object-Oriented Programming (FOOL11), Venice, Italy, January 2004.

11. Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Generic ownership. InACM Conference on Object-
Oriented Programming Languages, Applications, Languages, and Systems (OOPSLA), 2004. Submitted for pub-
lication.

12. Sun Microsystems. JSR14 prototype implementation. http://developer.java.sun.com/
developer/earlyAccess/adding_generics/ind%ex.html , 2003.

