Reasoning with specifications

| containing method calls

David R. Cok
Eastman Kodak R&D Laboratories
FTfJP — June 2004

Outline

= Background
= ONn Abstraction in specification
= on JML
= on ESC/Java & ESC/Java2
= on Simplify
= Implementing method calls
= Exceptional behavior in annotations

= Other applications

Abstraction in specifications

= Using (pure) methods in specs
= Model fields

= Model classes
= e.g. JML’s mathematical classes

Advantages

= Abbreviation (readability)

= Simplifies mental models (e.g. can make
use of functions on mathematical
constructs)

= Allows specification in terms of abstract
concepts instead of (or in the absence of)
concrete implementations

= Inheritance
= Simplifies automated reasoning

Java Modeling Language

= JML is
= a specification language (a BISL)
« for Java
= Uses Java-like syntax and semantics

= embeds annotations in formatted Java
comments (either in a source file or in a
specification file)

Examples of JML

precondition

class C { (calling method is required oy
to satisfy this pre-state nOrmal pOStcondltlon
condition; implementation (If method terminates normally, then

//@ requires i != 0Q; Mmaypresume it) this post-state expression is true)

//Q@ ensures i < 0 ==> \result > 0;

//@ signals (Exception e) i == 0;

//@ diverges i > 1000000000; \ exceptional
puki ' postcondition

(If method throws exception of the
given type, then the post-state
expression must be true)

non-termination

/@ assert i < 10;

} (if method does not terminate,
then this pre-state expression
is true)

}

Specially formatted

comment In-body logical assertion

ESC/Java

= A static analysis tool that

= efficiently checks for bugs in low-level code
constructs (e.g. NullPointerException) by applying
a (hidden) prover to generated verification
conditions

= had reasonably good performance
= annotation language close to a subset of JML
= N0 manual proving required

s But
= NO abstraction
= hot consistent with JML
= hot maintained

ESC/Java2

= Project begun by Cok & Kiniry to evolve
ESC/Java
= bring ESC/Java to Java 1.4
= bring ESC/Java to current JML

= extend the set of checked constructs, while
maintaining the original design philosophy

= improve the overall packaging as needed

= provide some ongoing support

= Enable evalution of this style of verification
on sets of Java code with more extensive and
abstract specifications

Simplify

= ESC/Java(2) uses a back-end prover named
Simplify

= [t accepts expressions in an untyped first-
order logic with quantifiers

= Decides validity, invalidity, sometimes
produces counterexamples, sometimes runs
out of resources

= Has built-in knowledge of term equality,
simple arithmetic (using Simplex algorithm),
+ axioms for arrays, type relationships

= fully automatic (no access for manual
intervention)

Translation — implicit state

public class Z { assume si; == siy + 1;

static int si;

assume b, == store(b,, this, (si;==0));

boolean b;

public int
si =s1i+ 1;
b= (si==0);
boolean bb = b;

z.b = bb; assert z 1= null;
//@ asser;tifzzziii

assume b, == store(b,, z, bb,);

z z)/(, @ssume bb, = select(b,, this);
/ [state = {bb,, by, Siy, ... }]

}

} assert select(b,, this);

-Instance fields are represented as arrays indexed by object ids.
-The ‘state’ is the set of current variables.

Translation — explicit state

assume state, ==
store(state,,si,select(statey,si) + 1);

public class Z {

static int si;

boolean b;

sublic int mm(Z 2) { assume state, == store(state,,b,this,
si=si+ 1, (select(state,,si) == 0));
b= (si==0);
boolean bb = b;
z.b = bb;
//Q assert b;

} -arrays representing field values now have an
additional dimension
-using arrays builds in the axioms about the
values of fields that do not change

Translation — explicit state II

public class Z {

static int si;

boolean b;

public int mm(Z z) ({
si =si + 1;
b= (si == 0);
boolean bb = b;
z.b = bb;
//@ assert b;

assume si(state,) == si(state,) + 1;

assume b(state,,this) ==
(si(state;) == 0);

assume bb(state,) == b(state,);
assume b(state;,z) == bb(state,);

assert b(state,,this)y

-fields are functions on a state variable and object ids
-What about b(state,,x) for x != this?* Meeds an axiom
-What about f(state,,x) for a different field f?

Translation of method calls

= Bad choices:
= inlining the specification
= e.g. if the spec is ensures \result == ...;
= Not always a suitable expression to inline
= Might be more than one
= May be recursive calls
= Can get huge verification conditions

= inlining the implementation
= There may not be an implementation
= There may be recursive calls
= Messy — mixing logical with imperative statements
= Loses benefits of abstraction

= For some methods (e.g. getters and setters),
inlining might be a good optimization

Translation of method calls

= Convert each method call into a
function term with appropriate
arguments.

= Use a state argument to distinguish
calls in different state contexts.

= Include the specifications of the method
as assumptions (in the appropriate
state context).

Example

//@ pure
public boolean m(M o) ;

static public M make(int i) ;

//@ requires o !'= null;
//Q@ requires m(o) ;
//Q@ ensures m(0) ;
public int mm(M o) {
//@ assert m(o) ;
.1 =1;
//Q@ assert m(o) ;
o = make(0) ;

//@ assert m(o) ;

assume ZZ.m(state,,this,0,);
assert ZZ.m(state,,this,0,);

assume i, == store(iy,0,,1);
assert ZZ.m(state,this,0,);

assume 0, == ...;
assert ZZ.m(state,,this,0,);

assert ZZ.m(state,this,0,) ==
ZZ.m(state,,this,0.);

Example

//@ pure
public boolean m(M o) ;

static public M make(int i) ;

static public M o;

//@ requires o !'= null;
//Q@ requires m(o) ;
//@ ensures m(o) ;
public int mm() {

//Q@ assert m(o) ;

o.i1i =1;

//Q assert m(o) ;

o = make(0) ;

//@ assert m(o) ;

assume ZZ.m(state,,this,0,);
assert ZZ.m(state,,this,0,);

assume i, == store(iy,0,,1);
assert ZZ.m(state,this,0,);

assume 0, == ...;
assert ZZ.m(state,,this,0,);

assert ZZ.m(state,this,0,) ==
ZZ.m(state,,this,0,);

Example — adding specs

//@ ensures \result == 555 me (forall t,0; ZZ.m(state,,t,0) == (i,[0] == 0));

(0.1==0); jssume ZZ.m(state,this,0,);

//@ pure

public boolean m(M o) ; assume (forall t,0; ZZ.m(state,,t,0) == (i,[0] == 0));

_ _ __assert ZZ.m(state,,this,0,); // OK

static public M make(int 1i);

assume i; == store(i,,04,1);

assume (forall t,0; ZZ.m(state,,t,0) == (i,[0] == 0));
assert ZZ.m(state,,this,0,); // FAILS

//@ requires o !'= null;

//@ requires m(o) ;

//Q@ ensures m(o) ;

public int mm(M o) {
//@ assert m(o);
o.i=1;

assume o, == ...;
assume (forall t,0; ZZ.m(state,,t,0) == (i,[0] == 0));
assert ZZ.m(state,,this,0,); // DEPENDS

//@ assert m(o) ;
o = make (0) ;

//@ assert m(o) assume (forall t,0; ZZ.m(state,,t,0) == (i,[0] == 0));

assert ZZ.m(state,,this,0,) ==>
ZZ.m(state,,this,0,); // FAILS

Example — Java vs. spec

//@ pure
public boolean m(M o) ;

public int mm(M o) ({

b = m(o); assume b, == store(b,,this,RES);
//@ assert b == m(o0);

assert b, 5= ZZ.m(state,,this,0,);

No logical connecti etween these values
that enables the assertion to be proved!

Need a connection between m in the code
and m in the assertion.

Example — Java vs. spec

//@ pure
public boolean m(M o) ;

public int mm(M o) ({

assume RES == ZZ.m(state,,this,0,);
b = m(o) ; assume b, == store(b,,this,RES);

//Q@ assert b

state,,this,0,);

Need to add an assumptioh when an annotation
method is used in th rce code.

But still cannot prove the assertion because the
state has changed.

Example —

Java vs. spec

//Q@ ensures \result ==

(o0.1==0) ;

//@ pure
public boolean m(M o) ;

public int mm(M o) ({

b = m(o);

//@ assert b == m(0);

assume (forall t,0; ZZ.m(state,,t,0)

== (io[o] == 0));
assume RES == ZZ.m(state,,this,0,);
assume b, == store(b,,this,RES);

assume (forall t,0; ZZ.m(state,,t,0)

== (iglo] == 0));

assert b; == ZZ.m(state,this,0,);

Now the assertion is provable.

Example — Java vs. spec

//@ pure
public boolean m(M o) ;

public int mm(M o) ({

// In the then branch...
if (b == m(o)) { assume b, == ZZ.m(state,,this, 0,);
//@ assert b == m(o); assert by == ZZ.m(state,,this,0,);

}
}

Without a state change the assertion is trivially
provable, even without a specification.

Example —

explicit state

//Q@ ensures \result ==

(o0.1==0) ;

//@ pure
public boolean m(M o) ;
public boolean b;

public int mm(M o) ({

b = m(o);

//@ assert b == m(0) ;

assume (forall s,t,0; ZZ.m(s,t,0)
== (select(s,i,0) == 0));

assume state, == store(state,, b, this,
ZZ.m(state,,this,0,);

assert select(state,,b,this) ==
ZZ.m(state,,this, 0y);

-using explicit state reduces the number of introduced

assumptions for ZZ.m

Implicit vs. Explicit

= Using explicit state

= allows more compact representation of
method calls

= complicates reasoning about field access
by introducing a new array
dimension/function argument

s It would be useful to understand the
trade-off experimentally

Exceptional behavior

//@ ensures P;

//@ pure
public boolean m(M o) ;

//Q@ ensures Q;
public int mm(M o) ({
b = m(o);

//Q@ assert b == m(0) ;

If m terminates normally,
then P holds. Nothing known
if m terminates exceptionally.

If mm terminates normally,
then Q holds.

Exceptional behavior

//@ ensures P;

//@ pure
public boolean m(M o) ;

//@ ensures m(o) ;

public int mm(M o) ({

}

If m terminates normally, then P holds.

What if m terminates with an exception
in the postcondition?

JML semantics say the result is
undefined (more specifically, an
arbitrary value). [Spec# says the
postcondition fails.]

We can only conclude that if
(mm terminates normally AND
the various assertions terminate
normally) then mm satisfies its
specification. Pretty Weak!

Exceptional behavior

//@ ensures P;

For a method that is used in an
annotation, we need a spec that

//@ signals (Exception) false; gjgrantees normal termination

//@ diverges false;

//@ pure
public boolean m(M

//@ ensures m(o) ;
public int mm(M o)

}

(under the relevant preconditions)
°) - This is stronger than most specs
are written.

{
- This puts a significant burden on

overriding methods.

- If we presume this behavior, then

the default behavior in an annotation

is different than the default behavior

in code (and a problem for runtime checking)

Other applications

s Pure constructors
= Array constructors
= Model variables

= Quantified expressions

= No specs — what about exceptional
behavior ?

=« We lose guarding conditionals

Immutable values

= Figuring out what does and does not change

IS a big part of a verifier’s task.

= Knowing which types and values are
immutable could assist reasoning: these

objects remain equal despite state changes.

= Requires purity, immutable internal objec
limits on rep exposure, a way to check for
immutability, ...

S,

Conclusions

= We have successfully implemented the use of
methods in annotations in ESC/JavaZ.

= Methods used in annotations should preclude
exceptional behavior — which puts a burden
on specification writers and on derived
classes.

= The same techniques can be used for other
specification constructs.

For discussion...

= The choice of logical representation is
not obvious and needs some
comparative work.

= Will a concept of immutability assist in
verification?

Translation — explicit state II

assume H(si,state;) == H(si,state,) + 1;
assume (forall f; f 1= si ==>
static int si; H(f,state,) == H(f, state));

boolean b;

public class Z {

public int mm(Z z) { assume H(b,state,,this) ==

si=si+1; (H(si,state;) == 0);
b = (si == 0); assume (forall f,0;

boolean bb = b; (f 1= b || ol= th|s) ==>
z.b = bb;

H(f,state,,0) == H(f, state,,0));

//@ assert b;

Example —

explicit state

//Q@ ensures \result ==

(o0.1==0) ;

//@ pure
public boolean m(M o) ;

public int mm(M o) ({

b = m(o);

//Q@ assert b == m(0);

assume (forall s,t,0; ZZ.m(s,t,0)
== (i(s,t,0) ==0));

assume b(state,,this) ==
ZZ.m(state,this,0,);

assert b(state,,this) ==
ZZ.m(state,,this,0);

-using explicit state reduces the assumptions for ZZ.m
-but requires a number of other assumptions on each
assignment noted earlier

	Reasoning with specifications containing method calls
	Outline
	Abstraction in specifications
	Advantages
	Java Modeling Language
	Examples of JML
	ESC/Java
	ESC/Java2
	Simplify
	Translation – implicit state
	Translation – explicit state
	Translation – explicit state II
	Translation of method calls
	Translation of method calls
	Example
	Example
	Example – adding specs
	Example – Java vs. spec
	Example – Java vs. spec
	Example – Java vs. spec
	Example – Java vs. spec
	Example – explicit state
	Implicit vs. Explicit
	Exceptional behavior
	Exceptional behavior
	Exceptional behavior
	Other applications
	Immutable values
	Conclusions
	For discussion...
	Translation – explicit state II
	Example – explicit state

